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Introduction:
The simple hypersurface singularities of dimension n over an
algebraicly closed field k of characteristic zero are the

singularities described by the following equations (cf.[1]):

2+1 2 2

Az $ X + z, + ..+ Z+1 ™ 0

. w2 -1 2 2
Dx. Xy +y +z3 + c.0 + Z0+1 o)

4 2
E6 : X" +y 4+ zy + ... + Z, 41 = 0
3 3 2
Ej: X" 4+ xy” + 23 + ... 42 4 =0
E, : x3 + 3 + z 2 + + 2 2 . o)
8 Y 3 n+1

In this paper we want to show that there are up to isomorphism
only finitely many indecomposable Cohen-Macaulay modules over the

(1)

local ring of such a simple singularity, and we compute their

Auslander~Reiten quivers(z).

For the case of two-dimensional simple singularities this finite-
ness result is well known ([11], (3], [7]), and the Auslander-
Reiten quiver is described in [3]. The one-dimensional simple
hypersurface singularities hayc been discussed in [10], [5].
Therefore we study in general the relation between the Cohen-
Macaulay modules over the local ring of an isolated hypersurface

singularity (Y,0) in (x®,0) given by an eéuation f(x1,...,xn)-o

(1) in the formal category
(2) for a discussion of the theory of Auslander-Reiten gquivers
see e.g. [8]



n+1

and of the singularity (X,0) in (k «0) given by

E(Xgoecerx) + 2? = O , using the fact that (X,0) is a double
ramified cover of (k®,0) branched over (¥,0) . In particular
we show that the Auslander-Reiten gquivers of indecomposable
Cohen-Macaulay modules over (Y,0) and over the singularity in
(kn+2,0) ~given by f(x1,...,xn) + z12+ z22 = 0 are isomorphic
(theorem 2.1). Using this method we also obtain a description of
the Cohen-Macaulay modules over simple plane curve singularities
in terms of the representation theory of finite reflection groups
in GL(Z;k) and give a conceptual proof of the fact that their
Auslander-Reiten quivers(3) coincide with the graphs described in
(9] 3.7 (theorem 3.3). |

This isomorphism of graphs had been observed by J.-L. Verdier;
and it was the starting point for this work. I also want to thank
M. Auslander, H. Esnault, E. Viehweg and in particular A. Wiede-

mann for many interesting and stimulating discussions.

(3) as computed in [5]



1. Double ramified covers:

Let f(‘x.‘f ;""'xn) = 0 be the equation of an isolated hypersurface
singularity in (x®,0), n> 2 . Then the equation 4 ¢ ITRRE N )+z%= 0

n+1

again describes an isolated hypersurface singularity (X,0) ¢ (k o) .

The projection pr : (X,0) -~ (x%,0) , (x1,...,x '2) (x1,...,xn)

n
is a double ramified cover; its ramification locus (Y¥Y,0) c (X,0)
is mapped by pr isomorphically to the space in (kn,o) described
by the equation f(x1,...,xn) = 0 . The covering transformation

of pr is the involution o0 : X - X , (x1,...,xn,z) " o(XgpeeesX ,~2) .

Let R be the local ring Ox o + The group Z /2Z acts on
’
R via 0 ; we denote the twisted group ring by Rilc] (i.e.
Rlo] = R® R+ 0 with the multiplication (r1+r20) . (ri-l-ric) =

=r,ri+r c(r ) + (r,r) + r,0(rj))o . Modules over rlo}

1 2
correspond to R - modules M with an action of O such that

o(rem) =¢o(r) *o(m) for all r € R, m€ M ., We call an Rlo]-

module Cohen-uacaulay“) if it is CM“) as module over R .
R itself admits two o - actions, namely ¢ = ¢ - @ (the
action induced by the actionof ¢ on X ), and g » -9 o 0O ’

We denote the corresponding R[d] - modules by R, (or sometimes
juﬂt R) and R_ . Then R[c]SR_©R_, and R, and R_ are
the only indecomposable projective CM modules over R[o] . If
M,N are R[c] - modules then Hom (M,N) is again an Rlo] - mo-

dule, the action of 0 being givenby % = 0 « ¢ '+ 0 . We put

(4) here and in the sequel we abbreviate Cohen-Macaulay by CM .



M':= Hom (M,R)) ; if M is CM then M 2 N~ . Furthermore we
denote for an R{c]: -~ modules M by M° (resp. M%) the set of
all o - invariant (resp. ¢ - antiinvariant) elements of M . If
M is CM of rank r over R then M° and M* are CM over

the regqular ring RO = bkn o’ thus they are free Ra - modules
!

of rank r .

