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COMPUTING α-INVARIANTS OF SINGULAR DEL PEZZO SURFACES

IVAN CHELTSOV AND DIMITRA KOSTA

Abstract. We prove new local inequality for divisors on surfaces and utilize it to compute
α-invariants of singular del Pezzo surfaces, which implies that del Pezzo surfaces of degree one
whose singular points are of type A1, A2, A3, A4, A5 or A6 are Kähler-Einstein.

We assume that all varieties are projective, normal, and defined over C.

1. Introduction

Let X be a Fano variety with at most quotient singularities (a Fano orbifold).

Theorem 1.1 ([37]). If dim(X) = 2 and X is smooth, then

the surface X is Kähler–Einstein ⇐⇒ the group Aut
(
X
)

is reductive.

An important role in the proof of Theorem 1.1 is played by several holomorphic invariants,
which are now known as α-invariants. Let us describe their algebraic counterparts.

Let D be an effective Q-divisor on the variety X. Then the number

c
(
X,D

)
= sup

{
ε ∈ Q

∣∣∣the log pair
(
X, εD

)
is log canonical

}
∈ Q ∪

{
+∞

}
.

is called the log canonical threshold of the divisor D (see [21, Definition 8.1]). Put

lctn
(
X
)

= inf

{
c

(
X,

1

n
B

) ∣∣∣∣∣ B is a divisor in
∣∣− nKX

∣∣}
for every n ∈ N. For small n, the number lctn(X) is usually not very hard to compute.

Example 1.2 ([28]). If X is a smooth surface in P3 of degree 3, then

lct1

(
X
)

=

{
2/3 if X has an Eckardt point,

3/4 if X has no Eckardt points.

The number lctn(X) is denoted by αn(X) in [38].

Remark 1.3. It follows from [27, Lemma 4.8] that the set{
c

(
X,

1

n
B

) ∣∣∣∣∣ B is a divisor in
∣∣− nKX

∣∣}
is finite (cf. [23]). Thus, there exists a divisor B ∈ |−nKX | such that lctn(X) = c(X,B/n) ∈ Q.

If the variety X is smooth, then it is proved by Demailly (see [6, Theorem A.3]) that

inf
{

lctn
(
X
) ∣∣∣ n ∈ N

}
= α

(
X
)
,

where α(X) is the α-invariant introduced by Tian in [36]. Put lct(X) = inf{lctn(X) | n ∈ N}.

Conjecture 1.4 ([38, Question 1]). There is a n ∈ N such that lct(X) = lctn(X).

The authors thank G. Brown, N. Budur, J. Kollár, M. Mustata, J. Park, Y. Prokhorov for valuable comments.
This paper was completed under financial support provided by IKY (Greek State Scholarship Foundation).
The first author thanks the Max-Planck-Institute für Mathematik at Bonn for hospitality.
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2 IVAN CHELTSOV AND DIMITRA KOSTA

The proof of Theorem 1.1 uses (at least implicitly) the following result.

Theorem 1.5 ([36], [10]). The Fano orbifold X is Kähler–Einstein if

lct
(
X
)
>

dim(X)

dim(X) + 1
.

Note that there are many well-known obstructions to the existence of Kähler–Einstein metrics
on smooth Fano manifolds and Fano orbifolds (see [25], [14], [15], [34]).

Example 1.6. If X ∼= P(1, 2, 3), then X is not Kähler–Einstein (see [15], [34]).

Let us describe one more α-invariant that took its origin in [37].
Let M be a linear system on the variety X. Then the number

c
(
X,M

)
= sup

{
ε ∈ Q

∣∣∣the log pair
(
X, εM

)
is log canonical

}
∈ Q ∪

{
+∞

}
.

is called the log canonical threshold of the linear system M (cf. [21, Theorem 4.8]). Put

lctn,2
(
X
)

= inf

{
c

(
X,

1

n
B

) ∣∣∣∣∣ B is a pencil in
∣∣− nKX

∣∣}
for every n ∈ N. The number lctn,2(X) is denoted by αn,2(X) in [8] and [41]. Note that

(1.7) lct
(
X
)

= inf
{

lctn,2
(
X
) ∣∣∣ n ∈ N

}
,

and it follows from [21, Theorem 4.8] that lctn(X) 6 lctn,2(X) for every n ∈ N.

Remark 1.8. It follows from [27, Lemma 4.8] and [21, Theorem 4.8] that the set{
c

(
X,

1

n
B

) ∣∣∣∣∣ B is a pencil in
∣∣− nKX

∣∣}
is finite. Thus, there is a pencil B in |−nKX | such that the equality lctn,2(X) = c(X,B/n). Then

lctn,2
(
X
)
> lct

(
X
)

if there exists at most finitely many effective Q-divisorsD1, D2, . . . , Dr on the varietyX such that

c
(
X,D1

)
= c
(
X,D2

)
= · · · = c

(
X,Dr

)
= lct

(
X
)

and D1 ∼Q D2 ∼Q . . . ∼Q Dr ∼Q −KX .

The importance of the number lctn,2(X) is due to the following conjecture.

Conjecture 1.9 (cf. [8, Theorem 2], [41, Theorem 1]). Suppose that

lctn,2
(
X
)
>

dim(X)

dim(X) + 1
.

for every n ∈ N. Then X is Kähler–Einstein.

Note that Conjecture 1.9 is not much stronger than Theorem 1.5 by (1.7).

Example 1.10. Suppose that X is a smooth hypersurface in Pm of degree m > 3. Then

lctn
(
X
)
> 1− 1

m
=

dim(X)

dim(X) + 1

for every n ∈ N by [2]. The equality lctn(X) = 1−1/m holds ⇐⇒ the hypersurface X contains
a cone of dimension m− 2 (see [2, Theorem 1.3], [2, Theorem 4.1], [13, Theorem 0.2]). Then

lctn,2
(
X
)
>

dim(X)

dim(X) + 1
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by Remark 1.8, [2, Remark 1.6], [2, Theorem 4.1], [2, Theorem 5.2] and [13, Theorem 0.2],
because X contains at most finitely many cones by [9, Theorem 4.2]. If X is general, then

1 = lct1

(
X
)
> lct

(
X
)
>


3/4 if m = 3,

16/21 if m = 4,

22/25 if m = 5,

1 if m > 5,

by [33], [3], [5]. Thus, if X is general, then it is Kähler–Eisntein by Theorem 1.5.

The assertion of Conjecture 1.9 follows from [8, Theorem 2] and [41, Theorem 1] under
an additional assumption that the Kähler-Ricci flow on X is tamed (see [8] and [41]).

Theorem 1.11 ([8], [41]). If dim(X) = 2, then the Kähler-Ricci flow on X is tamed.

Corollary 1.12. Suppose that dim(X) = 2 and

lctn,2
(
X
)
>

2

3
for every n ∈ N. Then X is Kähler–Einstein.

Two-dimensional Fano orbifolds are called del Pezzo surfaces.

Remark 1.13. Del Pezzo surfaces with quotient singularities are not classified (cf. [20]). But

• del Pezzo surfaces with canonical singularities are classified (see [18]),
• del Pezzo surfaces with 2-Gorenstein quotient singularities are classified (see [1]),
• smoothable del Pezzo surfaces with quotient singularities are classified (see [17]).

Del Pezzo surfaces with canonical singularities form a very natural class of del Pezzo surfaces.

Problem 1.14. Describe all Kähler–Einstein del Pezzo surface with canonical singularities.

Recall that if X is a del Pezzo surface with canonical singularities, then

• either the inequality K2
X > 5 holds,

• or one of the following possible cases occurs:
– the equality K2

X = 1 holds and X is a sextic surface in P(1, 1, 2, 3),
– the equality K2

X = 2 holds and X is a quartic surface in P(1, 1, 1, 2),
– the equality K2

X = 3 holds and X is a cubic surface in P3,
– the equality K2

X = 4 holds and X is a complete intersection in P4 of two quadrics.

Let us consider few examples to illustrate the expected answer to Problem 1.14.

Example 1.15. Suppose that X is a sextic surface in P(1, 1, 2, 3) such that its singular locus
consists of singular points of type A1 or A2. Arguing as in the proof of [3, Lemma 4.1], we see that

lctn,2
(
X
)
>

2

3
for every n ∈ N. Thus, the surface X is Kähler–Einstein by Corollary 1.12.

Example 1.16. Suppose that X is a quartic surface in P(1, 1, 1, 2) such that its singular locus
consists of singular points of type A1 or A2. Then X is Kähler–Einstein by [16, Theorem 2].

Example 1.17. Suppose that X is a cubic surface in P3 that is not a cone. Then

• if X is smooth, then X is Kähler–Einstein by Theorem 1.1,
• if Sing(X) consists of one point of type A1, then it follows from [35, Theorem 5.1] that

lctn,2
(
X
)
>

2

3
= lct1

(
X
)

= lct
(
X
)

for every n ∈ N, which implies that X is Kähler–Einstein by Corollary 1.12,
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• if the cubic surface X has a singular point that is not a singular point of type A1 or A2,
then the surface X is not Kähler–Einstein by [11, Proposition 4.2].

Example 1.18. Suppose that X is a complete intersection in P4 of two quadrics. Then

• if X is smooth, then X is Kähler–Einstein by Theorem 1.1,
• if X is Kähler–Einstein, then X has at most singular points of type A1 (see [19]),
• it follows from [24] or [16, Theorem 44] that X is Kähler–Einstein if it is given by

4∑
i=0

x2
i =

4∑
i=0

λix
2
i = 0 ⊆ P4 ∼= Proj

(
C[x0, . . . , x4]

)
,

and X has at most singular points of type A1, where (λ0 : λ1 : λ2 : λ3 : λ4) ∈ P4.

Keeping in mind Examples 1.15, 1.16, 1.17 and 1.18, [4, Example 1.12] and [26, Table 1],
it is very natural to expect that the following answer to Problem 1.14 is true (cf. Example 1.6).

Conjecture 1.19. If the orbifold X is a del Pezzo surface with at most canonical singularities,
then the surface X is Kähler–Enstein ⇐⇒ it satisfies one of the following conditions:

• K2
X = 1 and Sing(X) consists of points of type A1, A2, A3, A4, A5, A6 or D4,

• K2
X = 2 and Sing(X) consists of points of type A1, A2 or A3,

• K2
X = 3 and Sing(X) consists of points of type A1 or A2,

• K2
X = 4 and Sing(X) consists of points of type A1,

• the surface X is smooth and 6 > K2
X > 5,

• either X ∼= P2 or X ∼= P1 × P1.

In this paper, we prove the following result.

Theorem 1.20. Suppose that X is a sextic surface in P(1, 1, 2, 3). Then

lctn,2
(
X
)
>

2

3

for every n ∈ N if Sing(X) consists of points of type A1, A2, A3, A4, A5 or A6.

Corollary 1.21. Suppose that X is a sextic surface in P(1, 1, 2, 3) such that its singular locus
consists of singular points of type A1, A2, A3, A4, A5 or A6. Then X is Kähler–Enstein.

It should be pointed out that Corollary 1.21 and Examples 1.15, 1.16, 1.17, 1.18 illustrate
a general philosophy that the existence of Kähler–Enstein metrics on Fano orbifolds is related to
an algebro-geometric notion of stability (see [11, Theorem 4.1], [39], [12]).

