Max-Planck-Institut für Mathematik Bonn

Polynomial semiconjugacies, decompositions of iterations, and invariant curves
by

Fedor Pakovich

Max-Planck-Institut für Mathematik
Preprint Series 2015 (50)

Polynomial semiconjugacies, decompositions of iterations, and invariant curves

Fedor Pakovich

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Department of Mathematics
Ben-Gurion University of the Negev
P.O.B. 653

Be'er Sheva 8410501
Israel

Polynomial semiconjugacies, decompositions of iterations, and invariant curves

F. Pakovich

November 6, 2015

Abstract

We study the functional equation $A \circ X=X \circ B$, where A, B, and X are polynomials over \mathbb{C}. Using results of [13] about polynomials sharing preimages of compact sets, we show that for given B its solutions may be described in terms of the filled-in Julia set of B. On this base, we prove a number of results describing a general structure of solutions. The results obtained imply in particular the result of Medvedev and Scanlon [4] about invariant curves of maps $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ of the form $(x, y) \rightarrow(f(x), f(y))$, where f is a polynomial, and a version of the result of Zieve and Müller [21] about decompositions of iterations of a polynomial.

1 Introduction

Let A and B be rational functions of degree at least two on the Riemann sphere. The functions A and B are called commuting if

$$
\begin{equation*}
A \circ B=B \circ A, \tag{1}
\end{equation*}
$$

and conjugate if

$$
\begin{equation*}
A \circ X=X \circ B \tag{2}
\end{equation*}
$$

for some rational function X of degree one.
In case if (2) is satisfied for some rational function X of degree at least two, the function B is called semiconjugate to A, and the function X is called a semiconjugacy from B to A. In distinction with the conjugation, the semiconjugation is not an equivalency relation. We will use the notation $A \leq B$ if for given rational functions A and B there exists a non-constant rational function X such that (2) holds, and the notation $A \leq B$ if A, B, and X satisfy (2). The notation reflects the fact that the binary relation on the set of rational functions defined by equality (2) is a preorder. Indeed, it follows from $A{\underset{X}{X}} B$ and $B{\underset{Y}{Y}} C$ that $A \underset{X \circ Y}{\leq} C$.

Both equations (1) and (2) have "obvious" solutions. Namely, equation (1) has solutions of the form

$$
\begin{equation*}
A=R^{\circ m}, \quad B=R^{\circ n}, \tag{3}
\end{equation*}
$$

where R is an arbitrary rational function and $m, n \geq 1$. Notice that such A and B have an iteration in common, that is

$$
\begin{equation*}
A^{\circ n}=B^{\circ m} \tag{4}
\end{equation*}
$$

for some $n, m \geq 1$.
In order to obtain solutions of equation (2) we can take arbitrary rational functions A_{1}, B_{1} and set

$$
F=A_{1} \circ B_{1}, \quad G=B_{1} \circ A_{1}
$$

Then the equality

$$
\begin{equation*}
\left(A_{1} \circ B_{1}\right) \circ A_{1}=A_{1} \circ\left(B_{1} \circ A_{1}\right) \tag{5}
\end{equation*}
$$

implies that $F \underset{A_{1}}{\leq}$. Similarly, $G \underset{B_{1}}{\leq} F$. Moreover, if now A_{2}, B_{2} are rational functions such that the equality

$$
\begin{equation*}
G=A_{2} \circ B_{2} \tag{6}
\end{equation*}
$$

holds, then the function $H=B_{2} \circ A_{2}$ satisfies $G \underset{A_{2}}{\leq} H$ and $H \leq G$, implying that $F \underset{A_{1} \circ A_{2}}{\leq} H$ and $H \underset{B_{2} \circ B_{1}}{\leq} F$. This motivates the following definition of an equivalency relation on the set of rational functions: $F \sim G$ if there exist rational functions $A_{i}, B_{i}, 1 \leq i \leq n$, such that

$$
F=A_{1} \circ B_{1}, \quad G=B_{n} \circ A_{n},
$$

and

$$
B_{i} \circ A_{i}=A_{i+1} \circ B_{i+1}, \quad 1 \leq i \leq n-1
$$

Clearly, $F \sim G$ implies that $F \leq G$ and $G \leq F$. Notice that since for any rational function X of degree one the equality

$$
A=(A \circ X) \circ X^{-1}
$$

implies that $A \sim X^{-1} \circ A \circ X$, any equivalence class is a collection of conjugacy classes.

Functional equation (1) was first studied by Fatou, Julia, and Ritt in the papers [7], [10], and [20]. In all these papers it was assumed that considered commuting functions A and B have no iterate in common. Fatou and Julia described solutions of (1) under the additional assumption that the Julia set of A or B does not coincide with the whole complex plane, and Ritt investigated the general case. Briefly, the Ritt theorem states that if rational functions A and B commute and no iterate of A is equal to an iterate of B, then, up to
a conjugacy, A and B are either powers, or Chebyshev polynomials, or Lattès functions. Another proof of the Ritt theorem was given by Eremenko in [6]. Notice however that a description of commuting A and B with a common iterate is known only in the polynomial case. Thus, in a certain sense the classification of commuting rational functions is not yet completed. On the other hand, it was shown by Ritt ([18], [20]) that in the polynomial case equality (1) implies that, up to the change

$$
A \rightarrow \lambda \circ A \circ \lambda^{-1}, \quad B \rightarrow \lambda \circ B \circ \lambda^{-1},
$$

where λ is a polynomial of degree one, either

$$
A=z^{n}, \quad B=\varepsilon z^{m}
$$

where $\varepsilon^{n}=\varepsilon$, or

$$
A= \pm T_{n}, \quad B= \pm T_{m}
$$

or

$$
A=\varepsilon_{1} R^{\circ m}, \quad B=\varepsilon_{2} R^{\circ n}
$$

where $R=z S\left(z^{l}\right)$ for some polynomial S and $\varepsilon_{1}, \varepsilon_{2}$ are l-th roots of unity. In fact, this conclusion remains true if instead of (1) to assume only that A and B share a completely invariant compact set in \mathbb{C} (see [13]).

Equation (2) was investigated in the recent paper [16]. The main result of [16] states that if a rational function B is semiconjugate to a rational function A, then either $A \sim B$, or A and B are "minimal holomorphic self-maps" between orbifolds of non-negative Euler characteristic on the Riemann sphere. The last class of functions is a natural extension of the class of Lattès functions and admits a neat characterization. However, like to the description of commuting rational functions, the description of solutions of (2) given in [16] is not completely satisfactory, since provides no information about equivalent rational functions. In particular, the following important question remains open: is it true that each equivalence class contains at most a finite number of conjugacy classes ? Another related question is following: is it true that if conditions $A \leq B$ and $B \leq A$ hold simultaneously, then $A \sim B$? Finally, it would be desirable to obtain some handy structural descriptions of the totality of X satisfying (2) for given A and B, and of the totality of A satisfying $A \leq B$ for given B.

In this paper we study equation (2) with emphasis on the above questions in the case where all the functions involved are polynomials. Notice that in distinction with the general case, for polynomials there exists quite a comprehensive theory of functional decompositions developed by Ritt [19]. Nevertheless, questions regarding polynomial decompositions may be highly non-trivial, and a number of recent papers are devoted to such questions arising from different branches of mathematics. Let us mention for example the paper [21] with applications to algebraic dynamics ([8]), or the paper [15] with applications to differential equations ([17]). Another example is the recent paper [4] about invariant varieties for dynamical systems, defined by coordinatwise actions of
polynomials, a considerable part of which concerns properties of polynomial solutions of (2).

The main distinction between this paper and the above mentioned papers is the systematical use of ideas and results from the paper [13] which relates polynomials sharing preimages of compact sets in \mathbb{C} with the functional equation $A \circ C=D \circ B$. In particular, the main result of [13] leads to a characterization of polynomial solutions of (2) in terms of filled-in Julia sets. Recall that for a polynomial B the filled-in Julia set $K(B)$ is defined as a set of points in \mathbb{C} whose orbits under iterations of B are bounded. Since equality (2) implies the equalities

$$
A^{\circ n} \circ X=X \circ B^{\circ n}, \quad n \geq 1,
$$

it it easy to see that if X is a semiconjugacy from B to A, then the preimage $X^{-1}\{K(A)\}$ coincides with $K(B)$. We show that this property is in fact characteristic.

Theorem 1.1. Let A, B and X be polynomials of degree at least two such that $A \underset{X}{\leq} B$. Then

$$
\begin{equation*}
X^{-1}\{K(A)\}=K(B) . \tag{7}
\end{equation*}
$$

In other direction, if equality (7) holds and $\operatorname{deg} A=\operatorname{deg} B$, then there exists a polynomial of degree one μ such that

$$
(\mu \circ A) \circ X=X \circ B
$$

and $\mu(K(A))=K(A)$. More generally, if for given B and X the condition

$$
\begin{equation*}
X^{-1}\{K\}=K(B) \tag{8}
\end{equation*}
$$

holds for some compact set K in \mathbb{C}, then there exists a polynomial A such that $A \underset{\bar{X}}{\leq} B$ and $K(A)=K$.

For a fixed polynomial B of degree at least two denote by $\mathcal{E}(B)$ the set of polynomials X of degree at least two such that $A \leq B$ for some polynomial A. An immediate corollary of Theorem 1.1 is that a polynomial X is contained in $\mathcal{E}(B)$ if and only if $K(B)$ is a union of fibers of X. Another corollary is that if $A \underset{X}{<} B$, then for any decomposition $X=X_{1} \circ X_{2}$ there exists a polynomial C such that

$$
A \underset{\bar{X}_{1}}{\leq} C, \quad C \underset{\bar{X}_{2}}{\leq} B .
$$

Notice that in particular this puts the problem of description of decompositions of iterations of a polynomial, first considered in the paper [21], into the context of equation (2). Indeed, since $B \circ B^{\circ d}=B^{\circ d} \circ B$, the polynomial $B^{\circ d}$ is contained in $\mathcal{E}(B)$ and hence for any decomposition $B^{\circ d}=Y \circ X$ the equalities

$$
B \circ Y=Y \circ A, \quad A \circ X=X \circ B
$$

hold for some polynomial A.
The following statement also is a corollary of the main result of [13].

