

THE COHEN-MACAULAY MODULES OVER

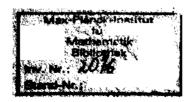
SIMPLE HYPERSURFACE SINGULARITIES

Horst Knörrer

SONDERFORSCHUNGSBEREICH/40 THEORETISCHE MATHEMATIK UNIVERSITÄT BONN UND

MAN PRANCE INSTITUT FÜR MATHEMATIK

MAK



THE COHEN-MACAULAY MODULES OVER SIMPLE HYPERSURFACE SINGULARITIES

Horst Knörrer

Max-Planck-Institut

für Mathematik

Gottfried-Claren-Str. 26

D - 5300 Bonn 3

Sonderforschungsbereich Theoretische Mathematik Beringstr. 4 D - 5300 Bonn 1

MPI/SFB 84 - 51 🚓

Introduction:

The simple hypersurface singularities of dimension n over an algebraicly closed field k of characteristic zero are the singularities described by the following equations (cf.[1]):

$$A_{1} : x^{1+1} + z_{2}^{2} + \dots + z_{n+1}^{2} = 0$$

$$D_{1} : x^{2}y + y^{1-1} + z_{3}^{2} + \dots + z_{n+1}^{2} = 0$$

$$E_{6} : x^{3} + y^{4} + z_{3}^{2} + \dots + z_{n+1}^{2} = 0$$

$$E_{7} : x^{3} + xy^{3} + z_{3}^{2} + \dots + z_{n+1}^{2} = 0$$

$$E_{8} : x^{3} + y^{5} + z_{3}^{2} + \dots + z_{n+1}^{2} = 0$$

In this paper we want to show that there are up to isomorphism only finitely many indecomposable Cohen-Macaulay modules over the local ring⁽¹⁾ of such a simple singularity, and we compute their Auslander-Reiten quivers⁽²⁾.

For the case of two-dimensional simple singularities this finite-ness result is well known ([11], [3], [7]), and the Auslander-Reiten quiver is described in [3]. The one-dimensional simple hypersurface singularities have been discussed in [10], [5]. Therefore we study in general the relation between the Cohen-Macaulay modules over the local ring of an isolated hypersurface singularity (Y,O) in (k^n,O) given by an equation $f(x_1,\ldots,x_n)=0$

⁽¹⁾ in the formal category

⁽²⁾ for a discussion of the theory of Auslander-Reiten quivers see e.g. [8]

and of the singularity (x,0) in $(k^{n+1},0)$ given by $f(x_1,\ldots,x_n)+z^2=0$, using the fact that (x,0) is a double ramified cover of $(k^n,0)$ branched over (x,0). In particular we show that the Auslander-Reiten quivers of indecomposable Cohen-Macaulay modules over (y,0) and over the singularity in $(k^{n+2},0)$ given by $f(x_1,\ldots,x_n)+z_1^2+z_2^2=0$ are isomorphic (theorem 2.1). Using this method we also obtain a description of the Cohen-Macaulay modules over simple plane curve singularities in terms of the representation theory of finite reflection groups in GL(2,k) and give a conceptual proof of the fact that their Auslander-Reiten quivers (3) coincide with the graphs described in [9] 3.7 (theorem 3.3).

This isomorphism of graphs had been observed by J.-L. Verdier; and it was the starting point for this work. I also want to thank M. Auslander, H. Esnault, E. Viehweg and in particular A. Wiedemann for many interesting and stimulating discussions.

⁽³⁾ as computed in [5]

1. Double ramified covers:

Let $f(x_1,\ldots,x_n)=0$ be the equation of an isolated hypersurface singularity in $(k^n,0)$, n>2. Then the equation $f(x_1,\ldots,x_n)+z^2=0$ again describes an isolated hypersurface singularity $(x,0)\in (k^{n+1},0)$. The projection $pr:(x,0)+(k^n,0)$, $(x_1,\ldots,x_n,z)+(x_1,\ldots,x_n)$ is a double ramified cover; its ramification locus $(y,0)\in (x,0)$ is mapped by pr isomorphically to the space in $(k^n,0)$ described by the equation $f(x_1,\ldots,x_n)=0$. The covering transformation of pr is the involution g:x+x, $(x_1,\ldots,x_n,z)+(x_1,\ldots,x_n,z)$.

Let R be the local ring $^{O}_{X,O}$. The group $\mathbb{Z}/2\mathbb{Z}$ acts on R via σ ; we denote the twisted group ring by $\mathbb{R}[\sigma]$ (i.e. $\mathbb{R}[\sigma] = \mathbb{R} \oplus \mathbb{R} \cdot \sigma$ with the multiplication $(r_1 + r_2 \sigma) \cdot (r_1 + r_2 \sigma) = r_1 r_1 + r_2 \sigma (r_2) + (r_1 r_2 + r_2 \sigma (r_1)) \sigma$. Modules over $\mathbb{R}[\sigma]$ correspond to R - modules M with an action of σ such that $\sigma(\mathbf{r} \cdot \mathbf{m}) = \sigma(\mathbf{r}) \cdot \sigma(\mathbf{m})$ for all $\mathbf{r} \in \mathbb{R}$, $\mathbf{m} \in \mathbb{M}$. We call an $\mathbb{R}[\sigma]$ -module Cohen-Macaulay $^{(4)}$ if it is \mathbb{C}^{M} as module over R.

R itself admits two σ - actions, namely $\phi \mapsto \phi \cdot \sigma$ (the action induced by the action of σ on X), and $\phi \mapsto -\phi \cdot \sigma$, We denote the corresponding $R[\sigma]$ - modules by R_+ (or sometimes just R) and R. Then $R[\sigma] \cong R_+ \oplus R_-$, and R_+ and R_- are the only indecomposable projective CM modules over $R[\sigma]$. If M,N are $R[\sigma]$ - modules then $\operatorname{Hom}_R(M,N)$ is again an $R[\sigma]$ - module, the action of σ being given by $\phi \mapsto \sigma \cdot \phi \cdot \sigma$. We put

⁽⁴⁾ here and in the sequel we abbreviate Cohen-Macaulay by CM .

