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Abstract

We study the functional equation A ◦X = X ◦B, where A, B, and X

are polynomials over C. Using results of [13] about polynomials sharing
preimages of compact sets, we show that for given B its solutions may be
described in terms of the filled-in Julia set of B. On this base, we prove a
number of results describing a general structure of solutions. The results
obtained imply in particular the result of Medvedev and Scanlon [4] about
invariant curves of maps F : C2

→ C2 of the form (x, y) → (f(x), f(y)),
where f is a polynomial, and a version of the result of Zieve and Müller
[21] about decompositions of iterations of a polynomial.

1 Introduction

Let A and B be rational functions of degree at least two on the Riemann sphere.
The functions A and B are called commuting if

A ◦B = B ◦A, (1)

and conjugate if
A ◦X = X ◦B (2)

for some rational function X of degree one.
In case if (2) is satisfied for some rational function X of degree at least two,

the function B is called semiconjugate to A, and the function X is called a
semiconjugacy from B to A. In distinction with the conjugation, the semicon-
jugation is not an equivalency relation. We will use the notation A ≤ B if for
given rational functions A and B there exists a non-constant rational function
X such that (2) holds, and the notation A ≤

X
B if A,B, and X satisfy (2). The

notation reflects the fact that the binary relation on the set of rational functions
defined by equality (2) is a preorder. Indeed, it follows from A ≤

X
B and B ≤

Y
C

that A ≤
X◦Y

C.
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Both equations (1) and (2) have “obvious” solutions. Namely, equation (1)
has solutions of the form

A = R◦m, B = R◦n, (3)

where R is an arbitrary rational function and m,n ≥ 1. Notice that such A and
B have an iteration in common, that is

A◦n = B◦m (4)

for some n,m ≥ 1.
In order to obtain solutions of equation (2) we can take arbitrary rational

functions A1, B1 and set

F = A1 ◦B1, G = B1 ◦A1.

Then the equality
(A1 ◦B1) ◦A1 = A1 ◦ (B1 ◦A1) (5)

implies that F ≤
A1

G. Similarly, G ≤
B1

F . Moreover, if now A2, B2 are rational

functions such that the equality

G = A2 ◦B2 (6)

holds, then the function H = B2 ◦ A2 satisfies G ≤
A2

H and H ≤
B2

G, implying

that F ≤
A1◦A2

H and H ≤
B2◦B1

F. This motivates the following definition of

an equivalency relation on the set of rational functions: F ∼ G if there exist
rational functions Ai, Bi, 1 ≤ i ≤ n, such that

F = A1 ◦B1, G = Bn ◦An,

and
Bi ◦Ai = Ai+1 ◦Bi+1, 1 ≤ i ≤ n− 1.

Clearly, F ∼ G implies that F ≤ G and G ≤ F . Notice that since for any
rational function X of degree one the equality

A = (A ◦X) ◦X−1

implies that A ∼ X−1 ◦A ◦X , any equivalence class is a collection of conjugacy
classes.

Functional equation (1) was first studied by Fatou, Julia, and Ritt in the
papers [7], [10], and [20]. In all these papers it was assumed that considered
commuting functions A and B have no iterate in common. Fatou and Julia
described solutions of (1) under the additional assumption that the Julia set of
A or B does not coincide with the whole complex plane, and Ritt investigated
the general case. Briefly, the Ritt theorem states that if rational functions A
and B commute and no iterate of A is equal to an iterate of B, then, up to
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a conjugacy, A and B are either powers, or Chebyshev polynomials, or Lattès
functions. Another proof of the Ritt theorem was given by Eremenko in [6].
Notice however that a description of commuting A and B with a common iterate
is known only in the polynomial case. Thus, in a certain sense the classification
of commuting rational functions is not yet completed. On the other hand, it
was shown by Ritt ([18], [20]) that in the polynomial case equality (1) implies
that, up to the change

A→ λ ◦A ◦ λ−1, B → λ ◦B ◦ λ−1,

where λ is a polynomial of degree one, either

A = zn, B = εzm,

where εn = ε, or
A = ±Tn, B = ±Tm,

or
A = ε1R

◦m, B = ε2R
◦n,

where R = zS(zl) for some polynomial S and ε1, ε2 are l-th roots of unity. In
fact, this conclusion remains true if instead of (1) to assume only that A and B
share a completely invariant compact set in C (see [13]).

Equation (2) was investigated in the recent paper [16]. The main result of
[16] states that if a rational function B is semiconjugate to a rational func-
tion A, then either A ∼ B, or A and B are “minimal holomorphic self-maps”
between orbifolds of non-negative Euler characteristic on the Riemann sphere.
The last class of functions is a natural extension of the class of Lattès functions
and admits a neat characterization. However, like to the description of com-
muting rational functions, the description of solutions of (2) given in [16] is not
completely satisfactory, since provides no information about equivalent rational
functions. In particular, the following important question remains open: is it
true that each equivalence class contains at most a finite number of conjugacy
classes ? Another related question is following: is it true that if conditions
A ≤ B and B ≤ A hold simultaneously, then A ∼ B ? Finally, it would be
desirable to obtain some handy structural descriptions of the totality of X sat-
isfying (2) for given A and B, and of the totality of A satisfying A ≤ B for
given B.

In this paper we study equation (2) with emphasis on the above questions in
the case where all the functions involved are polynomials. Notice that in distinc-
tion with the general case, for polynomials there exists quite a comprehensive
theory of functional decompositions developed by Ritt [19]. Nevertheless, ques-
tions regarding polynomial decompositions may be highly non-trivial, and a
number of recent papers are devoted to such questions arising from different
branches of mathematics. Let us mention for example the paper [21] with ap-
plications to algebraic dynamics ([8]), or the paper [15] with applications to
differential equations ([17]). Another example is the recent paper [4] about
invariant varieties for dynamical systems, defined by coordinatwise actions of
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polynomials, a considerable part of which concerns properties of polynomial
solutions of (2).

The main distinction between this paper and the above mentioned papers
is the systematical use of ideas and results from the paper [13] which relates
polynomials sharing preimages of compact sets in C with the functional equation
A ◦C = D ◦B. In particular, the main result of [13] leads to a characterization
of polynomial solutions of (2) in terms of filled-in Julia sets. Recall that for
a polynomial B the filled-in Julia set K(B) is defined as a set of points in C
whose orbits under iterations of B are bounded. Since equality (2) implies the
equalities

A◦n ◦X = X ◦B◦n, n ≥ 1,

it it easy to see that if X is a semiconjugacy from B to A, then the preim-
age X−1{K(A)} coincides with K(B). We show that this property is in fact
characteristic.

Theorem 1.1. Let A, B and X be polynomials of degree at least two such that
A ≤

X
B. Then

X−1{K(A)} = K(B). (7)

In other direction, if equality (7) holds and degA = degB, then there exists a
polynomial of degree one µ such that

(µ ◦A) ◦X = X ◦B

and µ(K(A)) = K(A). More generally, if for given B and X the condition

X−1{K} = K(B) (8)

holds for some compact set K in C, then there exists a polynomial A such that
A ≤

X
B and K(A) = K.

For a fixed polynomial B of degree at least two denote by E(B) the set of
polynomials X of degree at least two such that A ≤

X
B for some polynomial A.

An immediate corollary of Theorem 1.1 is that a polynomial X is contained in
E(B) if and only if K(B) is a union of fibers of X . Another corollary is that if
A ≤

X
B, then for any decomposition X = X1 ◦X2 there exists a polynomial C

such that
A ≤

X1

C, C ≤
X2

B.

Notice that in particular this puts the problem of description of decompositions
of iterations of a polynomial, first considered in the paper [21], into the context
of equation (2). Indeed, since B◦B◦d = B◦d◦B, the polynomial B◦d is contained
in E(B) and hence for any decomposition B◦d = Y ◦X the equalities

B ◦ Y = Y ◦A, A ◦X = X ◦B

hold for some polynomial A.