Theorem 1.2. For any $X_{1}, X_{2} \in \mathcal{E}(B)$ there exists $X \in \mathcal{E}(B)$ such that $\operatorname{deg} X=\operatorname{LCM}\left(\operatorname{deg} X_{1}, \operatorname{deg} X_{2}\right)$ and

$$
X=U_{1} \circ X_{1}=U_{2} \circ X_{2}
$$

for some polynomials U_{1}, U_{2}. Furthermore, there exists $W \in \mathcal{E}(B)$ such that $\operatorname{deg} W=\operatorname{GCD}\left(\operatorname{deg} X_{1}, \operatorname{deg} X_{2}\right)$ and

$$
X_{1}=V_{1} \circ W, \quad X_{2}=V_{2} \circ W
$$

for some polynomials V_{1}, V_{2}.
For fixed polynomials A, B denote by $\mathcal{E}(A, B)$ the subset of $\mathcal{E}(B)$ (possibly empty) consisting of polynomials X such that $A \leq B$. In particular, the set $\mathcal{E}(B, B)$ consists of polynomials of degree at least two commuting with B. We will call a polynomial P special if it is conjugated to z^{n} or $\pm T_{n}$, or equivalently if there exists a Möbius transformation μ which maps $K(P)$ to \mathbb{D} or $[-1,1]$. The following result describes a general structure of $\mathcal{E}(A, B)$ for non-special A, B.
Theorem 1.3. Let A and B be fixed non-special polynomials of degree at least two such that the set $\mathcal{E}(A, B)$ is non-empty, and let X_{0} be an element of $\mathcal{E}(A, B)$ of the minimum possible degree. Then a polynomial X belongs to $\mathcal{E}(A, B)$ if and only if $X=\widetilde{A} \circ X_{0}$ for some polynomial \widetilde{A} commuting with A.

Notice that in a sense this result is a generalization of the result of Ritt about commuting polynomials. Indeed, applying Theorem 1.3 for $B=A$ and $X=B$, we obtain that if A is non-special and $B \in \mathcal{E}(A, A)$, then $B=\widetilde{A} \circ R$, where R is a polynomial of the minimum possible degree in $\mathcal{E}(A, A)$. Now we can apply Theorem 1.3 again to the polynomial \widetilde{A} and so on, arriving eventually to the representation $B=\mu_{1} \circ R^{\circ m_{1}}$, where μ_{1} is a polynomial of degree one commuting with A. In particular, since $A \in \mathcal{E}(A, A)$, the equality $A=\mu_{2} \circ R^{\circ m_{2}}$ holds for some polynomial μ_{2} of degree one commuting with A.

Another corollary of Theorem 1.3 is the following result obtained by Medvedev and Scanlon in the paper [4]: if $\mathcal{C} \subset \mathbb{C}^{2}$ is an irreducible algebraic curve invariant under the map $F:(x, y) \rightarrow(f(x), f(y))$, where f is a non-special polynomial, then there exists a polynomial p which commutes with f such that \mathcal{C} has the form $z_{1}=p\left(z_{2}\right)$ or $z_{2}=p\left(z_{1}\right)$.

Our next result describes the interrelations between the equivalence \sim, the preorder \leq, and decompositions of iterations.

Theorem 1.4. Let A and B be polynomials of degree at least two. Then conditions $A \leq B$ and $B \leq A$ hold simultaneously if and only if $A \sim B$. Furthermore, $A \sim B$ if and only if there exist polynomials X, Y such that

$$
B \circ Y=Y \circ A, \quad A \circ X=X \circ B,
$$

and $Y \circ X=B^{\circ d}$ for some $d \geq 0$.
For a fixed polynomial B of degree at least two denote by $\mathcal{F}(B)$ the set of polynomials A such that $A \leq B$. The following theorem gives a structural description of the set $\mathcal{F}(B)$.

Theorem 1.5. Let B be a fixed non-special polynomial of degree $n \geq 2$. Then there exist $A \in \mathcal{F}(B)$ and a semiconjugacy X from B to A which are universal in the following sense: for any polynomial $C \in \mathcal{F}(B)$ there exist polynomials X_{C}, U_{C} such that $X=U_{C} \circ X_{C}$ and the diagram

is commutative. Furthermore, the degree of X is bounded from above by a constant $c=c(n)$ which depends on n only.

We did not make special efforts to obtain an optimal estimation for $c(n)$, however our method of proof shows that

$$
c(n) \leq(n-1)!n^{2 \log _{2} n+3} .
$$

Theorem 1.5 implies that for any polynomial B there exists at most a finite number of conjugacy classes of polynomials A such that $A \leq B$. In particular, since $A \sim B$ implies $A \leq B$, each equivalence class contains at most a finite number of conjugacy classes.

The paper is organized as follows. In the second section we give a very brief overview of the Ritt theory. In the third section we recall basic results of [13] and prove Theorem 1.1 and Theorem 1.2. We also prove the corollaries of Theorem 1.1 mentioned above. In the fourth section we first show that if $A \leq B$ and one of polynomials A or B is special, then the other one also is special (Theorem 4.4). Then we prove Theorem 1.3 and deduce from it the result of Ritt about commuting polynomials. We also apply Theorem 1.3 to the problem of description of curves in \mathbb{C}^{2} invariant under maps $F:(x, y) \rightarrow(f(x), g(y))$, where f and g are polynomials. Finally, we prove Theorem 1.4.

In the fifth section we first show (Theorem 5.2) that if B is a non-special polynomial of degree n, and $X \in \mathcal{E}(B)$, then the degree l of any special compositional factor of X satisfies the inequality $l \leq 2 n$. On this base we prove that if $X \in \mathcal{E}(B)$ is not a polynomial in B, then $\operatorname{deg} X$ is bounded from above by a constant which depends on n only. In its turn, from this result we deduce Theorem 1.5. As another corollary of the boundedness of $\operatorname{deg} X$ we obtain the following result of Zieve and Müller ([21]): if B is a non-special polynomial of degree $n \geq 2$, and X and Y are polynomials such that $Y \circ X=B^{\circ s}$ for some $s \geq 1$, then there exist polynomials $\widetilde{X}, \widetilde{Y}$ and $i, j \geq 0$ such that

$$
Y=B^{\circ i} \circ \tilde{Y}, \quad X=\tilde{X} \circ B^{\circ j}, \quad \text { and } \quad \tilde{Y} \circ \tilde{X}=B^{\circ \widetilde{s}}
$$

where \widetilde{s} is bounded from above by a constant which depends on n only.

2 Overview of the Ritt theory

Let F be a polynomial with complex coefficients. The polynomial F is called indecomposable if the equality $F=F_{2} \circ F_{1}$ implies that at least one of the polynomials F_{1}, F_{2} is of degree one. Any representation of a polynomial F in the form $F=F_{r} \circ F_{r-1} \circ \cdots \circ F_{1}$, where $F_{1}, F_{2}, \ldots, F_{r}$ are polynomials, is called a decomposition of F. A decomposition is called maximal if all $F_{1}, F_{2}, \ldots, F_{r}$ are indecomposable and of degree greater than one. Two decompositions having an equal number of terms

$$
F=F_{r} \circ F_{r-1} \circ \cdots \circ F_{1} \quad \text { and } \quad F=G_{r} \circ G_{r-1} \circ \cdots \circ G_{1}
$$

are called equivalent if either $r=1$ and $F_{1}=G_{1}$, or $r \geq 2$ and there exist polynomials $\mu_{i}, 1 \leq i \leq r-1$, of degree 1 such that

$$
F_{r}=G_{r} \circ \mu_{r-1}, \quad F_{i}=\mu_{i}^{-1} \circ G_{i} \circ \mu_{i-1}, \quad 1<i<r, \quad \text { and } \quad F_{1}=\mu_{1}^{-1} \circ G_{1}
$$

The theory of polynomial decompositions established by Ritt can be summarized in the form of two theorems usually called the first and the second Ritt theorems (see [19]).

The first Ritt theorem states roughly speaking that any maximal decompositions of a polynomial may be obtained from any other by some iterative process involving the functional equation

$$
\begin{equation*}
A \circ C=D \circ B \tag{10}
\end{equation*}
$$

Theorem 2.1 ([19]). Any two maximal decompositions \mathcal{D}, \mathcal{E} of a polynomial P have an equal number of terms. Furthermore, there exists a chain of maximal decompositions $\mathcal{F}_{i}, 1 \leq i \leq s$, of P such that $\mathcal{F}_{1}=\mathcal{D}, \mathcal{F}_{s} \sim \mathcal{E}$, and \mathcal{F}_{i+1} is obtained from \mathcal{F}_{i} by a replacement of two successive polynomials $A \circ C$ in \mathcal{F}_{i} by two other polynomials $D \circ B$ such that (10) holds.

The second Ritt theorem in its turn describes indecomposable polynomial solutions of (10). More precisely, it describes solutions satisfying the condition

$$
\begin{equation*}
\mathrm{GCD}(\operatorname{deg} A, \operatorname{deg} D)=1, \quad \mathrm{GCD}(\operatorname{deg} C, \operatorname{deg} B)=1, \tag{11}
\end{equation*}
$$

which holds in particular if A, C, D, B are indecomposable (see Theorem 2.3 below).
Theorem 2.2 ([19]). Let A, C, D, B be polynomials such that (10) and (11) hold. Then there exist polynomials $\sigma_{1}, \sigma_{2}, \mu, \nu$ of degree one such that, up to a possible replacement of A by D and of C by B, either

$$
\begin{array}{ll}
A=\nu \circ z^{s} R^{n}(z) \circ \sigma_{1}^{-1}, & C=\sigma_{1} \circ z^{n} \circ \mu \\
D=\nu \circ z^{n} \circ \sigma_{2}^{-1}, & B=\sigma_{2} \circ z^{s} R\left(z^{n}\right) \circ \mu, \tag{13}
\end{array}
$$

where R is a polynomial, $n \geq 1, s \geq 0$, and $\operatorname{GCD}(s, n)=1$, or

$$
\begin{array}{ll}
A=\nu \circ T_{m} \circ \sigma_{1}^{-1}, & C=\sigma_{1} \circ T_{n} \circ \mu, \\
D=\nu \circ T_{n} \circ \sigma_{2}^{-1} & B=\sigma_{2} \circ T_{m} \circ \mu,
\end{array}
$$

where T_{n}, T_{m} are the Chebyshev polynomials, $n, m \geq 1$, and $\operatorname{GCD}(n, m)=1$.

Notice that the main difficulty in the practical use of Theorem 2.1 and Theorem 2.2 is the fact that classes of solutions appearing in Theorem 2.2 are not disjoint. Namely, any solution of the form (14), (15) with $n=2$ also can be represented in the form (12), (13) (see e. g. Section 2.2 of [15] for further details).

The description of polynomial solutions of equation (10) in the general case in a certain sense reduces to the case where (11) holds by the following statement.