 $M':= \operatorname{Hom}_R(M,R_+)$; if M is CM then $M \cong M''$. Furthermore we denote for an $R\{\sigma\}$ - modules M by M'' (resp. M^a) the set of all σ - invariant (resp. σ - antiinvariant) elements of M. If M is CM of rank r over R then M'' and M^a are CM over the regular ring $R'' \cong \mathcal{O}_{K^n,O}$, thus they are free R'' - modules of rank r.

For a CM module over R[σ] of rank r we denote by M' σ M the submodule generated by M $^{\sigma}$. Since M $^{\sigma}$ is free over R $^{\sigma}$ we see that M' = R $^{\sigma}$ M $^{\sigma}$ \cong R r . Obviously multiplication with the element z \in R maps M into M', so

F(M) := M/M'

of CM modules over $R[\sigma]$ then $\phi(M') \subset N'$, so ϕ induces a morphism $F(\phi): F(M) + F(N)$. Thus F is a functor from the category of CM $R[\sigma] -$ modules to the category of R - modules. One easily sees that $F(R_+) = 0$, $F(R_-) \cong R$. We give a second description of the functor F which will be useful for the discussion of some properties of F. For a CM module M over $R[\sigma]$ we put $M := M^{\vee\vee}$ and denote by I_M the canonical inclusion $M = M^{\vee\vee} \hookrightarrow M^{\vee\vee} = M$. This construction is functorial i.e. if $\phi: M + N$ is a morphism of CM $R[\sigma]$ - modules then there is a unique morphism $\overline{\phi}: \overline{M} \to \overline{N}$ such that the diagram

is a module over $\hat{R} := R/z R = 6_{Y,O}$. If $\phi : M \to N$ is a morphism

$$\begin{array}{cccc}
\overline{M} & \overline{\phi} & \overline{N} \\
\downarrow & \downarrow_M & & \downarrow_N \\
M & \overline{\phi} & & N
\end{array}$$

commutes. Also one checks that $z \cdot \overline{M} \subset j_{\underline{M}}(M)$, so $M \Rightarrow F'(M) := \overline{M}/j_{\underline{M}}(M) \quad \text{defines a functor } F' \quad \text{from the category}$ of $CM \quad R[\sigma] - \text{modules}$ to the category of R - modules.

Lemma 1.1:

The functors F and F' are equivalent.

<u>Proof</u>: Let M be a CM module over $R[\sigma]$. Then

$$(1.2) F(M) = M/M' \cong M^{a}/z \cdot M^{c}$$

as module over $\hat{R} \cong R^G/z^2 \cdot R^G$. If we identify M with $j_M(M)$ then

$$F'(M) = \overline{M}/M \cong \overline{M}^{\sigma}/M^{\sigma}$$

since $\overline{M}^a = z \cdot \overline{M}^\sigma \subset M$ (\overline{M} is isomorphic to R_+^r where $r := \operatorname{rank}_R M$). We define $\Psi_M : F'(M) \cong \overline{M}^\sigma/M^\sigma + M^a/z \cdot M^\sigma \cong F(M)$ by $x \mapsto z \cdot x$. Obviously Ψ_M is injective; and it is surjective since $M^a = \overline{M}^a = z \cdot \overline{M}^\sigma$. Now it is easy to check that Ψ defines an equivalence of functors.

Remark 1.3: Let M,N be CM modules over R[σ] and ϕ : M^a + N^a a morphism of R^G - modules such that ϕ ($z \cdot M^G$) $\subset z \cdot N^G$. Then there is a unique morphism ϕ : M + N of R[σ] - modules such that $\phi/_{Ma} = \phi'$. It is given by

$$\varphi(x) := \begin{cases} \varphi'(x) & \text{for } x \in M^{a} \\ \\ \frac{1}{2} \varphi'(2x) & \text{for } x \in M \end{cases}$$

Theorem 1.4:

- (i) For each CM module over $R[\sigma]$ the module F(M) is CM over \hat{R} .
- (ii) For each CM module W over R there is a CM module over R[σ] such that W \cong F(M).
- (iii) If M,N are CM modules over R[σ] with F(M) $\stackrel{\text{def}}{=}$ F(N) and if r := rank M rank N > 0 then M $\stackrel{\text{def}}{=}$ N $\stackrel{\text{def}}{=}$ R.
- (iv) $F(M^*) = Hom_{\Omega}(F(M), \hat{R})$ for every CM module M over $R[\sigma]$.
- (v) For each CM module M over $R[\sigma]$ one has $M/z \cdot M \cong F(M) \oplus F(M \oplus R_{-})$.
- (vi) The functor F is exact.
- (vii) If M,N are CM modules over R[σ] and $\hat{\phi}$: F(M) + F(N) is a morphism of \hat{R} modules then there is a morphism ϕ : M + N of R[σ] modules such that $\hat{\phi}$ = F(ϕ).
- (viii) If $\varphi: M \to N$ is a morphism between indecomposable CM modules over $R[\sigma]$ such that $F(\varphi)$ is an isomorphism then φ is an isomorphism.

(ix) If $\varphi: M \to N$ is a morphism between CM modules over $R[\sigma] \quad \text{then} \quad F(\varphi) = 0 \quad \text{if and only if there are morphisms}$ $\varphi_1: M \to R_+^r \; , \; \varphi_2: R_+^r \to N \quad \text{for some} \quad r > 0 \quad \text{such that}$ $\varphi = \varphi_2 \circ \varphi_1 \; .$

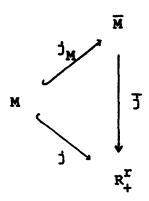
Proof: (i) Applying the functor $Hom_R(k,-)$ to the exact sequence

$$O + M' + M + F(M) + O$$

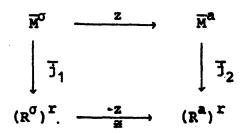
we see that $\operatorname{Ext}^{\mathbf{i}}_{R}(k,F(M)) = \operatorname{Ext}^{\mathbf{i}}_{R}(k,M) = 0$ for $0 \leqslant i \leqslant n-1$. So the depth of F(M) as R - module is at least n-1. Since $\operatorname{depth}_{R}F(M) = \operatorname{depth}_{R}F(M)$ this shows that F(M) is Cohen-Macaulay. (ii) By choosing a system of generators for W we obtain a surjection $R^{\mathbf{r}} \to W$; let M be the kernel of this map. We endow $R^{\mathbf{r}}$ with the canonical σ - action, then $M \subset R^{\mathbf{r}}_{+}$ inherits the structure of an $R[\sigma]$ - module. As above we apply the functor $\operatorname{Hom}_{R}(k,-)$ to the sequence

to see that M is Cohen-Macaulay.

