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1. INTRODUCTION

All the closed connected manifolds are divided into the following three classes:

(P) manifolds admitting a Riemannian metric of positive scalar curvature;

(Z) manifolds admitting a metric of non-negative scalar curvature, but not admit-
ting a metric of positive scalar curvature;

(N) manifolds not admitting a metric of non-negative scalar curvature.

If a closed manifold M has a metric of non-negative scalar curvature which is not
identically zero, then by a conformal change of the metric we get a metric of positive
scalar curvature [KW]. Therefore any metric of non-negative scalar curvature on a
manifold in the class (N) is in fact scalar-flat.

It is desirable to have a characterization of these three classes. A characterization
of the class (P) has been given by Gromov-Lawson [GL] and Stolz [S1], [S2]: if M is
simply connected and dim M > 5, then M belongs to the class (P) if and only if M is
either non-spin or spin with vanishing Lichnerowicz-Hitchin obstruction a(M). In this
paper we remark that their results also imply the following.

Theorem 1. Let M be a closed simply connected manifold with dim M > 5. Then
M belongs to the class (Z) if and only if M is the product of manifolds My x -+ x M
such that

(1) £M; admits a Ricci-flat Kahler metric or a Riemannian metric with Spin(7)
holonomy (in both cases M; is necessarily spin);

(2) a(M) #0.

Note that Spin(7) holonomy occurs only in dimension 8, and the metric is Ricci-flat.
So far no compact example of a Riemannian manifold with Spin(7) holonomy has been
known.
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The condition a{M) # 0 in Theorem 1 can not be omitted. For example a non-
singular hypersurface M of degree 4k +5 in the (4k +4)-dimensional complex projective
space is a simply connected Calabi-Yau manifold, but a(M) = 0 since KO~ (G +6)(pt) =
0. Thus M admits a metric of positive scalar curvature by the theorem of Stolz.

Corollary 2. Let M™ be connected closed manifold with finite fundamental group
such that its universal cover is spin. If fm; (M) -|A(M)| > 2"/4, then M does not admit
a metric of non-negative scalar curvature.

In the proof we use a standard fact that if a spin manifold has a parallel spinor then
M has special holonomy (c.f. [H],[F], [W]). We will review this fact for the sake of

completeness.

Remark. In the case of infinite fundamental groups, it is known that if M is a closed
spin manifold with A(M) # 0 then M belongs to the class (N) (c.f. [O], [M]).

I am grateful to Stephan Stolz for explaining his results to me and for his interest
in this work, and to Kaoru Ono for helpful discussions.

2. HOLONOMY GROUPS

Let P be a principal bundle with a connection over a manifold M with structure
group G. The fiber over z € M will be denoted by P;, and the Lie algebra of G will
be denoted by g. A connection on P is a smooth splitting of TP into the tangent
bundle Ty along the fibers and a right invariant horizontal distribution. A piecewise
C?! curve v : [0,1] = M is called a loop with base point z if v(0) = 7(1) = z. Let us
fix p € P,, and consider the horizontal lift 4, : [0,1] — P of v such that 4,(0) = p.
‘Define hy p € G by %,(1) = 3,(0)h,,. The set of k., for all possible loops v with base
point z consists a subgroup of G, which we denote by Hol(P),. Let us choose another
g = pk € P, with k € G. Then by the right invariance of the horizontal distribution,
we have 4, = 9,k and

Fp(0)khy,g = ¥9(0)hy g = F74(1) = Fp(1)k = Fp(0) A, k-
Thus k., = Ad(k™')h,,, and h,, and h,, define the same element k. in the fiber
Ad(P), of the adjoint bundle Ad(P) := P x 44 G. Hence Hol(P), and Hol(P), define
the same subgroup Hol(P), in Ad(P);, which we call the holonomy group of P at
z € M. If we choose another base point y € M, then Hol(P), is isomorphic to
Hol(P),; this isomorphism class is called the holonomy group of P.

Let p : G — GL(V) be a representation of G in areal vector space V. Let E = Px,V
be the associated vector bundle. Then Ad(P),, and hence Hol(P),, act on E, in the
canonical way.

The connection on P defines uniquely a covariant derivative in E. Let e;,...,e, be
a local frame field of F over an open set U C M. Let o be a local section of P over U.
Then the covariant derivative V of E is defined by

r
vei = Z p*(a*(‘))_’iei’
i=1



where w is the connection form on P, i.e. the projection TP, — Ty = g along the
horizontal distribution.
Let v(¢) be a path in M. A section s of E over 7 is said to be parallel if V'f?s = 0.

Lemma 2.1. Let s be a parallel section of E over v. Then there exists a vectorv € V
and a horizontal lift 4 of oy such that s(t) = (%(t),v) € P x,V = E.