Theorem 2.3 ([3]). Let $A, C, \underset{\sim}{D}, \underset{\sim}{B}$ be polynomials such that (10) holds. Then there exist polynomials $U, V, \widetilde{A}, \widetilde{C}, \widetilde{D}, \widetilde{B}$, where

$$
\operatorname{deg} U=\mathrm{GCD}(\operatorname{deg} A, \operatorname{deg} D), \quad \operatorname{deg} V=\mathrm{GCD}(\operatorname{deg} C, \operatorname{deg} B)
$$

such that

$$
A=U \circ \widetilde{A}, \quad D=U \circ \widetilde{D}, \quad C=\widetilde{C} \circ V, \quad B=\widetilde{B} \circ V,
$$

and

$$
\widetilde{A} \circ \widetilde{C}=\widetilde{D} \circ \widetilde{B}
$$

In particular, if $\operatorname{deg} C=\operatorname{deg} B$, then there exists a polynomial μ of degree one such that

$$
A=D \circ \mu^{-1}, \quad C=\mu \circ B
$$

Theorem 2.2 implies the following description of polynomial solutions of equation (2) under the condition

$$
\begin{equation*}
\operatorname{GCD}(\operatorname{deg} X, \operatorname{deg} B)=1 \tag{16}
\end{equation*}
$$

(see [9]).
Theorem 2.4 ([9]). Let A, B, X be polynomials such that (2) and (16) hold. Then there exist polynomials μ, ν of degree one such that either

$$
A=\nu \circ z^{s} R^{n}(z) \circ \nu^{-1}, \quad X=\nu \circ z^{n} \circ \mu, \quad D=\mu^{-1} \circ z^{s} R\left(z^{n}\right) \circ \mu,
$$

where R is a polynomial, $n \geq 1, s \geq 0$, and $\operatorname{GCD}(s, n)=1$, or

$$
A=\nu \circ T_{m} \circ \nu^{-1}, \quad X=\nu \circ T_{n} \circ \mu, \quad D=\mu^{-1} \circ T_{m} \circ \mu,
$$

where T_{n}, T_{m} are the Chebyshev polynomials, $n, m \geq 1$, and $\operatorname{GCD}(n, m)=1$.
Notice, however, that Theorem 2.2, even combined with Theorem 2.3, provides very little information about solutions of (2) if (16) is not satisfied. A possible way to investigate the general case is to analyze somehow the totality of all decompositions of a polynomial P, basing on Theorem 2.1 and Theorem 2.2 , and then to apply this analysis to (2) using the fact that we can pass from the decomposition $P=A \circ X$ to the decomposition $P=X \circ B$. This way was used in the paper [4]. A similar techniques was used in the paper [21] where it was applied to the study of decompositions of iterations of a polynomial. In this paper we use another method completely bypassing Theorem 2.1. Notice by the way that Theorem 2.1 does not hold for arbitrary rational functions (see e. g. [5]).

3 Semiconjugacies and Julia sets

3.1 Polynomials sharing preimages of compact sets

Let $f_{1}(z), f_{2}(z)$ be non-constant complex polynomials and $K_{1}, K_{2} \subset \mathbb{C}$ compact sets. In the paper [13] we investigated the following problem. Under what conditions on the collection $f_{1}(z), f_{2}(z), K_{1}, K_{2}$ the preimages $f_{1}^{-1}\left\{K_{1}\right\}$ and $f_{2}^{-1}\left\{K_{2}\right\}$ coincide that is

$$
\begin{equation*}
f_{1}^{-1}\left\{K_{1}\right\}=f_{2}^{-1}\left\{K_{2}\right\}=K \tag{17}
\end{equation*}
$$

for some compact set $K \subset \mathbb{C}$?
Using ideas from approximation theory, we relate equation (17) to the functional equation

$$
\begin{equation*}
g_{1}\left(f_{1}(z)\right)=g_{2}\left(f_{2}(z)\right), \tag{18}
\end{equation*}
$$

where $f_{1}(z), f_{2}(z), g_{1}(z), g_{2}(z)$ are polynomials. It is easy to see that for any polynomial solution of (18) and any compact set $K_{3} \subset \mathbb{C}$ we obtain a solution of (17) setting

$$
\begin{equation*}
K_{1}=g_{1}^{-1}\left\{K_{3}\right\}, \quad K_{2}=g_{2}^{-1}\left\{K_{3}\right\} . \tag{19}
\end{equation*}
$$

Briefly, the main result of [13] states that, under a very mild condition on the cardinality of K, all solutions of (17) can be obtained in this way. Combined with Theorem 2.3 and Theorem 2.2 this leads to a very explicit description of solutions of (17).

Theorem 3.1 ([13]). Let $f_{1}(z), f_{2}(z)$ be polynomials, $\operatorname{deg} f_{1}=d_{1}, \operatorname{deg} f_{2}=d_{2}$, $d_{1} \leq d_{2}$, and let $K_{1}, K_{2}, K \subset \mathbb{C}$ be compact sets such that (17) holds. Suppose that $\operatorname{card}\{\mathrm{K}\} \geq \operatorname{LCM}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)$. Then, if d_{1} divides d_{2}, there exists a polynomial $g_{1}(z)$ such that $f_{2}(z)=g_{1}\left(f_{1}(z)\right)$ and $K_{1}=g_{1}^{-1}\left\{K_{2}\right\}$. On the other hand, if d_{1} does not divide d_{2}, then there exist polynomials $g_{1}(z), g_{2}(z), \operatorname{deg} g_{1}=d_{2} / d$, $\operatorname{deg} g_{2}=d_{1} / d$, where $d=\operatorname{GCD}\left(d_{1}, d_{2}\right)$, and a compact set $K_{3} \subset \underset{\sim}{\mathbb{C}}$ such that (18),(19) hold. Furthermore, in this case there exist polynomials $\widetilde{f}_{1}(z), \widetilde{f}_{2}(z)$, $W(z), \operatorname{deg} W(z)=d$, such that

$$
\begin{equation*}
f_{1}(z)=\widetilde{f}_{1}(W(z)), \quad f_{2}(z)=\widetilde{f}_{2}(W(z)) \tag{20}
\end{equation*}
$$

and there exist linear functions $\sigma_{1}(z), \sigma_{2}(z)$ such that either

$$
\begin{array}{ll}
g_{1}(z)=z^{c} R^{d_{1} / d}(z) \circ \sigma_{1}^{-1}, & \tilde{f}_{1}(z)=\sigma_{1} \circ z^{d_{1} / d} \tag{21}\\
g_{2}(z)=z^{d_{1} / d} \circ \sigma_{2}^{-1}, & \widetilde{f}_{2}(z)=\sigma_{2} \circ z^{c} R\left(z^{d_{1} / d}\right),
\end{array}
$$

for some polynomial $R(z)$ and c equal to the remainder after division of d_{2} / d by d_{1} / d, or

$$
\begin{array}{ll}
g_{1}(z)=T_{d_{2} / d}(z) \circ \sigma_{1}^{-1}, & \widetilde{f}_{1}(z)=\sigma_{1} \circ T_{d_{1} / d}(z) \tag{22}\\
g_{2}(z)=T_{d_{1} / d}(z) \circ \sigma_{2}^{-1}, & \widetilde{f}_{2}(z)=\sigma_{2} \circ T_{d_{2} / d}(z),
\end{array}
$$

for the Chebyshev polynomials $T_{d_{1} / d}(z), T_{d_{2} / d}(z)$.

Theorem 3.1 may be used for proving many other results (see [13] for details) the most notable of which is the following description of solutions of (17) in the case where $K_{1}=K_{2}$, first obtained by T. Dinh ([1], [2]) by methods of complex dynamics.

Theorem 3.2 ([2], [13]). Let $f_{1}(z), f_{2}(z)$ be polynomials such that

$$
\begin{equation*}
f_{1}^{-1}\{T\}=f_{2}^{-1}\{T\}=K \tag{23}
\end{equation*}
$$

holds for some infinite compact sets $T, K \subset \mathbb{C}$. Then, if d_{1} divides d_{2}, there exists a polynomial $g_{1}(z)$ such that $f_{2}(z)=g_{1}\left(f_{1}(z)\right)$ and $g_{1}^{-1}\{T\}=T$. On the other hand, if d_{1} does not divide d_{2}, then there exist polynomials $\widetilde{f}_{1}(z), \widetilde{f}_{2}(z)$, $W(z), \operatorname{deg} W(z)=d$, satisfying (20). Furthermore, in this case one of the following conditions holds.

1) T is a union of circles with the common center and

$$
\begin{equation*}
\widetilde{f}_{1}(z)=\sigma \circ z^{d_{1} / d}, \quad \widetilde{f}_{2}(z)=\sigma \circ \gamma z^{d_{2} / d} \tag{24}
\end{equation*}
$$

for some linear function $\sigma(z)$ and $\gamma \in \mathbb{C}$.
2) T is a segment and

$$
\begin{equation*}
\widetilde{f}_{1}(z)=\sigma \circ \pm T_{d_{1} / d}(z), \quad \widetilde{f}_{2}(z)=\sigma \circ \pm T_{d_{2} / d}(z) \tag{25}
\end{equation*}
$$

for some linear function $\sigma(z)$ and the Chebyshev polynomials $T_{d_{1} / d}(z), T_{d_{2} / d}(z)$.

3.2 Proofs of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. If $A \underset{X}{<} B$, then for any $n \geq 1$ the equality

$$
A^{\circ n} \circ X=X \circ B^{\circ n}
$$

holds. Therefore, if $z_{1}=X\left(z_{0}\right)$, then the sequence $A^{\circ n}\left(z_{1}\right)$ is bounded if and only if the sequence $X \circ B^{\circ n}\left(z_{0}\right)$ is bounded. In its turn, the last sequence is bounded if and only if the sequence $B^{\circ n}\left(z_{0}\right)$ is bounded. Thus, $A{\underset{X}{X}} B$ implies

$$
\begin{equation*}
X^{-1}\{K(A)\}=K(B) \tag{26}
\end{equation*}
$$

In other direction, if (26) holds, then it follows from $B^{-1}\{K(B)\}=K(B)$ that

$$
(X \circ B)^{-1}\{K(A)\}=K(B) .
$$

Thus,

$$
X^{-1}\{K(A)\}=(X \circ B)^{-1}\{K(A)\} .
$$

Applying to this equality Theorem 3.1 and using that $\operatorname{deg} X \mid \operatorname{deg}(X \circ B)$, we conclude that

$$
\tilde{A} \circ X=X \circ B
$$

for some polynomial \widetilde{A}. Furthermore, since we proved that for such \widetilde{A} the equality $X^{-1}\{K(\widetilde{A})\}=K(B)$ holds, we see that $X^{-1}\{K(\widetilde{A})\}=X^{-1}\{K(A)\}$, implying that $K(\widetilde{A})=K(A)$. Finally, it follows from Theorem 3.1 applied to the equality

$$
A^{-1}\{K\}=\widetilde{A}^{-1}\{K\}=K,
$$

where $K=K(\widetilde{A})=K(A)$, that there exists a polynomial of degree one μ such that $\widetilde{A}=\mu \circ A$ and $\mu(K(A))=K(A)$.

More generally, if

$$
\begin{equation*}
X^{-1}\{K\}=K(B) \tag{27}
\end{equation*}
$$

for some compact set $K \subset \mathbb{C}$, then

$$
X^{-1}\{K\}=(X \circ B)^{-1}\{K\}
$$

implying by Theorem 3.1 that equality (2) holds for some polynomial A. Furthermore, since for such a polynomial A equality (26) holds, we conclude that $X^{-1}\{K\}=X^{-1}\{K(A)\}$ and $K=K(A)$.