For a CM module oaver R[o] of rank r we denote by M'c M

c
the submodule generated by M% . since MY is free over R

we see that M' = R® MY = RF
RO’ +

. Obviously multiplication with

the element z € R maps M into M' , so
F(M) := M/M'

is a module over R := R/zR= bY,O .If @ : M+ N is a morphism
of CM modules over R[0] then ¢(M')c N*' , so @ induces a
morphism F(e) : F(ﬁ) - P(N) . Thus F is a functor from the
category of CM R[o] -~ modules to the category of R - modules.
One easily sees that F(R+) = O;~, P(R_) &R . . |
We give a second description of the functor P which wili' be
useful for the discussion of some properties of F . FPor a CM
module M over R[o] we put ’K 1= MYV and’denote by jy the
canonical inclusion M = M™ <+ M“* = § . This construction is
functorial i.e. if o : M-+ N is a morphism of CM Rtol -
modules then there is a unique morphism \’ '73;‘? M - N such that

the diagram



Iu

2 — x|

-5 =
—_ , N

hd N
——ey

commutes. Also one checks that z-M ¢ jM(M) , SO

M» FP'(M) := ﬁyj (M) defines a functor F' from the category
M .

of CM R[o] - modules to the category of R - modules.

Lemma 1.1:

The functors F and F' are equivalent.
Proof: Let M be a CM module over R[oc] . Then
(1.2) F(M) = M/M* = M2/z . MO

as module over R & RP/zz- R° . If we identify M with (M)

then

F'(M) = M/m & B0/ W

=a

since M T

=2.-M c¢c M (M is isomorphic to Rf where

r 1= rank M ). We define ¥, : F'(M) & M » M3z - 0% F(M)

X~ z.x .‘Obvioubly VM is injective; and it is surjective

since M2 = B2

an equivalence of functors.

by

=z .-% . Now it is easy to check that Y defines



Remark 1.3: Let M,N be CM modules over R[o] and o' : M2 - N2
a morphism of R’ - modules such that o'(z +M°) c z .¥° . Then
there is a unique morphism ¢ : M + N of R[o] -~ modules such

that °/Ma = o' . It is given by

e'(x) for x € M®

o(x) :=
% o'(2x) for x €M
Theorem 1.4:
(i) For each CM module over R[g] the module F(M) is CM
over R .
(i1) For each CM module W over R there is a CM module

over R[o] such that W 2 F(M) .
(iii) If M,N are CM modules over R[g] with F(M) %= F(N)
and if r := rank M - rank N > O then M ® N @ R, .
(iv) F(M") = HomR(F(M),R) for every CM module M over R[o].
(v) For each CM module M over R[og] one has |
M/z M S P(M) @ F(M ®R) . |
(vi) The functor F is exact.
(vii) If M,N are CM modules over R[c] and & : F(M) - F(N)
is a morphism of R - modules then there is a morphism
@ : M+ N of R[o] - modules such that 3 = F(o) .
(viii) If o : M+ N is a morphism Between indecomposable cﬁ
modules over R{c] such that F(¢) is an isomorphism

then ¢ ies an isomorphism.



(ix) If ¢ ¢t M~ N ig a morphism between CM modules over
R[oc] then F(¢) = 0 if and only if there are morphisms
) . -> r . r -->
®y ¢ M R+ ' 9y 3 R+ N for some r > O such that
¢ = ‘92 i ‘91 .

Proof: (i) Applying the functor HomR(k,-) to the exact sequence
O+ M M~ F(M -0

ve see that Ext;'(k,F(M)) - zxt;(k,u) =0 for 04 i < n-1 .

So the depth of F(M) as R - module is at least n-1 . Since

depthRF (M) = depthR"F (M) this shows that F(M) is Cohen-Macaulay.
(1i) By choosing a system of generators for W we obtain a sur-
jection RY +>W ; let M be the kernel of this map. We endow RF
with the canonical o - action, then M c Rf inherits the struc-

ture of an R[o] - module. As above we apply the functor

BomR(k,-) to the sequence
0O+M-R «sW=-0

to see that M is Cohen-Macaulay.
The canonical inclusion j : M« Rf induces a ¢ - egquivariant

morphism J : M ~ 'ﬁf - 'ﬁ': such that the diagram



M
>
M 3
N
Ry

commutes. Since z:Rfc M , 2°McM and since all modules
involved are reflexive of rank r , § is injective. Because 3
is o - equivariant there are morphisms '3"1 : - ()T,

J, : B - (’"T of R’ - modules such that 3 = j, @ 3,
F=F,0F,: K=" ¢% - (%7 0 (’")T = R and such that the

diagram

w 2 n*
s s
&), —3— &hH*

commutes. As (R T = z . (R%)Fc z -RF H cim 3, 3'2‘ is sur-
jective. Therefore 3'1 and J are also surjective, hence J is
isomorphism. This shows that W & M/j, (M) = P'(M) .