The canonical inclusion $j: M \hookrightarrow R_+^r$ induces a σ - equivariant morphism $\overline{j}: \overline{M} \to \overline{R}_+^r = \overline{R}_+^r$ such that the diagram



commutes. Since $z \cdot R^r \subset M$, $z \cdot \overline{M} \subset M$ and since all modules involved are reflexive of rank r, \overline{j} is injective. Because \overline{j} is σ - equivariant there are morphisms $\overline{j}_1 : \overline{M}^\sigma + (R^\sigma)^r$, $\overline{j}_2 : \overline{M}^a + (R^a)^r$ of R^σ - modules such that $j = j_1 \oplus j_2$ $\overline{j} = \overline{j}_1 \oplus \overline{j}_2 : \overline{M} = \overline{M}^\sigma \oplus \overline{M}^a + (R^\sigma)^r \oplus (R^a)^r = R^r$ and such that the diagram



commutes. As $(R^a)^r = z \cdot (R^o)^r \subset z \cdot R^r \subset M \subset \text{im } \overline{J}$, \overline{J}_2 is surjective. Therefore \overline{J}_1 and \overline{J} are also surjective, hence \overline{J} is isomorphism. This shows that $W \cong \overline{M}/J_M(M) = F^*(M)$.

(iii) We may suppose that the rank of N is minimal among all CM R[σ] - modules \widetilde{N} with F(\widetilde{N}) \cong F(M). Then the isomorphism F'(N) \cong F'(M) can be lifted to a σ - equivariant injection i : \widetilde{N} + \overline{M} which maps \widetilde{N} to a direct summand of \widetilde{M} . Decompose

M in the form

$$\overline{M} = i(\overline{N}) \in L$$

with $L \cong R_+^r$. As i induces an isomorphism between $\overline{N}/j_N(N)$ and $\overline{M}/j_M(M)$ we see that $L j_M(M)$, $j_M(M) \cap i(\overline{N}) = i(j_N(N))$, hence $M \cong N \oplus L$.

(iv) We have

$$F(M) \cong M^{a}/z \cdot M^{\sigma}$$
, $F(M^{\circ}) \cong M^{\circ a}/z \cdot M^{\circ \sigma}$

If $\phi \in M^{\vee a}$ then $\phi(M^{\sigma}) \subset z \cdot R^{\sigma}$, hence ϕ induces a morphism $\hat{\phi}: M^{a}/z M^{\sigma} \to R^{\sigma}/z^{2} \cdot R^{\sigma} \cong \hat{R} \text{ of } \hat{R} - \text{modules. For } \phi \in z \cdot M^{\vee \sigma}$ we have $\phi(M^{a}) \subset z \cdot R^{a} = z^{2} \cdot R^{\sigma}$. So $\phi \mapsto \hat{\phi}$ defines a homomorphism $\psi: M^{\vee a}/z \cdot M^{\vee \sigma} + \operatorname{Hom}_{\hat{R}}(M^{a}/z \cdot M^{\sigma}, R^{\sigma}/z^{2} \cdot R^{\sigma})$. If $\phi \in M^{\vee a}$ with $\hat{\phi} = 0$ (i.e. with $\phi(M^{a}) \subset z^{2} \cdot R^{\sigma}$), we put

$$\varphi^{*}(x) := \begin{cases} \frac{1}{2}\varphi(x) & \text{if } x \in M^{a} \\ \\ \frac{1}{2}z \varphi(zx) & \text{if } x \in M^{\sigma} \end{cases}$$

Then $\phi' \in M^{\vee \sigma}$ and $\phi = z \cdot \phi' \in z \; M^{\vee \sigma}$. This shows that ψ is injective. It remains to show that ψ is surjective. So take $\hat{\phi} \in \operatorname{Hom}_{\hat{R}}(M^{\mathbf{a}}/z \cdot M^{\sigma}, \; R^{\sigma}/z^2R^{\sigma})$. We lift $\hat{\phi}$ to a morphism $\hat{\phi} : M^{\mathbf{a}} + R^{\sigma}$ of free R^{σ} - modules. Then $\phi(z \cdot M^{\sigma}) \subset z^2 \; R^{\sigma} = z \cdot R^{\mathbf{a}}$. Define $\phi : M + R$ by

$$\varphi(x) := \begin{cases} \tilde{\varphi}(x) & \text{if } x \in M^{\tilde{\alpha}} \\ \\ \frac{1}{z} \tilde{\varphi}(zx) & \text{if } x \in M^{\tilde{\alpha}} \end{cases}$$

Obviously $\varphi \in M^{\vee a}$ and $\psi(\varphi) = \widehat{\varphi}$.

(v) Let π_1, π_2 be the canonical projections from M to F(M) = M/M', $F(M \otimes R_{-}) = M/R \cdot M^{a}$. By (1.2) they induce surjections $M^{a} \rightarrow M^{a}/zM^{0} = F(M)$ resp. $M^{0} \rightarrow M^{0}/zM^{a} = F(M \otimes R_{-})$. So the map

$$(\pi_1, \pi_2) : M + F(M) \oplus F(M \oplus R_1)$$

is surjective and has kernel $z \cdot M = z \cdot M^a + z \cdot M^\sigma$.