Proof. Let e)(t),...,e-(t) be a local frame field of E along 7. The parallel section
s(t) = Y, u'(t)ei(t) is uniquely obtained by solving the ordinary differential equation

2G, };p.<w(a.<%)>);uf(t) =0, 1gisr

with the initial value s(0) = ,u*(0)s;(0). On the other hand, if s(0) = (p,v) €
Px,V = E, and if we take the horizontal lift 4 of y with 4(0) = p, then s; () = (3(t), v)
is a parallel section by the definition of V. From the uniquenessof s we have s = ;.
This completes the proof.

Lemma 2.2. Let s be a global parallel section of E. Then Hol(P), C Ad(P). is
contained in the isotropy subgroup Ad(P)*(?) of s(z).

Proof. Let (p, hy) € Hol(P), correspond to a loop v with base point z. By Lemma
2.1, 3|y can be written as s|,(y = (%(t),v) for some v € V. Then, since 3|, 0) = 3|41),
we have

(5(0),v) = (5(1), v) = (¥(0)hy,v) = ((0), h4v) = (p, h4)(7(0), v).
Thus (p, h,) € Ad(P)*®), completing the proof.

Let Hol’(P), be the subgroup of Hol(P), consisting of all holonomies for null-
homotopic loops with base point z. The group Hol®(P) is called the restricted holo-
nomy group of P. Obviously Hol’(P), is connected and is contained in the identity
component Ad°(P), of Ad(P),. Before we state the following proposition, we note
that the representation of Ad(P); in E; is equivalent to p.

Proposition 2.3. Suppose that the identity component G° of G is compact, so that
the restriction plgo of p to G° splits into irreducible orthogonal representations. Sup-
pose further that each irreducible component of p|ge has dimention > 2. If E admits
a parallel section, then Hol°(P) is strictly smaller than G°.

proof. Let F, C E, be an irreducible component of p|ge, and 7 : E; — F; be the
projection. By Lemma 2.2, Hol®(P), C Ad(P)**)NAd*(P). C Ad(P)™*(*)n Ad’(P),.
If Hol°(P), = Ad’(P)., then Ad°(P), C Ad(P)™(®). Thus Ad’(P). leaves ns(x)
fixed. But then F; is reducible since dim F; > 2. This is a contradiction and completes
the proof.

Let G' be a covering group of G with covering map A. We say that a principal
bundle P’ with structure group G' covers P if there is a covering u : P! — P such
that u(pg) = p(p)\(g) for p € P' and ¢ € G'. In this situation the right invariant
distribution in P naturally lifts to P’ to define a connection in P,



Lemma 2.4. There are covering maps of Hol(P') onto Hol(P), and Hol°(P') onto
Hol°(P).

proof. Let v; and 7, be loops in M with base point z, and pick p € P; and p’' € P.
It suffices to show that if ke, » = ha, p in Hol(P'), then hy, , = ho, p in Hol(P),.
But this is true because a closed path in P’ is mapped under the covering map onto a
closed path. This completes the proof.

In the rest of this section we will consider the Riemannian case, for which the reader
is referred to [B], chapters 10 and 14, and [Sa]. Let M be an oriented Riemannian
manifold of dimension n. The Levi-Civita connection defines a parallelism on the
tangent bundle of M. Thus the parallel transport along a loop v with base point
determines an element f, € SO(T:M). Let Pso be the principal bundle associated to
the tangent bundle. Then a point p € (Psp), stands for an oriented orthonormal basis
p={(e1,...,e,) of T, M, and we can express f. in terms of a special orthogonal matrix

hy,p bY
f+(p) = (fy(e1),..., f+(en)) = (e1,... aen)h“/m = Ph'v.P'

This k., determines an element of the adjoint bundle, which is nothing more than f,.

In this Riemannian situation we denote by Hol(M); the holonomy group at z,
and by Hol®(M). the subgroup consisting of elements h. for null-homotopic loops
7. Hol’(M) is called the restricted holonomy group of M. The following facts are
well known: Hol°(M) is a connected closed subgroup of SO(n); If M is the universal
cover then Hol°(M) = Hol(M); If M = M; x M, is a Riemannian product, then
Hol'(M) = Hol°(M;) x Hol’(M,), and conversely if the restricted holonomy group
splits as a non-trivial product, then M splits as a Riemannian product (known as the
de Rham decomposition). We will say that M is irreducible if its holonomy group does
not split non-trivially. For irreducible Riemannian manifolds Berger-Simons theorem
says that, if M is not locally symmetric, Hol®(M) is one of the following:

(1) SO(n);

(2) U(m), where n = 2m, in which case M is Kahler but not Ricci-flat;

(3) SU(m), where n = 2m, in which case M is Ricci-flat Kahler;

(4) Sp(k)-Sp(1) := Sp(k) x Sp(1)/{£1} where n = 4k, in which case M is called a
Quaternionic Kahler manifold, and is an Einstein manifold but neither Ricci-flat
nor Kahler;

(5) Sp(k), where n = 4k, in which case M is called a hyperkéhler manifold, and is
Ricci-flat Kahler;

(6) G, in which case n = 7 and M is Ricci-flat;

(7) Spin(7), in which case n = 8 and M is Ricci-flat.