The following statement also is a corollary of the main result of [13].
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Theorem 1.2. For any X1, X2 ∈ E(B) there exists X ∈ E(B) such that
degX = LCM(degX1, degX2) and

X = U1 ◦X1 = U2 ◦X2

for some polynomials U1, U2. Furthermore, there exists W ∈ E(B) such that
degW = GCD(degX1, degX2) and

X1 = V1 ◦W, X2 = V2 ◦W
for some polynomials V1, V2.

For fixed polynomials A, B denote by E(A,B) the subset of E(B) (possibly
empty) consisting of polynomials X such that A ≤

X
B. In particular, the set

E(B,B) consists of polynomials of degree at least two commuting with B. We
will call a polynomial P special if it is conjugated to zn or ±Tn, or equivalently
if there exists a Möbius transformation µ which maps K(P ) to D or [−1, 1]. The
following result describes a general structure of E(A,B) for non-special A, B.

Theorem 1.3. Let A and B be fixed non-special polynomials of degree at least
two such that the set E(A,B) is non-empty, and let X0 be an element of E(A,B)
of the minimum possible degree. Then a polynomial X belongs to E(A,B) if and

only if X = Ã ◦X0 for some polynomial Ã commuting with A.

Notice that in a sense this result is a generalization of the result of Ritt
about commuting polynomials. Indeed, applying Theorem 1.3 for B = A and
X = B, we obtain that if A is non-special and B ∈ E(A,A), then B = Ã ◦ R,
where R is a polynomial of the minimum possible degree in E(A,A). Now we

can apply Theorem 1.3 again to the polynomial Ã and so on, arriving eventually
to the representation B = µ1 ◦ R◦m1 , where µ1 is a polynomial of degree one
commuting with A. In particular, since A ∈ E(A,A), the equality A = µ2◦R◦m2

holds for some polynomial µ2 of degree one commuting with A.
Another corollary of Theorem 1.3 is the following result obtained by Medve-

dev and Scanlon in the paper [4]: if C ⊂ C2 is an irreducible algebraic curve
invariant under the map F : (x, y) → (f(x), f(y)), where f is a non-special
polynomial, then there exists a polynomial p which commutes with f such that
C has the form z1 = p(z2) or z2 = p(z1).

Our next result describes the interrelations between the equivalence ∼, the
preorder ≤ , and decompositions of iterations.

Theorem 1.4. Let A and B be polynomials of degree at least two. Then condi-
tions A ≤ B and B ≤ A hold simultaneously if and only if A ∼ B. Furthermore,
A ∼ B if and only if there exist polynomials X, Y such that

B ◦ Y = Y ◦A, A ◦X = X ◦B,
and Y ◦X = B◦d for some d ≥ 0.

For a fixed polynomial B of degree at least two denote by F(B) the set
of polynomials A such that A ≤ B. The following theorem gives a structural
description of the set F(B).
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Theorem 1.5. Let B be a fixed non-special polynomial of degree n ≥ 2. Then
there exist A ∈ F(B) and a semiconjugacy X from B to A which are universal
in the following sense: for any polynomial C ∈ F(B) there exist polynomials
XC , UC such that X = UC ◦XC and the diagram

C
B−−−−→ C

yXC

yXC

C
C−−−−→ C

yUC

yUC

C
A−−−−→ C

(9)

is commutative. Furthermore, the degree of X is bounded from above by a con-
stant c = c(n) which depends on n only.

We did not make special efforts to obtain an optimal estimation for c(n),
however our method of proof shows that

c(n) ≤ (n− 1)!n2 log
2
n+3.

Theorem 1.5 implies that for any polynomial B there exists at most a finite
number of conjugacy classes of polynomials A such that A ≤ B. In particular,
since A ∼ B implies A ≤ B, each equivalence class contains at most a finite
number of conjugacy classes.

The paper is organized as follows. In the second section we give a very
brief overview of the Ritt theory. In the third section we recall basic results of
[13] and prove Theorem 1.1 and Theorem 1.2. We also prove the corollaries of
Theorem 1.1 mentioned above. In the fourth section we first show that if A ≤ B
and one of polynomials A or B is special, then the other one also is special
(Theorem 4.4). Then we prove Theorem 1.3 and deduce from it the result of
Ritt about commuting polynomials. We also apply Theorem 1.3 to the problem
of description of curves in C2 invariant under maps F : (x, y) → (f(x), g(y)),
where f and g are polynomials. Finally, we prove Theorem 1.4.

In the fifth section we first show (Theorem 5.2) that if B is a non-special
polynomial of degree n, and X ∈ E(B), then the degree l of any special compo-
sitional factor of X satisfies the inequality l ≤ 2n. On this base we prove that
if X ∈ E(B) is not a polynomial in B, then degX is bounded from above by
a constant which depends on n only. In its turn, from this result we deduce
Theorem 1.5. As another corollary of the boundedness of degX we obtain the
following result of Zieve and Müller ([21]): if B is a non-special polynomial of
degree n ≥ 2, and X and Y are polynomials such that Y ◦X = B◦s for some
s ≥ 1, then there exist polynomials X̃ , Ỹ and i, j ≥ 0 such that

Y = B◦i ◦ Ỹ , X = X̃ ◦B◦j , and Ỹ ◦ X̃ = B◦s̃,

where s̃ is bounded from above by a constant which depends on n only.
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2 Overview of the Ritt theory

Let F be a polynomial with complex coefficients. The polynomial F is called
indecomposable if the equality F = F2 ◦ F1 implies that at least one of the
polynomials F1, F2 is of degree one. Any representation of a polynomial F in
the form F = Fr ◦Fr−1 ◦ · · · ◦F1, where F1, F2, . . . , Fr are polynomials, is called
a decomposition of F. A decomposition is called maximal if all F1, F2, . . . , Fr are
indecomposable and of degree greater than one. Two decompositions having an
equal number of terms

F = Fr ◦ Fr−1 ◦ · · · ◦ F1 and F = Gr ◦Gr−1 ◦ · · · ◦G1

are called equivalent if either r = 1 and F1 = G1, or r ≥ 2 and there exist
polynomials µi, 1 ≤ i ≤ r − 1, of degree 1 such that

Fr = Gr ◦ µr−1, Fi = µ−1
i ◦Gi ◦ µi−1, 1 < i < r, and F1 = µ−1

1 ◦G1.

The theory of polynomial decompositions established by Ritt can be sum-
marized in the form of two theorems usually called the first and the second Ritt
theorems (see [19]).

The first Ritt theorem states roughly speaking that any maximal decom-
positions of a polynomial may be obtained from any other by some iterative
process involving the functional equation

A ◦ C = D ◦B. (10)

Theorem 2.1 ([19]). Any two maximal decompositions D,E of a polynomial P
have an equal number of terms. Furthermore, there exists a chain of maximal
decompositions Fi, 1 ≤ i ≤ s, of P such that F1 = D, Fs ∼ E, and Fi+1 is
obtained from Fi by a replacement of two successive polynomials A ◦C in Fi by
two other polynomials D ◦B such that (10) holds.

The second Ritt theorem in its turn describes indecomposable polynomial
solutions of (10). More precisely, it describes solutions satisfying the condition

GCD(degA, degD) = 1, GCD(degC, degB) = 1, (11)

which holds in particular if A,C,D,B are indecomposable (see Theorem 2.3
below).