Remark 1.22. If X is a sextic surface in P(1, 1, 2, 3) with canonical singularities, then either

Sing
(
X
)
∈



E8,E7,E7 + A1,E6,E6 + A2,E6 + A1,D8,D7,D6,D6 + A1 + A1,D6 + A1,

D5,D5 + A3,D5 + A2,D5 + A1 + A1,D5 + A1,D4,D4 + D4,D4 + A3,D4 + A2,

D4 + A1 + A1 + A1 + A1,D4 + A1 + A1 + A1,D4 + A1 + A1,D4 + A1,A8,

A7,A7 + A1,A6,A6 + A1,A5,A5 + A1,A5 + A1 + A1,A5 + A2,A5 + A2 + A1,

A4,A4 + A4,A4 + A3,A4 + A2 + A1,A4 + A2,A4 + A1 + A1,A4 + A1,

A3,A3 + A3,A3 + A3 + A1 + A1,A3 + A2,A3 + A2 + A1,A3 + A2 + A1 + A1,

A3 + A1 + A1 + A1 + A1,A3 + A1 + A1 + A1,A3 + A1 + A1,A3 + A1


or Sing(X) consists only of points of type A1 and A2 (see [40]).

What is known about α-invariants of del Pezzo surfaces with canonical singularities?

Theorem 1.23 ([3]). If X is a smooth del Pezzo surface, then lct(X) = lct1(X).
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Theorem 1.24 ([3], [31]). If X is a del Pezzo surface with canonical singularities, then

lct
(
X
)

= lct1

(
X
)

in the case when K2
X > 3.

Theorem 1.25 ([31]). If X is a quartic surface in P(1, 1, 1, 2) with canonical singularities, then

lct
(
X
)

=


lct2

(
X
)

= 1/3 if X has a singular point of type A7,

lct2

(
X
)

= 2/5 if X has a singular point of type A6,

lct1

(
X
)

in the remaining cases.

In this paper, we prove the following result (cf. Example 1.15).

Theorem 1.26. Suppose that X is a sextic surface in P(1, 1, 2, 3) with canonical singularities,
let ω : X → P(1, 1, 2) be a natural double cover, and let R be its branch curve in P(1, 1, 2). Then

lct
(
X
)

=



lct2

(
X
)

= 1/3 if Sing(X) consists of a point of type D8,

lct2

(
X
)

= 2/5 if Sing(X) consists of a point of type D7,

lct3

(
X
)

= 1/2 if Sing(X) consists of a point of type A8,

lct2

(
X
)

= 1/2 if Sing(X) consists of a point of type A7 and a point of type A1,

lct2

(
X
)

= 1/2 if Sing(X) consists of a point of type A7 and R is reducible,

lct3

(
X
)

= 3/5 if X has a singular point of type A7 and R is irreducible,

lct2

(
X
)

= 2/3 if X has a singular point of type A6,

lct2

(
X
)

= 2/3 if X has a singular point of type A5,

lct2

(
X
)

= min
(
lct1

(
X
)
, 4/5

)
if X has a singular point of type A4,

lct1

(
X
)

in the remaining cases.

It should be pointed out that if X is a del Pezzo surface with at most canonical singularities,
then all possible values of the number lct1(X) are computed in [28], [29], [30].

Example 1.27. If X is a sextic surface in P(1, 1, 2, 3) with canonical singularities, then

• lct1(X) = 1/6 ⇐⇒ the surface X has a singular point of type E8,
• lct1(X) = 1/4 ⇐⇒ the surface X has a singular point of type E7,
• lct1(X) = 1/3 ⇐⇒ the surface X has a singular point of type E6,
• lct1(X) = 1/2 ⇐⇒ the surface X has a singular point of type D4, D5, D6, D7 or D8,
• lct1(X) = 2/3 ⇐⇒ the following two conditions are satisfied:

– the surface X has no singular points of type D4, D5, D6, D7, D8, E6, E7 or E8,
– there is a curve in | −KX | that has a cusp at a point in Sing(X) of type A2,

• lct1(X) = 3/4 ⇐⇒ the following three conditions are satisfied:
– the surface X has no singular points of type D4, D5, D6, D7, D8, E6, E7 or E8,
– there is no curve in | −KX | that has a cusp at a point in Sing(X) of type A2,
– there is a curve in | −KX | that has a cusp at a point in Sing(X) of type A1,

• lct1(X) = 5/6 ⇐⇒ the following three conditions are satisfied:
– the surface X has no singular points of type D4, D5, D6, D7, D8, E6, E7 or E8,
– there is no curve in | −KX | that have a cusp at a point in Sing(X),
– there is a curve in | −KX | that has a cusp,

• lct1(X) = 1 ⇐⇒ there are no cuspidal curves in | −KX |.

A crucial role in the proofs of both Theorems 1.26 and 1.20 is played by a new local inequality
that we discovered. This inequality is a technical tool, but let us describe it now.
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Let S be a surface, let D be an arbitrary effective Q-divisor on the surface S, let O be a smooth
point of the surface S, let ∆1 and ∆2 be reduced irreducible curves on S such that

∆1 6⊆ Supp
(
D
)
6⊇ ∆2,

and the divisor ∆1+∆2 has a simple normal crossing singularity at the smooth pointO ∈ ∆1∩∆2,
let a1 and a2 be some non-negative rational numbers. Suppose that the log pair(

S, D + a1∆1 + a2∆2

)
is not Kawamata log terminal at O, but (S,D + a1∆1 + a2∆2) is Kawamata log terminal in
a punctured neighborhood of the point O.

Theorem 1.28. Let A,B,M,N, α, β be non-negative rational numbers. Then

multO

(
D ·∆1

)
>M +Aa1 − a2 or multO

(
D ·∆2

)
> N +Ba2 − a1

in the case when the following conditions are satisfied:

• the inequality αa1 + βa2 6 1 holds,
• the inequalities A(B − 1) > 1 > max(M,N) hold,
• the inequalities α(A+M − 1) > A2(B +N − 1)β and α(1−M) +Aβ > A hold,
• either the inequality 2M +AN 6 2 holds or

α
(
B + 1−MB −N

)
+ β

(
A+ 1−AN −M

)
> AB − 1.

Corollary 1.29. Suppose that

2m− 2

m+ 1
a1 +

2

m+ 1
a2 6 1

for some integer m such that m > 3. Then

multO

(
D ·∆1

)
> 2a1 − a2 or multO

(
D ·∆2

)
>

m

m− 1
a2 − a1.

For the convenience of a reader, we organize the paper in the following way:

• in Section 2, we collect auxiliary results,
• in Section 3, we prove Theorem 1.28,
• in Sections 4, we prove Theorem 4.1,
• in Sections 5, we prove Theorems 5.1,
• in Sections 6, we prove Theorems 6.1.

By Remark 1.22, both Theorems 1.20 and 1.26 follow from Theorems 4.1, 5.1 and 6.1.

2. Preliminaries

Let S be a surface with canonical singularities, and let D be an effective Q-divisor on S. Put

D =

r∑
i=1

aiDi,

where Di is an irreducible curve, and ai ∈ Q>0. We assume that Di 6= Dj ⇐⇒ i 6= j.
Suppose that that (S,D) is log canonical, but (S,D) is not Kawamata log terminal.

Remark 2.1. Let D̄ be an effective Q-divisor on the surface S such that

D̄ =
r∑
i=1

āiDi ∼Q D,
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and the log pair (S, D̄) is log canonical, where āi is a non-negative rational number. Put

α = min

{
ai
āi

∣∣∣ āi 6= 0

}
,

where α is well defined and α 6 1. Then α = 1 ⇐⇒ D = D̄. Suppose that D 6= D̄. Put

D′ =
r∑
i=1

ai − αāi
1− α

Di,

and choose k ∈ {1, . . . , r} such that α = ak/āk. Then Dk 6⊂ Supp(D′) and D′ ∼Q D̄ ∼Q D, but
the log pair (S,D′) is not Kawamata log terminal.

Let LCS(S,D) be the locus of log canonical singularities of the log pair (S,D) (see [6]).

Theorem 2.2 ([22, Theorem 17.4]). If −(KS +D) is nef and big, then LCS(S,D) is connected.

Take a point P ∈ LCS(S,D). Suppose that LCS(S,D) contains no curves that pass through P .

Lemma 2.3. Suppose that P 6∈ Sing(S) and P 6∈ Sing(D1). Then

D1 ·

(
r∑
i=2

aiDi

)
>

r∑
i=2

aimultP

(
D1 ·Di

)
> 1.

Proof. The log pair (S,D1 +
∑r

i=2 aiDi) is not log canonical at P , since a1 < 1. Then

D1 ·
r∑
i=2

aiDi >
r∑
i=2

aimultP

(
D1 ·Di

)
> multP

(
r∑
i=2

aiDi

∣∣∣
D1

)
> 1

by [22, Theorem 17.6]. �

Let π : S̄ → S be a birational morphism, and D̄ is a proper transform of D via π. Then

KS̄ + D̄ +

s∑
i=1

eiEi ∼Q π
∗(KS +D

)
,

where Ei is an irreducible π-exceptional curve, and ai ∈ Q. We assume that Ei = Ej ⇐⇒ i = j.
Suppose, in addition, that the birational morphism π induces an isomorphism

S̄ \

(
s⋃
i=1

Ei

)
∼= S \ P.

Remark 2.4. The log pair (S̄, D̄+
∑s

i=1 eiEi) is not Kawamata log terminal at a point in ∪si=1Ei.

Suppose that S is singular at P , and either P is a singular point of type Dn for some n ∈ N>4,
or the point P is a singular point of type Em for some m ∈ {6, 7, 8}.

Lemma 2.5. Suppose that E2
1 = E2

2 = · · · = E2
s = −2. Then e1 = 1 if

E1 ·

(
s∑
i=2

Ei

)
= 3.

Proof. This follows from [32, Proposition 2.9], because (S 3 P ) is a weakly-exceptional singu-
larity (see [32, Example 4.7], [7, Example 3.4], [7, Theorem 3.15]). �



8 IVAN CHELTSOV AND DIMITRA KOSTA

Lemma 2.6. Suppose that S is a sextic surface in P(1, 1, 2, 3) that has canonical singularities,
and suppose that D ∼Q −KX . Let µ be a positive rational number such that either

µ < lct1

(
S
)
,

or µ = 2/3 and D is not a curve in | −KX | with a cusp at a point in Sing(S) of type A2. Then

LCS
(
S, µD

)
⊆ Sing

(
S
)
,

the locus LCS(S, µD) contains no points of type A1 or A2, and |LCS(S, µD)| 6 1.

Proof. This follows from Theorem 2.2 and the proof of [3, Lemma 4.1]. �

Most of the described results are valid in much more general settings (cf. [22] and [21]).

3. Local inequality

The purpose of this section is to prove Theorem 1.28.
Let S be a surface, let D be an arbitrary effective Q-divisor on the surface S, let O be a smooth

point of the surface S, let ∆1 and ∆2 be reduced irreducible curves on S such that

∆1 6⊆ Supp
(
D
)
6⊇ ∆2,

and the divisor ∆1+∆2 has a simple normal crossing singularity at the smooth pointO ∈ ∆1∩∆2,
let a1 and a2 be some non-negative rational numbers. Suppose that the log pair(

S, D + a1∆1 + a2∆2

)
is not Kawamata log terminal at O, but (S,D + a1∆1 + a2∆2) is Kawamata log terminal in
a punctured neighborhood of the point O. In particular, we must have a1 < 1 and a2 < 1.

Let A,B,M,N, α, β be non-negative rational numbers such that

• the inequality αa1 + βa2 6 1 holds,
• the inequalities A(B − 1) > 1 > max(M,N) hold,
• the inequalities α(A+M − 1) > A2(B +D − 1)β and α(1−M) +Aβ > A holds,
• either the inequality 2M +AN 6 2 holds or

α
(
B + 1−MB −N

)
+ β

(
A+ 1−AN −M

)
> AB − 1.