(vi) If $0 + M_1 + M_2 + M_3 + 0$ is an exact sequence of CM modules, over $R[\sigma]$, then the induced sequences $0 + M_1^{\sigma} + M_2^{\sigma} + M_3^{\sigma} + 0$ and $0 + M_1^{\dagger} + M_2^{\dagger} + M_3^{\dagger} + 0$ are also exact (remember that $M_1^{\dagger} = M_1^{\sigma} \otimes_{R^{\sigma}} R!$). So we also get an exact sequence $0 + F(M_1) + F(M_2) + F(M_3) + 0$.

(vii) is obvious for the functor F'.

- (viii) As $\overline{M} \rightarrow F'(M)$, $\overline{N} \rightarrow F'(N)$ represent minimal systems of generators for F'(M), F'(N) and $F'(\phi)$ is an isomorphism the determinant of the map $\overline{\phi} : \overline{M} \rightarrow \overline{N}$ between free R modules represents a non-zero element in $R/_{MR} = k$. So $\overline{\phi}$ and hence ϕ is invertible.
- (ix) If ϕ factors through R_+^T then obviously $F(\phi)$ is zero. Conversely, if $F(\phi)=0$ then ϕ factors $M\to N'\hookrightarrow N$, and $N'\cong R_+^T \text{ for some } r$.

Next we study the relation between CM modules over R and over R[O] . If M is a CM module over R we put

$$(1.5) \qquad \widetilde{M} := M \oplus \sigma^{*}(M)$$

and endow it with the action $(x,y) \mapsto (y,x)$ of σ . In this way \widetilde{M} is a module over $R[\sigma]$. Furthermore $\widetilde{M} \cong \widetilde{M} \otimes R_{_}$, an isomorphism between the two $R[\sigma]$ - modules is given by $(x,y) \mapsto (x,-y)$.

If M itself already had the structure of an $R[\sigma]$ - module (denote the $\mathbb{Z}/2\mathbb{Z}$ action on M by σ') then \widetilde{M} is isomorphic to M Θ (M Θ R_) as $R[\sigma]$ - module, the isomorphism being given by

$$(1.6) \qquad (x,y) \mapsto (x+y,\sigma'(x)-\sigma'(y))$$

Proposition 1.7:

- (i) Let M be a CM module over R . Then M admits the structure of an R[σ] module if and only if M $\cong \sigma^*(M)$.
- (ii) Let M_1, M_2 be indecomposable CM modules over $R[\sigma]$ such that M_1 and M_2 are isomorphic as R modules. Then as $R[\sigma]$ - modules $M_1 \cong M_2$ or $M_4 \cong M_2 \otimes R_1$.
- (iii) Let M be an indecomposable CM module over R[σ]. Then either M is indecomposable as R module or there is an indecomposable R-module N with N $\stackrel{\text{$\not=$}}{\sigma}$ (N) such that M $\stackrel{\text{$\not=$}}{\sigma}$ N $\stackrel{\text{$\not=$}}{\sigma}$ $\stackrel{\text{$\not=$}}{\sigma}$ (N).

<u>Proof</u>: (i) Let ψ : $M + \sigma^*(M)$ be an isomorphism. ψ induces a morphism ψ^* : $\sigma^*(M) + \sigma^*\sigma^*(M) = M$; and ψ defines the structure of an $R[\sigma]$ - module on M if and only if $\psi^* \circ \psi = id \in E := End_{p}(M)$.

Let I \subset E be the ideal I := { $\phi \in \operatorname{End}_R(M)/\phi(M) \subset M_R \cdot M$ }. Then E/I \cong k (Proof: Let O + K + R^r + M + O represent a minimal system of generators for M. Then E/I is canonically embedded in $\operatorname{End}(R^r/M_R^r) \cong \operatorname{GL}(r,k)$; and invertible elements in E are represented by invertible elements in $\operatorname{End}_R(R^r)$. Conversely, if $\overline{\phi}: R^r + R^r$ is a morphism with $\phi(K) \subset K$ that induces an isomorphism $R^r/M_R \cdot R^r + R^r/M_R \cdot R^r$ then the induced map $\phi: M + M$ is surjective. As M is free over R^r the map ϕ is also injective, hence invertible. By [13]2.19 the matrix algebra E/I does not contain any idempotents apart from $\pm id$, so E/I \cong k). So we may assume that

$$\psi^2 = id + \rho$$
 with $\rho \in I$

We now define a sequence of morphisms ψ_i : M + σ^* M by

$$\psi_1 := \psi$$

$$\psi_{i+1} := \frac{3}{2}(\psi_i - \frac{1}{3} \psi_i^3)$$

Then one easily sees by induction that

$$\psi_i^2 = id + \rho_i$$
 with $\rho_i(M) \subset m_R^i \cdot M$.

 $\sigma^*(M)$ is equal to M as R^{σ} - module. As $m_R^{2i} \cdot M \subset m_{R^{\sigma}}^{i}$ each ψ_{2i} induces an idempotent map

$$\psi_{2i} : M/m_{R^0}^i \cdot M \rightarrow M/m_{R^0}^i \cdot M$$
.

From the construction it follows that for each j > 2i the map induced by ψ_j on $M/m_{R^0}^i \cdot M$ equals to ψ_{2i} . So the sequence of the ψ_i defines a morphism of R - modules $\psi_\infty \colon M + \sigma^*(M)$ with $\psi_\infty^2 = id$.

(ii) By theorem 1.4.v we have

 $F(M_1) \oplus F(M_1 \otimes R_-) \cong F(M_2) \oplus F(M_2 \otimes R_-)$ as \hat{R} - modules. Then the Krull-Schmidt-theorem [13] 2.22 implies that

 $F(M_1) \cong F(M_2)$ or $F(M_1) \cong F(M_2 \otimes R_1)$. The claim now follows from part (iii) of theorem 1.4.

