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ABSTRACT. We review (based on the talk at the Conference ” Conformal
Field Theory, Automorphic Forms and Related Topics”, Heidelberg Uni-
versitat, Heidelberg, Germany, 2011) our recent results on computation of
the partition and n-point ”intertwined” functions for modules of vertex
operator superalgebras with formal parameter associated to local parame-
ters on Riemann surfaces obtained by self-sewing of a lower genus Riemann
surface. We introduce the torus intertwined n-point functions containing
two intertwining operators in the supertrace. Then we define the partition
and n-point correlation functions for a vertex operator superalgebra on a
genus two Riemann surface formed by self-sewing of the torus. For the
free fermion vertex operator superalgebra we present a closed formula for
the genus two continuous orbifold partition function in terms of an infinite
dimensional determinant with entries arising from the original torus Szegd
kernel. This partition function is holomorphic in the sewing parameters
on a given suitable domain and possess natural modular properties. We
describe modularity of the generating function for all n-point correlation
functions in terms of a genus two Szegd kernel determinant.
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2 A. ZUEVSKY

1. INTRODUCTION

In this paper (based on the talk at the Conference ” Conformal Field Theory,
Automorphic Forms and Related Topics”, Heidelberg Universitéat, Heidelberg,
Germany, 2011) we review our recent result on construction and computation
of correlation functions of vertex operator superalgebras with a formal param-
eter associated to local coordinates on a self-sewn Riemann surface of genus g
which forms a genus g + 1 surface. In particular, we review result presented
in the papers [TZ1]- [TZ5] accomplished in collaboration with M. P. Tuite
(National University of Ireland, Galway).

1.1. Vertex operator super algebras. A Vertex Operator Superalgebra

(VOSA) [B,DL,Ka, FHL,FLM] is a quadruple (V,Y,1L,w): V = V& Vj =

D, c17 Ve, dimV, < oo, is a superspace, Y is a linear map Y : V' — (EndV)
2

[[2,27Y]]: so that for any vector (state) u € V we have u(k)1 = & _ju, k > —1,
Y(u,z) = Z u(n)z"" 1
neZ

u(n)Va C Voip), p(u)-parity. The linear operators (modes) u(n) : V. — V
satisfy creativity
Y(u,2)1 =u+ O(z),

and lower truncation

conditions for u, v € V and n > 0.
These axioms identity impy locality, associativity, commutation and skew-
symmetry:

(21 — 22)"Y (u, 21)Y (v, 29) = (—1)p(“’”)(zl — 29)"Y (v, 29)Y (u, 21),

(20 + 22)"Y (u, 20 + 22)Y (v, 22)w = (20 + 22)"Y (Y (u, 20)v, 22)w,

k.)Y(u(j)v, 2)2* I,

u(k)Y (v, 2) = (=1)PIY (0, 2)u(k) = <j

Jj=20
Y (u, 2)v = (—1)P@) DY (v, —2),

for u, v, w € V and integers m, n > 0, p(u,v) = p(u)p(v).
The vacuum vector 1 € Vg is such that, Y(1,2) = Idy, and w € Vg, the
conformal vector satisfies

Y(w,z) = Z L(n)z""72,

nez
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where L(n) form a Virasoro algebra for a central charge C'

[L(m), L(n)] = (m —n)L(m +n) + C . 3

2

—m)dpm,—n.

L(—1) satisfies the translation property
Y(L(-1)u,z) = 0,Y (u, 2).

L(0) describes a grading with L(0)u = wt(u)u, and V, = {u € V|wt(u) = r}.

1.2. VOSA modules.

Definition 1. A V-module for a VOSA V is a pair (W, Yy ), W is a C-graded

vector space W = @ W,, dimW, < oo, W,4, = 0 for all » and n < 0.
reC
Y : V — End(W)[[z, 27 1]]

for each u € V uy : W — W. Yy (1, 2) = Idw, and for the conformal vector
Y (w, z) = Z Ly (n)z"""2
neZ

where Ly (0)w = rw, w € W,.. The module vertex operators satisfy the Jacobi
identity:

20_1(5 <Zl _ Z2> YW(u,zl)Yw(v,zQ)

<0

_(_1)p(u,v)6 <22_Z1> Yw<’U, zQ)YW(u, 21)

I Ty
=210 < 1z2 0> Y (Y (u, 20)v, 22) .

Recall that

i(z) = Z 2"

neEL

The above axioms imply that Ly (n) satisfies the Virasoro algebra for the
same central charge C and that the translation property

Yw(L(—=1Du,z) = 9.Yw(u,z).
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1.3. Twisted modules. We next define the notion of a twisted V-module
[FHL,DLM?2]. Let g be a V-automorphism g, i.e., a linear map preserving 1
and w such that
gY (v,2)g7 ! =Y (gu, 2),
for all v € V. We assume that V' can be decomposed into g-eigenspaces
V = @pEC Vp,

where V? denotes the eigenspace of g with eigenvalue e

Definition 2. A g-twisted V-module for a VOSA V' is a pair (W9,Yy), W9 =

@ W?, dimW¥ < oo, W7, =0 for all r and n < 0. Y, : V — End W9{z},
reC
the vector space of End W¥9-valued formal series in z with arbitrary complex

powers of z. For v € V7*
Yy(v,2) = Y wy(n)z""1,
nep+7
with vg(p +w =0, w € W9, | € Z sufficiently large. Y, (1, 2) = Idwy,
Yo(w, 2) = Z Lg(”)z_n_27

neL

2mip

where Ly(0)w = rw, w € W¥. The g-twisted vertex operators satisfy the
twisted Jacobi identity:

P <Z1 — ZQ) Y, (u, 21)Yy(v, 22)

<0

22 — 21

_(_1)7’(“’”),20_16 < > Yy (v, 22)Yy(u, 21)

_ —-P _
— z;l (Zl zo) 1) (21 ZO) Y, (Y (u, 20)v, 22),

for u € VP.