Remark 2.5. A locally symmetric space is Einstein with non-zero scalar curvature.
Thus for an irreducible Riemannian manifold M, if Hol’(M) # SO(n) and M is Ricci-
flat, then Hol®(M) is either SU(m), Sp(k), Gy or Spin(7).

Remark 2.6. The reduction of the holonomy group defines naturally a reduction of the
structure group of Pso to Hol(M). If the holonomy group reduces to G or Spin(7),
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then M is spin since m1(G2) = 1 = m(Spin(7)). We have used this fact in the statement
of Theorem 1.

3. PROOFS

The group Spin(n) is generated by the elements in the real Clifford algera Cl,, of
even degree and with unit length. Let M be a spin manifold of dimension n, and
Pspin — Pso be a spin structure. By a real (resp. complex) spin-module we mean
a Spin{n) module obtained by restriction to Spin(n) of a module of Cl, (resp. the
complexified Clifford algebra Cl,,). We call a real (resp. complex) spinor bundle the
vector bundle which associates to Pgp;y, via a real (resp. complex) spin-module. Given
a spinor bundle S we can define the Dirac operator D by Ds = Y~ e; V., s, where s is
a section of the spinor bundle and ey,...,e, are a local oriented orthonormal frame of
M. We have the following Lichnerowicz formula:

D*=V*V+ %x
where « denotes the scalar curvature of M. This formula says that if M admits a posi-
tive scalar curvature then there is no harmonic spinor, and that if the scalar curvature
is identically zero then a harmonic spinor is parallel.

Let I : Spin(n) — Hom(Cl,, Cl,) be the left multiplication of Spin(n) on Cl,. The
bundle Pspin xi Cl, admits an action of Cl, by the right multiplication. Thus the
kernel Ker D of the Dirac operator D is a Z,-graded Cl,;-module.

Let 9, be the Grothendieck group of Z;-graded Cl,-modules. Let i : R® — R"¥!
be the inclusion. Then ¢ induces i, : Cl, = Cl, 4+, and * : ﬁn+] — M, Through the
isomorphism ’ﬂﬁn/i*lﬁﬁn“ = KO~ "*(pt) := KO(D",S*™!), Ker D defines an element
of KO~ "(pt) which we define to be a(M). Moreover « induces a ring homomorphism
a, : QP o KO~* where Q57'" denotes the spin cobordism ring. By the Lichnerowicz
formula, if M admits a metric of positive scalar curvature, then a(M) = 0. Conversely,
by the theorem of Stolz, if M is a closed simply-connected spin manifold of dimension
> 5 such that a(M) = 0, then M admits a metric of positive scalar curvature.

Recall that KO~"(pt) is isomorphic to Z; for n = 8k + 1 and 8k +2, to Z for n = 8k
and 8k + 4, and to 0 for other dimensions. For actual purposes ind® are computed
by dimg Ker D° mod 2 for n = 8k + 1, dim¢ Ker D® mod 2 for n = 8k + 2, A(M)/2
for n = 8k + 4, A(M) for n = 8k, and by 0 for other dimensions, where D = D° + D!
denotes the Dirac operator for the real spinor bundle. In any event if ind ® # 0, there
exists a harmonic spinor for the real spinor bundle. This last fact can be seen also
from the fact that Pg,;, x; Cl, is a direct sum of irreducible real spinor bundles, each
component having vanishing second fundamental form.

Lemma 3.1. Let M = M X -+ x M} be a Riemannian product of closed spin mani-
folds. Then a spinor bundle on M has a harmonic (resp. parallel) spinor if and only if
a spinor bundle of each M; has a harmonic (resp. parallel) spinor.
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Proof. We describe the case of real spinor bundles. It suffices to show in the case of
k = 2. Suppose that dim M; = n; for : = 1,2, and that n = n; + ny. We denote by
Pspin(n) (resp. Pspin(n;)) the spin structure of M (resp. M;). We may assume that a
harmonic spinor exists in an irreducible spinor bundle on M. Since an irreducible spin-
module is imbedded into Cl, which is considered as a left Cl,, module, we may further
assume that Sp := Pgpin(n) X1 Cl, has a harmonic spinor. Set Sar; = Pspin(n;) X1Cln;.
Then since Clpyq = Clp®Clq, we have Sy = 77 SMm, ® m3Spm, where m; : M — M;
denotes the projection. Denote by © and D, the Dirac operators of Sy and Syy,. Let
1= ¢ ® 1 be a local section of Sp. Since D? = V*V + 1k, we have

D’y =(D1¢) @Y + ¢ @ (D39).

