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1. INTRODUCTION

All the dosed connected manifolds are divided into the following three dasses:

(P) manifolds admitting a Riemannian metric of positive scalar curvaturej
(Z) manifolds admitting a metric of non-negative scalar curvature, hut not admit­

ting a metric of positive scalar curvature;
(N) manifolds not admitting a metric of non-negative scalar curvature.

If a dosed manifold M has a metric of non-negative scalar curvature which is not
identically zero, then by a conformal change of the metric we get a metric of positive
scalar curvature [I(W]. Therefore any metric of non-negative scalar curvature on a
manifold in the dass (N) is in fact scalar-flat.

It is desirable to have a characterization of these three dasses. A characterization
of the dass (P) has been given by Gromov-Lawson [GL] and Stolz [SI], [S2]: if M is
simply connected and dirn M 2: 5, then M belongs to the dass (P) if and only if M is
either non-spin or spin with vanishing Lichnerowicz-Hitchin obstruction a(M). In this
paper we remark that their results also imply the following.

Theorem 1. Let M he a dosed simply connected manifold with dimM 2: 5. Then
M belongs to the dass (Z) if and only if M is tbe product of manifolds MI x ... X M,
such tbat

(1) ±Mi adnlits a Ricci-flat !(älller nletric or a Riemannian metric witb Spin(7)
holonomy (in hath cases Mi is necessarily spin);

(2) a(M) =F O.

Note that Spin(7) holonolny occurs only in dimension 8, and the metric is Ricci-flat.
So far no cornpact example of a Riemannian manifold with Spin(7) holonomy has been
known.
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The condition o(M) =1= 0 in Theorem 1 ean not be omitted. For example a non­
singular hypersurface M of degree 4k +5 in the (4k +4)-dimensional complex projective
space is a simply eonnected Calabi-Yau manifold, hut a(M) = 0 sinee KO-(8k+6)(pt) =
O. Thus M admits a metric of positive sealar curvature hy the theorem of Stolz.

Corollary 2. Let Mn be connected closed manifold witb finite fundamental group
such that its universal cover is spin. H ~7rl (M) 'IA(M)I > 2n / 4 , then M does not admit
ametrie of non-negative scalar curvature.

In the proof we use a standard fact that if a spin manifold has a parallel spinor then
M has special holonomy (c.f. [H],[F], [W]). We will review this fact for the sake of
cornpleteness.

Remark. In the case of infinite fundamental groups, it is known that if M ia a dosed
spin manifold with A(M) =1= 0 then M belongs to the dass (N) (e.f. [0], [MD.

I am grateful to Stephan Stolz for explaining his results to me and for his interest
in this work, and to !(aoru Ono for helpful discussions.

2. HOLONOMY GROUPS

Let P he a principal bundle with a conneetion over a manifold M with structure
group G. The fiber over x E M will be denoted by Pr" and the Lie algebra of G will
be denoted by g. A eonnection on P is a smooth splitting of T P into the tangent
bundle TI along the fibers and a right invariant horizontal distribution. A piecewise
Cl curve , : [0, 1J ~ M is called a loop with base point x if ,(0) = ')'(1) = x. Let us
fix p E Pr" and consider the horizontal lift t p : [0, 1] ~ P of , such that tp(O) = p.
'Define h-r,p E G by i'p(l) = 1p(O)h"'f,p. The set of h"'f,p for all possible loops 'Y with base
point x consists a subgroup of G, whieh we denote by Hol(P)p. Let us choose another
q = pk E Pr, with k E G. Then by the right invariance of the horizontal distribution,
we have 1q = tpk and

tp(O)kh"'f,q = i'q(O)h-r,q = i'q(l) = 1p(1)k = 1p(O)h-r,pk.

Thus h-r,q = Ad(k-1 )h"'f,p, and h"'f,p and h;,q define the same element h-r in the fiber
Ad(P)r, of the adjoint bundle Ad(P) := P XAd G. Hence Hol(P)p and Hol(P)q define
the same subgroup Hol(P)r, in Ad(P)r" which we call the holonomy group of P at
x E M. If we choose another base point y E M, then H ol(P)y is isomorphie to
H ol(P)r,; this isomorphism dass is called the holonomy group of P.