Theorem 2.2 ([19]). Let A,C,D,B be polynomials such that (10) and (11)
hold. Then there exist polynomials σ1, σ2, µ, ν of degree one such that, up to a
possible replacement of A by D and of C by B, either

A = ν ◦ zsRn(z) ◦ σ−1
1 , C = σ1 ◦ zn ◦ µ (12)

D = ν ◦ zn ◦ σ−1
2 , B = σ2 ◦ zsR(zn) ◦ µ, (13)

where R is a polynomial, n ≥ 1, s ≥ 0, and GCD(s, n) = 1, or

A = ν ◦ Tm ◦ σ−1
1 , C = σ1 ◦ Tn ◦ µ, (14)

D = ν ◦ Tn ◦ σ−1
2 B = σ2 ◦ Tm ◦ µ, (15)

where Tn, Tm are the Chebyshev polynomials, n,m ≥ 1, and GCD(n,m) = 1.
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Notice that the main difficulty in the practical use of Theorem 2.1 and
Theorem 2.2 is the fact that classes of solutions appearing in Theorem 2.2 are
not disjoint. Namely, any solution of the form (14), (15) with n = 2 also can
be represented in the form (12), (13) (see e. g. Section 2.2 of [15] for further
details).

The description of polynomial solutions of equation (10) in the general case in
a certain sense reduces to the case where (11) holds by the following statement.

Theorem 2.3 ([3]). Let A,C,D,B be polynomials such that (10) holds. Then

there exist polynomials U, V, Ã, C̃, D̃, B̃, where

degU = GCD(degA, degD), degV = GCD(degC, degB),

such that
A = U ◦ Ã, D = U ◦ D̃, C = C̃ ◦ V, B = B̃ ◦ V,

and
Ã ◦ C̃ = D̃ ◦ B̃.

In particular, if degC = degB, then there exists a polynomial µ of degree one
such that

A = D ◦ µ−1, C = µ ◦B.

Theorem 2.2 implies the following description of polynomial solutions of
equation (2) under the condition

GCD(degX, degB) = 1 (16)

(see [9]).

Theorem 2.4 ([9]). Let A,B,X be polynomials such that (2) and (16) hold.
Then there exist polynomials µ, ν of degree one such that either

A = ν ◦ zsRn(z) ◦ ν−1, X = ν ◦ zn ◦ µ, D = µ−1 ◦ zsR(zn) ◦ µ,

where R is a polynomial, n ≥ 1, s ≥ 0, and GCD(s, n) = 1, or

A = ν ◦ Tm ◦ ν−1, X = ν ◦ Tn ◦ µ, D = µ−1 ◦ Tm ◦ µ,

where Tn, Tm are the Chebyshev polynomials, n,m ≥ 1, and GCD(n,m) = 1.

Notice, however, that Theorem 2.2, even combined with Theorem 2.3, pro-
vides very little information about solutions of (2) if (16) is not satisfied. A
possible way to investigate the general case is to analyze somehow the totality
of all decompositions of a polynomial P , basing on Theorem 2.1 and Theorem
2.2, and then to apply this analysis to (2) using the fact that we can pass from
the decomposition P = A ◦X to the decomposition P = X ◦ B. This way was
used in the paper [4]. A similar techniques was used in the paper [21] where
it was applied to the study of decompositions of iterations of a polynomial. In
this paper we use another method completely bypassing Theorem 2.1. Notice
by the way that Theorem 2.1 does not hold for arbitrary rational functions (see
e. g. [5]).
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3 Semiconjugacies and Julia sets

3.1 Polynomials sharing preimages of compact sets

Let f1(z), f2(z) be non-constant complex polynomials and K1,K2 ⊂ C compact
sets. In the paper [13] we investigated the following problem. Under what
conditions on the collection f1(z), f2(z),K1,K2 the preimages f−1

1 {K1} and
f−1
2 {K2} coincide that is

f−1
1 {K1} = f−1

2 {K2} = K (17)

for some compact set K ⊂ C ?
Using ideas from approximation theory, we relate equation (17) to the func-

tional equation
g1(f1(z)) = g2(f2(z)), (18)

where f1(z), f2(z), g1(z), g2(z) are polynomials. It is easy to see that for any
polynomial solution of (18) and any compact set K3 ⊂ C we obtain a solution
of (17) setting

K1 = g−1
1 {K3}, K2 = g−1

2 {K3}. (19)

Briefly, the main result of [13] states that, under a very mild condition on the
cardinality of K, all solutions of (17) can be obtained in this way. Combined
with Theorem 2.3 and Theorem 2.2 this leads to a very explicit description of
solutions of (17).

Theorem 3.1 ([13]). Let f1(z), f2(z) be polynomials, deg f1 = d1, deg f2 = d2,
d1 ≤ d2, and let K1,K2,K ⊂ C be compact sets such that (17) holds. Suppose
that card{K} ≥ LCM(d1, d2). Then, if d1 divides d2, there exists a polynomial
g1(z) such that f2(z) = g1(f1(z)) and K1 = g−1

1 {K2}. On the other hand, if
d1 does not divide d2, then there exist polynomials g1(z), g2(z), deg g1 = d2/d,
deg g2 = d1/d, where d = GCD(d1, d2), and a compact set K3 ⊂ C such that

(18),(19) hold. Furthermore, in this case there exist polynomials f̃1(z), f̃2(z),
W (z), degW (z) = d, such that

f1(z) = f̃1(W (z)), f2(z) = f̃2(W (z)) (20)

and there exist linear functions σ1(z), σ2(z) such that either

g1(z) = zcRd1/d(z) ◦ σ−1
1 , f̃1(z) = σ1 ◦ zd1/d, (21)

g2(z) = zd1/d ◦ σ−1
2 , f̃2(z) = σ2 ◦ zcR(zd1/d),

for some polynomial R(z) and c equal to the remainder after division of d2/d
by d1/d, or

g1(z) = Td2/d(z) ◦ σ−1
1 , f̃1(z) = σ1 ◦ Td1/d(z), (22)

g2(z) = Td1/d(z) ◦ σ−1
2 , f̃2(z) = σ2 ◦ Td2/d(z),

for the Chebyshev polynomials Td1/d(z), Td2/d(z).
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Theorem 3.1 may be used for proving many other results (see [13] for details)
the most notable of which is the following description of solutions of (17) in the
case where K1 = K2, first obtained by T. Dinh ([1], [2]) by methods of complex
dynamics.

Theorem 3.2 ([2], [13]). Let f1(z), f2(z) be polynomials such that

f−1
1 {T } = f−1

2 {T } = K (23)

holds for some infinite compact sets T,K ⊂ C. Then, if d1 divides d2, there
exists a polynomial g1(z) such that f2(z) = g1(f1(z)) and g−1

1 {T } = T. On the

other hand, if d1 does not divide d2, then there exist polynomials f̃1(z), f̃2(z),
W (z), degW (z) = d, satisfying (20). Furthermore, in this case one of the
following conditions holds.

1) T is a union of circles with the common center and

f̃1(z) = σ ◦ zd1/d, f̃2(z) = σ ◦ γzd2/d (24)

for some linear function σ(z) and γ ∈ C.

2) T is a segment and

f̃1(z) = σ ◦ ±Td1/d(z), f̃2(z) = σ ◦ ±Td2/d(z), (25)

for some linear function σ(z) and the Chebyshev polynomials Td1/d(z), Td2/d(z).

3.2 Proofs of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. If A ≤
X
B, then for any n ≥ 1 the equality

A◦n ◦X = X ◦B◦n

holds. Therefore, if z1 = X(z0), then the sequence A◦n(z1) is bounded if and
only if the sequence X ◦ B◦n(z0) is bounded. In its turn, the last sequence is
bounded if and only if the sequence B◦n(z0) is bounded. Thus, A ≤

X
B implies

X−1{K(A)} = K(B). (26)

In other direction, if (26) holds, then it follows from B−1{K(B)} = K(B)
that

(X ◦B)−1{K(A)} = K(B).

Thus,
X−1{K(A)} = (X ◦B)−1{K(A)}.