Lemma 3.1. The inequalities A+M > 1 and B > 1 holds. The inequality

α
(
B + 1−MB −N

)
+ β

(
A+ 1−AN −M

)
> AB − 1

holds. The inequality β(1−N) +Bα > B holds. The inequalities

α(2−M)

A+ 1
+
β(2−N)

B + 1
> 1

and α(2−M)B + β(1−N)(A+ 1) > B(A+ 1) hold.

Proof. The inequality B > 1 follows from the inequality A(B − 1) > 1. Then

α

A+ 1
+

β

B + 1
>

α

A+ 1
+

β

2B
>

1

2

because 2B > B + 1. Similarly, we see that A+M > 1, because

α(A+M − 1)

A2(B +D − 1)
> β > 0

and B +D − 1 > 0. The inequality β(1−N) +Bα > B follows from the inequalities

α+
β(1−N)

B
>

2−M
A+ 1

α+
β(1−N)

B
> 1,

because A+ 1 > 2−M .



COMPUTING α-INVARIANTS OF SINGULAR DEL PEZZO SURFACES 9

Let us show that the inequality

α
(
2−M

)
B + β

(
1−N

)(
A+ 1

)
> B

(
A+ 1

)
holds. Let L1 be the line in R2 given by the equation

x
(
2−M

)
B + y

(
1−N

)
(A+ 1)−B(A+ 1) = 0

and let L2 be the line that is given by the equation

x
(
1−N

)
+Ay −A = 0,

where (x, y) are coordinates on R2. Then L1 intersects the line y = 0 at the point(
A+ 1

2−M
, 0

)
and L2 intersects the line y = 0 at the point (A/(1−M), 0). But

A+ 1

2−M
<

A

1−M
,

which implies that α(2−M)B + β(1−N)(A+ 1) > B(A+ 1) if

A2β0

(
B +N − 1

)
> α0

(
A+M − 1

)
,

where (α0, β0) is the intersection point of the lines L1 and L2. But(
α0, β0

)
=

(
A(A+ 1)(B +N − 1)

∆
,
B(A− 1 +M)

∆

)
,

where ∆ = 2AB −ABM −A+AM − 1 +M +NA−NAM +N −NM . But

A2
(
B
(
A− 1 +M

))(
B +N − 1

)
>
(
A
(
A+ 1

)(
B +N − 1

))(
A+M − 1

)
,

because A(B − 1) > 1, which implies that A2β0(B +N − 1) > α0(A+M − 1).
Finally, let us show that that the inequality

α
(
B + 1−MB −N

)
+ β

(
A+ 1−AN −M

)
> AB − 1

holds. Let L′1 be the line in R2 given by the equation

x
(
B + 1−MB −N

)
+ yβ

(
A+ 1−AN −M

)
−AB + 1 = 0

where (x, y) are coordinates on R2. Then L′1 intersects the line y = 0 at the point(
AB − 1

B + 1−MB −N
, 0

)
and L2 intersects the line y = 0 at the point (A/(1−M), 0). But

AB − 1

B + 1−MB −N
<

A

1−M
,

which implies that α(B + 1−MB −N) + β(A+ 1−AN −M) > AB − 1 if

A2β1

(
B +N − 1

)
> α1

(
A+M − 1

)
,

where (α1, β1) is the intersection point of the lines L′1 and L2. Note that(
α1, β1

)
=

(
A(AB −A− 2 +NA+M)

∆′
,
A+ 1−NA−M

∆′

)
,

where ∆′ = AB − 1−ABM +AM + 2M −NAM −M2.
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To complete the proof, it is enough to show that the inequality

A2
(
A+ 1−NA−M

)
(B +N − 1) >

(
A(AB −A− 2 +NA+M)

)
(A+M − 1)

holds. This inequality is equivalent to the inequality(
2−M

)(
A+M − 1

)
> A

(
AN + 2M − 2)

(
B +N − 1

)
,

which is true, because M 6 1 and AN + 2M − 2 6 0. �

Let us prove prove Theorem 1.28 by reductio ad absurdum. Suppose that the inequalities

multO

(
D ·∆1

)
< M +Aa1 − a2 and multO

(
D ·∆2

)
< N +Ba2 − a1

hold. Let us show that this assumption leads to a contradiction.

Lemma 3.2. The inequalities a1 > (1−M)/A and a2 > (1−N)/B hold.

Proof. It follows from Lemma 2.3 that

M +Aa1 − a2 > multO

(
D ·∆1

)
> 1− a2,

which implies that a1 > (1−M)/A. Similarly, we see that a2 > (1−N)/B. �

Put m0 = multO(D). Then m0 is a positive rational number.

Remark 3.3. The inequalities m0 < M +Aa1 − a2 and m0 < N +Ba2 − a1 hold.

Lemma 3.4. The inequality m0 + a1 + a2 < 2 holds.

Proof. We know that m0 + a1 + a2 < M + (A+ 1)a1 and m0 + a1 + a2 < N + (B + 1)a2. Then(
m0 + a1 + a2

)( α

A+ 1
+

β

B + 1

)
< αa1 + βa2 +

αM

A+ 1
+

βN

B + 1
6 1 +

αM

A+ 1
+

βN

B + 1
,

which implies that m0 + a1 + a2 < 2 by Lemma 3.1. �

Let π1 : S1 → S be the blow up of the point O, and let F1 be the π1-exceptional curve. Then

KS1 +D1 + a1∆1
1 + a2∆1

2 +
(
m0 + a1 + a2 − 1

)
F1 ∼Q π

∗
1

(
KS +D + a1∆1 + a2∆2

)
,

where D1, ∆1
1, ∆1

2 are proper transforms of the divisors D, ∆1, ∆2 via π1, respectively. Then(
S1, D

1 + a1∆1
1 + a2∆1

2 +
(
m0 + a1 + a2 − 1

)
F1

)
is not Kawamata log terminal at some point O1 ∈ F1 (see Remark 2.4), where m0 +a1 +a2 > 1.

Lemma 3.5. Either O1 = F1 ∩∆1
1 or O1 = F1 ∩∆1

2.

Proof. Suppose that O1 6∈ ∆1
1 ∪∆1

2. Then m0 = D1 · F1 > 1 by Lemma 2.3. But

m0

(
β +Bα

AB − 1
+
α+Aβ

AB − 1

)
<
(
M +Aa1 − a2

)β +Bα

AB − 1
+
(
N +Ba2 − a1

)α+Aβ

AB − 1
,

because m0 < M +Aa1 − a2 and m0 < N +Ba2 − a1. On the other hand, we have(
M +Aa1 − a2

)β +Bα

AB − 1
+
(
N +Ba2 − a1

)α+Aβ

AB − 1
6 1 +

Mβ +MBα+Nα+ANβ

AB − 1
,

because αa1 + βa2 6 1 and AB− 1 > 0. But we already proved that m0 > 1. Thus, we see that

β +Bα+ α+Aβ 6 AB − 1 +Mβ +MBα+Nα+ANβ,

which is impossible by Lemma 3.1. �

Lemma 3.6. The inequality O1 6= F1 ∩∆1
1 holds.
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Proof. Suppose that O1 6= F1 ∩∆1
1. It follows from Lemma 2.3 that

M +Aa1 − a2 −m0 = D1 ·∆1
1 > 1−

(
m0 + a1 + a2 − 1

)
,

which implies that a1 > (2−M)/(A+ 1). Then

2−Mα

A+ 1
+
β(1−N)

B
< αa1 + βa2 6 1,

because a2 > (1−N)/B by Lemma 3.2. Thus, we see that

2−Mα

A+ 1
+
β(1−N)

B
< 1,

which is impossible by Lemma 3.1. �

Therefore, we see that O1 = F1 ∩∆1
2. Then the log pair(

S1, D
1 + a1∆1

1 + a2∆1
2 +

(
m0 + a1 + a2 − 1

)
F1

)
is not Kawamata log terminal at the point O1. We know that 1 > m0 + a1 + a2 − 1 > 0.

We have a blow up π1 : S1 → S. For any n ∈ N, consider a sequence of blow ups

Sn
πn // Sn−1

πn−1 // · · · π3 // S2
π2 // S1

π1 // S

such that πi+1 : Si+1 → Si is a blow up of the point Fi ∩∆i
2 for every i ∈ {1, . . . , n− 1}, where

• we denote by Fi the exceptional curve of the morphism πi,
• we denote by ∆i

2 the proper transform of the curve ∆2 on the surface Si.

For every k ∈ {1, . . . , n} and for every i ∈ {1, . . . , k}, let Dk, ∆k
1 and F ki be the proper trans-

forms on the surface Sk of the divisors D, ∆1 and Fi, respectively. Then

KSn +Dn + a1∆n
1 + a2∆n

2 +

n∑
i=1

(
a1 + ja2 − j +

n−1∑
j=0

mj

)
Fi ∼Q π

∗
(
KS +D + a1∆1 + a2∆2

)
,

where π = πn ◦ · · · ◦ π2 ◦ π1 and mi = multOi(D
i) for every i ∈ {1, . . . , n}. Then the log pair

(3.7)

(
Sn, D

n + a1∆n
1 + a2∆n

2 +
n∑
i=1

(
a1 + ia2 − i+

i−1∑
j=0

mj

)
Fni

)
is not Kawamata log terminal at some point of the set Fn1 ∪ Fn2 ∪ · · · ∪ Fnn (see Remark 2.4).

Put Ok = Fk ∩∆k
2 for every k ∈ {1, . . . , n}.

Lemma 3.8. For every i ∈ {1, . . . , n}, we have

1 > a1 + ia2 − i+

i−1∑
j=0

mj > 0,

and (3.7) is Kawamata log terminal at every point of the set (Fn1 ∪ Fn2 ∪ · · · ∪ Fnn ) \On.

It follows from Lemma 3.8 that there is n ∈ N such that

a1 + na2 − n+
n−1∑
j=0

mj > 1,

which contradicts Lemma 3.8. Thus, to prove Theorem 1.28, it is enough to prove Lemma 3.8.
Let us prove Lemma 3.8 by induction on n ∈ N. The case n = 1 is already done.
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By induction, we may assume that n > 2. For every k ∈ {1, . . . , n− 1}, we may assume that

1 > a1 + ka2 − k +

k−1∑
j=0

mj > 0,

the singularities of the log pair(
Sk, D

k + a1∆k
1 + a2∆k

2 +
k∑
i=1

(
a1 + ka2 − k +

i−1∑
j=0

mj

)
F ki

)
are Kawamata log terminal along (F k1 ∪F k2 ∪· · ·∪F kk )\Ok and not Kawamata log terminal at Ok.

Lemma 3.9. The inequality a2 > (n−N)/(B + n− 1) holds.

Proof. The singularities of the log pair(
Sn−1, D

n−1 + a2∆k
2 +

(
a1 +

(
n− 1

)
a2 −

(
n− 1

)
+
n−2∑
j=0

mj

)
Fnn−1

)
are not Kawamata log terminal at the point On−1. Then it follows from Lemma 2.3 that

N −Ba2 − a1 −
n−2∑
j=0

mj = Dn−1 ·∆n−1
2 > 1−

(
a1 +

(
n− 1

)
a2 −

(
n− 1

)
+

n−2∑
j=0

mj

)
,

which implies that a2 > (n−N)/(B + n− 1). �

Lemma 3.10. The inequalities 2 > a1 + na2 − n+
∑n−1

j=0 mj > 0 hold.

Proof. The inequality a1 + na2 − n+
∑n−1

j=0 mj > 0 follows from the fact that the log pair(
Sn−1, D

n−1 + a2∆k
2 +

(
a1 +

(
n− 1

)
a2 −

(
n− 1

)
+
n−2∑
j=0

mj

)
Fnn−1

)
is not Kawamata log terminal at the point On−1.