(iii) If $M \cong R_+, R_-$ the statement is trivial. In the other cases $M/z \cdot M$ has precisely two summands by theorem 1.4. So M as an R - modules has at most two summands. Suppose that N is a summand of M as R - module, $N \neq M$. Since $N/z \cdot N$ is a summand both of $M/z \cdot M$ and $F(\tilde{N}) = F(\tilde{N} \otimes R_-)$; it follows from 1.4.v that $M \cong \tilde{N}$. Furthermore N does not admit the structure of an $R[\sigma]$ - module, for otherwise $N/z \cdot N \nsubseteq M/z \cdot M$ would already have two summands.

Corollary 1.8

There are finitely many isomorphism classes of indecomposable CM modules over R if and only if there are finitely many isomorphism

classes of indecomposable CM - modules over \hat{R} .

Proof:

If there are only finitely many indecomposable CM modules over R then by proposition 1.7 the same is true for R[σ]. Conversely suppose that there are infinitely many isomorphism classes of indecomposable CM modules over R. For each such module M choose an indecomposable summand N_M of the R[σ] - module M = M \oplus σ M. If M₁,M₂ are two indecomposable CM R - modules such that N_{M1} \cong N_{M2} then by (1.7.iii) and the Krull-Schmidt-theorem M₁ \cong M₂ or M₁ \cong σ M(M₂). So there are also infinitely many isomorphism classes of indecomposable CM R[σ] - modules.

On the other hand theorem 1.4 implies that there are finitely many indecomposable CM modules over R if and only this is true for $R[\sigma\,]$.

Finally we study the relation between the Auslander-Reiten-quivers of indecomposable CM modules over \hat{R} , $R[\sigma]$ and R. By [2] sect.8 almost-split sequences exist in all these categories.

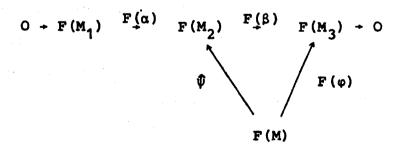
Lemma 1.9:

(i) Let $0 + M_1 \stackrel{\alpha}{=} M_2 \stackrel{\beta}{=} M_3 + 0$ be an exact sequence of CM modules over $R[\sigma]$ with M_1, M_3 indecomposable. This sequence is almost-split if and only if the induces sequence $0 + F(M_1) \stackrel{F(\alpha)}{=} F(M_2) \stackrel{F(\beta)}{=} F(M_3) + 0$ is almost-split.

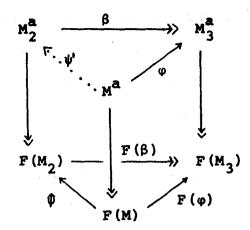
(ii) Let M,N be indecomposable CM modules over R[σ] not isomorphic to R₊. There is an irreducible morphism of R[σ]- modules M + N if and only if there is an irreducible morphism F(M) + F(N).

<u>Proof:</u> (i) Suppose first that the original sequence is almostsplit. Then it is clear that $0+F(M_1)^{F(q)}F(M_2)^{F(q)}F(M_3)^{+0}$ is either split or almost-split. Assume it splits. Then there is a direct summand N of M_3 such that $F(\beta)$ induces an isomorphism between F(N) and $F(M_3)$. By part (viii) of theorem 1.4 the map β induces an isomorphism between N and M_3 , so the original sequence splits.

Conversely suppose that $O + F(M_1) \xrightarrow{F(\alpha)} F(M_2) \xrightarrow{F(\beta)} F(M_3) + O$ is almost-split. Let $\varphi: M + M_3$ let be a morphism from an indecomposable CM $R[\sigma]$ - module M to M_3 . Then by (1.4.viii) the map $F(\varphi)$ is not an isomorphism, so there is a morphism $\psi: F(M) + F(M_2)$ such that the diagram



commutes. Then there is a homomorphism $\psi^{+}: M^{a} \to M^{a}_{2}$ such that the diagram



where the vertical arrows are given by (1.2), commutes. Obviously $\psi^*(z\cdot M^\sigma)\subset z\cdot M_2^\sigma\quad \text{, so by (1.3) there is a morphism}$ $\psi^*:M\to M_2\quad \text{of }R[\sigma]\quad \text{modules such that the diagram}$

$$0 + M_1 \stackrel{\alpha}{+} M_2 \stackrel{\beta}{+} M_3 + 0$$

$$\psi \stackrel{\wedge}{/} \psi$$

commutes.

(ii) Since almost-split sequences exist in the categories of CM modules over \hat{R} and $R[\sigma]$, this follows directly from (i), the way irreducible morphism are obtained from almost-split sequences (cf. [8] 6.1) and the Krull-Schmidt theorem.

Lemma 1.10:

Consider an almost-split sequence

$$(1.11)$$
 $0 + M_1 \stackrel{Q}{\cdot} M_2 \stackrel{Q}{\cdot} M_3 + 0$

of CM modules over $R[\sigma]$.

(i) If $M_3 \cong N_3 \oplus \sigma^*(N_3)$ with an indecomposable CM module N_3 over R as in (1.7), (1.9), let $O + N_1 \stackrel{\alpha}{=} N_2 \stackrel{\beta}{=} N_3 + O$ be the almost-split sequence of CM R - modules ending at N_3 . Then the sequence (1.11) is isomorphic to

$$\alpha' \theta \sigma^{\dagger} \alpha'$$
 $\beta' \theta \sigma^{\dagger} \beta'$ (1.12) $O + N_1 \theta \sigma^{\dagger} N_1 + N_2 \theta \sigma^{\dagger} N_2 + N_3 \theta \sigma^{\dagger} N_3 + O$

(ii) If M₃ is irreducible as R - module then (1.11) is an almost-split sequence of R - modules.

<u>Proof</u>: (i) One easily checks that (1.12) has the universal property of [8], 1.4, so it suffices to show that $N_1 \oplus \sigma^*(N_1)$ does not split as $R[\sigma]$ - module. Otherwise N_1 would admit the structure of an $R[\sigma]$ - module, so $\sigma^*(N_1) \cong N_1$. But the almost-split sequence starting with $\sigma^*(N_1)$ is

$$0 + \sigma^*(N_1) \xrightarrow{\sigma^*(\alpha')} \sigma^*(N_2) \xrightarrow{\sigma^*(\beta')} \sigma^*(N_3) + 0$$
.