Let p : G ~ GL(V) be a representation of G in areal vector spaee V. Let E = P x pV
be the assoeiated vector bundle. Then Ad(P)r" and hence H ol(P)r" aet on Er, in the
eanonical way.

The eonneetion on P defines uniquely a eovariant derivative in E. Let el," ., er be
a loeal frame field of E over an open set U c M. Let Cf be a loeal seetion of P over U.
Then the covariant derivative \7 of E is defined by

r

\7ej = LP*(C7·w)~ei'
i=l
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where w is the eonneetion form on P, i.e. the projeetion T Pp ~ Tf rv 9 along the
horizontal distribution.

Let ,(t) be a path in M. A section S of E over, is said to be parallel if V /rs = O.

Le mma 2.1. Let S be a parallel section oE E over /. Tben there exists a vector v E V
and a borizontalliEt t oE, such that set) = (t(t), v) E P x p V = E.

Proof. Let el (t), ... , er (t) be a Ioeal frame field of E along ,. The parallel seetion
set) = L::i ui(t)ei(t) is uniquely obtained by solving the ordinary differential equation

8u i (t) " 8· .
fJt + ~P.(w(O"·(fJt)))jul(t) = 0,

}

with the initial value s(O) = L:i ui(O)Si(O). On the other hand, if s(O) = (p, v) E
P x p V = E, and if we take the horizontal lift l' of, with t(O) = p, then SI (t) = (t(t), v)
is a parallel section by the definition of '\1. Prom the uniquenessof s we have s = 81.

This eompletes the proof.

Lemma 2.2. Let s be a global parallel seetion oE E. Then H ol(P)z C Ad(P)z 18

contained in tbe isotropy subgroup Ad(P).'!(x) oE sex).

Proof. Let (p, h"1) E Hol(P)x correspond to a loop / with base point x. By Lemma
2.1, s 1"1 can be written aB sl"1(t) = (t(t), v) for some v E V. Then, since sl"1(o) = sl"1(l) ,
we have

(t(O), v) = (t(1), v) = (t(O)h"1' v) = (t(O), h"1v ) = (p, h"1)(.y(0), v).

Thus (p, h"1) E Ad(P).'!(x), completing the proof.

Let H oIO(P)x be the subgroup of H ol(P)x consisting of all holonomies for null­
homotopic loops with base point x. The group H oIO(P) is called the restricted holo­
nomy group of P. Obviously HoZO(P)z is eonnected and is contained in the identity
component Ac?(P)x of Ad(P)x. Before we state the following proposition, we note
that the representation of Ad(P)x in Ex is equivalent to p.

Proposition 2.3. Suppose that tlle identity eOlnponent GO oE G is compact, so tbat
the restrietion plao oE p to GO splits into irreducible ortbogonal representations. Sup­
pose Eurther that each irreducible eOlnponent oE pico has dimention ~ 2. H E admits
a parallel section, then H oIO(P) is strictly smaller than GO.

prooj. Let Fx C Ex be an irreducible component of Plao, and 1r : Ex ~ Fx be the
projeetion. By Lemma 2.2, H oZO(P)x C Ad(P).'!(x) n AlfO(P)x C Ad(P)1r.'!(x) nAlfO(p)x'
If H oIO(P)x = AlfÜ(P)x, then AJÜ(P)z C Ad(P)'u(x). Thus AC?(P)z leaves '7rs(x)
fixed. Hut then Fx is reducible since dim Fx ~ 2. This is a contradiction and completes
the proof.

Let G' be a covering group of G with covering map A. We say that a principal
bundle P' with structure group G' covers P if there is a covering fL : P' ~ P such
that JL(pg) = J1(p )A(9) for p E P' and 9 E G'. In this situation the right invariant
distribution in P naturally lifts to P' to define a connection in P'.
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Lemma 2.4. There are covering maps oE H ol(P') onto H ol(P), and H oIO(P') onto
HoIO(P).

proof. Let"""l and """2 be loops in M with base point x, and pick p E Px and p' E P;.
It suffices to show that if hi1 ,pl = hi"llpl in Hol(P')pl then hi11P = hi"lIP in Hol(P)p.
But this is true because a closed path in P' is mapped under the covering map onto a.
closed path. This completes the proof.