Suppose that a1 + na2 − n+
∑n−1

j=0 mj > 1. Let us derive a contradiction.
It follows from Remark 3.3 that m0 + a2 6M +Aa1. Then

a1 + nM + nAa1 − n > a1 + na2 − n+ nm0 > a1 + na2 − n+
n−1∑
j=0

mj > 1,

which implies that a1 > (n+1−Mn)/(nA+1). But a2 > (n−N)/(B+n−1) by Lemma 3.9. Then(
α−M
A

+ β

)
+ α

A− 1 +M

A(An+ 1)
+ β

1−B −N
B + n− 1

= α
n+ 1−Mn

nA+ 1
+ β

n−N
B + n− 1

< αa1 + βa2 6 1,

where α(1−M)/A+ β > 1 by assumption. Therefore, we see that

α
A+M − 1

A(An+ 1)
< β

B +N − 1

B + n− 1
,

where n > 2. But A+M > 1 and B +M > 1 by Lemma 3.2, since a1 < 1 and a2 < 1. Then

A(An+ 1)

α(A+M − 1)
>

B + n− 1

β(B +N − 1)
,

but A2(B +N − 1)β 6 α(A+M − 1) by assumption. Then

A

α(A+M − 1)
− B − 1

β(B +N − 1)
>

(
A2

α(A+M − 1)
− 1

β(B +M − 1)

)
n+

A

α(A+M − 1)
− B − 1

β(B +N − 1)
> 0,
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which implies that βA(B +N − 1) > α(B − 1)(A+M − 1). Then

α(A+M − 1)

A
> βA

(
B +N − 1

)
> α

(
B − 1

)(
A+M − 1

)
,

because A2(B+N−1)β 6 α(A+M−1) by assumption. Then we have α 6= 0 and A(B−1) < 1,
which is impossible, because A(B − 1) > 1 by assumption. �

Lemma 3.11. The log pair (3.7) is Kawamata log terminal at every point of the set

Fn \

((
Fn ∩ Fnn−1

)⋃(
Fn ∩∆n

2

))
.

Proof. Suppose that there is a point Q ∈ Fn such that

Fn ∩ Fnn−1 6= Q 6= Fn ∩∆n
2 ,

but (3.7) is not Kawamata log terminal at the point Q. Then the log pair(
Sn, D

n +

(
a1 + na2 − n+

n−1∑
j=0

mj

)
Fn

)
is not Kawamata log terminal at the point Q as well. Then

m0 > mn−1 = Dn · Fn > 1

by Lemma 2.3, because a1 + na2 − n+
∑n−1

j=0 mj < 1 by Lemma 3.10. Then

m0

(
β +Bα

AB − 1
+
α+Aβ

AB − 1

)
<
(
M +Aa1 − a2

)β +Bα

AB − 1
+
(
N +Ba2 − a1

)α+Aβ

AB − 1
,

because m0 < M +Aa1 − a2 and m0 < N +Ba2 − a1 by Remark 3.3. We have(
M +Aa1 − a2

)β +Bα

AB − 1
+
(
N +Ba2 − a1

)α+Aβ

AB − 1
6 1 +

Mβ +MBα+Nα+ANβ

AB − 1
,

because αa1 + βa2 6 1 and AB − 1 > 0. But m0 > 1. Thus, we see that

β +Bα+ α+Aβ < AB − 1 +Mβ +MBα+Nα+ANβ,

which contradicts our initial assumptions. �

Lemma 3.12. The log pair (3.7) is Kawamata log terminal at the point Fn ∩ Fnn−1.

Proof. Suppose that (3.7) is not Kawamata log terminal at Fn ∩ Fnn−1. Then the log pair(
Sn, D

n +

(
a1 +

(
n− 1

)
a2 −

(
n− 1

)
+

n−2∑
j=0

mj

)
Fnn−1 +

(
a1 + na2 − n+

n−1∑
j=0

mj

)
Fn

)
is not Kawamata log terminal at the point Fn ∩ Fnn−1 as well. Then

mn−2 −mn−1 = Dn · Fn−2 > 1−

(
a1 + na2 − n+

n−1∑
j=0

mj

)
by Lemma 2.3, because a1 + (n− 1)a2 − (n− 1) +

∑n−2
j=0 mj < 1. Note that

M +Aa1 − a2 −m0 > multO

(
D ·∆1

)
−m0 > D ·∆1 −m0 = D1 ·∆1

1 > 0,

which implies that m0 + a2 < Aa1 +M . Then

nM + nAa1 − na2 > nm0 >
(
n+ 1

)
m0 −mn−1 > mn−2 −mn−1 +

n−1∑
j=0

mj > n+ 1− a1 − na2,
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which gives a1 > (n+ 1− nM)/(An+ 1).
Now arguing as in the proof of Lemma 3.10, we obtain a contradiction. �

The assertion of Lemma 3.8 is proved. The assertion of Theorem 1.28 is proved.

4. One cyclic singular point

Let X is a sextic surface in P(1, 1, 2, 3) with canonical singularities such that |Sing(X)| = 1,
let ω : X → P(1, 1, 2) be the natural double cover, let R be its ramification curve in P(1, 1, 2),
and suppose that Sing(X) consists of one singular point of type Am, where m ∈ {1, . . . , 8}.

Theorem 4.1. The following equality holds:

lct
(
X
)

=



lct3

(
X
)

= 1/2 if m = 8,

lct2

(
X
)

= 1/2 if m = 7 and R is reducible,

lct3

(
X
)

= 3/5 if m = 7 and R is irreducible,

lct2

(
X
)

= 2/3 if m = 6,

lct2

(
X
)

= 2/3 if m = 5,

lct2

(
X
)

= 4/5 if m = 4,

lct1

(
X
)

in the remaining cases,

and if lct(X) = 2/3, then there is a unique effective Q-divisor D on X such that D ∼Q −KX and

c
(
X,D

)
= lct

(
X
)

=
2

3
.

By Theorem 1.5, Corollary 1.12 and Remark 1.8, we obtain the following two corollaries.

Corollary 4.2. If m 6 6, then lctn,2(X) > 2/3 for every n ∈ N.

Corollary 4.3. If m 6 6, then X is Kähler–Enstein.

In the rest of this section we will prove Theorem 4.1.
Let D be an arbitrary effective Q-divisor on the surface X such that

D ∼Q −KX ,

and put µ = c(X,D). To prove Theorem 4.1, it is enough to show that

µ >



lct3

(
X
)

= 1/2 if m = 8,

lct2

(
X
)

= 1/2 if m = 7 and R is reducible,

lct3

(
X
)

= 3/5 if m = 7 and R is irreducible,

lct2

(
X
)

= 2/3 if m = 6,

lct2

(
X
)

= 2/3 if m = 5,

lct2

(
X
)

= 4/5 if m = 4,

lct1

(
X
)

in the remaining cases,

and if µ = lct(X) = 2/3, then D is uniquely defined. Note that lct1(X) > 5/6 if m > 3 (see [30]).
Let us prove Theorem 4.1. By Lemma 2.6, we may assume that m > 3 and µ < lct1(X). Then

LCS
(
X,µD

)
= Sing

(
X
)

by Lemma 2.6. Put P = Sing(X).
Let π : X̄ → X be a minimal resolution, let E1, E2, . . . , Em be π-exceptional curves such that

Ei · Ej 6= 0 ⇐⇒
∣∣i− j∣∣ 6 1,
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let C be the curve in | −KX | such that P ∈ C, and let C̄ be it proper transform on X̄. Then

C̄ ∼Q π
∗(C)− m∑

i=1

Ei,

and the curve C is irreducible. We may assume that D 6= C, because µ > lct1(X) if D = C.
By Remark 2.1, we may assume that C 6⊂ Supp(D).
Let D̄ be the proper transform of the divisor D on the surface X̄. Then

D̄ ∼Q π
∗(D)− m∑

i=1

aiEi,

where ai is a non-negative rational number. Then the log pair

(4.4)
(
X̄, µD̄ +

m∑
i=1

µaiEi

)
is not Kawamata log terminal (by Remark 2.4). On the other hand, we have

(4.5)



1− a1 − am = D̄ · C̄ > 0,

2a1 − a2 = D̄ · E1 > 0,

· · ·
2am−1 − am−2 − am = D̄ · Em−1 > 0,

2am − am−1 = D̄ · Em > 0.

Lemma 4.6. Suppose that µai < 1 for every i ∈ {1, . . . ,m}. Then

• there exists a point

Q ∈
{
E1 ∩ E2, E2 ∩ E3, . . . , Em−1 ∩ Em

}
such that the log pair (4.4) is not Kawamata log terminal at Q,
• the log pair (4.4) is Kawamata log terminal outside of the point Q,
• if µ < (m+ 1)/(2m− 2), then Q 6= E1 ∩ E2 and Q 6= Em−1 ∩ Em.

Proof. It follows from Remark 2.4 and Theorem 2.2 that there is a point Q ∈ ∪mi=1Ei such that
the log pair (4.4) is not Kawamata log terminal at Q and is Kawamata log terminal elsewhere.

If Q ∈ Ei and Q 6∈ Ej for every j 6= i, then it follows from Lemma 2.3 that

1 < D̄ · Ei =


2a1 − a2 if i = 1,

2ai − ai−1 − ai+1 if i 6= 1 and i 6= m,

2am − am−1 if i = m,

which contradicts (4.5). Thus, we see that there is k ∈ {1, . . . ,m− 1} such that Q = Ek ∩Ek+1.
Suppose that µ < (m+ 1)/(2m− 2). Let us show that k 6= 1 and k 6= m− 1.
Suppose that k = 1. Then Q = E1∩E2. Take µ̄ ∈ Q such that (m+1)/(2m−2) > µ̄ > µ and(

X̄, µD̄ + µ̄a1E1 + µ̄a2E2

)
is not Kawamata log terminal at Q and is Kawamata log terminal outside of the point Q. Then

2m− 2

m+ 1
µ̄a1 +

2

m+ 1
µ̄a2 < a1 +

1

m− 1
a2 6 1,

by (4.5). On the other hand, we have

multQ

(
µD̄ · E1

)
6 µD̄ · E1 = µ

(
2a1 − a2

)
< µ̄

(
2a1 − a2

)
,
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since µ < µ̄. Therefore, it follows from Corollary 1.29 that

µ
(

2a2 − a1 − a3

)
= µD̄ · E2 > multQ

(
µD̄ · E2

)
>

m

m− 1
µ̄a2 − µ̄a1,

which leads to a contradiction. Thus, we have k 6= 1. Similarly, we see that k 6= m− 1. �

If m = 3, then it follows from (4.5) that a1 6 3/4, a2 6 1, a3 6 3/4.

Corollary 4.7. If m = 3, then µ > lct1(X) > 5/6.

Lemma 4.8. Suppose that m = 4. Then µ > lct2(X) = 4/5.

Proof. There is a unique smooth irreducible curve Z̄ ⊂ X̄ such that

Z̄ ∼ π∗
(
− 2KX

)
− E1 − 2E2 − 2E3 − E4

and E2 ∩ E3 ∈ Z (cf. the proof of Lemma 6.9). Put Z = π(Z̄). Then

lct2

(
X
)
6 c
(
X,

1

2
Z
)

=
4

5
.

To complete the proof, it is enough to show that µ > 4/5. Suppose that µ < 4/5.
By Remark 2.1, we may assume that Z 6⊂ Supp(D), because Z is irreducible.
It follows from (4.5) that a1 6 4/5, a2 6 6/5, a3 6 6/5, a3 6 4/5.
Put Q = E2 ∩ E3. Then it follows from Lemma 4.6 that (4.4) is not Kawamata log terminal

at the point Q and is Kawamata log terminal outside of the point Q. Then

2a2 −
1

2
a2 − a3 > 2a2 − a1 − a3 = D̄ · E2 > multQ

(
D̄ · E2

)
>

5

4
− a3,

by Lemma 2.3. Similarly, we see that

2a3 − a2 − a4 = D̄ · E3 > multQ

(
D̄ · E3

)
>

5

4
− a2,

which implies that a2 > 5/6 and a3 > 5/6.