Applying to this equality Theorem 3.1 and using that degX | deg (X ◦ B), we
conclude that

Ã ◦X = X ◦B
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for some polynomial Ã. Furthermore, since we proved that for such Ã the equal-
ity X−1{K(Ã)} = K(B) holds, we see that X−1{K(Ã)} = X−1{K(A)}, im-

plying that K(Ã) = K(A). Finally, it follows from Theorem 3.1 applied to the
equality

A−1{K} = Ã−1{K} = K,

where K = K(Ã) = K(A), that there exists a polynomial of degree one µ such

that Ã = µ ◦A and µ(K(A)) = K(A).
More generally, if

X−1{K} = K(B) (27)

for some compact set K ⊂ C, then

X−1{K} = (X ◦B)−1{K},

implying by Theorem 3.1 that equality (2) holds for some polynomial A. Fur-
thermore, since for such a polynomial A equality (26) holds, we conclude that
X−1{K} = X−1{K(A)} and K = K(A).

Corollary 3.3. Let B be a polynomial of degree at least two. Then a polynomial
X is contained in E(X) if and only K(B) is a union of fibers of X. In particular,
if B1 and B2 are polynomials such that K(B1) = K(B2), then E(B1) = E(B2).

Proof. Since condition (27) implies that K = X{K(B)}, it is equivalent to the
condition

K(B) = X−1{X{K(B)}},
that is to the condition that K(B) is a union of fibers of X .

Corollary 3.4. Let A,B, and X be polynomials such that A ≤
X
B. Then for

any decomposition X = X1 ◦X2 there exists a polynomial C such that

A ≤
X1

C, C ≤
X2

B.

Proof. By Theorem 1.1, K(B) = X−1{K(A)}. Since X = X1 ◦X2, this implies

that K(B) = X−1
2 {K̃}, where K̃ = X−1

1 {K(A)}. Therefore, by Theorem 1.1,
there exists a polynomial C such that

C ◦X2 = X2 ◦B. (28)

Now we have:

A ◦X1 ◦X2 = X1 ◦X2 ◦B = X1 ◦ C ◦X2,

implying that A ◦X1 = X1 ◦ C.

Remark 3.5. Corollary 3.4 may be proved without using Theorem 1.1. Indeed,
if X = X1 ◦X2, then it follows from the equality

A ◦ (X1 ◦X2) = X1 ◦ (X2 ◦B)
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by Theorem 2.3 that

X1 ◦X2 = U ◦ W̃ , X2 ◦B = V ◦ W̃ , (29)

where
deg W̃ = GCD(deg (X1 ◦X2), deg (X2 ◦B)).

Since degX2 | deg W̃ , Theorem 2.3 applied to the first equality in (29) implies

that W̃ = S ◦X2 for some polynomial S. Therefore,

X2 ◦B = V ◦ W̃ = V ◦ S ◦X2

and hence (28) holds for C = V ◦ S.

Proof of Theorem 1.2. By Theorem 1.1, the condition X1, X2 ∈ E(B) implies
that there exist K1, K2 ⊂ C such that

X−1
1 {K1} = K(B), X−1

2 {K2} = K(B).

It follows now from Theorem 3.1 that there exist polynomials X , W , U1, U2,
V1, V2 such that

degX = LCM(degX1, degX2), degW = LCM(degX1, degX2),

and equalities
X = U1 ◦X1 = U2 ◦X2

and
X1 = V1 ◦W, X2 = V2 ◦W (30)

hold. Furthermore, there exists K3 ⊂ C such that

K1 = U−1
1 {K3}, K2 = U−1

2 {K3}.

Therefore,
X−1{K3} = K(B),

implying by Theorem 1.1 that X ∈ E(B). Finally, any of equalities (30) implies
that W ∈ E(B) by Corollary 3.4.

4 Semiconjugacies between fixed A and B

4.1 Semiconjugacies between special polynomials

For a polynomial P and a finite set K ⊂ C denote by P−1
odd{K} the subset of

P−1{K} consisting of points where the local multiplicity of P is odd. Notice
that the chain rule implies that if P = A ◦B, then

P−1
odd{K} = B−1

odd{A−1
odd{K}}. (31)
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Lemma 4.1. Let P be a polynomial of degree n ≥ 2, and K ⊂ C a finite set
containing at least two points. Assume that P−1

odd{K} = K. Then K contains
exactly two points, and P is conjugated to ±Tn.

Proof. Denote by ez the multiplicity of P at z ∈ C, and set r = card(K). Since
for any y ∈ C the set P−1{y} contains

n−
∑

z∈C

P (z)=y

(ez − 1)

points and ∑

z∈C

(ez − 1) = n− 1,

we have:
card(P−1{K}) ≥ rn−

∑

z∈C

(ez − 1) = (r − 1)n+ 1 (32)

(the minimum attains if K contains all finite critical values of P ). Therefore, if

card(P−1
odd{K}) = card(K) = r,

then the set P−1{K} contains at least

(r − 1)n+ 1− r

points where the local multiplicity of P is greater than one, implying that

∑

z∈P−1{K}

ez ≥ r + 2 ((r − 1)n+ 1− r) . (33)

Since the sum in the left part of (33) equals rn, this inequality implies that

(n− 1)(r − 2) ≤ 0. (34)

Thus, r = 2. Furthermore, since the equality in (34) attains if and only if the
equality in (33) attains, we conclude that if P−1

odd{K} = K, then ez = 2 for each
z ∈ P−1{K} \K, and the local multiplicity of P at each of two points of K is
equal to one.

Changing P to σ−1 ◦ P ◦ σ for a convenient polynomial of degree one σ, we
can assume that K = {−1, 1}. Then the condition on multiplicities of P implies
that P 2 − 1 is divisible by (P ′)2, and calculating the quotient we conclude that
P satisfies the differential equation

n2(1 − y2) = (y′)2(1 − z2).

Since the general solution of the equation

y′√
1− y2

= ± n√
1− z2

13



is
arccos y = ±n arccosz + c,

it follows now from P (1) = 1 that

P = ±cos (n arccosx) = ±Tn(z).

Remark 4.2. Notice that the equality Tn(−z) = (−1)nTn(z) implies that for
even n the polynomials Tn and −Tn are conjugated since Tn = α ◦ (−Tn) ◦α−1,
where α(z) = −z. For odd n however the polynomials Tn and −Tn are not
conjugated.

Lemma 4.3. Let P be a polynomial and a, b ∈ C. Then the set P−1
odd{a, b}

contains at least two points.

Proof. It follows from the equality

2n =
∑

z∈C

P (z)=a

ez +
∑

z∈C

P (z)=b

ez

that the number ∑

z∈P−1

odd
{a,b}

ez

is even, implying that the number card(P−1
odd{a, b}) also is even. On the other

hand,
card(P−1

odd{a, b}) 6= 0,

for otherwise P−1
odd{a, b} contains at most n/2+n/2 = n points in contradiction

with inequality (32).

Theorem 4.4. Let A and B be polynomials of degree at least two such that
A ≤ B. Then A is conjugated to zn if and only if B is conjugated to zn. Simi-
larly, A is conjugated to ±Tn if and only if B is conjugated to ±Tn.

Proof. Assume that B is conjugated to ±Tn, and let X be a semiconjugacy from
B to A. Changing B and X to σ−1◦B◦σ and X ◦σ, for a convenient polynomial
σ of degree one, without loss of generality we can assume that B = ±Tn. By
Theorem 1.1, we have:

X−1{K(A)} = K(B) = [−1, 1]. (35)

Set m = degX. Since
T−1
m {[−1, 1]} = [−1, 1], (36)

equality (35) implies that

X−1{K(A)} = T−1
m {[−1, 1]}.