Let {A\;}32, and {g;}32, be the eigenvalues of D} and Dj. Since the Dirac opera-
tors are self-adjoint, A; and y; are all non-negative. Let {¢;}{2, and {#;}32, be the
corresponding eigensections. Then they respectively form L%-bases of C®(Sys,) and
C(Su,)- Thus {¢; ® ¥;}£%., are eigensections of Sy which form an L?-basis of
C*(Sm), and the corresponding eigenvalues are {A; + y1;}£5_,. Clearly Ay + p; = 0 if
and only if A\; = y; = 0. This proves the case of harmonic spinors. For parallel spinors,
we have only to replace D? by V*V. This completes the proof.

Proposition 3.2 ([F]). Let S be a spinor bundle on a Riemannian spin manifold M.
If S has a non-zero parallel spinor v, then M is Ricci-flat.

Proof. Using the first Bianchi identity one sees

0= Z €i(Ve:Ve; = Ve Vei = Vie e ¥

7

1 1 .
= _Z Z ejR,'J'Hcken,b = —'2' Z Rlc(ei,el)el¢
{

5kl

for any 1. Thus Ric = 0, as desired.

Proposition 3.3 ([H]). Let M be a closed Riemannian spin manifold of dimension n.
If a spinor bundle § on M has a parallel spinor, then M is Ricci-flat and the resricted
holonomy group Hol°(M) of M reduces to a product whose irreducible components

are SO(1), SU(m), Sp(k), Gq, or Spin(7).

Proof. First of all M is Ricci-flat by Proposition 3.2. Passing to the universal coverM
we may assume that there exists a parallel spinor of a spinor bundle. By the de Rham
decomposition M splits into a Riemannian product in such a way that the holonomy
group of each irreducible component M; is irreducible. By Lemma 3.1 M; has a parallel
spinor. If n; := dim M; = 1, then Hol(M;) = SO(1). If n; > 2, then an irreducible
spin representation has dimension > 2. Then by Proposition 2.3, the dimension of
the holonomy group of the principal bundle associated to the spinor bundle is strictly
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smaller than dim Spin(n;) = dim SO(n;). Thus by Lemma 2.4 the holonomy group
Hol(M;) is strictly smaller than SO(n;). Since M; is Ricci-flat, possible holonomy

groups are SU(m), Sp(k), G2 or Spin(7). Since Hol°(M) = Hol(l'?f), we are done.

Proof of Theorem 1. Let M be a simply connected closed manifold of dimension > 5
which belongs to the class (Z). By the theorems of Gromov-Lawson and Stolz that M
is spin and a(M) # 0. Thus M has a harmonic spinor, but as M admits a scalar-flat
metric, we may assume that the harmonic spinor is parallel. Then by Proposition 3.3
the holonomy group of M is a product of SO(1), SU(m), Sp(k), G2 and Spin(7).
However SO(1) is ruled out because M is simply connected, and G is also ruled out
because if M contains a 7-dimensional irreducible factor then we have a(M) = 0 by
the multiplicative property of a. The converse is obvious. This completes the proof.

Proof of Corollary 2. Suppose that the universal cover M belongs to the class (Z).
Let M; be an irreducible component of M as in Theorem 1. By [W], JA(M;)| =1 if
Hol(M;) = Spin(7), A(M;) = 2 if Hol(M;) = SU(m;) and m; is even, and A(M;) =
ki + 1 if Hol(M;) = Sp(k;). Hence we have |A(M)] < 2% where the equality holds
when M is the product of K 3-surfaces, from which the corollary follows.

Remark 3.4. In the case where M is spin and with finite fundamental group, there are
existence results of positive scalar curvature metrics for certain fundamental groups
(e.g. Z/2) under the assumption that all index obstructions coming from flat bundles
vanish (c.f.[RS],[R],[KKS]). These results also imply the characterization of the class (Z).
For example one can prove that, if M is spin with m (M) = Z/2, then M belongs
to the claisx (Z) if and only if there exists a metric on M such that the Riemannian
covering M is a product of Ricci-flat Kihler manifolds and manifolds with Spin(7) and
G2 holonomy and if M has non-vanishing index obstruction. In this case it is not easy
to rule out the G, holonomy since it is not clear if the positive scalar curvature on M
is Z/2-invariant to descend to M.
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