(iii) We may suppose that the rank of N is minimal among all
CM  R[6] - modules ¥ with P(N) & P(M) . Then the isomorphism
F'(N) & F*'(M) can be 1lifted to a ¢ - equivariant injection

i : N+ M which maps N to a direct summand of N . Decompose



M in the form
M=3i(N) eL

with L = Rf . A8 i induces an isomorphism between ﬁYjN(N)

and ﬁYjM(M) we see that L  j, (M) , j,(M) n i(N) = i(3,(®)) ,
hence M ENO®L .

(iv) We have
F(M) = M%/z -M° , F(M") & M3z . M0

If ¢ € M2  then w(MG) c z+R° , hence ¢ induces a morphism
®: Ma/z M - Rp/zz- R 2 R of R - modules. For ¢ € z . M*°

we have ¢(M°) c z -R% = zz~ Ro .S o~ 9 defines a homomor-
phism § : M'3/z -M"% - Homg (M%/z - M7, R%/2%. %) . 1f ¢ € M*3
with $ =0 (i.e. with o(M® < 2z2. R%) , we put

(1

50 (x) if x e M®

' (x) 1= ¢

%z olzx) if x € M°

\

Then o' € M'° and ¢ = 2 .¢' € 2 MY? . This shows that Vv is
injective. It remains to show that ¢ is surjective. So take
® € HomR(Ma/z -M%, Rolzsz) . We lift § to a morphism

~

Define ¢ : M « R by

® M . RO of free R° - modules. Then oz ~M9) c zz R°= 2 - R

a
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3(x) if xe Mm%

% Flzx) if x € M°

o

Obviously o € M'?® and y(9) =& .

(v) Let wm,,m, be the canonical projections’ from M to

F(M) = M/M' , F(M ® R_) = M/R+M* . By (1.2) they induce sur-
jections M* -> M%/zM° = F(M) resp. M° -> M°/z2M® = F(M @ R ) .

So the map

(my,m,) ¢ M = F(M) @ F(M © R)
is surjective and has kernel z ‘M = 2 M+ z. .M,
(vi) If O -~ M; * M, * M, 0 is an exact sequence of CM modu-
les, over R[o] , then the induced sequences O - M: - Mg -~ Mg -0
and 0O - Mi - Mé - Mé + O are also exact (remember that
My = Mi ® .gR !) . S0 we also get an exact sequence

K
0o -~ F(M1) - F(Mz) - F(M3) -0 .
(vii) is obvious for the functor F' .
(viii) As M -+ P'(M), N -~ F'(N) represent minimal systems of
generators for F'(M) , P'(N) and F'(e) is an isomorphism the
determinant of the map ¢ : M - N between free R - modules re-
presents a non-zero element in R/wp = k .So & and hence ¢
is invertible.
(ix) If o factors through R: then obviously F(gp) is zero.
Conversely, if F(¢) = O then ¢ factors M - N'«~ N , and

Nt & Rf for some r .



- 11 -

Next we study the relation between CM modules over R and over
R[O0] . 1If M is-a CM module over R we put

(1.5) Mi=M0o*M)

and endow it with the action (x,y) =~ (y,x)’ of o . In this
way M is a module over R[o] . Furthermore M=HMo R_, an
isomorphism between the two R[o] - modﬁles is given by

(x,¥) » (x,~y) .

If M itself already had £he sﬁructure of an R[o] - module
(denote the 2 /2Z action on M by 0") then ¥ is isomor-
phié to Mo (M QVR_) as R[o] - module, the isomorphism being
given by

M@ (MOR)~M®Oo (M) =H
(1.6)

(x,y)  » (x+y,0'(x)=0'(y))

Proposition 1.7:

(1) ‘Let M be a CM module over R . Then M admits the
structure of an R[g] - module if and only if M = o' M) .
(i1) Let M, ,M, be indecomposable CM modules over R[o]
such that M, and M, are isomorphic as R -~ modules.
Then as R[o] =~ modules M, ¥M, or M, M, ®R_.
(iii) ©Let M be an indecomposable CM module over R[o] . Then
either M is indecomposable as R - module
or there is an indecomposable R-module N with N ¥ o (N)

such that M 3 N = N ® o™ (N).
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Proof: (i) Let ¢ : M - o* (M) be an isomorphism. ¢ induces
a morphism w' :o"M) - o""(M) =M ; and ¢ defines the
structure of an R[g] - module oh M if and only if

»*

v* o ¥ = id € E := End (M) .