14



It follows now from Theorem 3.1 that there exists a polynomial δ of degree one
such that X = δ ◦Tm. Therefore, changing A and X to δ−1 ◦A ◦ δ and σ−1 ◦X ,
we can assume that X = Tm. Thus, we have:

A ◦ Tm = Tm ◦ ±Tn = (−1)mTn ◦ Tm, (37)

implying that A = ±Tn.
Similarly, if B = zn, then the equalities

X−1{K(A)} = K(B) = D,

and (zm)−1{D} = D imply that X = δ ◦ zm for some polynomial δ of degree
one, and arguing as above we conclude that A is conjugated to zn.

Assume now that A is conjugated to ±Tn. Without loss of generality we can
assume that A = ±Tn. Since T−1

nodd{−1, 1} = {−1, 1}, formula (31) implies that

(±Tn ◦X)−1
odd{−1, 1} = X−1

odd{−1, 1}.

It follows now from
±Tn ◦X = X ◦B (38)

that
B−1

odd{X−1
odd{−1, 1}} = X−1

odd{−1, 1}. (39)

Since by Lemma 4.3 the setX−1
odd{−1, 1} contains at least two points, this implies

by Lemma 4.1 that the polynomial B is conjugated to ±Tn.
Finally, if A is conjugated to zn, we can assume that A = zn, and considering

zeroes of the left and the right parts of the equality

zn ◦X = X ◦B,

we see that B−1{X−1{0}} = X−1{0}. It follows now from inequality (32) that
X−1{0} consists of a single point, implying easily that the polynomial B is
conjugated to zn.

Remark 4.5. Since for even n the polynomials Tn and −Tn are conjugated
(see Remark 4.2), Theorem 4.4 implies that if B is conjugated to ±Tn for even
n, then A and B are conjugated. On the other hand, if B is conjugated to −Tn
for odd n, then A is not necessary conjugated to −Tn, but only to ±Tn. Still,
it follows from (37) that if B is conjugated to Tn, then A is conjugated to Tn.

Notice that Theorem 4.4 combined with Remark 4.5 implies the following
corollary.

Corollary 4.6. Let A and B be polynomials such that the conditions A ≤ B
and B ≤ A hold simultaneously, and at least one of A and B is special. Then
A and B are conjugated.
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4.2 Proof of Theorem 1.3

The following lemma is a well-known fact from the complex dynamics. For the
reader convenience we give a short proof based on Theorem 3.1.

Lemma 4.7. Let A be a polynomial of degree n such that K(A) is a union of
circles with a common center. Then K(A) is a disk, and A is conjugate to zn.
Similarly, if K(A) is a segment, then A is conjugated to ±Tn.
Proof. Since for a polynomial A the complement to K(A) in CP1 is connected
(see e.g. [12], Lemma 9.4), if K(A) is a union of circles with a common center,
thenK(A) is a disk. Furthermore, changing if necessary A to a conjugated poly-
nomial, we can assume that K(A) = D. Thus, A−1{D} = D. On the other hand,
(zn)−1{D} = D, and applying to these equalities Theorem 3.1, we conclude that
A = αzn, where |α| = 1, implying that A is conjugate to zn.

Similarly, if K(A) is a segment, we can assume that K(A) = [−1, 1], and to
conclude in a similar way that A is conjugated to ±Tn.
Proof of Theorem 1.3. Set d0 = degX0, and let X ∈ E(A,B) be a polynomial
of degree d. By Theorem 1.1, we have:

X−1
0 {K(A)} = K(B), X−1{K(A)} = K(B).

Applying to these equalities Theorem 3.2 and taking into account that, by
Lemma 4.7, K(A) is neither a union of circles with the common center nor a

segment, we conclude that X = Ã ◦ X0 for some polynomial Ã. Substituting
now this expression in (2) and using that X0 ∈ E(A,B) we have:

A ◦ Ã ◦X0 = Ã ◦X0 ◦B = Ã ◦A ◦X0,

implying that A ◦ Ã = A ◦ Ã.
In other direction, if A commutes with Ã, then

A ◦ (Ã ◦X0) = Ã ◦A ◦X0 = (Ã ◦X0) ◦B. �

Theorem 1.3 implies in particular the following classification of commuting
polynomials obtained by Ritt.

Theorem 4.8 ([20]). Let A and B be commuting polynomials of degree at least
two. Then, up to the change

A→ λ ◦A ◦ λ−1, B → λ ◦B ◦ λ−1, (40)

where λ is a polynomial of degree one, either

A = zn, B = εzm, (41)

where εn = ε, or
A = ±Tn, B = ±Tm, (42)

or
A = ε1R

◦m, B = ε2R
◦n, (43)

where R = zS(zl) for some polynomial S, and ε1, ε2 are l-th roots of unity.
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Proof. Assume first that A is conjugated to zn. Without loss of generality we
may assume that A = zn. Applying Theorem 1.3 for B = A and X = B, we
have:

B−1{K(A)} = K(A).

Since K(A) = D, arguing as in Lemma 4.7 we conclude that B = εzm, and it
follows from A ◦B = B ◦A that εn = ε. If A is conjugated to ±Tn, the proof is
similar.

On the other hand, if A is non-special, then Theorem 1.3 implies that any
B ∈ E(A,A) has the form B = Ã ◦R, where R is a polynomial of the minimum
possible degree in E(A,A). Now we can apply Theorem 1.3 again to the poly-

nomial Ã and so on, arriving eventually to the representation B = µ1 ◦ R◦m1 ,
where µ1 is a polynomial of degree one commuting with A. In particular, since
A ∈ E(A,A), the equality A = µ2 ◦R◦m2 holds for some polynomial µ2 of degree
one commuting with A. Furthermore, since R commutes with A = µ2 ◦ R◦m2 ,
the polynomial µ2 commutes with R. This implies easily that, up to a conju-
gacy, R = zS(zl) for some polynomial S, and µ2 = ε2z for some lth root of
unity ε2. Finally, since µ1 commutes with the polynomial A, and A = µ2 ◦R◦m2

has the form zS̃(zl) for some polynomial S̃, we conclude that µ1 = ε1z for some
lth root of unity ε1.

4.3 Semiconjugacies and invariant curves

It was shown in the recent paper [4] that the problem of description of semicon-
jugate polynomials is closely related to the problem of description of algebraic
curves C in C2 invariant under maps of the form F : (x, y) → (f(x), g(y)),
where f, g are polynomials of degree at least two. Briefly, this relation may be
summarized as follows (see Proposition 2.34 of [21] for more details).

If C is an irreducible (f, g)-invariant curve, then its projective closure C in

CP1 ×CP1 is also (f, g)-invariant. Denote by h̄ the restriction of F on C. Let C̃

be the desingularization of C and β : C̃ → C a map biholomorphic off a finite set.
Clearly, h̄ lifts to a holomorphic map h : C̃ → C̃. Consider now the commutative
diagram

C̃
h−−−−→ C̃

yβ

yβ

C
h̄−−−−→ C

yα

yα

CP1 f−−−−→ CP1,

(44)

where α : C → CP1 is the projection map onto the first coordinate. Set π = α◦β.
If π is a constant, then C is a line z1 = ξ, where ξ is a fixed point of f , so assume
that the degree of π is at least one. Observe that since f−1{∞} = {∞}, the set
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K = π−1{∞} and the map h satisfy the equality

h−1{K} = K. (45)

Since h is a holomorphic map between Riemann surfaces of the same genus
and deg h = deg f ≥ 2, it follows from the Riemann-Hurwitz formula that either
g(C̃) = 0, or g(C̃) = 1 and h is unbranched. Since for unbranched h equality

(45) is impossible, we conclude that C̃ = CP1, and (45) implies easily that, up
to the change α ◦h ◦α−1, where α is a Möbius transformation, either K = {∞}
and h is a polynomial, or K = {0,∞} and h = z±deg f . Thus,

f ◦ π = π ◦ h, (46)

where either π and h are polynomials, or h = z±deg f and π is a Laurent poly-
nomial. The last case requires an additional investigation. The paper [21] refers
(Fact 2.25) to a more general result of [11] (Theorem 10) implying that for a
non-special polynomial f this possibility is excluded. Alternatively, one can use
results of the paper [14] (e.g. Theorem 6.4).