Corollary 3.3. Let B be a polynomial of degree at least two. Then a polynomial X is contained in $\mathcal{E}(X)$ if and only $K(B)$ is a union of fibers of X. In particular, if B_{1} and B_{2} are polynomials such that $K\left(B_{1}\right)=K\left(B_{2}\right)$, then $\mathcal{E}\left(B_{1}\right)=\mathcal{E}\left(B_{2}\right)$.

Proof. Since condition (27) implies that $K=X\{K(B)\}$, it is equivalent to the condition

$$
K(B)=X^{-1}\{X\{K(B)\}\}
$$

that is to the condition that $K(B)$ is a union of fibers of X.
Corollary 3.4. Let A, B, and X be polynomials such that $A{\underset{X}{X}} B$. Then for any decomposition $X=X_{1} \circ X_{2}$ there exists a polynomial C such that

$$
A \underset{\bar{X}_{1}}{\leq} C, \quad C \underset{\bar{X}_{2}}{\leq} B .
$$

Proof. By Theorem 1.1, $K(B)=X^{-1}\{K(A)\}$. Since $X=X_{1} \circ X_{2}$, this implies that $K(B)=X_{2}^{-1}\{\widetilde{K}\}$, where $\widetilde{K}=X_{1}^{-1}\{K(A)\}$. Therefore, by Theorem 1.1, there exists a polynomial C such that

$$
\begin{equation*}
C \circ X_{2}=X_{2} \circ B . \tag{28}
\end{equation*}
$$

Now we have:

$$
A \circ X_{1} \circ X_{2}=X_{1} \circ X_{2} \circ B=X_{1} \circ C \circ X_{2},
$$

implying that $A \circ X_{1}=X_{1} \circ C$.
Remark 3.5. Corollary 3.4 may be proved without using Theorem 1.1. Indeed, if $X=X_{1} \circ X_{2}$, then it follows from the equality

$$
A \circ\left(X_{1} \circ X_{2}\right)=X_{1} \circ\left(X_{2} \circ B\right)
$$

by Theorem 2.3 that

$$
\begin{equation*}
X_{1} \circ X_{2}=U \circ \widetilde{W}, \quad X_{2} \circ B=V \circ \widetilde{W} \tag{29}
\end{equation*}
$$

where

$$
\operatorname{deg} \widetilde{W}=\operatorname{GCD}\left(\operatorname{deg}\left(X_{1} \circ X_{2}\right), \operatorname{deg}\left(X_{2} \circ B\right)\right) .
$$

Since $\operatorname{deg} X_{2} \mid \operatorname{deg} \widetilde{W}$, Theorem 2.3 applied to the first equality in (29) implies that $\widetilde{W}=S \circ X_{2}$ for some polynomial S. Therefore,

$$
X_{2} \circ B=V \circ \widetilde{W}=V \circ S \circ X_{2}
$$

and hence (28) holds for $C=V \circ S$.
Proof of Theorem 1.2. By Theorem 1.1, the condition $X_{1}, X_{2} \in \mathcal{E}(B)$ implies that there exist $K_{1}, K_{2} \subset \mathbb{C}$ such that

$$
X_{1}^{-1}\left\{K_{1}\right\}=K(B), \quad X_{2}^{-1}\left\{K_{2}\right\}=K(B) .
$$

It follows now from Theorem 3.1 that there exist polynomials X, W, U_{1}, U_{2}, V_{1}, V_{2} such that

$$
\operatorname{deg} X=\operatorname{LCM}\left(\operatorname{deg} X_{1}, \operatorname{deg} X_{2}\right), \quad \operatorname{deg} W=\operatorname{LCM}\left(\operatorname{deg} X_{1}, \operatorname{deg} X_{2}\right),
$$

and equalities

$$
X=U_{1} \circ X_{1}=U_{2} \circ X_{2}
$$

and

$$
\begin{equation*}
X_{1}=V_{1} \circ W, \quad X_{2}=V_{2} \circ W \tag{30}
\end{equation*}
$$

hold. Furthermore, there exists $K_{3} \subset \mathbb{C}$ such that

$$
K_{1}=U_{1}^{-1}\left\{K_{3}\right\}, \quad K_{2}=U_{2}^{-1}\left\{K_{3}\right\} .
$$

Therefore,

$$
X^{-1}\left\{K_{3}\right\}=K(B),
$$

implying by Theorem 1.1 that $X \in \mathcal{E}(B)$. Finally, any of equalities (30) implies that $W \in \mathcal{E}(B)$ by Corollary 3.4.

4 Semiconjugacies between fixed A and B

4.1 Semiconjugacies between special polynomials

For a polynomial P and a finite set $K \subset \mathbb{C}$ denote by $P_{\text {odd }}^{-1}\{K\}$ the subset of $P^{-1}\{K\}$ consisting of points where the local multiplicity of P is odd. Notice that the chain rule implies that if $P=A \circ B$, then

$$
\begin{equation*}
P_{o d d}^{-1}\{K\}=B_{\text {odd }}^{-1}\left\{A_{\text {odd }}^{-1}\{K\}\right\} . \tag{31}
\end{equation*}
$$

Lemma 4.1. Let P be a polynomial of degree $n \geq 2$, and $K \subset \mathbb{C}$ a finite set containing at least two points. Assume that $P_{\text {odd }}^{-1}\{K\}=K$. Then K contains exactly two points, and P is conjugated to $\pm T_{n}$.

Proof. Denote by e_{z} the multiplicity of P at $z \in \mathbb{C}$, and set $r=\operatorname{card}(K)$. Since for any $y \in \mathbb{C}$ the set $P^{-1}\{y\}$ contains

$$
n-\sum_{\substack{z \in \mathbb{C} \\ P(z)=y}}\left(e_{z}-1\right)
$$

points and

$$
\sum_{z \in \mathbb{C}}\left(e_{z}-1\right)=n-1,
$$

we have:

$$
\begin{equation*}
\operatorname{card}\left(P^{-1}\{K\}\right) \geq r n-\sum_{z \in \mathbb{C}}\left(e_{z}-1\right)=(r-1) n+1 \tag{32}
\end{equation*}
$$

(the minimum attains if K contains all finite critical values of P). Therefore, if

$$
\operatorname{card}\left(P_{o d d}^{-1}\{K\}\right)=\operatorname{card}(K)=r
$$

then the set $P^{-1}\{K\}$ contains at least

$$
(r-1) n+1-r
$$

points where the local multiplicity of P is greater than one, implying that

$$
\begin{equation*}
\sum_{z \in P^{-1}\{K\}} e_{z} \geq r+2((r-1) n+1-r) . \tag{33}
\end{equation*}
$$

Since the sum in the left part of (33) equals $r n$, this inequality implies that

$$
\begin{equation*}
(n-1)(r-2) \leq 0 \tag{34}
\end{equation*}
$$

Thus, $r=2$. Furthermore, since the equality in (34) attains if and only if the equality in (33) attains, we conclude that if $P_{o d d}^{-1}\{K\}=K$, then $e_{z}=2$ for each $z \in P^{-1}\{K\} \backslash K$, and the local multiplicity of P at each of two points of K is equal to one.

Changing P to $\sigma^{-1} \circ P \circ \sigma$ for a convenient polynomial of degree one σ, we can assume that $K=\{-1,1\}$. Then the condition on multiplicities of P implies that $P^{2}-1$ is divisible by $\left(P^{\prime}\right)^{2}$, and calculating the quotient we conclude that P satisfies the differential equation

$$
n^{2}\left(1-y^{2}\right)=\left(y^{\prime}\right)^{2}\left(1-z^{2}\right)
$$

Since the general solution of the equation

$$
\frac{y^{\prime}}{\sqrt{1-y^{2}}}= \pm \frac{n}{\sqrt{1-z^{2}}}
$$

is

$$
\arccos y= \pm n \arccos z+c
$$

it follows now from $P(1)=1$ that

$$
P= \pm \cos (n \arccos x)= \pm T_{n}(z)
$$

Remark 4.2. Notice that the equality $T_{n}(-z)=(-1)^{n} T_{n}(z)$ implies that for even n the polynomials T_{n} and $-T_{n}$ are conjugated since $T_{n}=\alpha \circ\left(-T_{n}\right) \circ \alpha^{-1}$, where $\alpha(z)=-z$. For odd n however the polynomials T_{n} and $-T_{n}$ are not conjugated.

Lemma 4.3. Let P be a polynomial and $a, b \in \mathbb{C}$. Then the set $P_{\text {odd }}^{-1}\{a, b\}$ contains at least two points.

Proof. It follows from the equality

$$
2 n=\sum_{\substack{z \in \mathbb{C} \\ P(z)=a}} e_{z}+\sum_{\substack{z \in \mathbb{C} \\ P(z)=b}} e_{z}
$$

that the number

$$
\sum_{z \in P_{\text {odd }}^{-1}\{a, b\}} e_{z}
$$

is even, implying that the number $\operatorname{card}\left(P_{o d d}^{-1}\{a, b\}\right)$ also is even. On the other hand,

$$
\operatorname{card}\left(P_{o d d}^{-1}\{a, b\}\right) \neq 0
$$

for otherwise $P_{o d d}^{-1}\{a, b\}$ contains at most $n / 2+n / 2=n$ points in contradiction with inequality (32).

Theorem 4.4. Let A and B be polynomials of degree at least two such that $A \leq B$. Then A is conjugated to z^{n} if and only if B is conjugated to z^{n}. Similarly, A is conjugated to $\pm T_{n}$ if and only if B is conjugated to $\pm T_{n}$.

Proof. Assume that B is conjugated to $\pm T_{n}$, and let X be a semiconjugacy from B to A. Changing B and X to $\sigma^{-1} \circ B \circ \sigma$ and $X \circ \sigma$, for a convenient polynomial σ of degree one, without loss of generality we can assume that $B= \pm T_{n}$. By Theorem 1.1, we have:

$$
\begin{equation*}
X^{-1}\{K(A)\}=K(B)=[-1,1] . \tag{35}
\end{equation*}
$$

Set $m=\operatorname{deg} X$. Since

$$
\begin{equation*}
T_{m}^{-1}\{[-1,1]\}=[-1,1], \tag{36}
\end{equation*}
$$

equality (35) implies that

$$
X^{-1}\{K(A)\}=T_{m}^{-1}\{[-1,1]\} .
$$

It follows now from Theorem 3.1 that there exists a polynomial δ of degree one such that $X=\delta \circ T_{m}$. Therefore, changing A and X to $\delta^{-1} \circ A \circ \delta$ and $\sigma^{-1} \circ X$, we can assume that $X=T_{m}$. Thus, we have:

$$
\begin{equation*}
A \circ T_{m}=T_{m} \circ \pm T_{n}=(-1)^{m} T_{n} \circ T_{m}, \tag{37}
\end{equation*}
$$

implying that $A= \pm T_{n}$.
Similarly, if $B=z^{n}$, then the equalities

$$
X^{-1}\{K(A)\}=K(B)=\mathbb{D}
$$

and $\left(z^{m}\right)^{-1}\{\mathbb{D}\}=\mathbb{D}$ imply that $X=\delta \circ z^{m}$ for some polynomial δ of degree one, and arguing as above we conclude that A is conjugated to z^{n}.