Let ξ : X̃ → X̄ be a blow up of the point Q, let E be the exceptional curve of the blow up ξ,
and let D̃ be the proper transform of the divisor D̄ on the surface X̃. Put δ = multQ(D̄).

Let Ẽ1, Ẽ2, Ẽ3, Ẽ4 be the proper transforms on X̃ of E1, E2, E3, E4, respectively. Then

(4.9)
(
X̃, µD̃ + µa2Ẽ2 + µa3Ẽ3 +

(
µa2 + µa3 + µδ − 1

)
E
)

is not Kawamata log canonical at some point O ∈ E.
Let Z̃ be the proper transform on X̃ of the curve Z̄. Then

0 6 Z̃ · D̃ = 2− a2 − a3 −multQ
(
D̄
)

= 2− a2 − a3 − δ,
which implies that δ + a2 + a3 6 2. We have µa2 + µa3 + µδ − 1 6 2µ− 1 6 3/5, which implies
that (4.9) is Kawamata log terminal outside of the point O by Theorem 2.2. We have{

2a3 − a2 − a4 − δ = Ẽ3 · D̃ > 0,

2a2 − a1 − a3 − δ = Ẽ2 · D̃ > 0,

which implies that δ 6 1/2. If O 6∈ Ẽ2 ∪ Ẽ3, then

1

2
> δ = D̃ · E > multO

(
D̃ · E

)
>

5

4

by Lemma 2.3. Thus, we see that either O = Ẽ2 ∩ E or O = Ẽ3 ∩ E.
Without loss of generality, we may assume that O = Ẽ2 ∩ E. Then

6

5
− a2 = 2− 4

5
− a2 > 2− a2 − a3 > δ = D̃ · E > multO

(
D̃ · E

)
>

5

4
− a2,

by Lemma 2.3, since δ + a2 + a3 6 2. The obtained contradiction concludes the proof. �
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Let τ be a biregular involution of the surface X̄ that is induced by the double cover ω.

Lemma 4.10. Suppose that m = 5. Then there exist a unique curve Z ∈ | −KX | such that

c
(
X,Z

)
= lct2

(
X
)

=
2

3
,

and either D = Z or µ > 2/3.

Proof. Let α : X̄ → X̆ be a contraction of the curves C̄, E5, E4, E3. Then

α
(
E1

)
· α
(
E1

)
= α

(
E2

)
· α
(
E2

)
= −1,

and X̆ is a smooth del Pezzo surface such that K2
X̆

= 5, which implies that there is a smooth

irreducible rational curve L̆2 on the surface X̆ such that L̆2 · α(E2) = 1 and L̆2 · L̆2 = −1.

Let L̄2 be the proper transform of the curve L̆2 on the surface X̄. Then L̄2 · L̄2 = −1 and

−KX̄ · L̄2 = E2 · L̄2 = 1,

which implies that E1 · L̄2 = E3 · L̄2 = E4 · L̄2 = E5 · L̄2 = C̄ · L̄2 = 0.
Let β : X̄ → X̌ be a contraction of the curves L̄2, C̄, E5, E4. Then

β
(
E2

)
· β
(
E2

)
= β

(
E3

)
· β
(
E3

)
= −1,

and X̌ is a smooth del Pezzo surface such that K2
X̌

= 5, which implies that there is an irreducible

smooth curve Ľ3 ⊂ X̌ such that Ľ3 · β(E3) = 1 and Ľ3 · Ľ3 = −1 (cf. the proof of Lemma 6.8).
Let L̄3 be the proper transform of the curve Ľ3 on the surface X̄. Then L̄3 · L̄3 = −1 and

−KX̄ · L̄3 = E3 · L̄3 = 1,

which implies that E1 · L̄3 = E2 · L̄3 = E4 · L̄3 = E5 · L̄3 = C̄ · L̄3 = 0.
If τ(L̄3) = L̄3, then 2π(L̄3) ∼ −2KX , but π(L̄3) is not a Cartier divisor.
Put Z = π(L̄3 + τ(L̄3)). Then Z ∼ −2KX and c(X,Z) = 1/3. We see that lct2(X) 6 2/3.
Suppose that D 6= Z/2. To complete the proof, it is enough to show that µ > 2/3.
Suppose that µ 6 2/3. Let us derive a contradiction. It follows from (4.5) that

a1 6
5

6
, a2 6

4

3
, a3 6

3

2
, a4 6

4

3
, a5 6

5

6
.

By Remark 2.1, without loss of generality we may assume that π(L̄3) 6⊂ Supp(D). Then

1− a3 = L̄3 · D̄ > 0,

which implies that a3 6 1.
Put Q = E2 ∩ E3. By Lemma 4.6, we may assume that (4.4) is not Kawamata log terminal

at the point Q and is Kawamata log terminal outside of the point Q. Then

2a3 − a2 − a4 = D̄ · E3 > multQ

(
D̄ · E3

)
>

1

µ
− a2 >

3

2
− a2

by Lemma 2.3, which implies that a3 > 9/8 by (4.5). But a3 6 1. �

Lemma 4.11. Suppose that m = 6. Then there exist a unique curve Z ∈ | −KX | such that

c
(
X,Z

)
= lct2

(
X
)

=
2

3

and either D = Z or µ > 2/3.

Proof. Let α : X̄ → X̆ be a contraction of the curves C̄, E6, E5, E4 and E3. Then

α
(
E1

)
· α
(
E1

)
= α

(
E2

)
· α
(
E2

)
= −1,

and X̆ is a smooth del Pezzo surface such that K2
X̆

= 6, which implies that there is a smooth

irreducible rational curve L̆2 on the surface X̆ such that L̆2 · α(E2) = 1 and L̆2 · L̆2 = −1.
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Let L̄2 be the proper transform of the curve L̆2 on the surface X̄. Then L̄2 · L̄2 = −1 and

−KX̄ · L̄2 = E2 · L̄2 = 1,

which implies that E1 · L̄2 = E3 · L̄2 = E4 · L̄2 = E5 · L̄2 = E6 · L̄2 = C̄ · L̄2 = 0.
Let β : X̄ → X̌ be a contraction of the curves L̄2, C̄, E6, E5 and E4. Then

β
(
E2

)
· β
(
E2

)
= β

(
E3

)
· β
(
E3

)
= −1,

and X̌ is a smooth del Pezzo surface such that K2
X̌

= 6, which implies that there are irreducible

smooth rational curves Ľ3 and Ľ′2 on the surface X̌ such that

Ľ3 · β
(
E3

)
= Ľ′2 · β

(
E2

)
= 1

and Ľ3 · Ľ3 = Ľ′2 · Ľ′2 = −1. Let L̄3 and L̄′2 be the proper transforms of the curves Ľ3 and Ľ′2 on
the surface X̄, respectively. Then L̄3 · L̄3 = L̄′2 · L̄′2 = −1 and

−KX̄ · L̄3 = −KX̄ · L̄′2 = E3 · L̄3 = E2 · L̄′2 = 1,

which implies that C̄ · L̄3 = C̄ · L̄′2 = 0, and Ei · L̄3 = Ej · L̄′2 = 0 for every i 6= 3 and j 6= 2,
Put L̄4 = τ(L̄3), L̄5 = τ(L̄2), L̄′5 = τ(L̄′2). Then C̄ · L̄4 = C̄ · L̄5 = C̄ · L̄′5 = 0 and

−KX̄ · L̄4 = −KX̄ · L̄5 = −KX̄ · L̄′5 = E4 · L̄4 = E5 · L̄5 = E5 · L̄′5 = 1,

which implies that Ei · L̄5 = Ei · L̄′5 = Ej · L̄4 = 0 for every i 6= 5 and j 6= 4.
Put L3 = π(L̄3), L4 = π(L̄4), L2 = π(L̄2), L′2 = π(L̄′2), L5 = π(L̄5), L′5 = π(L̄′5). Then

L3 + L4 ∼ L2 + L5 ∼ L′2 + L′5 ∼ −2KX ,

and c(X,L3 + L4) = 1/3, which implies that lct2(X) 6 2/3.
Note that c(X,L2 + L5) = c(X,L′2 + L′5) = 1/2.
Suppose that D 6= (L3 + L4)/2. To complete the proof, it is enough to show that µ > 2/3.
Suppose that µ 6 2/3. Let us derive a contradiction.
It follows from (4.5) that a1 6 6/7, a2 6 10/7, a3 6 12/7, a4 6 12/7, a5 6 10/7, a6 6 6/7.
By Remark 2.1, without loss of generality we may assume that L̄4 6⊂ Supp(D). Then

1− a4 = L̄3 · D̄ > 0,

which gives us a4 6 1. Similarly, we may assume that either L̄2 6⊂ Supp(D) or L̄5 6⊂ Supp(D),
which implies that either a2 6 1 or a5 6 1, respectively.

Let us show that L2 + L′2 + L3 ∼ −3KX . We can easily see that

L̄2 ∼Q π
∗(L2

)
− 5

7
E1 −

10

7
E2 −

8

7
E3 −

6

7
E4 −

4

7
E5 −

2

7
E6,

L̄′2 ∼Q π
∗(L′2)− 5

7
E1 −

10

7
E2 −

8

7
E3 −

6

7
E4 −

4

7
E5 −

2

7
E6,

L̄3 ∼Q π
∗(L3

)
− 4

7
E1 −

8

7
E2 −

12

7
E3 −

9

7
E4 −

6

7
E5 −

3

7
E6,

which implies that L2 + L′2 + L3 ∼Q −3KX , since Pic(X) ∼= Z3 and

L2 · L2 =
3

7
, L′2 · L′2 =

3

7
, L3 · L3 =

5

7
, L′2 · L3 =

8

7
, L2 · L3 =

8

7
, L2 · L′2 =

10

7
,

but L2 + L′2 + L3 is a Cartier divisor, which implies that L2 + L′2 + L3 ∼ −3KX .
Since c(X,L2 + L′2 + L3) = 1/4, we may assume that Supp(D) does not contain at least one

curve among L2, L′2 and L3 by Remark 2.1, which implies that either a2 6 1 or a3 6 1.
It follows from (4.5) and a4 6 2 that µai < 1 for every i. By Lemma 4.6, there exists a point

Q ∈
{
E2 ∩ E3, E3 ∩ E4, E4 ∩ E5

}
,
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such that (4.4) is not Kawamata log terminal at the pointQ ∈ X̄, but it is Kawamata log terminal
elsewhere. Take k ∈ {2, 3, 4} such that Q = Ek ∩ Ek+1. It follows from Lemma 2.3 that

2ak − ak−1 − ak+1 = D̄ · Ek > multQ

(
D̄ · Ek

)
>

1

µ
− ak+1 >

3

2
− ak+1,

2ak+1 − ak − ak+2 = D̄ · Ek+1 > multQ

(
D̄ · Ek+1

)
>

1

µ
− ak >

3

2
− ak,

which is impossible by (4.5), since a4 6 1, and either a2 6 1 or a3 6 1. �

Lemma 4.12. Suppose that m = 7. Then the following conditions are equivalent:

• the curve R is irreducible,
• the surface X̄ contains an irreducible curve L̄4 such that L̄4 · L̄4 = −1 and L̄4 · E4 = 1.
• the surface X̄ contains an irreducible curve L̄4 such that L̄4 · L̄4 = −1, L̄4 · E4 = 1 and

ω ◦ π
(
L̄4

)
⊂ Supp

(
R
)
.