Let I ¢ E be the ideal I :={p € EndR(M)/q:(n)c m_ M}

R
Then E/I & k (Proof: Let O » K - RF =+ M - O represent a minimal
system of generators for M . Then E/I is canonically embeddéd
in Ehd(Rr/mRRr) € GL(r,k) :; and invertible elements in E are
represented by invertible elements in EndR(ARr) . Conversely, if
r

® : R - RY is a morphism with ¢(K) € K that induces an iso-

morphism R"'/M«R ‘R - Rr/mR - RY then the induced map ¢ : M- M
is sufjective. As M is free over R’ the map ¢ is also in-
jective, hence invertible. By [13]2.19 the matrix aigeb_ra B/1
does not contain any idempotents apart from :id , so E/I ®k ).
So we may assume that

v2 =14+ p with p€e I

We now define a sequence of morphisms

b; s M - oM by

¥q 3=V
3 1.3
Vigg = 303 3 97)

Then one easily sees by induction that

i

2
¥y =id + o, ~ with  p, (Mcmg

M.
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(4 21

0*(M) is equal to M as R - module. As Mo --M c,mké each

Voy induces an idempotent map
i i

From the construction it fdllows that for each j > 2i the map
inducéd by wj on M/még'n equals to wZi . So the sequence

of the“tpi 'defines a morphism of R - modules ¥_: M - o (M)
with 2 =id .

(ii) By theorem 1.4.v we have

F(M,) ® F(4, ® R)) = F(M,)) ® F(M, ® R)) as R - modules. Then
the‘kruil—Schmidt-theorem [13] 2.22 implies that

F(M,) = F(Mz) or F(M)  F(M, ® R_) . The claim now follows
from part (iii) of theorem 1.4.

(iii) I£f M = R+)R_ the statement is trivial. In the other cases
M/z+ M has precisely two summands by theorem 1.4. So M as an
R - modules has at most two summands. Suppose that N is a
summand of M as R - module, N # M . Since N/z N is a summand
both of M/z-M and F(N) = F(N® R ) ; it follows from 1.4.v
that M i’ﬁ‘. Furthermore N does not admit the structure of an
R[] - module, for otherwise N/z -N g M/z-M would already

have two summands.

Corollary 1.8

There are finitely many isomorphism classes of indecomposable CM

modules over R 4if and only if there are finitely many isomorphism



classes of indecomposable CM - modules over R .

Proof:

If there are only finitely many indecomposable CM modules over

R then by proposition 1.7 the same is true for R{o] . Conversely
suppose - that there are infinitely many isomorphism classes of in-
decomposable CM modules over R . For each such module M

choose an indecomposable summand N, of the R[o] -~ module

M

M=M@ oM. If M, /M, are two indecomposabie CM R - modules

such that NM1 = NM2 then by (1.7.iii) a§d the Krull-Schmidt-
theorem M, = M, or M, s o*(Mz) . So there are also infinitely
many isomorphism classes of indecomposable CM R{c] - modules.

On the other hand theorem 1.4 implies that there are finitely
many indecomposable CM moddles over R if and only this is

true for R[oc] .

Finally we study the relation between the Auslander-Reiten-quivers
of indecomposable CM modules over R , Rlo] and R ..By [2]

sect.8 almost-split sequences exist in all these categories.

Lemma 1.9:

(1) Let 0 - M, k- M, g M, = O be an exact sequence of M
modules over R[0] with M,,M, indecomposable. This
sequence is almost-split if and only if the 1ﬂduces se~
guence O - P(M1) F{a) P(Mz) F{8) F(M3) - 0 is almost-
split.
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(ii) Let M,N be indecomposable CM modules over R[c] not
isomorphic to R+ . There is an irreducible morphism of
R{o]- modules M - N if and only if there is an irredu-

cible morphism F(M) - F(N) .