Considering in a similar way the projection onto the second coordinate, we
arrive to the equality

g ◦ ρ = ρ ◦ h. (47)

Thus, for non-special f and g any irreducible (f, g)-invariant curve may be
parametrized by some polynomials π, ρ satisfying system (46), (47) for some
polynomial h.

Notice that in a certain sense a description of (f, g)-invariant curves reduces
to the case f = g since the commutative diagram

C2 (h,h)−−−−→ C2

y(π,ρ)

y(π,ρ)

C2 (f,g)−−−−→ C2

(48)

implies that any (f, g)-invariant curve is an image of an (h, h)-invariant curve
under the map (x, y) → (π(x), ρ(y)).

Theorem 1.3 permits to obtain easily the following description of (f, f)-
invariant curves obtained in [21] (see Theorem 6.24 and the theorem on p. 85).

Theorem 4.9. Let f be a non-special polynomial of degree at least two, and
C an irreducible (f, f)-invariant curve in C2. Then there exists a polynomial p
which commutes with f such that C has either the form z1 = p(z2) or z2 = p(z1).

Proof. If C is a line z1 = ξ, then ξ is a fixed point of f , and the conclusion of
the theorem holds for p = ξ. Similarly, the theorem holds if C is a line z2 = ξ.
Otherwise, as it was shown above, C may be parametrized by some non-constant
polynomials π, ρ satisfying the system

f ◦ π = π ◦ h, (49)
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f ◦ ρ = ρ ◦ h (50)

for some polynomial h. Furthermore, without loss of generality we may assume
that there exists no polynomial w of degree greater than one such that

π = π̃ ◦ w, ρ = ρ̃ ◦ w (51)

for some polynomials π̃, ρ̃. Indeed, if (51) holds, then applying Theorem 2.3 to
the equality

(f ◦ π̃) ◦ w = π̃ ◦ (w ◦ h),
we conclude that w ◦ h = h̃ ◦ w for some polynomial h̃, implying that we may
change π to π̃, ρ to ρ̃, and h to h̃.

Set d = GCD(deg ρ, deg π). Since f is not special, it follows from (49), (50)
by Theorem 1.3 that if both ρ and π are of degree at least two, then d > 1,
implying by Theorem 1.2 that (51) holds for some polynomials π̃, ρ̃ and w with
degw = d > 1. Therefore, at least one of polynomial ρ and τ is of degree one.
Assume say that deg ρ = 1. Then, C has the form z1 = p(z2), where p = π ◦ρ−1.
Furthermore, equality (50) implies that h = ρ−1 ◦ f ◦ ρ, and substituting this
expression into (49) we conclude that p commutes with f.

Without deepening further into the subject, let us mention the following
application of Theorem 1.2.

Theorem 4.10. Let f and g be non-special polynomials of degree at least two.
Then any irreducible (f, g)-invariant curve C in C2 is an irreducible component
of a curve of the form u(x)− v(y) = 0 for some polynomials u, v.

Proof. If one of the polynomials π and ρ parametrizing C, say ρ, is of degree at
most one, then arguing as above we conclude that C has the form z1 = p(z2),
where p satisfies f ◦ p = p ◦ g. In the general case, by Theorem 1.2, there exist
polynomials u and v such that u ◦ π = v ◦ ρ, and hence π and ρ parametrize a
component of u(x)− v(y) = 0.

4.4 Semiconjugacies between equivalent A and B

For a natural number n with a prime decomposition n = pa1

1 p
a2

2 . . . pas
s set

rad(n) = p1p2 . . . ps. The following two theorems in totality provide a proof of
Theorem 1.4.

Theorem 4.11. Let A and B be polynomials of degree at least two. Then
conditions A ≤ B and B ≤ A hold simultaneously if and only if A ∼ B.

Proof. The “if” part follows from the definition of ∼ (see the introduction).
Furthermore, if at least one of A and B is special, then conditions A ≤ B
and B ≤ A imply by Corollary 4.6 that A and B are conjugated and hence
equivalent. So, we may assume that A and B are non-special.

Let Y and X be polynomials such that

B ≤
Y
A, A ≤

X
B. (52)
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Set n = degA = degB. Since (52) implies that Y ◦ X commutes with B,
Theorem 4.8 implies that

rad(degX) | rad(n). (53)

In particular,
GCD(degX,n) > 1. (54)

Applying Theorem 2.3 to the equality

A ◦X = X ◦B, (55)

we conclude that there exist polynomials X̃, B̃, and W such that

B = B̃ ◦W, X = X̃ ◦W, (56)

and degW = GCD(degX,n). Clearly, B ∼W ◦ B̃, and equalities (55) and (56)
imply that

A ◦ X̃ = X̃ ◦ (W ◦ B̃). (57)

Furthermore, deg X̃ < degX , since degW > 1 by (54). If deg X̃ = 1, then

A ∼W ◦ B̃ since A and W ◦ B̃ are conjugated. Hence,

A ∼W ◦ B̃ ∼ B,

and we are done. Otherwise, we can apply Theorem 2.3 in a similar way to
equality (57) and so on. Since condition (53) ensures that the degrees of cor-
responding semiconjugacies decrease, we obtain in this way a finite chain of
equivalences from B to A.

Theorem 4.12. Let A and B be polynomials of degree at least two. Then
A ∼ B if and only if there exist polynomials X and Y such that

B ◦ Y = Y ◦A, A ◦X = X ◦B, (58)

and Y ◦X = B◦d for some d ≥ 0.

Proof. Taking into account Theorem 4.11, we only must show that if equalities
(58) hold, then they hold for some X̃, Ỹ such that Ỹ ◦ X̃ = B◦d, d ≥ 0. Since
(58) implies that Y ◦ X commutes with B, it follows from Theorem 4.8 that
either B is special, or, up to a conjugacy,

Y ◦X = ε1R
◦m1 , B = ε2R

◦m2 ,

where R = zS(zn) for some polynomial S, and ε1, ε2 are nth roots of unity. In
the first case, Corollary 4.6 implies that A and B are conjugated. Therefore,
in this case (58) holds for some Möbius transformations Ỹ and X̃ such that

Ỹ ◦ X̃ = B0. In the second case set

X̃ = X ◦ ε3R◦(m2m1−m1),
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where ε3 = εm1

2 /ε1, and observe that the second of equalities (58) still holds for

X̃ since

A ◦ X̃ = A ◦X ◦ ε3R◦(m2m1−m1) = X ◦B ◦ ε3R◦(m2m1−m1) =

= X ◦ ε2R◦m2 ◦ ε3R◦(m2m1−m1) = X ◦ ε3R◦(m2m1−m1) ◦ ε2R◦m2 = X̃ ◦B.
On the other hand, we have:

Y ◦ X̃ = ε1R
◦m1 ◦ ε3R◦(m2m1−m1) = ε1ε3R

◦m2m1 = εm1

2 R◦m2m1 = B◦m1 . �

5 Semiconjugacies for fixed B

5.1 Special factors of semiconjugacies

Lemma 5.1. Let A and B be polynomials of degree n ≥ 2 such that

A ◦ Tl = Tl ◦B, l ≥ 2. (59)

Then l ≤ 2n, unless A = ±Tn and B = ±Tn. Similarly, if

A ◦ zl = zl ◦B, l ≥ 2, (60)

then l ≤ n, unless A = αzn, α ∈ C, and B = βzn, β ∈ C.