Proof. Suppose that X̄ has an irreducible curve L̄4 such that L̄4 · L̄4 = −1 and L̄4 ·E4 = 1. Then

L̄4 ∼Q π
∗(L4

)
− 1

2
E1 − E2 −

3

2
E3 − 2E4 −

3

2
E5 − E6 −

1

2
E7,

where L4 = π(L̄4). Then τ(L̄4) = L̄4 and ω(L4) ⊂ Supp(R), because

−1+L̄4·τ
(
L̄4

)
= L̄4·

(
L̄4+τ

(
L̄4

))
= L̄4·

(
π∗
(
−2KX

)
−E1−2E2−3E3−4E4−3E5−2E6−E7

)
= −2.

Suppose now that the curve R is reducible. Let us show that the surface X̄ contains an irre-
ducible curve L̄4 such that L̄4 · L̄4 = −1 and L̄4 · E4 = 1.

Let η : X̄ → X̄ ′ be a contraction of the curve C̄. Then there is a commutative diagram

X̄
π //

η

��

X
ω // P(1, 1, 2) �

� φ // P3

ψ

~~

X̄ ′

π′
))
X ′

ω′ // P2

where π′ is a minimal resolution, φ is an anticanonical embedding, ψ is a projection from φ◦ω(P ),
and ω′ is a double cover branched at ψ ◦φ(R). Note that X ′ is a del Pezzo surface and K2

X′ = 2.
The morphism π′ contracts the smooth curves η(E2), η(E3), η(E4), η(E5) and η(E6). But

η
(
E2

)
∈ Sing

(
X ′
)
,

and X ′ has a singularity of type A5 at the point η(E2). Put P ′ = η(E2).
Put R′ = ψ ◦ φ(R). Then R′ is reducible, since R is reducible.
Since Sing(P(1, 1, 2)) 6∈ R, one of the following cases hold:

• either φ(R) is a union of a smooth conic and an irreducible quartic,
• or the curve φ(R) is a union of three different smooth conics.

The case when the curve φ(R) consists of a union of three different smooth conics is impossible,
since the surface X ′ has a singularity of type A5 at the point P ′ = Sing(X ′).

We see that the curve φ(R) is a union of a smooth conic and an irreducible quartic curve,
which easily implies that R′ is a union of a line L and an irreducible cubic curve Z. Then

multω′(P ′)

(
L · Z

)
= 3,
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because X ′ has a singularity of type A5 at the point P ′. Then X̄ contains a curve L̄4 such that

ω′ ◦ π′ ◦ η
(
L̄4

)
= L,

and L̄4 is irreducible. Then L̄4 · L̄4 = −1 and L̄4 · E4 = 1. �

The proof of Lemma 4.12 can be simplified using the results obtained in [31, Section 2].

Lemma 4.13. Suppose that m = 7 and R is irreducible. Then µ > lct3(X) = 3/5.

Proof. Arguing as in the proofs of Lemmas 4.10 and 4.11, we see that there is an irreducible
smooth rational curve L̄2 on the surface X̄ such that L̄2 · L̄2 = −1 and

−KX̄ · L̄2 = E2 · L̄2 = 1,

which implies that E1 · L̄2 = E3 · L̄2 = E4 · L̄2 = E5 · L̄2 = E6 · L̄2 = E7 · L̄2 = C̄ · L̄2 = 0.
Put L̄5 = τ(L̄2). Then L̄5 · L̄5 = −1 and −KX̄ · L̄5 = E5 · L̄5 = 1, which implies that

E1 · L̄5 = E2 · L̄5 = E3 · L̄5 = E4 · L̄5 = E6 · L̄5 = E7 · L̄5 = C̄ · L̄5 = 0.

Since the branch curve R is reducible by Lemma 4.12, one can show that there exists an ir-
reducible smooth rational curve L̄3 on the surface X̄ such that L̄3 · L̄3 = −1 and

−KX̄ · L̄3 = E3 · L̄3 = 1,

which implies that E1 · L̄3 = E2 · L̄3 = E4 · L̄3 = E5 · L̄3 = E6 · L̄3 = E7 · L̄3 = C̄ · L̄3 = 0.
Put L̄6 = τ(L̄2), L̄5 = τ(L̄3), L2 = π(L̄2), L3 = π(L̄4), L5 = π(L̄5) and L6 = π(L̄6). Then

L̄2 ∼Q π
∗(L2

)
− 3

4
E1 −

3

2
E2 −

5

4
E3 − E4 −

3

4
E5 −

1

2
E6 −

1

4
E7,

L̄3 ∼Q π
∗(L3

)
− 5

8
E1 −

5

4
E2 −

15

8
E3 −

3

2
E4 −

9

8
E5 −

3

4
E6 −

3

8
E7,

L̄5 ∼Q π
∗(L5

)
− 3

8
E1 −

3

4
E2 −

9

8
E3 −

3

2
E4 −

15

8
E5 −

5

4
E6 −

5

8
E7,

L̄6 ∼Q π
∗(L6

)
− 1

4
E1 −

1

2
E2 −

3

4
E3 − E4 −

5

4
E5 −

3

2
E6 −

3

4
E7,

which implies that L2 + 2L3 ∼ −3KX . Indeed, we have L2 + 2L3 ∼Q −3KX , since

L2 · L2 =
1

2
, L3 · L3 =

7

8
, L2 · L3 =

5

4
,

and Pic(X) ∼= Z3. But L2 + 2L3 is a Cartier divisor, which implies that L2 + 2L3 ∼ −3KX .
We have c(X,L2 + 2L3) = 3/15 and L2 + 2L3 ∼ −3KX , which implies that lct3(X) 6 3/5.
To complete the proof, it is enough to show that µ > 3/5.
Suppose that µ < 3/5. Let us derive a contradiction.
By Remark 2.1, we may assume that the support of the divisor D̄ does not contain at least

one components of every curve L̄2 + L̄6, L̄2 + 2L̄3, L̄3 + L̄5. But

D̄ · L̄i = 1− ai,
which implies that ai 6 1 if L̄i 6⊂ Supp(D̄). Therefore, either a3 6 1 or a2 6 1 and a5 6 1.

If a3 6 1, then it follows from (4.5) that

a1 6
7

8
, a2 6

6

5
, a3 6 1, a4 6

4

3
, a5 6

5

3
, a6 6

3

2
, a7 6

7

8
.

If a2 6 1 and a5 6 1, then it follows from (4.5) that

a1 6
7

8
, a2 6 1, a3 6

3

2
, a4 6

4

3
, a5 6 1, a6 6

6

5
, a7 6

7

8
.

By Lemma 4.6, there exists k ∈ {2, 3, 4, 5} such that (4.4) is not Kawamata log terminal at
the point Ek ∩ Ek+1 and is Kawamata log terminal outside of Ek ∩ Ek+1.
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Put Q = Ek ∩ Ek+1. Then it follows from Lemma 2.3 that
2ak − ak−1 − ak+1 = D̄ · Ek > multQ

(
D̄ · Ek

)
>

1

µ
− ak+1 >

5

3
− ak+1,

2ak+1 − ak − ak+2 = D̄ · Ek+1 > multQ

(
D̄ · Ek+1

)
>

1

µ
− ak >

5

3
− ak,

which is impossible by (4.5), since we assume that either a3 6 1 or a2 6 1 and a5 6 1. �

Lemma 4.14. Suppose that m = 7 and R is reducible. Then µ > lct2(X) = 1/2.

Proof. By Lemma 4.12, the surface X contains an irreducible curve L̄4 such that

ω ◦ π
(
L̄4

)
⊂ Supp

(
R
)

and −L̄4 · L̄4 = L̄4 · E4 = 1. Then −KX̄ · L̄4 = 1, which implies that

E1 · L̄4 = E2 · L̄4 = E3 · L̄4 = E5 · L̄4 = E6 · L̄4 = E7 · L̄4 = C̄ · L̄4 = 0.

Put L4 = π(L̄4). Then 2L4 ∼ −2KX and

L̄4 ∼Q π
∗(L4

)
− 1

2
E1 − E2 −

3

2
E3 − 2E4 −

3

2
E5 − E6 −

1

2
E7,

which implies that lct2(X) 6 c(X,L4) = 1/2.
To complete the proof, it is enough to show that µ > 1/2.
Suppose that µ < 1/2. Let us derive a contradiction.
By Remark 2.1, we may assume that L4 6⊂ Supp(D). Then

0 6 L̄4 · D̄ = 1− a4,

which implies that a4 6 1. Thus, it follows from (4.5) that

a1 6
7

8
, a2 6

3

2
, a3 6

5

4
, a4 6 1, a5 6

5

4
, a6 6

3

2
, a7 6

7

8
.

It follows from Lemma 4.6 that there exists a point

Q ∈
{
E2 ∩ E3, E3 ∩ E4, E4 ∩ E5, E5 ∩ E6

}
such that LCS(X̄, µD̄ +

∑7
i=1 µaiEi) = Q.

Without loss of generality, we may assume that either Q = E2 ∩ E3 or Q = E3 ∩ E4.
If Q = E3 ∩ E4, then it follows from Lemma 2.3 that

2a4 − a3 − a5 = D̄ · E4 > multQ

(
D̄ · E4

)
>

1

µ
− a3 > 2− a3,

which together with (4.5) imply that a4 > 1, which is a contradiction.
If Q = E2 ∩ E3, then it follows from Lemma 2.3 that

2a3 − a2 − a4 = D̄ · E3 > multQ

(
D̄ · E3

)
>

1

µ
− a2 > 2− a2,

which together with (4.5) immediately leads to a contradiction. �

Lemma 4.15. Suppose that m = 8. Then µ > lct3(X) = 1/2.

Proof. Arguing as in the proofs of Lemmas 4.10 and 4.11, we see that there is an irreducible
smooth rational curve L̄3 on the surface X̄ such that L̄3 · L̄3 = −1 and

−KX̄ · L̄3 = E3 · L̄3 = 1,

which implies that E1 · L̄3 = E2 · L̄3 = E4 · L̄3 = E5 · L̄3 = E6 · L̄3 = E7 · L̄3 = C̄ · L̄3 = 0.
Put L̄6 = τ(L̄3). Then L̄6 · L̄6 = −1 and −KX̄ · L̄6 = E6 · L̄6 = 1, which implies that

E1 · L̄6 = E2 · L̄6 = E3 · L̄6 = E4 · L̄6 = E5 · L̄6 = E7 · L̄6 = C̄ · L̄6 = 0.
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Put L3 = π(L̄3) and L6 = π(L̄6). Then 3L3 ∼ 3L6 ∼ −3KX . On the other hand, we have

L̄3 ∼Q π
∗(L3

)
− 2

3
E1 −

4

3
E2 − 2E3 −

5

3
E4 −

4

3
E5 − E6 −

2

3
E7 −

1

3
E8,

L̄6 ∼Q π
∗(L6

)
− 1

3
E1 −

2

3
E2 − E3 −

4

3
E4 −

5

3
E5 − 2E6 −

4

3
E7 −

2

3
E8,

which implies c(X,L3) = c(X,L6) = 1/2. Then lct3(X) 6 1/2.
To complete the proof, it is enough to show that µ > 1/2.
Suppose that µ < 1/2. Let us derive a contradiction.
By Remark 2.1, we may assume that Supp(D̄) does not contain L̄3 and L̄6. Then

1− a3 = D̄ · L̄3 > 0,

which implies that a3 6 1. Similarly, we have a6 6 1. Then it follows from (4.5) that

a1 6
8

9
, a2 6

7

6
, a3 6 1, a4 6

4

3
, a5 6

4

3
, a6 6 1, a7 6

7

6
, a8 6

8

9
.

By Lemma 4.6, there exists k ∈ {2, 3, 4, 5, 6} such that (4.4) is not Kawamata log terminal at
the point Ek ∩ Ek+1 and is Kawamata log terminal outside of the point Ek ∩ Ek+1.