Proof: (i) Suppose first that the original sequence is almost-
split. Then it is clear that O - F(M1) Flg) F(Mz) F(g) F(M3) -0
is either split or almost-split. Assume it splits. Then there is

a direct summand N of M3 such that F(8) induces an iso-
morphism between PF(N) and F(M3) . By part (viii) of theorem 1.4
the map B induces an isomorphism between N and M; , SO the
original sequence splits.

Conversely suppose that O -~ F(M1) F{o) F(Mz) F{B) E(M3) -0

is almost-split. Let © : M~ My let be a morphism from an in-
decomposable CM R[o] =~ module M to M, . Then by (1.4.viii)
the map F(¢) is not an isomorphism, so there is a morphism

$ : F(M) - F(M,) such that the diagram
y F{a) F(8)
0 - F(M1) - F(Mz) - F(M3) -0
9 F (o)
F(M)

commutes. Then there is a homomorphism ¢°' : M2 - M2

2 such that

the diagram
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a ] w ol
Mz ' » M3
L ////’
0
. Ma
N \Vd
F(B)

F(MZ) » F(M3)

where the vertical arrows are given by (1.2), commutes. Obviously

' (z- Mo) cC z 'Mg

b2 MM, of R[o] modules such that the diagram

, 80 by (1.3) there is a morphism

o-M %M B M, -0

commutes.,

(ii) since almost-split sequences exist in the categories of CM
modules over R and R[o] , this follows directly from (i), the
way irreducible morphism are obtained from almost-split sequences

(cf. [8] 6.1) and the Krull-Schmidt theoremn.

Lemma 1.10:

Consider an almost-split sequence

(1.11) 0~ M1~9‘M23n3 »yo
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of CM modules over Rlo] .

(i) If M, & N, ® c*(N3) with an indecomposable CM module
N3 over R as in (1.7), (1.9), 1let
0o - N1 Q'Nz E'N3 - O be the almost-split sequence of CM
R - modules ending at N, . Then the sequence (1.11) is

isomorphic to

; ; . a'@c o’ . B'og B »
(1.12) o ~» N,®o N, - Nzeo N, >~ N80 Ny~ O
(ii) If M3 is irreducible as R - module then (1.11) is an

almost-split sequence of R - modules.

Proof: (i) One easily checks that (1.12) has the universal pro-
*

perty of [8] , 1.4, so it suffices to show that N, @O (N1)

does not split as Rlo] - module. Otherwise N1 would admit

the structure of an R[0] - module, so U*(N1) ¥ N, . But

1
the almost-split sequence starting with 0*(N1) is

* *
g (o) o (B")
o -~ o*(g1) - o*(Nz) - o*(N3).» o .

As the almost-split sequence is uniquely determined by its initial
term we would have o*(N3) & N, . So by Prop. 1.7 the Rl{oc] - mo-
dule Mgy % N, © o*(N3) were reducible.

(ii) is proven in the same way.
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2. Periodicity:

We now suppose that the function f has the form

2
f(x1,...,xn) =g(x1,....xn__1)+xn p n> 3

and write y for x_ . T : (x1,...,xn_1,y,z)» (x1,...,xn_1,-y.z)

n
induces an action of Z/2Z on R and R . As above we denote

by R[t] the twisted group ring, and by R_,R_ the R(t] - mo-
dules R defined by the T - action ¢ - ® * 7T resp. ¢ *-@+T .
By ch.1 the Auslander-Reiten-quiver of indecomposable CM - modules
over k([ Xqr0e-0% _411/(g) is isomorphic to the Auslander-Reiten-
quiver of indecomposable CM Rlt] - modules, with the vertex

corresponding to R+ deleted.

Theorem 2.1:

There is a bijectidn G between the set of indecomposable CM -

modules over R(T] which are not isomorphic teo R+ and the set

of indecomposable CM - mndules over R such that

(i) If W is an indecomposable CM R 1] - module not iso-
morphic to R_, M = G(W) and f=M0e og"(M) as in
(1.5) then

W E P(M as R - module
(ii) There is an irreducible morphism W- W' of CM Rt] -

modules if and only if thgre is an irreducible moxphism

of R - modules G(W) * G(W') .
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The rest of this chapter is devoted to the proof of theorem 2.1.

We put
n:e=y+7/-1.2 , gi=y~-/=-1.2,

then n-g =_g(x1,...,xn_1) in R .
Now let W be an indecomposable CM -module over Ht] which is
not ismorphic to R* . We choose an R' - basis e4s-..,e. of

the T - invariant part of W and an R' - basis f.‘,...,fr
of the T - antiinvariant part of W . As in ch.1 this system

of generators for W defines an exact sequence
- - r r-o ->
0 N R+ ® R+ W o .