Proof. If

n ≤ l − 1

2
, (61)

then the set
(Tl ◦B)−1

odd{−1, 1} = B−1
odd{−1, 1}

contains at most l − 1 points. Therefore, if equality (59) holds, then the set

(A ◦ Tl)−1
odd{−1, 1} (62)

also contains at most l − 1 points. On the other hand, since −1 and 1 are the
only finite critical values of Tn, if the set A

−1
odd{−1, 1} contains at least one point

distinct from ±1, then set (62) contains at least l points. Since by Lemma 4.3
the set A−1

odd{−1, 1} contains at least two points, we conclude that if (61) holds,
then

A−1
odd{−1, 1} = {−1, 1}. (63)

Therefore, by Lemma 4.1, A = ±Tn, It follows now from (59) that

±Tnl = Tl ◦B,

implying that
Tl ◦B = ±Tl ◦ Tn,
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and applying to the last equality Theorem 2.3 we see that

Tl = ±Tl ◦ µ, B = µ−1 ◦ Tn, (64)

for some polynomial µ of degree one. Finally, it is easy to see, using for example
the explicit formula

Tn =
n

2

[n/2]∑

k=0

(−1)k
(n− k − 1)!

k!(n− 2k)!
(2x)n−2k, (65)

that the first of equalities (64) implies the equality µ = ±x.
Assume now that equality (60) holds and n ≤ l − 1. Then the polynomial

in the right part of (60) has at most l − 1 zeroes. On the other hand, since a
unique finite critical value of zl is zero, it is easy to see that, unless

A = αzn, α ∈ C, (66)

the polynomial in the left part of (60) has at least l zeroes. Finally, (66) and
(60) imply easily that B = βzn, β ∈ C.

Theorem 5.2. Let B be a non-special polynomial of degree n ≥ 2, and X an
element of E(B). Assume that X =W1 ◦ zl ◦W2 for some polynomials W1, W2

and l ≥ 1. Then l ≤ n. Similarly, if X =W1 ◦ ±Tl ◦W2, then l ≤ 2n.

Proof. If X =W1 ◦ zl ◦W2, then applying Corollary 3.4 twice we conclude that
there exist polynomials C1and C2 such that the equalities

A ◦W1 =W1 ◦ C1, C1 ◦ zl = zl ◦ C2, C2 ◦W2 =W2 ◦B (67)

hold. Applying now Lemma 5.1 to the second equality in (67) we conclude that
l ≤ n, unless C1 and C2 are conjugated to zn. On the other hand, in the last
case the third equality in (67) implies by Theorem 4.4 that B is conjugated to
zn. If X =W1 ◦ ±Tl ◦W2, the proof is similar.

Corollary 5.3. Let B be a non-special polynomial of degree n ≥ 2. Assume
that B◦d =W1 ◦ zl ◦W2 for some polynomials W1, W2, and l ≥ 1, d ≥ 1. Then
l ≤ n. Similarly, if B◦d =W1 ◦ ±Tl ◦W2, then l ≤ 2n.

Proof. Follows from Theorem 5.2, since B◦d is a semiconjugacy fromB to B.

5.2 Proof of Theorem 1.5

For natural numbers n and m define l = l(n,m) as the maximum number
coprime with n which divides m. Thus,

m = lb, (68)

where rad(b)|rad(n) and GCD(n, l) = 1. Define now d = d(n,m) as the mini-
mum number such that b in (68) satisfies b | nd. The next proposition describes
a general structure of elements of E(B) for non-special B.
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Proposition 5.4. Let B be a non-special polynomial of degree n ≥ 2. Then
any X ∈ E(B) has the form X = ν ◦ zl(n,m) ◦W, where ν is a polynomial of
degree one, and W is a compositional right factor of B◦d(n,m). Furthermore,
l(n,m) < n.

Proof. Set m = degX , and let l, b, d be the numbers defined above. If A is a
polynomial such that

A ◦X = X ◦B, (69)

then equality
A◦d ◦X = X ◦B◦d, (70)

implies by Theorem 2.3 that

X = U ◦ S, B◦d = V ◦ S, (71)

for some polynomials U, V, S, where degU = l. Furthermore, equalities (69) and
X = U ◦ S imply by Corollary 3.4 that

A ◦ U = U ◦ C (72)

for some polynomial C. Since l is coprime with n, by Theorem 2.4 there exist
polynomials µ, ν of degree one such that either

A = ν ◦ zsRl(z) ◦ ν−1, U = ν ◦ zl ◦ µ, C = µ−1 ◦ zsR(zl) ◦ µ,

where R is a polynomial, n ≥ 1, s ≥ 0, and GCD(s, l) = 1, or

A = ν ◦ Tn ◦ ν−1, U = ν ◦ Tl ◦ µ, C = µ−1 ◦ Tn ◦ µ,

where GCD(l, n) = 1. In the last case however Theorem 4.4 applied to (69)
implies that B is conjugated to Tn. Therefore, the first case has the place and
hence X = ν ◦ zl ◦ W , where W = µ ◦ S is a compositional right factor of
B◦d. Moreover, since n = rl + s, where r = degR, the inequality l < n holds
whenever r 6= 0. On the other hand, if r = 0, then A is conjugated to zn and
hence B also is conjugated to zn by Theorem 4.4.

For a natural number n with a prime decomposition n = pa1

1 p
a2

2 . . . pas
s set

ordp(n) = ai, if p = pi for some i, 1 ≤ i ≤ s, and ordpn = 0 otherwise.

Proposition 5.5. If, under assumptions of Proposition 5.4, the polynomial X
is not a polynomial in B, then d(n,m) ≤ 2 log2 n+ 3.

Proof. Set
a = nd/b. (73)

Clearly, for any prime p,

ordp(b) + ordp(a) = ordp(n)d,

implying that

ordpb = ordp(n)(d− 1) + ordp(n)− ordp(a). (74)
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Observe that the definition of d(n,m) implies that a is not divisible by n. More-
over, the number b is not divisible by n either, since otherwise equality (69)
implies by Theorem 2.3 that X is a polynomial in B. Observe also that by
Theorem 4.4 any polynomial A such that (69) holds is not special.

It follows from Theorem 2.3 applied to equality (70) that there exist poly-
nomials N , F and Y , Z, where

degZ = l, deg Y = a,

such that
A◦d = N ◦ Y, X = N ◦ Z,

and
Y ◦X = Z ◦B◦d. (75)

Applying now Theorem 2.3 and Theorem 2.2 to the equality

Y ◦X = (Z ◦Bd−i) ◦Bi

for each i, 1 ≤ i ≤ d − 1, we obtain a collection of polynomials Yi, Xi, Wi Ui,
Ki, Li, 1 ≤ i ≤ d− 1, such that

Y = Ui ◦ Yi, Z ◦B◦d−i = Ui ◦Ki, X = Xi ◦Wi, B◦i = Li ◦Wi, (76)

and
Yi ◦Xi = Ki ◦ Li. (77)

Furthermore,
deg Yi = ai, degXi = lbi,

where

ai =
a

GCD(a, nd−i)
, bi =

b

GCD(b, ni)
,

and there exist polynomials of degree one νi, σi, µi 1 ≤ i ≤ d − 1, such that
either

Yi = νi ◦ zai ◦ σi, Xi = σ−1
i ◦ zcR(zai) ◦ µi, (78)

where R ∈ C[z] and GCD(c, ai) = 1, or

Yi = νi ◦ zcRlbi(z) ◦ σi, Xi = σ−1
i ◦ zlbi ◦ µi, (79)

where R ∈ C[z] and GCD(c, lbi) = 1, or

Yi = νi ◦ Tai
◦ σi, Xi = σ−1

i ◦ Tlbi ◦ µi, (80)

where GCD(ai, lbi) = 1.
Observe first that

ai ≥ 2i, bi ≥ 2d−i. (81)
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Indeed, since n ∤ a, there exists p ∈ rad(n) such that ordp(n)− ordp(a) > 0. It
follows now from (74) that for any i, 1 ≤ i ≤ d− 1, the equality

ordp
(
GCD(b, ni)

)
= ordp(n)i

holds. Thus,

ordp(bi) = ordpn− ordp
(
GCD(b, ni)

)
= ordp(n)(d− 1− i) + ordp(n)− ordp(a),

implying that

bi ≥ pordp(n)(d−1−i)+ordp(n)−ordp(a) ≥ pordp(n)(d−1−i)+1 ≥ p(d−1−i)+1 = pd−i.