In the rest of this section we will consider the Riemanman case, for which the reader
is referred to [B], chapters 10 and 14, and [Sa]. Let M be an oriented Riemannian
manifold of dimension n. The Levi-Civita conneetion defines a parallelism on the
tangent bUDdle of M. Thus the parallel transport along a loop ....,. with base point x

determines an element li E SO(TxM). Let Pso be the prineipal bundle assoeiated to
the tangent bundle. Then a point p E (Pso)x stands for an oriented orthonormal basis
p = (eIl"" en ) of TxM, and we eau express li in terms of a special orthogonal matrix
hilP by

li(P) = (/i( el),'" ,Ii(en)) = (eI, . .. ,en)hi1p = philP '

This hi determines an element of the adjoint bundle, whieh is nothing more than !i'
In this Riemannian situation we denote by H ol(M)x the holonomy group at x,

and by H oIO(M)x the subgroup consisting of elements h"'{ for null-homotopie loops
,. H oIO(M) is called the restricted holonoluy group of M. The following facts are
well known: H oIO(M) is a connected closed subgroup of SO(n); If M is the universal
cover then HoIO(M) rv Hol(M); If M = MI X M2 is a Riemannian product, then
HoIO(M) = HoIO(Ml) x HoIO(M2 ), and eonversely if the restricted holonomy group
splits as a non-trivial produet, then M splits as a Riemannian product (known as the
de Rham decomposition). We will say that M is irreducible if its holonomy group does
not split non-trivially. For irredueible Riemannian manifolds Berger-Simons theorem
says that, if M is not locally symmetrie, HoIO(M) is one of the following:

(1) SO(n);
(2) U(m), where n = 2m, in whieh ease M is I(ähler but not Ricci-flatj
(3) SU(m), where n = 2m, in which ease M is Rieci-flat Kähler;
(4) Sp(k)· Sp(l) := Sp(k) x Sp(I)/{±I} where n = 4k, in whieh ease M is ealled a

Quaternionie I(ähler manifold, and is an Einstein manifold but neither Rieei-flat
nor Kählerj

(5) Sp(k), where n = 4k, in which case M is ealled a hyperkähler manifold, and is
Rieei-flat Kählerj

(6) G2 , in which ease n = 7 and M is Rieci-Hatj
(7) Spin(7), in whieh case n = 8 and M is Rieci-flat.

Remark 2.5. A locally symmetrie space is Einstein with non-zero scalar curvature.
Thus for an irreducible Riemannian manifold M, if HolD(M) i= SO(n) and M is Ricci­
Hat, then HoIO(M) is either SU(m), Sp(k), G2 or Spin(7).

Remark 2.6. The reduetion of the holonomy group defines naturally a reduetion of the
strueture group of Pso to H ol(M). If the holonomy group reduees to G2 01' Spin(7),
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then M is spin sinee 1rl (G2 ) = 1 = 1rl (Spin(7)). We have used this fact in the statement
of Theorem 1.

3. PROOFS

The group Spinen) is generated by the elements in the real Clifford algera CIn of
even degree and with unit length. Let M be a spin manifold of dimension n, and
PSpin --. Pso be a spin strueture. Ey areal (resp. eomplex) spin-module we mean
a Spinen) module obtained by restrietion to Spinen) of a module of Cln (resp. the
eomplexified Clifford algebra ein). We eall areal (resp. eomplex) spinor bundle the
veetor bundle whieh associates to PSpin via areal (resp. eomplex) spin-module. Given
a spinor bundle S we eau define the Dirae operator D by D.s = L: i ei Vei .s, where .s is
a section of the spinor bundle and el, ... ,en are a Ioeal oriented orthonormal frame of
M. We have the following Liehnerowiez formula:

where K, denotes the sealar eurvature of M. This fonnula says that if M admits a posi­
tive sealar eurvature then there is no hanuonie spinor, and that if the sealar eurvature
is identieally zero then a harmonie spinor is parallel.