As the almost-split sequence is uniquely determined by its initial term we would have $\sigma^*(N_3) \cong N_3$. So by Prop. 1.7 the $R[\sigma]$ - module $M_3 \cong N_3 \oplus \sigma^*(N_3)$ were reducible.

(ii) is proven in the same way.

2. Periodicity:

We now suppose that the function f has the form

$$f(x_1,...,x_n) = g(x_1,...,x_{n-1}) + x_n^2$$
, $n > 3$

and write y for x_n . τ : $(x_1,\dots,x_{n-1},y,z)\mapsto (x_1,\dots,x_{n-1},-y,z)$ induces an action of $\mathbb{Z}/2\mathbb{Z}$ on R and \hat{R} . As above we denote by $\hat{R}[\tau]$ the twisted group ring, and by \hat{R}_+,\hat{R}_- the $\hat{R}[\tau]$ - modules \hat{R} defined by the τ - action $\phi + \phi \cdot \tau$ resp. $\phi + -\phi \cdot \tau$ By ch.1 the Auslander-Reiten-quiver of indecomposable CM - modules over $k[[x_1,\dots,x_{n-1}]]/(g)$ is isomorphic to the Auslander-Reiten-quiver of indecomposable CM $\hat{R}[\tau]$ - modules, with the vertex corresponding to \hat{R}_+ deleted.

Theorem 2.1:

There is a bijection G between the set of indecomposable CM - modules over $R[\tau]$ which are not isomorphic to R_+ and the set of indecomposable CM - modules over R such that

(i) If W is an indecomposable CM $\Re[\tau]$ - module not isomorphic to \Re_+ , M = G(W) and \Re = M \oplus σ^* (M) as in (1.5) then

$$W \cong F(\tilde{M})$$
 as \hat{R} - module

(ii) There is an irreducible morphism W+W' of CM $R[\tau]$ -modules if and only if there is an irreducible morphism of R -modules G(W) + G(W').

The rest of this chapter is devoted to the proof of theorem 2.1. We put

$$\eta := y + \sqrt{-1} \cdot z$$
 , $\zeta := y - \sqrt{-1} \cdot z$,

then $\eta \cdot \zeta = g(x_1, \dots, x_{n-1})$ in R.

Now let W be an indecomposable CM -module over $\Re[\tau]$ which is not ismorphic to \Re_+ . We choose an \Re^T - basis e_1,\ldots,e_r of the τ - invariant part of W and an \Re^T - basis f_1,\ldots,f_r of the τ - antiinvariant part of W. As in ch.1 this system of generators for W defines an exact sequence

$$0 + N + R_{+}^{r} + R_{+}^{r} + W + 0$$
.

N is an R[σ] - module with F(N) = W . If we let τ act on R^r Θ R^r by τ ': $(u,v) \mapsto (\tau(u), -\tau(v))$ then τ '(N) = N . One easily sees that

$$N^{a} = z \cdot (R^{\sigma})^{r} \oplus z \cdot (R^{\sigma})^{r}$$

and that N is generated over R by N^a and elements in N^σ of the form

with $\phi_{ij}(x), \phi_{ij}(x) \in R$ invariant under σ and τ , i,j=1,...,r . We put for i=1,...,r

$$a_i := (0, ..., 0, \eta, 0, ... 0; \varphi_{1i}(x), ..., \varphi_{ri}(x))$$

$$b_{i} := (0,...,0,\zeta,0,...0; \varphi_{1i}(x),....,\varphi_{ri}(x))$$

$$a_{r+i} := (\phi_{1i}^{t}(x), ..., \phi_{ri}^{t}(x); 0, ..., 0, \zeta, 0, ..., 0)$$

$$b_{r+i} := (\phi_{1i}^*(x), ..., \phi_{ri}^*(x); 0, ..., 0, \eta, 0, ..., 0)$$

and $N_1 := R \cdot a_1 + \dots + R \cdot a_{2r}$, $N_2 := R \cdot b_1 + \dots + R \cdot b_{2r}$. Then

$$N = N_1 + N_2$$

and

(2.2)
$$\sigma(N_1) = \tau(N_1) = N_2$$

Since $\zeta \cdot a_i \in \sum_{i=r+1}^{2r} R \cdot a_i$ we see that $\operatorname{rank}_R N_1 < r^{(5)}$. Similarly $\operatorname{rank}_R N_2 < r$. As $\operatorname{rank}_R N = 2r$ this implies that $\operatorname{N}_1 \cap \operatorname{N}_2 = \{0\}$, so

(2.3)
$$N = N_1 \oplus N_2$$
.

⁽⁵⁾ As dim X > 2 , X is irreducible. So it makes sense to speak of the rank of an R - module.

Lemma 2.4:

The R - module N_1 is irreducible.

Proof:

Suppose that N_1 has a decomposition into irreducible summands

$$v_1 = v_1 \oplus \ldots \oplus v_1$$

with 1 > 2. Then $N/z \cdot N$ has at least 21 summands, so by (1.4.v) and prop. 1.7 the module W is reducible over R and 1=2. We may suppose that $W=W'\oplus \tau(W')$ for some indecomposable R - module W'. Without loss of generality we can then assume that e_1+f_1,\ldots,e_r+f_r is a system of generators for W' \oplus {0} \subset W' \oplus τ^{\oplus} (W'). Then the R[σ] - linear involution

(2.5)
$$\kappa : R^r \oplus R^r + R^r \oplus R^r$$

$$(u,v) \mapsto (v,u)$$

maps N into itself; and

$$\kappa(N_1) = N_2.$$

As $N_2 = \sigma(U_1) \oplus \sigma(U_2)$ we have

$$U_1 = \sigma(U_1)$$
 or $U_1 = \sigma(U_2)$

In the first case by prop. 1.7 and (1.6) $W = F(N) = F(U \oplus \sigma(U) \oplus V \oplus \sigma(V))$

has at least four summands as \hat{R} - module, in contradiction to (1.7.iii).