Put Q = Ek ∩ Ek+1. Then it follows from Lemma 2.3 that
2ak − ak−1 − ak+1 = D̄ · Ek > multQ

(
D̄ · Ek

)
>

1

µ
− ak+1 >

1

2
− ak+1,

2ak+1 − ak − ak+2 = D̄ · Ek+1 > multQ

(
D̄ · Ek+1

)
>

1

µ
− ak >

1

2
− ak,

which is impossible by (4.5), since a3 6 1 and a6 6 1. �

The assertion of Theorem 4.1 is proved.

5. One non-cyclic singular point

Let X is a sextic surface in P(1, 1, 2, 3) with canonical singularities such that |Sing(X)| = 1,
and Sing(X) consists of a singular point of type D4, D5, D6, D7, D8, E6, E7 or E8.

Theorem 5.1. The following equality holds:

lct
(
X
)

=


lct2

(
X
)

= 1/3 if P is a point of type D8,

lct2

(
X
)

= 2/5 if P is a point of type D7,

lct1

(
X
)

in the remaining cases.

Corollary 5.2. The inequality lct(X) 6 1/2 holds.

In the rest of this section we will prove Theorem 5.1.
Let D be an effective Q-divisor on X such that D ∼Q −KX . We must show that

c
(
X,D

)
>


lct2

(
X
)

= 1/3 if P is a point of type D8,

lct2

(
X
)

= 2/5 if P is a point of type D7,

lct1

(
X
)

in the remaining cases.

to prove Theorem 5.1. Put µ = c(X,D).
Suppose that µ < lct1(X). Then LCS(X,µD) = Sing(X) by Lemma 2.6. Put P = Sing(X).
Let π : X̄ → X be a minimal resolution, let E1, E2 . . . , Em be irreducible π-exceptional curves,

let C be the curve in | −KX | such that P ∈ C, and let C̄ be its proper transform on X̄. Then

C̄ ∼Q π
∗(C)− m∑

i=1

niEi,
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where ni ∈ N. Without loss of generality, we may assume that E3 ·
∑

i 6=3Ei = 3. Then

lct1

(
X
)

= c
(
X,C

)
=

1

n3
=


1/2 if P is of type D4, D5, D6, D7 or D8,

1/3 if P is of type E6,

1/4 if P is of type E7,

1/6 if P is of type E8.

By Remark 2.1, we may assume that C 6⊂ Supp(D), since the curve C is irreducible.
Let D̄ be the proper transform of the divisor D on the surface X̄. Then

D̄ ∼Q π
∗(D)− m∑

i=1

aiEi,

where ai is a non-negative rational number. Then

KX̄ + µ
(
D̄ +

m∑
i=1

aiEi

)
∼Q π

∗
(
KX + µD

)
,

which implies that (X̄, µD̄ +
∑m

i=1 µaiEi) is not Kawamata log terminal (see Remark 2.4).

Lemma 5.3. The equality µa3 = 1 holds.

Proof. The equality µa3 = 1 follows from Lemma 2.5. �

Lemma 5.4. Suppose that P is not a point of type E6, E7 or E8. Then

µ >

{
lct2

(
X
)

= 1/3 if P is a point of type D8,

lct2

(
X
)

= 2/5 if P is a point of type D7,

and P is either a point of type D7 or is a point of type D8.

Proof. Without loss of generality, we may assume that the diagram

E1• E3• E4• · · ·
Em−1• Em•

E2•
shows how the π-exceptional curves intersect each other. Then

C̄ ∼Q π
∗(C)− E1 − E2 − Em −

m−1∑
i=3

2Ei,

which implies that C̄ · Em−1 = 1 and C̄ · Ei = 0 ⇐⇒ i 6= m− 1. Then

(5.5)



1− am−1 = D̄ · C̄ > 0,

2a1 − a3 = D̄ · E1 > 0,

2a2 − a3 = D̄ · E2 > 0,

2a3 − a1 − a2 − a3 = D̄ · E3 > 0,

· · ·
2am−1 − am−2 − am = D̄ · Em−1 > 0,

2am − am−1 = D̄ · Em > 0,

which easily implies that a3 6 2 if m 6 6. But µa3 = 1 and µ < lct1(X) = 1/2 by Lemma 5.3,
which implies that either m = 7 or m = 8.
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Arguing as in the proofs of Lemmas 4.10 and 4.11, we may assume that that there is an irre-
ducible smooth rational curve L̄1 on the surface X̄ such that L̄1 · L̄1 = −1 and

−KX̄ · L̄1 = E1 · L̄1 = 1,

which implies that C̄ · L̄1 = 0 and Ei · L̄1 = 0 ⇐⇒ i 6= 1.
Let ω : X → P(1, 1, 2) be the natural double cover given by | − 2KX |, and let τ be a biregu-

lar involution of the surface X̄ that is induced by ω. Put L̄2 = τ(L̄1). If m = 7, then

−KX̄ · L̄2 = E2 · L̄2 = 1

and L̄2 · L̄2 = −1, which implies that C̄ · L̄2 = 0 and Ei · L̄2 = 0 ⇐⇒ i 6= 2.
Put L1 = π(L̄1) and L2 = π(L̄2). Then L1 + L2 ∼ −2KX . If m = 7, then

L̄1 ∼Q π
∗(L1

)
− 7

4
E1 −

5

4
E2 −

5

2
E3 − 2E4 −

3

2
E5 − E6 −

1

2
E7,

L̄2 ∼Q π
∗(L2

)
− 5

4
E1 −

7

4
E2 −

5

2
E3 − 2E4 −

3

2
E5 − E6 −

1

2
E7,

which implies that c(X,L1 + L2) = 1/5 and lct2(X) 6 2/5. If m = 7, then

a3 6
5

2

by (5.5). But µa3 = 1 by Lemma 5.3. Then µ > 2/5 if m = 7, which is exactly what we need.
We may assume that m = 8. Then L̄2 = L̄1 and

L̄1 ∼Q π
∗(L1

)
− 2E1 −

3

2
E2 − 3E3 −

5

2
E4 − 2E5 −

3

2
E6 − E7 −

1

2
E8,

which implies that lct2(X) 6 c(X,L1) = 1/3. But a3 6 1/3 by (5.5) and µa3 = 1 by Lemma 5.3,
which implies that µ > 1/3, which complete the proof since lct2(X) > lct(X). �

To complete the proof of Theorem 5.1, we may assume that P is a point of type E6, E7 or E8.
Without loss of generality, we may assume that the diagram

•E1 •E2 •E3 •E5 · · · •Em

•E4

shows how the π-exceptional curves intersect each other. It is well-known (cf. [29][30]) that

• if m = 6, then C̄ · E4 = 1, which implies that and C̄ · Ei = 0 ⇐⇒ i 6= 4,
• if m = 7, then C̄ · E1 = 1, which implies that and C̄ · Ei = 0 ⇐⇒ i 6= 1,
• if m = 8, then C̄ · E8 = 1, which implies that and C̄ · Ei = 0 ⇐⇒ i 6= 8.

Put k = 4 if m = 6, put k = 1 if m = 7, put k = 8 if m = 8. Then

(5.6)



1− ak = D̄ · C̄ > 0,

2a1 − a3 = D̄ · E1 > 0,

2a2 − a3 − a1 = D̄ · E2 > 0,

2a3 − a2 − a4 − a5 = D̄ · E3 > 0,

2a4 − a3 = D̄ · E4 > 0,

2a5 − a3 − a6 = D̄ · E5 > 0,

· · ·
2am−1 − am−2 − am = D̄ · Em−1 > 0,

2am − am−1 = D̄ · Em > 0,
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which implies that a3 < n3. But n3 = 1/lct1(X) and µa3 = 1 by Lemma 5.3. Then µ > lct1(X).
The assertion of Theorem 5.1 is proved.

6. Many singular points

Let X is a sextic surface in P(1, 1, 2, 3) with canonical singularities such that |Sing(X)| > 2.

Theorem 6.1. The following equality holds:

lct
(
X
)

=



lct2

(
X
)

= 1/2 if Sing(X) consists of a point of type A7 and a point of type A1,

lct2

(
X
)

= 2/3 if X has a singular point of type A6,

lct2

(
X
)

= 2/3 if X has a singular point of type A5,

lct2

(
X
)

= min
(
lct1

(
X
)
, 4/5

)
if X has a singular point of type A4,

lct1

(
X
)

in the remaining cases,

and if there exists an effective Q-divisor D on the surface X such that D ∼Q −KX and

c
(
X,D

)
= lct

(
X
)

=
2

3
,

then either D is an irreducible curve in | −KX | with a cusp at a point in Sing(X) of type A2,
or the divisor D is uniquely defined and it can be explicitly described.

Let D be an arbitrary effective Q-divisor on the surface X such that

D ∼Q −KX ,

and put µ = c(X,D). To prove Theorem 6.1, it is enough to show that

µ >



lct2

(
X
)

= 1/2 if Sing(X) consists of a point of type A7 and a point of type A1,

lct2

(
X
)

= 2/3 if X has a singular point of type A6,

lct2

(
X
)

= 2/3 if X has a singular point of type A5,

lct2

(
X
)

= min
(
lct1

(
X
)
, 4/5

)
if X has a singular point of type A4,

lct1

(
X
)

in the remaining cases,

and if µ = lct(X) = 2/3, then we have the following two possibilities:

• either D is a curve in | −KX | with a cusp at a point in Sing(X) of type A2,
• or the divisor D is uniquely defined and it can be explicitly described.

Lemma 6.2. If Sing(X) has a point of type D4, D5, D6, E6, E7 or E8, then µ > lct1(X).

Proof. Suppose that Sing(X) has a point of type D4, D5, D6, E6, E7 or E8, but µ < lct1(X). Then

LCS
(
X,µD

)
( Sing

(
X
)

and LCS(X,µD) consists of a point in Sing(X) that is not of type A1 or A2 by Lemma 2.6.
If the locus LCS(X,µD) is a singular point of the surface X of type D4, D5, D6, E6, E7 or E8,

then arguing as in the proof of Theorem 5.1, we immediately obtain a contradiction.
By Remark 1.22, the locus LCS(X,µD) must be a singular point of the surface X of type A3,

and we can easily obtain a contradiction arguing as in the proof of Corollary 4.7. �

Lemma 6.3. Suppose that Sing(X) consists of points of type A1, A2 or A3. Then µ > lct1(X). If

µ = lct1

(
X
)

=
2

3
,

then D is an curve in | −KX | with a cusp at a point in Sing(X) of type A2.

Proof. This follows from Lemma 2.6 and the proof of Corollary 4.7. �
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By Remark 1.22 and Lemmas 6.2 and 6.2, we may assume that

Sing
(
X
)
∈
{A7 + A1,A6 + A1,A5 + A1,A5 + A1 + A1,A5 + A2,A5 + A2 + A1,

A4 + A4,A4 + A3,A4 + A2 + A1,A4 + A2,A4 + A1 + A1,A4 + A1,

}
,

which implies that there is a point P ∈ Sing(X) that is a point of type Am for m ∈ {4, 5, 6, 7}.
Let π : X̄ → X be a minimal resolution, let E1, E2, . . . , Em be π-exceptional curves such that

Ei · Ej 6= 0 ⇐⇒
∣∣i− j∣∣ 6 1

and π(Ei) = P for every i ∈ {1, . . . ,m}, let C be the unique curve in | −KX | such that P ∈ C,
and let C̄ be the proper transform of the curve C on the surface X̄. Then

C̄ · E1 = C̄ · Em = 1,

and C̄ · E2 = C̄ · E3 = · · · = C̄ · Em−1 = 0. Note that C̄ ∼= P1 and C̄ · C̄ = −1.
Let D̄ be the proper transform of D on the surface X̄. Then

D̄ ∼Q π
∗(D)− m∑

i=1

aiEi,

where ai is a non-negative rational number. Then

(6.4)



1− a1 − am = D̄ · C̄ > 0,

2a1 − a2 = D̄ · E1 > 0,

· · ·
2am−1 − am−2 − am = D̄ · Em−1 > 0,

2am − am−1 = D̄ · Em > 0,

Let η : X̄ → X̄ ′ be a contraction of the curve C̄. Then there is a commutative diagram

X̄
π //

η

��

X
ω // P(1, 1, 2) �

� φ // P3

ψ

~~

X̄ ′

π′
))
X ′

ω′ // P2

where ω and ω′ are natural double covers π′ is a minimal resolution, φ is an anticanonical
embedding, and ψ is a projection from φ ◦ ω(P ). Put P ′ = η(E2). Then P ′ ∈ Sing(X ′).