Let I: Spinen) -+ Hom(Gln, Gin) be the left multiplication of Spinen) on Gin. The
bundle PSpin X, eIn admits an action of ein by the right multiplieation. Thus the
kernel Ker 1) of the Dirae operator 1) is a Z:2-gl'aded Gin-module.

Let VR n be the Grothendieek group of ~-graded Gin-modules. Let i : !Rn -+ IRn+l
be the inclusion. Then i induees i. : GIn -+ GIn+1 and i· : VRn+1 --. VR n . Through the
isomorphism VRn/i·VRn+1 ~ [(o-n(pt) := KO(Dn, sn-l), Ker 1) defines an element
of Ko-n(pt) whieh we define to be O'(M). Moreover 0' induees a ring homomorphism
0'. : n;pin -+ [(0-· where n;pin denotes the spin eobordism ring. Ey the Lichnerowiez
formula, if M admits a luetric of positive sealar eurvature, then O'(M) = O. Conversely,
by the theorem of Stolz, if M is a closed simply-eonneeted spin manifold of dimension
2:: 5 such that a(M) = 0, then M admits a meh-ie of positive scalar eurvature.

Reeall that Ko-n(pt) is isomorphie to Z2 for n = 8k+ 1 and Bk+2, to Z for n = Bk
and Bk + 4, and to 0 for other dimensions. For aetual purposes ind 1) are eomputed
by dimR Ker DO mod 2 for n = Bk + 1, dirne !{er DO mod 2 for n = Bk + 2, A(M)/2
for n = Bk + 4, A(M) for n = 8k, and by 0 for other dimensions, where D = DO + D1

denotes the Dirac operator for the real spinal' bundle. In auy event if ind 1) =F 0, there
exists a harmonie spinor for the real spinal' bundle. This last fact cau be seen also
from the fact that PSpin X, Gin is a direet sum of irredueible real spinor bundles, eaeh
component having vanishing seeond fundamental form.

Lemma 3.1. Let M = M1 X •.• X Mk be a Riemannian product 01 closed spin mani­
foids. Then a spinar bundle on M has a harmonie (resp. parallel) spinar if and only if
a spinor bundle oI each Mi has a harnlonic (resp. parallel) spinar.
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Proof. We describe the ease of real spinor bundles. It suffices to show in the ease of
k = 2. Suppose that dirn Mi = ni for i = 1,2, and that n = nl + n2. We denote by
PSpin(n) (resp. PSpin(nd) the spin strlletllre of M (resp. Mi)' We mayassume that a
harmonie spinor exists in an irreducible spinor bundle on M. Sinee an irredueible spin­
module is imbedded into eIn which is eonsidered as a left eIn module, we may further
Maume that SM := PSpin(n) X I eIn has a harmonie spinor. Set SMi = PSpin(ni) X, GIni .

Then since Clp+q ~ Clp0Clq, we have SM = tri SMl !Z> triSM2 where 'Tri : M -+ Mi
denotes the projeetion. Denote by 1) and 1)i the Dirae operators of SM and SMi' Let
Tl = tP !Z>,p be a loeal seetion of BAI. Sinee 1)2 = 'V.'V + tKM, we have

Let {.Ai}~l and {].Lj }~1 be the eigenvalues of !>i and 1)~. Sinee the Dirac opera­
tors are self-adjoint, .Ai and ].L j are all non-negative. Let {<Pd ~1 and {1jJj}~l be the
eorresponding eigenseetions. Then they respectively form L2-bases of COCJ(SMl ) and
COCJ(SM2)' Thus {<pi!Z> t,bj}iJ=l are eigenseetions of SM which fonn an L 2-basis of
COO(SM ) 1 and the corresponding eigenvalues are {.Ai + ].L j } 0= l' Clearly ).1 + /-l1 = 0 if
and only if .Al = ].LI = O. Trus proves the case of harmonie spinors. For parallel spinors,
we have only to replace 1)2 by 'V.'V. This cornpletes the proof.