In the second case N_1 and N_2 admit σ - actions with $N_1 \cong N_1 \otimes R_2$. As $N_1 \cong N_2$ as R - module we see by (1.6) that the two \hat{R} - summands of W are isomorphic, i.e. $\tau^*(W') \cong W'$. This is again a contradiction to (1.7iii).

We put

$$G(W) := N_1 , G'(W) := N_2 ;$$

obviously G(W), G'(W) and the inclusion $G(W) \oplus G'(W) \hookrightarrow R^T \oplus R^T$ are - up to isomorphy - uniquely determined by W. By (2.2) and (2.3) we have $G'(W) \cong \sigma^*(G(W))$, $F(G(W) \oplus \sigma^*(G(W))) \cong F(N) = W$. So G is an injective map from the set of indecomposable CM modules over $R[\tau]$ that are not isomorphic to \hat{R}_+ to the set of indecomposable CM modules over R. One easily sees that

This shows that G is also surjective, thus part (i) of theorem 2.1 is proven.

For the proof of part (ii) it suffices to show

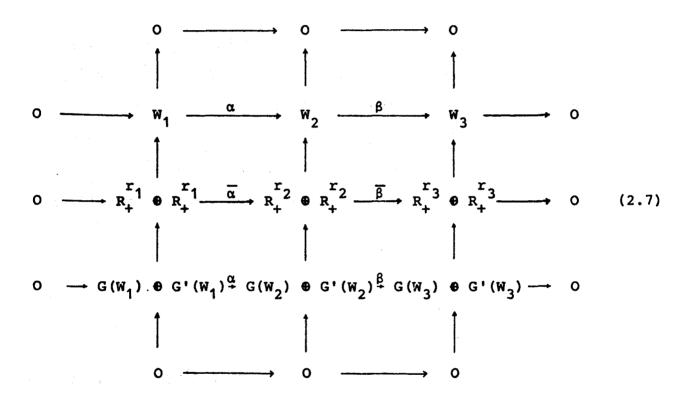
<u>Lemma 2.6</u>:

Let $0 + W_1 \stackrel{q}{=} W_2 \stackrel{g}{=} W_3 + 0$ be an almost-split sequence of CM mo-

dules over $\Re[\tau]$. Then there is an almost-split sequence $O + G(W_1) + G(W_2) + G(W_3) + O$ (6).

Proof:

If $r_i := rank_R W_i$ then it is easy to see that the sequence of (2.6) can be embedded in a commutative diagram



where $\alpha, \beta, \alpha', \beta'$ represent the direct sum decomposition.

Case 1: W_3 is indecomposable as R - module: By lemma 1.10 also W_1 is indecomposable over R. Hence $G(W_1) \oplus G'(W_1)$ and $G(W_3) \oplus G'(W_3)$ are both indecomposable over $R[\sigma]$. By lemma 1.9 the bottom row of (2.7) is an almost-split sequence of $R[\sigma]$ - modules, so the claim follows from lemma 1.10.

⁽⁶⁾ Here $G(W_2)$ denotes the direct sum of the G(W') , where W' runs through the direct summands of W_2 .

Case 2: W_3 is decomposable over \hat{R} .

Then we have a decomposition $W_i = W_i' \oplus \tau^*(W_i')$, i=1,2,3; and the top row of (2.7) splits into a direct sum of two almost-split sequences over \hat{R} :

If we adjust the systems of generators for the W_i as in the proof of lemma 2.4 we have involutions $\kappa_i:R^i \oplus R^i+R^i \oplus R^i$ preserving the submodules $G(W_i) \oplus G'(W_i)$ as in (2.5).

Put $N_i' := (1 + \kappa_i)(G(W_i))$, $N_i'' := (1 - \kappa)(G(W_i))$. Then N_i', N_i'' are preserved by the σ -actions on $R_i' \in R_i'$, $W_i = F(N_i')$. Furthermore $N_i' \cong G(W_i)$ as R - module, and the diagramm (2.7) gives a diagram

where all arrows preserve the direct sum decomposition. The claim now follows again from (1.9) and (1.10).

3. Simple hypersurface singularities:

The two-dimensional simple singularities are just the two-dimensional isolated hypersurface singularities which are quotient singularities (cf. [6]). So there are only finitely many isomorphism classes of indecomposable CM modules over their local rings ([11], [3], [7]). By iterated application of corollary 1.8 we get

Theorem 3.1:

Let (X,0) be an n-dimensional simple hypersurface singularity. Then up to isomorphism there are only finitely many indecomposable CM modules over the local ring $\mathcal{G}_{\rm X,0}$.

Remark 3.2:

One would expect that this property characterizes the simple singularities among all isolated hypersurface singularities (and hence among all isolated Gorenstein singularities by [11], 1.2).

This is true in dimension 2 (cf. [7], §1), hence by corollary 1.8 it also holds for curve singularities (see also [10],)

The Auslander-Reiten quivers of indecomposable CM modules over two-dimensional simple singularities were computed by M. Auslander [3]. His arguments are based on the fact, that these singularities are of the form k^2/Γ with a finite group $\Gamma\subset SL(2,k)$; and he used the Mc Kay correspondence [12] to identify the Auslander-Reiten quivers as Dynkin quivers of type A,D,E. We want to give a similar description of the Auslander-Reiten quivers of

the simple plane curve singularities (7).

Let G be a finite subgroup of GL(2,k) which is generated by reflections, and denote by $\varepsilon: G+\{\pm 1\}$ the linear character $g\mapsto \det g$. The kernel Γ of ε is a subgroup of index 2 in G; we denote a generator of the group $G/\Gamma\cong \mathbb{Z}/2\mathbb{Z}$ by σ . The singularity of $X:=k^2/\Gamma$ at the origin is a simple surface singularity. σ acts as an involution on X, and by Chevalleys theorem [4] V.5.3 the quotient $X/\langle\sigma\rangle$ is smooth. The branch locus $(Y,O)\subset (X,O)$ of the projection $X+X/\langle\sigma\rangle$ is isomorphic to a simple plane curve singularity - and every simple plane curve singularity can be obtained in this way.