Assume now that A is conjugated to $\pm T_{n}$. Without loss of generality we can assume that $A= \pm T_{n}$. Since $T_{n \text { odd }}^{-1}\{-1,1\}=\{-1,1\}$, formula (31) implies that

$$
\left(\pm T_{n} \circ X\right)_{o d d}^{-1}\{-1,1\}=X_{o d d}^{-1}\{-1,1\}
$$

It follows now from

$$
\begin{equation*}
\pm T_{n} \circ X=X \circ B \tag{38}
\end{equation*}
$$

that

$$
\begin{equation*}
B_{o d d}^{-1}\left\{X_{o d d}^{-1}\{-1,1\}\right\}=X_{o d d}^{-1}\{-1,1\} . \tag{39}
\end{equation*}
$$

Since by Lemma 4.3 the set $X_{\text {odd }}^{-1}\{-1,1\}$ contains at least two points, this implies by Lemma 4.1 that the polynomial B is conjugated to $\pm T_{n}$.

Finally, if A is conjugated to z^{n}, we can assume that $A=z^{n}$, and considering zeroes of the left and the right parts of the equality

$$
z^{n} \circ X=X \circ B,
$$

we see that $B^{-1}\left\{X^{-1}\{0\}\right\}=X^{-1}\{0\}$. It follows now from inequality (32) that $X^{-1}\{0\}$ consists of a single point, implying easily that the polynomial B is conjugated to z^{n}.

Remark 4.5. Since for even n the polynomials T_{n} and $-T_{n}$ are conjugated (see Remark 4.2), Theorem 4.4 implies that if B is conjugated to $\pm T_{n}$ for even n, then A and B are conjugated. On the other hand, if B is conjugated to $-T_{n}$ for odd n, then A is not necessary conjugated to $-T_{n}$, but only to $\pm T_{n}$. Still, it follows from (37) that if B is conjugated to T_{n}, then A is conjugated to T_{n}.

Notice that Theorem 4.4 combined with Remark 4.5 implies the following corollary.

Corollary 4.6. Let A and B be polynomials such that the conditions $A \leq B$ and $B \leq A$ hold simultaneously, and at least one of A and B is special. Then A and B are conjugated.

4.2 Proof of Theorem 1.3

The following lemma is a well-known fact from the complex dynamics. For the reader convenience we give a short proof based on Theorem 3.1.
Lemma 4.7. Let A be a polynomial of degree n such that $K(A)$ is a union of circles with a common center. Then $K(A)$ is a disk, and A is conjugate to z^{n}. Similarly, if $K(A)$ is a segment, then A is conjugated to $\pm T_{n}$.
Proof. Since for a polynomial A the complement to $K(A)$ in $\mathbb{C P}^{1}$ is connected (see e.g. [12], Lemma 9.4), if $K(A)$ is a union of circles with a common center, then $K(A)$ is a disk. Furthermore, changing if necessary A to a conjugated polynomial, we can assume that $K(A)=\mathbb{D}$. Thus, $A^{-1}\{\mathbb{D}\}=\mathbb{D}$. On the other hand, $\left(z^{n}\right)^{-1}\{\mathbb{D}\}=\mathbb{D}$, and applying to these equalities Theorem 3.1, we conclude that $A=\alpha z^{n}$, where $|\alpha|=1$, implying that A is conjugate to z^{n}.

Similarly, if $K(A)$ is a segment, we can assume that $K(A)=[-1,1]$, and to conclude in a similar way that A is conjugated to $\pm T_{n}$.

Proof of Theorem 1.3. Set $d_{0}=\operatorname{deg} X_{0}$, and let $X \in \mathcal{E}(A, B)$ be a polynomial of degree d. By Theorem 1.1, we have:

$$
X_{0}^{-1}\{K(A)\}=K(B), \quad X^{-1}\{K(A)\}=K(B) .
$$

Applying to these equalities Theorem 3.2 and taking into account that, by Lemma 4.7, $K(A)$ is neither a union of circles with the common center nor a segment, we conclude that $X=\widetilde{A} \circ X_{0}$ for some polynomial \widetilde{A}. Substituting now this expression in (2) and using that $X_{0} \in \mathcal{E}(A, B)$ we have:

$$
A \circ \widetilde{A} \circ X_{0}=\widetilde{A} \circ X_{0} \circ B=\widetilde{A} \circ A \circ X_{0}
$$

implying that $A \circ \widetilde{A}=A \circ \widetilde{A}$.
In other direction, if A commutes with \widetilde{A}, then

$$
A \circ\left(\tilde{A} \circ X_{0}\right)=\tilde{A} \circ A \circ X_{0}=\left(\tilde{A} \circ X_{0}\right) \circ B .
$$

Theorem 1.3 implies in particular the following classification of commuting polynomials obtained by Ritt.
Theorem 4.8 ([20]). Let A and B be commuting polynomials of degree at least two. Then, up to the change

$$
\begin{equation*}
A \rightarrow \lambda \circ A \circ \lambda^{-1}, \quad B \rightarrow \lambda \circ B \circ \lambda^{-1}, \tag{40}
\end{equation*}
$$

where λ is a polynomial of degree one, either

$$
\begin{equation*}
A=z^{n}, \quad B=\varepsilon z^{m} \tag{41}
\end{equation*}
$$

where $\varepsilon^{n}=\varepsilon$, or

$$
\begin{equation*}
A= \pm T_{n}, \quad B= \pm T_{m} \tag{42}
\end{equation*}
$$

or

$$
\begin{equation*}
A=\varepsilon_{1} R^{\circ m}, \quad B=\varepsilon_{2} R^{\circ n} \tag{43}
\end{equation*}
$$

where $R=z S\left(z^{l}\right)$ for some polynomial S, and $\varepsilon_{1}, \varepsilon_{2}$ are l-th roots of unity.

Proof. Assume first that A is conjugated to z^{n}. Without loss of generality we may assume that $A=z^{n}$. Applying Theorem 1.3 for $B=A$ and $X=B$, we have:

$$
B^{-1}\{K(A)\}=K(A)
$$

Since $K(A)=\mathbb{D}$, arguing as in Lemma 4.7 we conclude that $B=\varepsilon z^{m}$, and it follows from $A \circ B=B \circ A$ that $\varepsilon^{n}=\varepsilon$. If A is conjugated to $\pm T_{n}$, the proof is similar.

On the other hand, if A is non-special, then Theorem 1.3 implies that any $B \in \mathcal{E}(A, A)$ has the form $B=\widetilde{A} \circ R$, where R is a polynomial of the minimum possible degree in $\mathcal{E}(A, A)$. Now we can apply Theorem 1.3 again to the polynomial \widetilde{A} and so on, arriving eventually to the representation $B=\mu_{1} \circ R^{\circ m_{1}}$, where μ_{1} is a polynomial of degree one commuting with A. In particular, since $A \in \mathcal{E}(A, A)$, the equality $A=\mu_{2} \circ R^{\circ m_{2}}$ holds for some polynomial μ_{2} of degree one commuting with A. Furthermore, since R commutes with $A=\mu_{2} \circ R^{\circ m_{2}}$, the polynomial μ_{2} commutes with R. This implies easily that, up to a conjugacy, $R=z S\left(z^{l}\right)$ for some polynomial S, and $\mu_{2}=\varepsilon_{2} z$ for some l th root of unity ε_{2}. Finally, since μ_{1} commutes with the polynomial A, and $A=\mu_{2} \circ R^{\circ m_{2}}$ has the form $z \widetilde{S}\left(z^{l}\right)$ for some polynomial \widetilde{S}, we conclude that $\mu_{1}=\varepsilon_{1} z$ for some l th root of unity ε_{1}.

4.3 Semiconjugacies and invariant curves

It was shown in the recent paper [4] that the problem of description of semiconjugate polynomials is closely related to the problem of description of algebraic curves \mathcal{C} in \mathbb{C}^{2} invariant under maps of the form $F:(x, y) \rightarrow(f(x), g(y))$, where f, g are polynomials of degree at least two. Briefly, this relation may be summarized as follows (see Proposition 2.34 of [21] for more details).

If \mathcal{C} is an irreducible (f, g)-invariant curve, then its projective closure $\overline{\mathcal{C}}$ in $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ is also (f, g)-invariant. Denote by \bar{h} the restriction of F on $\overline{\mathcal{C}}$. Let $\widetilde{\mathcal{C}}$ be the desingularization of \mathcal{C} and $\beta: \widetilde{\mathcal{C}} \rightarrow \overline{\mathcal{C}}$ a map biholomorphic off a finite set. Clearly, \bar{h} lifts to a holomorphic map $h: \widetilde{\mathcal{C}} \rightarrow \widetilde{\mathcal{C}}$. Consider now the commutative diagram

where $\alpha: \overline{\mathcal{C}} \rightarrow \mathbb{C P}^{1}$ is the projection map onto the first coordinate. Set $\pi=\alpha \circ \beta$. If π is a constant, then \mathcal{C} is a line $z_{1}=\xi$, where ξ is a fixed point of f, so assume that the degree of π is at least one. Observe that since $f^{-1}\{\infty\}=\{\infty\}$, the set
$K=\pi^{-1}\{\infty\}$ and the map h satisfy the equality

$$
\begin{equation*}
h^{-1}\{K\}=K \tag{45}
\end{equation*}
$$

Since h is a holomorphic map between Riemann surfaces of the same genus and $\operatorname{deg} h=\operatorname{deg} f \geq 2$, it follows from the Riemann-Hurwitz formula that either $g(\widetilde{\mathfrak{C}})=0$, or $g(\widetilde{\mathfrak{C}})=1$ and h is unbranched. Since for unbranched h equality (45) is impossible, we conclude that $\widetilde{\mathfrak{C}}=\mathbb{C P}^{1}$, and (45) implies easily that, up to the change $\alpha \circ h \circ \alpha^{-1}$, where α is a Möbius transformation, either $K=\{\infty\}$ and h is a polynomial, or $K=\{0, \infty\}$ and $h=z^{ \pm \operatorname{deg} f}$. Thus,

$$
\begin{equation*}
f \circ \pi=\pi \circ h, \tag{46}
\end{equation*}
$$

where either π and h are polynomials, or $h=z^{ \pm \operatorname{deg} f}$ and π is a Laurent polynomial. The last case requires an additional investigation. The paper [21] refers (Fact 2.25) to a more general result of [11] (Theorem 10) implying that for a non-special polynomial f this possibility is excluded. Alternatively, one can use results of the paper [14] (e.g. Theorem 6.4).

Considering in a similar way the projection onto the second coordinate, we arrive to the equality

$$
\begin{equation*}
g \circ \rho=\rho \circ h . \tag{47}
\end{equation*}
$$

Thus, for non-special f and g any irreducible (f, g)-invariant curve may be parametrized by some polynomials π, ρ satisfying system (46), (47) for some polynomial h.