N is an R[0] - module with F(N) = W . If we let T act on
R® @ R* by 1' : (u,v)» (t(u),-t(v)) then T'(N) =N . One
easily sees that

N =z (R%) T @ z-(&R9)T
and that N is generated over R by N® and elements in N°

of the form

(O,...,O,Y,O,...,O ;‘P1i(X),.......)‘0ri(X))
' t
i

(w‘ii(x)'...."’éi(X); O,...,O,y,o,.....-,c )

t
i
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with °ij(X)’°ij(X) € R invariant under ¢ and Tt , i,3=1,...,xr .
We put for i=1,...,r
a. = (0,...,0,",0,..-0; w1i(X),...-.-,¢ri(X))

bv o= (0,...,0,;,0,-..0; m1i(X),......,wri(X))
1
i

ar+i = (W{i(x)l--twéi(x)f 0,...,0,2,0,....,0 )

by t= (03, (x),.. 0L (x); OrevtsOMi0sennssO )
i
and N1 = RQH +...+'Ib82r, N2 t= R b1+-.o+ R’ bzr . Then
N=N +N,

and

(2.2) G(N1) = T(N1) = “2

2r (5)

Since g.a, € I R.a, we see that rank N, ¢ r . Similarly

L7 far+ i R

rank N, < r . As rank N = 2r this implies that N, N N, = {o} ,

80

(2.3) N = N1 ® Nz .

(5) As Aim X > 2 , X is irreducible. So it makes sense to speak
of the rank of an R - module.
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Lemma 2.4:

The R -~ module N1 is irreducible.

Proof:

Suppose that N1 has a decomposition into irreducible summands

N1=U ® ... U

with 13> 2 . Then N/z N has at least 21 summands, so by
(1.4.v) and prop. 1.7 the module W is reducible over R and

1=2 . We may suppose that W = W' ® T(W') for some indecomposable
R - module W' . Withoﬁt loss of generality we can then assume

that e1+f1,...,er+fr is a system of generators for

W' ® {0) c W' ® t(W') . Then the R[0] - linear involution

(2.5) «x : RF¥ @ RF - RY @ R

(u,v) = (v,u)

maps N into itself; and
K(N1) = N2 .
As N, =g(U,) @ 0(02)‘ we have

In the first case by prop. 1.7 and (1.6) W = F(N) = F(U®s (U)eVec (V))
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has at least four summands as R - module, in contradiction to
(1.7.iii).
In the second case N1 and N2 admit ¢ - actions with

N, ®N, ®R_ . As N, ¥N, as R - module we see by (1.6) that
the two R ~ summands of W are isomorphic, i.e. W) 2w,

This is again a contradiction to (1.74ii).
We put

G(W) := N1 s GY(W) := Né H

obviously G(W), G'(W) and the inclusion G(W) © G'(W)— R¥ @ RY
are - up to isomorphy - uniquely determined by W . By (2.2) and
(2.3) we have G'(W) = 0" (G(W)) , F(G(W) © 0 (G(W))) Z F(N) = W .
So G is an injective map from the set of indecomposable CM
modules over Rlt] that are not isomorphic to R_  to the set of

indecomposable CM modules over R . One easily sees that

G'(W) = G(W®R_) for any indecomposable CM
module W over R[t] differt
from R+ .

This shows that G is also surjective, thus part (i) of theorem

2.1 is proven.

For the proof of part (ii) it suffices to show

Lemma 2.6:

Let O - w1 ¢ w2 B W3 -~ 0 be an almost-split sequence of CM mo-
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dules over R[{1] . Then there is an almost-split sequence

(6)
0‘¢ G(W,) - G(Wz) - G(W3) -0 .

Proof:
If ry := rankRWi then it is easy to see that the sequence of

(2.6) can be embedded in a commutative diagram

o —m— O —_— 0
0O —— W1 S W2 -———£———-v W3 —r 0
r r - r r = o r
1 1 a 2 2 B 3 3
o) R+ ® R+ ——p R+ @ R+ — R+ ® R+ —_— 0O (2.7)

' ﬁ ' § Y ' ——
o — G(W1).O G (W1) G(Wz) ® G (Wz) G(N3) e G (W3) o

| | |

o ~—————m 0 — 0
where a,F,a',B' represent the direct sum decomposition.