Remark 6.5. The birational morphism π′ contracts the smooth curves η(E2), η(E3), . . . , η(Em−1),
and π′ ◦ η contracts all π-exceptional curves that are different from the curve E1, E2, . . . , Em.

Let R be the branch curve in P(1, 1, 2) of the double cover ω. Put R′ = ψ ◦ φ(R).

Lemma 6.6. Suppose that m = 7. Then µ > lct2(X) = 1/2.

Proof. Let α : X̄ → X̆ be a contraction of the irreducible curves C̄, E7, E6, E5, E4, E3 and E2,
and let F be the π-exceptional curve such that π(F ) is a point of type A1. Then

X̆ ∼= P
(
OP1 ⊕OP1

(
2
))
.

Let L̆2 be the fiber of the projection X̆ → P1 such that α(C̄) ∈ L̆2, and let L̄2 be the proper

transform of the curve L̆2 on the surface X̄ via α. Then L̄2 · L̄2 = −1 and

−KX̄ · L̄2 = E2 · L̄2 = F · L̄2 = 1,
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which implies that E1 · L̄2 = E3 · L̄2 = E4 · L̄2 = E5 · L̄2 = E6 · L̄2 = E7 · L̄2 = C̄ · L̄2 = 0.
Let β : X̄ → X̌ be a contraction of the curves L̄2, E2, C̄, E7, E6, E5, E4. Then

β
(
E3

)
· β
(
E3

)
= β

(
F
)
· β
(
F
)

= 0,

and X̌ is a smooth del Pezzo surface such that K2
X̌

= 8. Then X̌ ∼= P1 × P1.

Let Ľ4 be the curve in |β(F )| such that β(E4) ∈ Ľ4, and let L̄3 be its proper transform on
the surface X̄ via β. Then one can easily check that L̄4 · L̄4 = −1 and

−KX̄ · L̄4 = E4 · L̄4 = 1,

which implies that E1 · L̄4 = E2 · L̄4 = E3 · L̄4 = E5 · L̄4 = E6 · L̄4 = E7 · L̄4 = C̄ · L̄4 = F · L̄4 = 0.
Put L4 = π(L̄4). Then one can easily check that

L̄4 ∼Q π
∗(L4

)
− 1

2
E1 − E2 −

3

2
E3 − 2E4 −

3

2
E5 − E6 −

1

2
E7,

which implies that c(X,L4) = 1/2. But 2L4 ∼ −2KX , which implies that lct2(X) 6 1/2.
Arguing as in the proof of Lemma 4.12, we see that ω(L4) ⊂ Supp(R).
Arguing as in the proof of Lemma 4.14 and using (6.4), we see that µ > lct2(X) = 1/2. �

Lemma 6.7. Suppose that m = 6. Then µ > lct2(X) = 2/3, and if µ = 2/3, then

• either D a curve in | −KX | with a cusp at a point in Sing(X) of type A2,
• or the divisor D is uniquely defined and can be explicitly described.

Proof. Let α : X̄ → X̆ be a contraction of the curves C̄, E6, E5, E4, E3, E2. Then X̆ is a smooth
surface such that K2

X̆
= 7, and −KX is nef. There is a birational morphism γ : X̆ → X̂ such that

X̂ ∼= P
(
OP1 ⊕OP1

(
2
))
,

and γ is a blow down of a smooth irreducible rational curve that does not contain the point α(C̄).

Let L̂2 be the fiber of the projection X̂ → P1 such that γ◦α(C̄) ∈ L̂2, and let L̄2 be the proper

transform of the curve L̂2 on the surface X̄ via γ ◦ α. Then L̄2 · L̄2 = −1 and

−KX̄ · L̄2 = E2 · L̄2 = 1,

which implies that E1 · L̄2 = E3 · L̄2 = E4 · L̄2 = E5 · L̄2 = E6 · L̄2 = C̄ · L̄2 = 0.
Let β : X̄ → X̌ be a contraction of the curves L̄2, C̄, E6, E5, E4, and let F be the π-exceptional

curve such that π(F ) is a point of type A1. Then

β
(
E2

)
· β
(
E2

)
= β

(
E3

)
· β
(
E3

)
= β

(
F
)
· β
(
F
)

= −1,

and X̌ is a smooth del Pezzo surface such that K2
X̌

= 6. Thus, there exists an irreducible smooth

rational curve Ľ3 on the surface X̌ such that Ľ3 · Ľ3 = −1, Ľ3 · β(E3) = 1 and Ľ3 · β(F ) = 0.
Let L̄3 be the proper transforms of the curve Ľ3 on the surface X̄. Then L̄3 · L̄3 = −1 and

−KX̄ · L̄3 = E3 · L̄3 = 1,

which implies that E1 · L̄3 = E2 · L̄3 = E4 · L̄3 = E5 · L̄3 = E6 · L̄3 = C̄ · L̄3 = F · L̄3 = 0.
Put L̄4 = τ(L̄3) and L̄5 = τ(L̄2). Then C̄ · L̄4 = C̄ · L̄5 = 0 and

−KX̄ · L̄4 = −KX̄ · L̄5 = E4 · L̄4 = E5 · L̄5 = 1,

which implies that Ei · L̄5 = Ej · L̄4 = 0 for every i 6= 5 and j 6= 4.
Put L3 = π(L̄3), L4 = π(L̄4), L2 = π(L̄2) and L5 = π(L̄5). Then

L3 + L4 ∼ L2 + L5 ∼ −2KX ,

which implies that c(X,L3 + L4) = 1/3 and c(X,L2 + L5) = 1/2. Then lct2(X) 6 2/3. But

L̄2 ∼Q π
∗(L2

)
− 5

7
E1 −

10

7
E2 −

8

7
E3 −

6

7
E4 −

4

7
E5 −

2

7
E6 −

1

2
F,
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L̄3 ∼Q π
∗(L3

)
− 4

7
E1 −

8

7
E2 −

12

7
E3 −

9

7
E4 −

6

7
E5 −

3

7
E6,

which implies that c(X, 2L2 + L3) = 1/4. Then 2L2 + L3 ∼Q −3KX , since Pic(X) ∼= Z2 and

L2 · L2 =
3

7
, L3 · L3 =

5

7
, L2 · L3 =

8

7
,

but 2L2 + L3 is a Cartier divisor, which implies that 2L2 + L3 ∼ −3KX .
If D is not a curve in |−KX | and D 6= (L3+L4)/2, then arguing as in the proof of Lemma 4.11,

we easily see that µ > 2/3, since we can use (6.4). The lemma is proved (see Example 1.27). �

Lemma 6.8. Suppose that m = 5. Then µ > lct2(X) = 2/3, and if µ = 2/3, then

• either D a curve in | −KX | with a cusp at a point in Sing(X) of type A2,
• or the divisor D is uniquely defined and can be explicitly described.

Proof. The curve R′ has an ordinary tacnodal singularity at the point ω′(P ′), which implies that
there exists a line L′ ⊂ P2 such that either L′ ⊂ Supp(R′) or L′ 6⊂ Supp(R′) and

multω′(P ′)

(
L′ ·R′

)
= 4.

There are irreducible smooth rational curves L′3 and L′4 on the surface X ′ such that

ω′
(
L′3
)

= ω′
(
L′4
)

= L′

and L′3 = L′4 ⇐⇒ L′ ⊂ Supp(R′). Note that neither L′3 nor L′4 contains a point in Sing(X ′)\R′.
Let L̄′3 be the proper transform of the curve L′3 on the surface X̄ ′. Then

L̄′3 ∩ η
(
E1

)
= L̄′3 ∩ η

(
E2

)
= L̄′3 ∩ η

(
E4

)
= L̄′3 ∩ η

(
E5

)
= ∅,

and L̄′3 · η(E3) = 1. Let L̄′4 be the proper transform of the curve L′4 on the surface X̄ ′. Then

L̄′4 ∩ η
(
E1

)
= L̄′4 ∩ η

(
E2

)
= L̄′4 ∩ η

(
E4

)
= L̄′4 ∩ η

(
E5

)
= ∅,

and L̄′4 · η(E3) = 1. One can also check that L̄′3 ∩ L̄′4 = ∅ if L̄′3 6= L̄′4.
Let L̄3 and L̄4 be the proper transforms of the curves L̄′3 and L̄′4 on the surface X̄, respectively,

and let us put L3 = π(L̄3) and L4 = π(L̄4). Then

L̄3 + L̄4 ∼ −2KX

and c(X, L̄3 + L̄4) = 1/3, which implies that lct2(X) 6 2/3.
If D 6= (L̄3 + L̄4)/2, then (6.4), the proof of Lemma 4.10 and Lemma 2.6 imply that

µ > lct2

(
X
)

=
2

3
.

and if µ = 2/3, then D a curve in | −KX | with a cusp at a point in Sing(X) of type A2. �

Lemma 6.9. Suppose that m = 4. Then

µ > lct2

(
X
)

= min
(
lct1

(
X
)
, 4/5

)
>

2

3
,

and if µ = 2/3, then D a curve in | −KX | with a cusp at a point in Sing(X) of type A2.

Proof. The point ω′(P ′) is an ordinary cusp of the curveR′. Then there is a line L′ ⊂ P2 such that

multω′(P ′)

(
L′ ·R′

)
= 3.

Let Z ′ be a curve in X ′ such that ω′(Z ′) = L′ and −KX′ · Z ′ = 2. Then

Z ′ ∩ Sing
(
X ′
)

= Sing
(
Z ′
)

= R′,

the Z ′ is irreducible curve that has an ordinary cusp at the point R′.
Let Z̄ ′ be the proper transform of the curve Z ′ on the surface X̄ ′. Then Z ′ is smooth and

η
(
E2

)
∩ η
(
E3

)
∈ Z̄ ′.
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Let Z̄ be the proper transform of the curve Z̄ ′ on the surface X̄. Put Z = π(Z̄). Then

Z̄ ∼ π∗
(
Z
)
− E1 − 2E2 − 2E3 − E4

and E2 ∩ E3 ∈ Z. Then c(X,Z) = 2/5, which implies that lct2(X) 6 4/5.
Arguing as in the proof of Lemma 4.8 and using Lemma 2.6 and (6.4), we see that

µ > lct2

(
X
)

= min
(
lct1

(
X
)
, 4/5

)
and if µ = 2/3, then D a curve in | −KX | with a cusp at a point in Sing(X) of type A2. �

The assertion of Theorem 6.1 is proved.
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Astérisque 211 (1992)

[23] G. Lyubeznik, On Bernstein–Sato polynomials
Proceedings of the American Mathematical Society 125 (1997), 1941–1944

[24] T. Mabuchi, S. Mukai, Stability and Einstein–Kähler metric of a quartic del Pezzo surface
Lecture Notes in Pure and Applied Mathematics 145 (1993), 133–160
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