Notice that in a certain sense a description of (f, g)-invariant curves reduces to the case $f=g$ since the commutative diagram

$$
\begin{array}{ll}
\mathbb{C}^{2} \xrightarrow{(h, h)} & \mathbb{C}^{2} \tag{48}\\
\downarrow_{(\pi, \rho)} & \downarrow_{(\pi, \rho)} \\
\mathbb{C}^{2} \xrightarrow{(f, g)} & \mathbb{C}^{2}
\end{array}
$$

implies that any (f, g)-invariant curve is an image of an (h, h)-invariant curve under the map $(x, y) \rightarrow(\pi(x), \rho(y))$.

Theorem 1.3 permits to obtain easily the following description of (f, f) invariant curves obtained in [21] (see Theorem 6.24 and the theorem on p. 85).

Theorem 4.9. Let f be a non-special polynomial of degree at least two, and \mathcal{C} an irreducible (f, f)-invariant curve in \mathbb{C}^{2}. Then there exists a polynomial p which commutes with f such that \mathcal{C} has either the form $z_{1}=p\left(z_{2}\right)$ or $z_{2}=p\left(z_{1}\right)$.

Proof. If \mathcal{C} is a line $z_{1}=\xi$, then ξ is a fixed point of f, and the conclusion of the theorem holds for $p=\xi$. Similarly, the theorem holds if \mathcal{C} is a line $z_{2}=\xi$. Otherwise, as it was shown above, \mathcal{C} may be parametrized by some non-constant polynomials π, ρ satisfying the system

$$
\begin{equation*}
f \circ \pi=\pi \circ h, \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
f \circ \rho=\rho \circ h \tag{50}
\end{equation*}
$$

for some polynomial h. Furthermore, without loss of generality we may assume that there exists no polynomial w of degree greater than one such that

$$
\begin{equation*}
\pi=\widetilde{\pi} \circ w, \quad \rho=\widetilde{\rho} \circ w \tag{51}
\end{equation*}
$$

for some polynomials $\widetilde{\pi}, \widetilde{\rho}$. Indeed, if (51) holds, then applying Theorem 2.3 to the equality

$$
(f \circ \widetilde{\pi}) \circ w=\widetilde{\pi} \circ(w \circ h),
$$

we conclude that $w \circ h=\widetilde{h} \circ w$ for some polynomial \widetilde{h}, implying that we may change π to $\widetilde{\pi}, \rho$ to $\widetilde{\rho}$, and h to \widetilde{h}.

Set $d=\operatorname{GCD}(\operatorname{deg} \rho, \operatorname{deg} \pi)$. Since f is not special, it follows from (49), (50) by Theorem 1.3 that if both ρ and π are of degree at least two, then $d>1$, implying by Theorem 1.2 that (51) holds for some polynomials $\widetilde{\pi}, \widetilde{\rho}$ and w with $\operatorname{deg} w=d>1$. Therefore, at least one of polynomial ρ and τ is of degree one. Assume say that $\operatorname{deg} \rho=1$. Then, \mathcal{C} has the form $z_{1}=p\left(z_{2}\right)$, where $p=\pi \circ \rho^{-1}$. Furthermore, equality (50) implies that $h=\rho^{-1} \circ f \circ \rho$, and substituting this expression into (49) we conclude that p commutes with f.

Without deepening further into the subject, let us mention the following application of Theorem 1.2.

Theorem 4.10. Let f and g be non-special polynomials of degree at least two. Then any irreducible (f, g)-invariant curve \mathcal{C} in \mathbb{C}^{2} is an irreducible component of a curve of the form $u(x)-v(y)=0$ for some polynomials u, v.

Proof. If one of the polynomials π and ρ parametrizing \mathcal{C}, say ρ, is of degree at most one, then arguing as above we conclude that \mathcal{C} has the form $z_{1}=p\left(z_{2}\right)$, where p satisfies $f \circ p=p \circ g$. In the general case, by Theorem 1.2 , there exist polynomials u and v such that $u \circ \pi=v \circ \rho$, and hence π and ρ parametrize a component of $u(x)-v(y)=0$.

4.4 Semiconjugacies between equivalent A and B

For a natural number n with a prime decomposition $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{s}^{a_{s}}$ set $\operatorname{rad}(n)=p_{1} p_{2} \ldots p_{s}$. The following two theorems in totality provide a proof of Theorem 1.4.

Theorem 4.11. Let A and B be polynomials of degree at least two. Then conditions $A \leq B$ and $B \leq A$ hold simultaneously if and only if $A \sim B$.

Proof. The "if" part follows from the definition of \sim (see the introduction). Furthermore, if at least one of A and B is special, then conditions $A \leq B$ and $B \leq A$ imply by Corollary 4.6 that A and B are conjugated and hence equivalent. So, we may assume that A and B are non-special.

Let Y and X be polynomials such that

$$
\begin{equation*}
B \underset{Y}{<} A, \quad A \underset{\bar{X}}{\leq} B . \tag{52}
\end{equation*}
$$

Set $n=\operatorname{deg} A=\operatorname{deg} B$. Since (52) implies that $Y \circ X$ commutes with B, Theorem 4.8 implies that

$$
\begin{equation*}
\operatorname{rad}(\operatorname{deg} X) \mid \operatorname{rad}(n) \tag{53}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\operatorname{GCD}(\operatorname{deg} X, n)>1 \tag{54}
\end{equation*}
$$

Applying Theorem 2.3 to the equality

$$
\begin{equation*}
A \circ X=X \circ B \tag{55}
\end{equation*}
$$

we conclude that there exist polynomials $\widetilde{X}, \widetilde{B}$, and W such that

$$
\begin{equation*}
B=\widetilde{B} \circ W, \quad X=\widetilde{X} \circ W \tag{56}
\end{equation*}
$$

and $\operatorname{deg} W=\operatorname{GCD}(\operatorname{deg} X, n)$. Clearly, $B \sim W \circ \widetilde{B}$, and equalities (55) and (56) imply that

$$
\begin{equation*}
A \circ \widetilde{X}=\widetilde{X} \circ(W \circ \widetilde{B}) . \tag{57}
\end{equation*}
$$

Furthermore, $\operatorname{deg} \tilde{X}<\operatorname{deg} X$, since $\operatorname{deg} W>1$ by (54). If $\operatorname{deg} \tilde{X}=1$, then $A \sim W \circ \widetilde{B}$ since A and $W \circ \widetilde{B}$ are conjugated. Hence,

$$
A \sim W \circ \widetilde{B} \sim B
$$

and we are done. Otherwise, we can apply Theorem 2.3 in a similar way to equality (57) and so on. Since condition (53) ensures that the degrees of corresponding semiconjugacies decrease, we obtain in this way a finite chain of equivalences from B to A.

Theorem 4.12. Let A and B be polynomials of degree at least two. Then $A \sim B$ if and only if there exist polynomials X and Y such that

$$
\begin{equation*}
B \circ Y=Y \circ A, \quad A \circ X=X \circ B, \tag{58}
\end{equation*}
$$

and $Y \circ X=B^{\circ d}$ for some $d \geq 0$.
Proof. Taking into account Theorem 4.11, we only must show that if equalities (58) hold, then they hold for some $\widetilde{X}, \widetilde{Y}$ such that $\widetilde{Y} \circ \widetilde{X}=B^{\circ d}, d \geq 0$. Since (58) implies that $Y \circ X$ commutes with B, it follows from Theorem 4.8 that either B is special, or, up to a conjugacy,

$$
Y \circ X=\varepsilon_{1} R^{\circ m_{1}}, \quad B=\varepsilon_{2} R^{\circ m_{2}}
$$

where $R=z S\left(z^{n}\right)$ for some polynomial S, and $\varepsilon_{1}, \varepsilon_{2}$ are nth roots of unity. In the first case, Corollary 4.6 implies that A and B are conjugated. Therefore, in this case (58) holds for some Möbius transformations \widetilde{Y} and \widetilde{X} such that $\widetilde{Y} \circ \widetilde{X}=B^{0}$. In the second case set

$$
\widetilde{X}=X \circ \varepsilon_{3} R^{\circ\left(m_{2} m_{1}-m_{1}\right)}
$$

where $\varepsilon_{3}=\varepsilon_{2}^{m_{1}} / \varepsilon_{1}$, and observe that the second of equalities (58) still holds for \widetilde{X} since

$$
\begin{gathered}
A \circ \widetilde{X}=A \circ X \circ \varepsilon_{3} R^{\circ\left(m_{2} m_{1}-m_{1}\right)}=X \circ B \circ \varepsilon_{3} R^{\circ\left(m_{2} m_{1}-m_{1}\right)}= \\
=X \circ \varepsilon_{2} R^{\circ m_{2}} \circ \varepsilon_{3} R^{\circ\left(m_{2} m_{1}-m_{1}\right)}=X \circ \varepsilon_{3} R^{\circ\left(m_{2} m_{1}-m_{1}\right)} \circ \varepsilon_{2} R^{\circ m_{2}}=\widetilde{X} \circ B .
\end{gathered}
$$

On the other hand, we have:

$$
Y \circ \widetilde{X}=\varepsilon_{1} R^{\circ m_{1}} \circ \varepsilon_{3} R^{\circ\left(m_{2} m_{1}-m_{1}\right)}=\varepsilon_{1} \varepsilon_{3} R^{\circ m_{2} m_{1}}=\varepsilon_{2}^{m_{1}} R^{\circ m_{2} m_{1}}=B^{\circ m_{1}}
$$

5 Semiconjugacies for fixed B

5.1 Special factors of semiconjugacies

Lemma 5.1. Let A and B be polynomials of degree $n \geq 2$ such that

$$
\begin{equation*}
A \circ T_{l}=T_{l} \circ B, \quad l \geq 2 \tag{59}
\end{equation*}
$$

Then $l \leq 2 n$, unless $A= \pm T_{n}$ and $B= \pm T_{n}$. Similarly, if

$$
\begin{equation*}
A \circ z^{l}=z^{l} \circ B, \quad l \geq 2 \tag{60}
\end{equation*}
$$

then $l \leq n$, unless $A=\alpha z^{n}, \alpha \in \mathbb{C}$, and $B=\beta z^{n}, \beta \in \mathbb{C}$.
Proof. If

$$
\begin{equation*}
n \leq \frac{l-1}{2} \tag{61}
\end{equation*}
$$

then the set

$$
\left(T_{l} \circ B\right)_{o d d}^{-1}\{-1,1\}=B_{o d d}^{-1}\{-1,1\}
$$

contains at most $l-1$ points. Therefore, if equality (59) holds, then the set

$$
\begin{equation*}
\left(A \circ T_{l}\right)_{o d d}^{-1}\{-1,1\} \tag{62}
\end{equation*}
$$

also contains at most $l-1$ points. On the other hand, since -1 and 1 are the only finite critical values of T_{n}, if the set $A_{\text {odd }}^{-1}\{-1,1\}$ contains at least one point distinct from ± 1, then set (62) contains at least l points. Since by Lemma 4.3 the set $A_{\text {odd }}^{-1}\{-1,1\}$ contains at least two points, we conclude that if (61) holds, then

$$
\begin{equation*}
A_{o d d}^{-1}\{-1,1\}=\{-1,1\} . \tag{63}
\end{equation*}
$$