Let S be the local ring $6_{k^2,0}$. Then R := $6_{X,0}$ = 8^Γ . To determine the Auslander-Reiten quiver of indecomposable CM modules over $6_{Y,0}$ it suffices by theorem 1.4 and lemma 1.2 to compute the Auslander-Reiten quiver of indecomposable CM modules over R[σ].

If ρ : G + GL(E) is a representation of G over k we put

$$M_{\rho} := (S \oplus E)^{\Gamma}$$
.

This is in a natural way a CM module over $R[\sigma]$ (cf. [9], [3], [7]). $\rho \mapsto M_{\rho}$ is an additive functor from the category of k[G] -modules to the category of CM modules over $R[\sigma]$. By c we de-

⁽⁷⁾ They were computed explicitely in [5].

note the canonical representation $c: G \rightarrow GL(2,k)$ of G.

Theorem 3.3:

- (i) For each CM module M over R[σ] there is a unique representation ρ of G such that M \cong M $_{\sigma}$.
- (ii) Let ρ, ρ' be irreducible representations of G . Then there exists an irreducible morphism $M_{\rho} + M_{\rho'}$ if and only if ρ is a direct summand of ρ' 0 c .

Remark 3.4:

This shows that the Auslander-Reiten quiver of $\theta_{Y,O}$ is isomorphic to the graph computed in [9], 3.7, with the vertex corresponding to the trivial representation deleted.

Proof of theorem 3.3:

(i) For a representation $\rho:G+GL(E)$ we have $S\otimes E\cong (M_{\rho}\otimes_R S)^{\vee}$, hence E as k[G] - module can be recovered from M_{ρ} . So $\rho\mapsto M_{\rho}$ is an injection from the set of indecomposable k[G] - modules to the set of indecomposable CM modules over $R[\sigma]$. To prove that it is surjective let M be an indecomposable CM module over $R[\sigma]$. By [7] there is a representation $\rho':\Gamma+GL(E')$ such that $M\cong (S\otimes E')^{\Gamma}$. as R-module. Let $\rho'':\Gamma+GL(E'')$ be the representation $\rho'':=\rho \cdot \sigma$, where the generator σ of G/Γ acts on Γ by conjugation. Obviously $\sigma''(M)\cong (S\otimes E'')^{\Gamma}$ as R-module. As $M\cong \sigma''(M)$ it follows from [2] or [7] that the representations ρ' and $\rho''=\rho \cdot \sigma$ are isomorphic. Hence there is a representation ρ of G such that $\rho|\Gamma\cong \rho'$. By prop.1.7 we have $M_0=M$ or $M\cong M_{EO}$.

$$(3.5) \quad 0 + R_{-} + M_{C} + M_{R_{+}} + 0$$

representing the unique non-trivial extension of M_{R_+} by R_- . (cf. [3], observe that $R_- \cong \omega_{X,O}$ as $R[\sigma]$ - module). By [3] one obtains for each non-trivial indecomposable CM modules M over R the almost-split sequence ending with M by tensoring M with the sequence (3.5) and taking reflexive hulls:

It follows from lemma 1.10 that this statement also holds in the category of CM modules over R[σ]. Now if M = M $_{\rho}$ for some irreducible representation ρ of G then one easily checks that $(M_{_{\bf C}} \otimes M_{_{\bf P}})^{**} = M_{_{\bf P} \otimes _{_{\bf C}}}$ (cf. [3]). So the CM modules over R[σ] admitting an irreducible morphism to M are just the modules M $_{_{\bf P}}$, where ρ ' is an irreducible summand of $\rho \otimes c$.

Remark 3.6:

Part (i) of theorem 3.3 can also be proven using (ii) and the completeness result [14] prop. 1.

References

- [1] Arnol'd, V.I.: Critical points of smooth functions. Proc.

 Int. Congr. Math, Vancouver 1974, vol. 1, 19-39.
- [2] Auslander, M.: Functors and morphisms determined by objects and applications. In: Proc. Conf. Representation

 Theory, Philadelphia 1976, pp. 1-327. Marcel Dekker 1978.
- [3] Auslander, M.: Almost split sequences and rational singularities. To appear.
- [4] Bourbaki, N.: Groupes et algèbres de Lie 4,5,6. Hermann,
 Paris 1968.
- [5] Dietrich, E., Wiedemann, A.: The Auslander-Reiten quiver of a simple curve singularity. To appear.
- Durfee, A.: Fifteen characterizations of rational double points and simple singularities. L'Enseignement Math. 25, 131-163 (1979).
- [7] Esnault, H.: Reflexive modules on quotient singularities.

 To appear.
- [8] Gabriel, P.: Auslander-Reiten sequences and representation-finite algebras. In: Representation theory I, pp. 1-71.

 Lecture Notes 831, Springer-Verlag 1980.
- [9] Gonzalez-Sprinberg, G., Verdier, J.-D.: Construction géométrique de la correspondance de Mc Kay, Ann. Sc. Ecole Norm. Sup. 16, 409-449 (1983).
- [10] Greuel, G.M., Knörrer, H.: Einfache Kurvensingularitäten und torsionsfreie Moduln. To appear.
- [11] Herzog, J.: Ringe mit nur endlich vielen Isomorphieklassen von maximalen unzerlegbaren Cohen-Macaulay-Moduln. Math.

- Ann. 233, 21-34 (1978).
- [12] Mc Kay, J.: Graphs, singularities and finite groups. Proc. Symp. Pure Math. 37, 183-186 (1980).
- [13] Swan, R.: Algebraic K-Theory. Lectures Notes in Mathematics 76, Springer-Verlag 1968.
- [14] Wiedemann, A.: Orders with loops in their Auslander-Reiten graph. Comm. in Algebra 9, 641-656 (1981).