Similarly, since n ∤ b, there exists q ∈ rad(n) such that ordq(n) − ordq(b) > 0
implying that for any i, 1 ≤ i ≤ d− 1, the inequality ai ≥ qi holds. Since p ≥ 2,
q ≥ 2, this proves (81).

In order to establish now the required bound, observe that since

A◦d = N ◦ Ui ◦ Yi,

it follows from Corollary 5.3 that if (78) or (80) holds, then ai ≤ 2n. On the
other hand, since X = Xi ◦Wi, if (79) or (80) holds, then bi ≤ lbi ≤ 2n, by
Theorem 5.2. Thus, for any i, 1 ≤ i ≤ d− 1, the inequality

min{ai, bi} ≤ 2n

holds. On the other hand, it follows from (81) that for i0 = ⌊d/2⌋ the inequality

min{ai, bi} ≥ 2⌊d/2⌋

holds. Therefore, 2⌊d/2⌋ ≤ 2n, implying that 2d/2 ≤ 2
√
2n. Thus,

d/2 ≤ log2 n+ 3/2 and d ≤ 2 log2 n+ 3.

Proof of Theorem 1.5. Observe first that if X ∈ E(B) is a semiconjugacy from
B to A, then A is defined in a unique way since the equalities

A ◦X = X ◦B, Ã ◦X = X ◦B

imply the equality A ◦X = Ã ◦X which in its turn implies the equality A = Ã.
In particular, this implies that for any X1, X2 ∈ E(B) such that X2 = µ◦X1 for
some polynomial µ of degree one the corresponding polynomials A1, A2 ∈ F(B)
are conjugated. Further, for any A ∈ F(B) there exists X such that

A ◦X = X ◦B (82)

and X is not a polynomial in B, since equalities (82) and X = X̃ ◦ B◦s imply
the equality

A ◦ X̃ = X̃ ◦B.
Finally, if X1, X2 ∈ E(B) and degX1 = degX2, then the corresponding poly-
nomials in A1, A2 ∈ F(B) are conjugated, since Theorem 1.1 and Theorem 3.1
imply that there exists a polynomial µ of degree one such that X2 = µ ◦X1.
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Let X be an element of E(B) and X = ν ◦ zl ◦W its representation from
Proposition 5.4. Then it follows from Proposition 5.5 that, unless X is a poly-
nomial in B, the inequality d ≤ 2 log2 n + 3 holds. Since, in addition, for
the number l the inequality l < n holds, this implies that up to the change
X → µ ◦ X , where µ is a polynomial of degree one, there exists at most a
finite number of elements of E(B) which are not polynomials in B. Applying
to these polynomials recursively Theorem 1.2 we obtain polynomials X ∈ E(B)
and A ∈ F(B) which satisfy the conclusion of the theorem.

Remark 5.6. Since the degree of the polynomial of X from Theorem 1.5 is
equal to the less common multiple of all polynomials from E(B) which are not
polynomials in B, it follows from Proposition 5.4 and Proposition 5.5 that degX
is bounded by the number ψ(n)n2 log

2
n+3, where ψ(n) denotes the less common

multiple of all numbers less than n and coprime with n. In particular,

c(n) ≤ (n− 1)!n2 log
2
n+3.

Corollary 5.7. Let B be a polynomial of degree at least two. Then there exists
at most a finite number of conjugacy classes of polynomials A such that A ≤ B.

Proof. If B is non-special, then the corollary follows from Theorem 1.5. For
special B the corollary follows Theorem 4.4.

Corollary 5.8. Each equivalence class of the relation ∼ contains at most a
finite number of conjugacy classes.

Proof. Follows from Corollary 5.7, since A ∼ B implies A ≤ B,

Corollary 5.9 ([21]). Let B be a non-special polynomial of degree n ≥ 2, and
X and Y polynomials such that Y ◦X = B◦s for some s ≥ 1. Then there exist
polynomials X̃, Ỹ and i, j ≥ 0 such that

Y = B◦i ◦ Ỹ , X = X̃ ◦B◦j , and Ỹ ◦ X̃ = B◦s̃,

where s̃ is bounded from above by a constant which depends on n only.

Proof. Clearly, without loss of generality we may assume that X is not a poly-
nomial in B. Since B ◦ B◦d = B◦d ◦ B, the polynomial B◦d is contained in
E(B) and hence X is contained in E(B) by Corollary 3.4. Furthermore, since
rad(degX) | rad(n), it follows from Proposition 5.4 and Proposition 5.5 that

there exists a polynomial Ỹ such that Ỹ ◦ X = B◦(2 log
2
n+3). Therefore, if

s > 2 log2 n+ 3, then

B◦s = B◦(s−2 log
2
n−3) ◦B◦(2 log

2
n+3) = B◦(s−2 log

2
n−3) ◦ Ỹ ◦X = Y ◦X,

implying that Y = B◦(s−2 log
2
n−3) ◦ Ỹ . This proves the corollary, and shows

that s̃ ≤ 2 log2 n+ 3.
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Remark 5.10. The bound s̃ ≤ 2 log2 n+ 3 in Corollary 5.9 is not optimal. It
was shown in [21] that in fact s̃ ≤ log2(n + 2) and that this last bound cannot
be improved. For more details we refer the reader to [21]. Notice however that
for applications, similar to ones given in [8], the actual form of the bound for s̃
is not important.

Acknowledgments. The author is grateful to the Max-Planck-Institut fuer
Mathematik for the hospitality and the support.

References
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École Norm. Sup. 39 (3) (1922), 131-215.

[11] A. Medvedev, Minimal sets in ACFA, Thesis (Ph.D.)University of Califor-
nia, Berkeley. 2007. 96 pp.

[12] J. Milnor, Dynamics in one complex variable, Princeton Annals in Mathe-
matics 160. Princeton, NJ: Princeton University Press (2006).

[13] F. Pakovich,On polynomials sharing preimages of compact sets, and related
questions, Geom. Funct. Anal, 18, No. 1, 163-183 (2008).

27



[14] F. Pakovich, Prime and composite Laurent polynomials, Bull. Sci. Math,
133 (2009) 693-732.

[15] F. Pakovich, Generalized “second Ritt theorem” and explicit solution of the
polynomial moment problem, Compositio Math. 149 (2013), 705-728.

[16] F. Pakovich, On semiconjugate rational functions, arXiv:1108.1900.

[17] F. Pakovich, Solution of the parametric Center Problem for Abel Equation,
J. Eur. Math. Soc., to appear.

[18] J. F. Ritt. On the iteration of rational functions, Trans. Amer. Math. Soc.
21 (1920), no. 3, 348-356.

[19] J. Ritt, Prime and composite polynomials, American M. S. Trans. 23, 51-66
(1922).

[20] J. F. Ritt. Permutable rational functions, Trans. Amer. Math. Soc. 25
(1923), 399-448.

[21] M.Zieve, P. Müller, On Ritt’s polynomial decomposition theorem, preprint,
arXiv:0807.3578.

28


	50_Pakovich_cover
	50_Pakovich