Therefore, by Lemma 4.1, $A= \pm T_{n}$, It follows now from (59) that

$$
\pm T_{n l}=T_{l} \circ B
$$

implying that

$$
T_{l} \circ B= \pm T_{l} \circ T_{n}
$$

and applying to the last equality Theorem 2.3 we see that

$$
\begin{equation*}
T_{l}= \pm T_{l} \circ \mu, \quad B=\mu^{-1} \circ T_{n} \tag{64}
\end{equation*}
$$

for some polynomial μ of degree one. Finally, it is easy to see, using for example the explicit formula

$$
\begin{equation*}
T_{n}=\frac{n}{2} \sum_{k=0}^{[n / 2]}(-1)^{k} \frac{(n-k-1)!}{k!(n-2 k)!}(2 x)^{n-2 k} \tag{65}
\end{equation*}
$$

that the first of equalities (64) implies the equality $\mu= \pm x$.
Assume now that equality (60) holds and $n \leq l-1$. Then the polynomial in the right part of (60) has at most $l-1$ zeroes. On the other hand, since a unique finite critical value of z^{l} is zero, it is easy to see that, unless

$$
\begin{equation*}
A=\alpha z^{n}, \quad \alpha \in \mathbb{C} \tag{66}
\end{equation*}
$$

the polynomial in the left part of (60) has at least l zeroes. Finally, (66) and (60) imply easily that $B=\beta z^{n}, \beta \in \mathbb{C}$.

Theorem 5.2. Let B be a non-special polynomial of degree $n \geq 2$, and X an element of $\mathcal{E}(B)$. Assume that $X=W_{1} \circ z^{l} \circ W_{2}$ for some polynomials W_{1}, W_{2} and $l \geq 1$. Then $l \leq n$. Similarly, if $X=W_{1} \circ \pm T_{l} \circ W_{2}$, then $l \leq 2 n$.

Proof. If $X=W_{1} \circ z^{l} \circ W_{2}$, then applying Corollary 3.4 twice we conclude that there exist polynomials C_{1} and C_{2} such that the equalities

$$
\begin{equation*}
A \circ W_{1}=W_{1} \circ C_{1}, \quad C_{1} \circ z^{l}=z^{l} \circ C_{2}, \quad C_{2} \circ W_{2}=W_{2} \circ B \tag{67}
\end{equation*}
$$

hold. Applying now Lemma 5.1 to the second equality in (67) we conclude that $l \leq n$, unless C_{1} and C_{2} are conjugated to z^{n}. On the other hand, in the last case the third equality in (67) implies by Theorem 4.4 that B is conjugated to z^{n}. If $X=W_{1} \circ \pm T_{l} \circ W_{2}$, the proof is similar.

Corollary 5.3. Let B be a non-special polynomial of degree $n \geq 2$. Assume that $B^{\circ d}=W_{1} \circ z^{l} \circ W_{2}$ for some polynomials W_{1}, W_{2}, and $l \geq 1, d \geq 1$. Then $l \leq n$. Similarly, if $B^{\circ d}=W_{1} \circ \pm T_{l} \circ W_{2}$, then $l \leq 2 n$.

Proof. Follows from Theorem 5.2, since $B^{\circ d}$ is a semiconjugacy from B to B.

5.2 Proof of Theorem 1.5

For natural numbers n and m define $l=l(n, m)$ as the maximum number coprime with n which divides m. Thus,

$$
\begin{equation*}
m=l b, \tag{68}
\end{equation*}
$$

where $\operatorname{rad}(b) \mid \operatorname{rad}(n)$ and $\operatorname{GCD}(n, l)=1$. Define now $d=d(n, m)$ as the minimum number such that b in (68) satisfies $b \mid n^{d}$. The next proposition describes a general structure of elements of $\mathcal{E}(B)$ for non-special B.

Proposition 5.4. Let B be a non-special polynomial of degree $n \geq 2$. Then any $X \in \mathcal{E}(B)$ has the form $X=\nu \circ z^{l(n, m)} \circ W$, where ν is a polynomial of degree one, and W is a compositional right factor of $B^{\circ d(n, m)}$. Furthermore, $l(n, m)<n$.

Proof. Set $m=\operatorname{deg} X$, and let l, b, d be the numbers defined above. If A is a polynomial such that

$$
\begin{equation*}
A \circ X=X \circ B \tag{69}
\end{equation*}
$$

then equality

$$
\begin{equation*}
A^{\circ d} \circ X=X \circ B^{\circ d} \tag{70}
\end{equation*}
$$

implies by Theorem 2.3 that

$$
\begin{equation*}
X=U \circ S, \quad B^{\circ d}=V \circ S \tag{71}
\end{equation*}
$$

for some polynomials U, V, S, where $\operatorname{deg} U=l$. Furthermore, equalities (69) and $X=U \circ S$ imply by Corollary 3.4 that

$$
\begin{equation*}
A \circ U=U \circ C \tag{72}
\end{equation*}
$$

for some polynomial C. Since l is coprime with n, by Theorem 2.4 there exist polynomials μ, ν of degree one such that either

$$
A=\nu \circ z^{s} R^{l}(z) \circ \nu^{-1}, \quad U=\nu \circ z^{l} \circ \mu, \quad C=\mu^{-1} \circ z^{s} R\left(z^{l}\right) \circ \mu,
$$

where R is a polynomial, $n \geq 1, s \geq 0$, and $\operatorname{GCD}(s, l)=1$, or

$$
A=\nu \circ T_{n} \circ \nu^{-1}, \quad U=\nu \circ T_{l} \circ \mu, \quad C=\mu^{-1} \circ T_{n} \circ \mu,
$$

where $\operatorname{GCD}(l, n)=1$. In the last case however Theorem 4.4 applied to (69) implies that B is conjugated to T_{n}. Therefore, the first case has the place and hence $X=\nu \circ z^{l} \circ W$, where $W=\mu \circ S$ is a compositional right factor of $B^{\text {od }}$. Moreover, since $n=r l+s$, where $r=\operatorname{deg} R$, the inequality $l<n$ holds whenever $r \neq 0$. On the other hand, if $r=0$, then A is conjugated to z^{n} and hence B also is conjugated to z^{n} by Theorem 4.4.

For a natural number n with a prime decomposition $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{s}^{a_{s}}$ set $\operatorname{ord}_{p}(n)=a_{i}$, if $p=p_{i}$ for some $i, 1 \leq i \leq s$, and $\operatorname{ord}_{p} n=0$ otherwise.

Proposition 5.5. If, under assumptions of Proposition 5.4, the polynomial X is not a polynomial in B, then $d(n, m) \leq 2 \log _{2} n+3$.
Proof. Set

$$
\begin{equation*}
a=n^{d} / b \tag{73}
\end{equation*}
$$

Clearly, for any prime p,

$$
\operatorname{ord}_{p}(b)+\operatorname{ord}_{p}(a)=\operatorname{ord}_{p}(n) d,
$$

implying that

$$
\begin{equation*}
\operatorname{ord}_{p} b=\operatorname{ord}_{p}(n)(d-1)+\operatorname{ord}_{p}(n)-\operatorname{ord}_{p}(a) . \tag{74}
\end{equation*}
$$

Observe that the definition of $d(n, m)$ implies that a is not divisible by n. Moreover, the number b is not divisible by n either, since otherwise equality (69) implies by Theorem 2.3 that X is a polynomial in B. Observe also that by Theorem 4.4 any polynomial A such that (69) holds is not special.

It follows from Theorem 2.3 applied to equality (70) that there exist polynomials N, F and Y, Z, where

$$
\operatorname{deg} Z=l, \quad \operatorname{deg} Y=a
$$

such that

$$
A^{\circ d}=N \circ Y, \quad X=N \circ Z,
$$

and

$$
\begin{equation*}
Y \circ X=Z \circ B^{\circ d} . \tag{75}
\end{equation*}
$$

Applying now Theorem 2.3 and Theorem 2.2 to the equality

$$
Y \circ X=\left(Z \circ B^{d-i}\right) \circ B^{i}
$$

for each $i, 1 \leq i \leq d-1$, we obtain a collection of polynomials $Y_{i}, X_{i}, W_{i} U_{i}$, $K_{i}, L_{i}, 1 \leq i \leq d-1$, such that

$$
\begin{equation*}
Y=U_{i} \circ Y_{i}, \quad Z \circ B^{\circ d-i}=U_{i} \circ K_{i}, \quad X=X_{i} \circ W_{i}, \quad B^{\circ i}=L_{i} \circ W_{i}, \tag{76}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{i} \circ X_{i}=K_{i} \circ L_{i} . \tag{77}
\end{equation*}
$$

Furthermore,

$$
\operatorname{deg} Y_{i}=a_{i}, \quad \operatorname{deg} X_{i}=l b_{i},
$$

where

$$
a_{i}=\frac{a}{\operatorname{GCD}\left(a, n^{d-i}\right)}, \quad b_{i}=\frac{b}{\operatorname{GCD}\left(b, n^{i}\right)},
$$

and there exist polynomials of degree one $\nu_{i}, \sigma_{i}, \mu_{i} 1 \leq i \leq d-1$, such that either

$$
\begin{equation*}
Y_{i}=\nu_{i} \circ z^{a_{i}} \circ \sigma_{i}, \quad X_{i}=\sigma_{i}^{-1} \circ z^{c} R\left(z^{a_{i}}\right) \circ \mu_{i} \tag{78}
\end{equation*}
$$

where $R \in \mathbb{C}[z]$ and $\operatorname{GCD}\left(c, a_{i}\right)=1$, or

$$
\begin{equation*}
Y_{i}=\nu_{i} \circ z^{c} R^{l b_{i}}(z) \circ \sigma_{i}, \quad X_{i}=\sigma_{i}^{-1} \circ z^{l b_{i}} \circ \mu_{i}, \tag{79}
\end{equation*}
$$

where $R \in \mathbb{C}[z]$ and $\operatorname{GCD}\left(c, l b_{i}\right)=1$, or

$$
\begin{equation*}
Y_{i}=\nu_{i} \circ T_{a_{i}} \circ \sigma_{i}, \quad X_{i}=\sigma_{i}^{-1} \circ T_{l b_{i}} \circ \mu_{i} \tag{80}
\end{equation*}
$$

where $\operatorname{GCD}\left(a_{i}, l b_{i}\right)=1$.
Observe first that

$$
\begin{equation*}
a_{i} \geq 2^{i}, \quad b_{i} \geq 2^{d-i} \tag{81}
\end{equation*}
$$

Indeed, since $n \nmid a$, there exists $p \in \operatorname{rad}(n)$ such that $\operatorname{ord}_{p}(n)-\operatorname{ord}_{p}(a)>0$. It follows now from (74) that for any $i, 1 \leq i \leq d-1$, the equality

$$
\operatorname{ord}_{p}\left(\operatorname{GCD}\left(b, n^{i}\right)\right)=\operatorname{ord}_{p}(n) i
$$

holds. Thus,
$\operatorname{ord}_{p}\left(b_{i}\right)=\operatorname{ord}_{p} n-\operatorname{ord}_{p}\left(\operatorname{GCD}\left(b, n^{i}\right)\right)=\operatorname{ord}_{p}(n)(d-1-i)+\operatorname{ord}_{p}(n)-\operatorname{ord}_{p}(a)$,
implying that

$$
b_{i} \geq p^{\operatorname{ord}_{p}(n)(d-1-i)+\operatorname{ord}_{p}(n)-\operatorname{ord}_{p}(a)} \geq p^{\operatorname{ord}_{p}(n)(d-1-i)+1} \geq p^{(d-1-i)+1}=p^{d-i}
$$

Similarly, since $n \nmid b$, there exists $q \in \operatorname{rad}(n)$ such that $\operatorname{ord}_{q}(n)-\operatorname{ord}_{q}(b)>0$ implying that for any $i, 1 \leq i \leq d-1$, the inequality $a_{i} \geq q^{i}$ holds. Since $p \geq 2$, $q \geq 2$, this proves (81).