Case 1: Wy is indecomposable as R - module:
By lemma 1.10 also w1 is indecomposable over R . Hence

GW,) e G'(Wi) and G(W,;) € G'(W,) are both irndecomposable over
R{o]. By lemma 1.9 ﬁhe bottom row of (2.7) is an almost-split

sequence of R[o] - modules, so the claim follows from lemma 1.10.

(6) Bere G(W2) denotes the direct sum of the G(W') , where W' runs
through the direct summands of W, .
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Case 2: W, is decomposable over R .
Then wehave a decomposition W, = Wi ] 'r*(wi") , i=1,2,3 ; and the
top row of (2.7) splits into a direct sum of two almost-split

sequences over R :

- 1 T."; ) *l.. L} -r*!..
O+ Wi®TWH W ©T W)~ W, T W ~0

If we adjust the systems of generators for the wi as in the
o o r x

proof of lemma 2.4 we have involutions Ki : Rli ® R i, R i ® R i
preserving the submodules G(Wi) ) G'(Wi) as in (2.5) .
‘ ] . N .= -
Put Ni s= (1 + Ki)(G(wi)) » NY s (1 KL(G(WiL) . Then
Ni.N; are preserved by the ¢ -actions on 'R+i ® R :

Furthermore Ni & G(wi) as R - module, and the diagramm (2.7)

’ Wi = F(N{) .
gives a diagram

o o | o

I I |

0 — W @TH] — W ®TW, — W) 0 T W

——p O

1 2 2 3 3
r r, r r r r.
1 2 2 2 3 3
0 -— R+ 0R+ —_— R+ 0R+ — R+ 0R+ - 0
" {
0 ~—— N1.0 n1 — Ni @ us —— Ni ® n3_ -~ 0

| I

0 | 0 o
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where all arrows preserve the direct sum decomposition. The claim

now follows again from (1.9) and (1.10).
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3. Simple hypersurface singularities:

The two-dimensional simplé sinéularities are just the two-dimen-~
sional isolated hypersurface singularities which are quotient
singularities (cf. [6]). So there are only finitely many isomor-
phism classes of indecomposable CM modules over their local
rings ([11]), [3], [7]). By iterated application of corollary 1.8

we get

Theorem 3.1:

Let (X,0) be an n~-dimensional simple hypersurface singularity.
Then up to isomorphism there are only finitely many indecomposable
CM modules over the local ring 6x,o .
Remark 3.2:

One would expect that this property characterizes the simple sin-
gularities among all isolated hypersurface singularities (and
hence among all isolated Gorenstein singularities by [11], 1.2).
This is true in dimension 2 (cf. [7], §1), hence by corollary 1.8

it also holds for curve singuiarities (see also [10], )

The Auslander-Reiten quivers of indecomposable CM modules over
two-dimensional simple singularities were computed by M. Auslander
[3] . His arguments are based on the fact, that these singulari-
ties are of the form k2/T with a finite group T C SL(2,k) ;

and he used the Mc Kay correspondence [12] to identify‘the Aus-
lander-Reiten quivers as Dynkin quivers of type A,D,E . We want

to give a similar description of the Auslander-Reiten quivers of



- 27 -

the simple plane curve singularities(7).

Let G be a finite subgroup of GL(2,k) which is generated by
reflections, and denote by € : G- (+1} the linear character
g+ det g . Thekermel T of € is a subgroup of index 2 in G ;
we denote a generator of the group G/T & Z/2Z by o . The
singularity of X := k2/P at the origin is a simple surface
singularity. 0 acts as an involution on X , and by Chevalleys
theorem [4] V.5.3 the quotient X/ <¢> is smooth. The branch locus
(¥,0) ¢ (X,0) of the projection X - X/<o> is isomorphic to a
simple plane curve singularity - and every simple plane curve
singularity can be obtained in this way.

Sr . To de-

Let S be the local ring 6 . Then R :=0

x2,0 X,0
termine the Auslander-Reiten quiver of indecomposable CM modules
over GY,O it suffices by theorem 1.4 and lemma 1.2 to compute
the Auslander-Reiten quiver of indecomposable CM modules over
Rio] .

If p : G-+ GL(E) is a representation of G over k we put
T
M := ® E .
A (s )

This is in a natural way a CM module over R[o] (cf. [9], [3],

(7]). p » M is an additive functor from the category of k[G] -

P
modules to the category of CM modules over R[o]. By c we de-

(7) They were computed explicitely in [5].
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note the canonical representation ¢ : G=— GL(2,k) of G.