Proposition 3.2 ([F]). Let 8 be a spinor bundle on a lliemannian spin manifold M.
H S bas a non-zero parallel spinor 1jJ, then M is Ricci-flat.

Proof. Using the first Bianchi identity one sees

o= L ej('Vej 'Vej - 'Vej 'V ej - 'V[ei,ej))t!'
]

= _! '"' ejRijklekeflP = -~ '"' Ric(ei, e,)e,1jJ
4~ 2~],k,' ,

for any i. Thus Ric = 0, as desired.

Proposition 3.3 ([HD. Let M be a c10sed Riemannian spin manilold 01 dimension n.
Ha spinor bundle 8 on M llas a parallel spinor, tben M is Ricci-ßat and tbe resricted
holonomy group H olO(M) 01 M reduces to a product wbose irreducible components
are SO(l), SU(m), Sp(k), G2 , or Spin(7).

Proof. First of all M is Ricci-flat by Proposition 3.2. Passing to the universal eoverM
we may assurne~at there exists a parallel spinor of a spinor bundle. By the de Rham
decornposition M splits into a lliemannian product in such a way that the holonomy
group of each irreducible component Mi is irreducible. By Lemma 3.1 Mi has a parallel
spinor. H ni := dirn Mi = 1, then H ol(Mi ) = 80(1). If ni ;::: 2, then an irreclucible
spin representation has diInension ~ 2. Then by Proposition 2.3, the dimension of
the holonorny group of the principal bundle associated to the spinor bundle is strictly
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smaller than dimSpin(nd = dimSO(nd. Thus hy Lemma 2.4 the holonomy group
Hol(Mi) is strictly sma11er than SO(ni)' Since Mi is Rieci-flat, possible holonomy
groups are SU(m), Sp(k), G2 01' Spin(7). Sinee HoIO(M) = Hol(M), we are done.

Proof 0/ Theorem 1. Let M be a simply eonneeted closed manifold of dimension 2:: 5
whieh belongs to the class (Z). By the theorems of Gromov-Lawson and Stolz that M
is spin and o(M) i= O. Thus M has a harmonie spinal', hut as M admits a sealar-flat
metric, we may assume that the harmonie spinor is parallel. Then by Proposition 3.3
the holonomy group of M is a produet of 80(1), SU(m), SP(k), G2 and 8pin(7).
However SO(I) is ruled out beeause M is simply conneeted, and G2 is also ruled out
because if M eontains a 7-dimensional irreducihle factor then we have a(M) = 0 by
the multiplieative property of 0. The converse is obvious. This completes the praof.

Proof of Corollary 2. Suppose that the universal cover M belongs to the class (Z).
Let Mi be an irreducible component of M as in Theorem 1. By [W], IA(Mdl = 1 if
Hol(Mi) = Spin(7), A(Md = 2 if Hol(Mi) = SU(md and mi is even, and A(Md =
k i + 1j! H ol(Mi ) = Sp(kd. Hellce we have IA(M)I ~ 2~ where the equality holds
when M is the product of K3-surfaces, from which the coro11ary follaws.

Remark 3.4. In the case where M is spin and with finite fundamental group, there are
existence results of positive scalal' eurvature metries for eertain fundamental groups
(e.g. Z/2) undel' the assumption that a11 index obstructions coming from Hat bundles
vanish (c.f. [RS] ,[R] ,[I(S]). These results also imply the characterization of the class (Z).
For example oue ean prove that, if M is spin with 11"1 (M) = Z/2, then M belongs
to the cl~ (Z) if and only if there exists ametrie on M such that the Riemannian
covering M is a product of Rieci-flat I(ähler manifolds and manifolds with Spin(7) and
Gz holonomy and if M has non-vanishing index obstruction. In this case it is not easy
to rule out the Gz holonomy sinee it is not clear if the positive sealar curvature on M
is Z/2-invariant to descend to M.
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