In order to establish now the required bound, observe that since

$$
A^{\circ d}=N \circ U_{i} \circ Y_{i}
$$

it follows from Corollary 5.3 that if (78) or (80) holds, then $a_{i} \leq 2 n$. On the other hand, since $X=X_{i} \circ W_{i}$, if (79) or (80) holds, then $b_{i} \leq l b_{i} \leq 2 n$, by Theorem 5.2. Thus, for any $i, 1 \leq i \leq d-1$, the inequality

$$
\min \left\{a_{i}, b_{i}\right\} \leq 2 n
$$

holds. On the other hand, it follows from (81) that for $i_{0}=\lfloor d / 2\rfloor$ the inequality

$$
\min \left\{a_{i}, b_{i}\right\} \geq 2^{\lfloor d / 2\rfloor}
$$

holds. Therefore, $2^{\lfloor d / 2\rfloor} \leq 2 n$, implying that $2^{d / 2} \leq 2 \sqrt{2} n$. Thus, $d / 2 \leq \log _{2} n+3 / 2$ and $d \leq 2 \log _{2} n+3$.
Proof of Theorem 1.5. Observe first that if $X \in \mathcal{E}(B)$ is a semiconjugacy from B to A, then A is defined in a unique way since the equalities

$$
A \circ X=X \circ B, \quad \widetilde{A} \circ X=X \circ B
$$

imply the equality $A \circ X=\widetilde{A} \circ X$ which in its turn implies the equality $A=\widetilde{A}$. In particular, this implies that for any $X_{1}, X_{2} \in \mathcal{E}(B)$ such that $X_{2}=\mu \circ X_{1}$ for some polynomial μ of degree one the corresponding polynomials $A_{1}, A_{2} \in \mathcal{F}(B)$ are conjugated. Further, for any $A \in \mathcal{F}(B)$ there exists X such that

$$
\begin{equation*}
A \circ X=X \circ B \tag{82}
\end{equation*}
$$

and X is not a polynomial in B, since equalities (82) and $X=\widetilde{X} \circ B^{\circ s}$ imply the equality

$$
A \circ \tilde{X}=\widetilde{X} \circ B
$$

Finally, if $X_{1}, X_{2} \in \mathcal{E}(B)$ and $\operatorname{deg} X_{1}=\operatorname{deg} X_{2}$, then the corresponding polynomials in $A_{1}, A_{2} \in \mathcal{F}(B)$ are conjugated, since Theorem 1.1 and Theorem 3.1 imply that there exists a polynomial μ of degree one such that $X_{2}=\mu \circ X_{1}$.

Let X be an element of $\mathcal{E}(B)$ and $X=\nu \circ z^{l} \circ W$ its representation from Proposition 5.4. Then it follows from Proposition 5.5 that, unless X is a polynomial in B, the inequality $d \leq 2 \log _{2} n+3$ holds. Since, in addition, for the number l the inequality $l<n$ holds, this implies that up to the change $X \rightarrow \mu \circ X$, where μ is a polynomial of degree one, there exists at most a finite number of elements of $\mathcal{E}(B)$ which are not polynomials in B. Applying to these polynomials recursively Theorem 1.2 we obtain polynomials $X \in \mathcal{E}(B)$ and $A \in \mathcal{F}(B)$ which satisfy the conclusion of the theorem.

Remark 5.6. Since the degree of the polynomial of X from Theorem 1.5 is equal to the less common multiple of all polynomials from $\mathcal{E}(B)$ which are not polynomials in B, it follows from Proposition 5.4 and Proposition 5.5 that $\operatorname{deg} X$ is bounded by the number $\psi(n) n^{2 \log _{2} n+3}$, where $\psi(n)$ denotes the less common multiple of all numbers less than n and coprime with n. In particular,

$$
c(n) \leq(n-1)!n^{2 \log _{2} n+3}
$$

Corollary 5.7. Let B be a polynomial of degree at least two. Then there exists at most a finite number of conjugacy classes of polynomials A such that $A \leq B$.

Proof. If B is non-special, then the corollary follows from Theorem 1.5. For special B the corollary follows Theorem 4.4.

Corollary 5.8. Each equivalence class of the relation \sim contains at most a finite number of conjugacy classes.

Proof. Follows from Corollary 5.7, since $A \sim B$ implies $A \leq B$,
Corollary 5.9 ([21]). Let B be a non-special polynomial of degree $n \geq 2$, and X and Y polynomials such that $Y \circ X=B^{\circ s}$ for some $s \geq 1$. Then there exist polynomials $\widetilde{X}, \widetilde{Y}$ and $i, j \geq 0$ such that

$$
Y=B^{\circ i} \circ \widetilde{Y}, \quad X=\widetilde{X} \circ B^{\circ j}, \quad \text { and } \quad \tilde{Y} \circ \widetilde{X}=B^{\circ \widetilde{s}}
$$

where \widetilde{s} is bounded from above by a constant which depends on n only.
Proof. Clearly, without loss of generality we may assume that X is not a polynomial in B. Since $B \circ B^{\circ d}=B^{\circ d} \circ B$, the polynomial $B^{\circ d}$ is contained in $\mathcal{E}(B)$ and hence X is contained in $\mathcal{E}(B)$ by Corollary 3.4. Furthermore, since $\operatorname{rad}(\operatorname{deg} X) \mid \operatorname{rad}(n)$, it follows from Proposition 5.4 and Proposition 5.5 that there exists a polynomial \widetilde{Y} such that $\widetilde{Y} \circ X=B^{\circ\left(2 \log _{2} n+3\right)}$. Therefore, if $s>2 \log _{2} n+3$, then

$$
B^{\circ s}=B^{\circ\left(s-2 \log _{2} n-3\right)} \circ B^{\circ\left(2 \log _{2} n+3\right)}=B^{\circ\left(s-2 \log _{2} n-3\right)} \circ \tilde{Y} \circ X=Y \circ X
$$

implying that $Y=B^{\circ\left(s-2 \log _{2} n-3\right)} \circ \widetilde{Y}$. This proves the corollary, and shows that $\widetilde{s} \leq 2 \log _{2} n+3$.

Remark 5.10. The bound $\widetilde{s} \leq 2 \log _{2} n+3$ in Corollary 5.9 is not optimal. It was shown in [21] that in fact $\widetilde{s} \leq \log _{2}(n+2)$ and that this last bound cannot be improved. For more details we refer the reader to [21]. Notice however that for applications, similar to ones given in [8], the actual form of the bound for \widetilde{s} is not important.

Acknowledgments. The author is grateful to the Max-Planck-Institut fuer Mathematik for the hospitality and the support.

References

[1] T. Dinh, Ensembles d'unicité pour les polynômes, Ergodic Theory Dynam. Systems 22 (2002), no. 1, 171-186.
[2] T. Dinh, Distribution des préimages et des points périodiques d'une correspondance polynomiale, Bull. Soc. Math. France 133 (2005), no. 3, 363-394.
[3] H. Engstrom, Polynomial substitutions, Amer. J. Math. 63, 249-255 (1941).
[4] A. Medvedev, T. Scanlon, Invariant varieties for polynomial dynamical systems, Annals of Mathematics, 179 (2014), no. 1, 81-177.
[5] M. Muzychuk, F. Pakovich, Jordan-Holder theorem for imprimitivity systems and maximal decompositions of rational functions, Proc. Lond. Math. Soc., 102 (2011) , no. 1, 1-24.
[6] A. Eremenko, Some functional equations connected with the iteration of rational functions (Russian), Algebra i Analiz 1 (1989), 102-116; translation in Leningrad Math. J. 1 (1990), 905-919.
[7] P. Fatou, Sur l'iteration analytique et les substitutions permutables, J. Math. Pures Appl. (9), 2, 1923, 343-384.
[8] D. Ghioca, T. Tucker, M. Zieve, Linear relations between polynomial orbits, Duke Math. J. 161 (2012), 1379-1410.
[9] H. Inou, Extending local analytic conjugacies, Trans. Amer. Math. Soc. 363 (2011), no. 1, 331-343,
[10] G. Julia, Mémoire sur la permutabilité des fractions rationelles, Ann. Sci. École Norm. Sup. 39 (3) (1922), 131-215.
[11] A. Medvedev, Minimal sets in ACFA, Thesis (Ph.D.)University of California, Berkeley. 2007. 96 pp.
[12] J. Milnor, Dynamics in one complex variable, Princeton Annals in Mathematics 160. Princeton, NJ: Princeton University Press (2006).
[13] F. Pakovich, On polynomials sharing preimages of compact sets, and related questions, Geom. Funct. Anal, 18, No. 1, 163-183 (2008).
[14] F. Pakovich, Prime and composite Laurent polynomials, Bull. Sci. Math, 133 (2009) 693-732.
[15] F. Pakovich, Generalized "second Ritt theorem" and explicit solution of the polynomial moment problem, Compositio Math. 149 (2013), 705-728.
[16] F. Pakovich, On semiconjugate rational functions, arXiv:1108.1900.
[17] F. Pakovich, Solution of the parametric Center Problem for Abel Equation, J. Eur. Math. Soc., to appear.
[18] J. F. Ritt. On the iteration of rational functions, Trans. Amer. Math. Soc. 21 (1920), no. 3, 348-356.
[19] J. Ritt, Prime and composite polynomials, American M. S. Trans. 23, 51-66 (1922).
[20] J. F. Ritt. Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), 399-448.
[21] M.Zieve, P. Müller, On Ritt's polynomial decomposition theorem, preprint, arXiv:0807.3578.