Theorem 3.3:

(i) For each CM module M over R[o] there is a unique
fepresentation p of G such that M ¥ Mp .
(ii) Let p,p' be irreducible representations of G . Then

there exists an irreducible morphism Mp- Md if and

only if p is a direct summand of o' ® c .

Remark 3.4:

This shows that the Auslander-Reiten:quiver of 6Y 0 is isomor-
'

phic to the graph computed in [9], 3.7, with the vertex corres-

ponding to the trivial representation deleted.

Proof of theorem 3.3:

(i) For a representation p : G - GL(E) we have S 6 E = (M 6 sy,
hence E as k[G] - module can be recovered from Mp . SO0 pw Mp
is an injection from the set of indecomposable k[G] - modules to
the set of indecomposable CM modules over R{o] . To prove that

it is surjective let M be an indecomposable CM module over

R{oc] . By [7] there is a representation p' : T - GL(E') such
T - GL(2") be the re-

..

that M = (s @ ') . as R-module. Let p"
presentation p" :=p.0, where the generator ¢ of G/T acts on T
byveconjugation., Obviously M) = (s e E")r as R-module. As M = ()
it follows from [2] or [7] that the representations p" and p"=peco
are isomorphic. Hence there is a'reéresentation p of G such that

pIT = p' . By prop.1.7 we have M = M or M & M, .

p Y
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(3.5) O*R_*MC*MR+ -~ 0

representing the unique non-trivial extension of ‘“R by R_ .
'+

(c£. [3], observe that R_ = as R{c]'- module). By [3]

“x,0
one obtains for each non-trivial indecomposable CM modules M
over R the almost-split sequence ending with M by tensoéring

M with the sequence (3.5) and taking reflexive hulls:
O-MO®R_~ (MOM) -M=-0 .

It follows from lemma 1.10 that this statement also holds in the
category of CM modules over R[oc] . Now if M = M, for some
irreducible representation p of G then one easily checks

that (Mc ® Mpf" (cf. [3]) . Sso the CM modules over

= Mp@ c
R{o] admitting an irreducible morphism to M are just the mo-

dules Mp , where p' is an irreducible summand of p ® c .

Remark 3.6:
Part (i) of theorem 3.3 can also be proven using (ii) and the

completeness result [14] prop. 1 .



- 30 -

References

(1]

(2]

[3]

(4]

(5]

(6]

[7]

[8]

(2]

[10]

[(11]

Arnol'd, V.I.: Critical points of smooth functions. Proc.
Int. Congr. Math, Vancouver 1974, vol. 1, 19-39.
Auslander, M.: Functors and morphisms determined by ob-
jects and applications. In: Proc. Conf., Representation
Theory, Philadelphia 1976, pp. 1-327. Marcel Dekker 1978.
Auslander, M.: Almost split sequences and rational singu-
larities. To appear.

Bourbaki, N.: Groupes et algébres de Lie 4,5,6. Hermann,
Paris 1968.

Dietrich, E., Wiedemann, A.: The Auslander~Reiten quiver
of a simple curve singularity. To appear.

Durfee, A.: Fifteen characterizations of rational double
points and simple ‘singularities. L'Enseignement Math. 25,
131-163 (1979).

Esnault, H.: Reflexive modules on qubtieht singularities.
To appear.

Gabriel, P.: Auslander-Reiten sequences and representation-
finite algebras. In: Representation theory I, pp. 1-71.
Lecture Notes 831, Springer-Verlag 1980.
Gonzalez-Sprinberg, G., Verdier, J.-~B.: Construction géo-
métrique de la correspondance de Mc Kay, Ann. Sc. Ecole
Norm. Sup. 16, 409-449 (1983).

Greuel, G.M., Kn¥rrer, H.: Einfache Kurvensingularitlten
und torsionsfreie Moduln. To appear.

Herzog, J.: Ringe mit nur endlich vielen Isomorphieklassen

von maximalen unzerlegbaren Cohen-Macaulay-Moduln. Math.



(12]

(13]

{14]

- 31 -

Ann. 233, 21-34 (1978).

Mc Kay,J.: Graphs, singularities and finite groups. Proc.
Symp. Pure Math. 37, 183-186 (1980).

Swan, R.: Algebraic K-Theory. Lectures Notes in Mathematics
76, Springer-Verlag 1968.

Wiedemann, A.: Orders with loops in their Auslander-Reiten

graph. Comm. in Algebra 9, 641-656 (1981).



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 
	Seite 32 
	Seite 33 