1.4. Creative intertwining operators. We define the notion of creative
intertwining operators in [TZ3]. Suppose we have a VOA V with a V-module
(W, Yw).

Definition 3. A Creative Intertwining Vertex Operator Y for a VOA V-
module (W, Yy ) is defined by a linear map

Y(w, z) = Zw(n)z_"_l,
nez
for w € W with modes w(n) : V.— W; satisfies creativity

Y(w,2)1 = w+ 0(2),
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for w € W and lower truncation
w(n)v =0,

forve V, w e W and n > 0. The intertwining vertex operators satisfy the
Jacobi identity:

20_15 <z1 Z_o Z2> Y (u, 21)Y(w, 22)

—25 16 <22—_2021> Y(w, z2)Y (u, 21)

— 2516 <z1 _ ZO) Y (Y (u, z0)w, 22) ,
z2
forallu e V and w e W.

These axioms imply that the intertwining vertex operators satisfy transla-
tion, locality, associativity, commutativity and skew-symmetry:

Y(Lw(—Dw,z) = 0,Y(w,z),

(z1 — 22)"Yw(u,21)Y(w, z2) = (21 — 22)"Y(w, 22)Y (u, 21),
(20 + 22)" Y (u, 20 + 22)Y(w, z2)v = (20 + 22)"Y (Y (u, 20)w, 22)v,
uw (k)Y (w, 2) = Y(w, 2)u(k) = Y (k) Y (uw (j)w, 2)2577,
720
Y(w,z)v = WDy (0, —2)w,

for u, v € V, w € W and integers m, n > 0.

1.5. Example: Heisenberg intertwiners. Consider the Heisenberg vertex
operator algebra M, [Ka] generated by weight one normalized Heisenberg vec-
tor @ with modes obeying

[a(n),a(m)] = non,—m,
n, m € Z. In [TZ3] we consider an extension M = U,ecM, of M by its
irreducible modules M, generated by a C-valued continuous parameter o au-
tomorphism g = e27@a(0),
We introduce an extra operator ¢ which is canonically conjugate to the zero
mode a(0), i.e.,
[a(n), q] = dn.o-
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The state 1®e® € M is created by the action of ¢ on the state 1® €. Using
g-conjugation and associativity properties, we explicitly construct in [TZ3] the
creative intertwining operators Y(u, z) : M — M,. We then prove

Theorem 1 (Tuite-Z). The creative intertwining operators Y for M are gen-
erated by q-conjugation of vertex operators of M. For a Heisenberg state u,

Yu®e* z) = eMY_(e“2)Y(u® 60) Yi(e%, z) 2 a(O)’
( ) (£n) .
Yi(e™,2) = exp| Fa E a(E£n .
+ ’ p =~ n

The operators Y with some extra cocycle structure satisfy a natural exten-
sion from rational to complex parameters of the notion of a Generalized VOA
as described by Dong and Lepowsky [DL,DLM3|. We then prove in [TZ3]:

Theorem 2 (Tuite-Z). Y(u ® e%, z) satisfy the generalized Jacobi identity

_ —af _
z_l Z1 z9 5 Z1 z9 Y(u@@a,ZI) Y(’U@@ﬁ,ZQ)
0 20 20

—afB
_ _1(”2— 21 29 — 21
Cla, B)zy < = > 5( — >
Y(v@eﬁ,z&) Y(u® e, 21)

=26 (le;zo) Y(Y(u® e, 20)(v @ e?), 29) (

21— 2 ) aa(0)

22
for all u ® e, v ® e’ € M.

1.6. Invariant form for extended Heisenberg algebra. The definitions
of invariant forms [FHL, L] for a VOSA and its g-twisted modules were given
by Scheithauer [S] and in [TZ2] correspondingly. A bilinear form (-,-) on M is
said to be invariant if for all u ® e®, v ® e, w ® €7 € M we have

Yu®e,2)veel,wee) =™ lvee’, Yi(uw e, 2)we e,
Yi(u®et,z) = Y (eZ)‘ *L(1) (—) (u®e),——|.

z z
We are interested in the Mobius map z — w = g associated with the sewing
condition so that A = —¢ ,0%, with £ € {#+/—1}. We prove in [TZ3]

Theorem 3 (Tuite-Z). The invariant form (.,.) on M is symmetric, unique
and invertible with

e, wee) = )\70‘2(5&7_5@ ® e’ w® ev).
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2. THE SZEGO KERNEL

2.1. Torus self-sewing to form a genus two Riemann surface. In [TZ1]
we describe procedures of sewing Riemann surfaces [G,FK]. Consider a self-
sewing of the oriented torus £ = C/A, A = 27i(Zr ® Z), T € H;.

Z1:0 22:0

lpl/r2 pl/m

Define annuli A,, @ = 1, 2 centered at z = 0 and z = w of V) with local
coordinates z; = z and 29 = z — w respectively. We use the convention 1 = 2,
2 = 1. Take the outer radius of A, to be r, < %D(q) = minyep rz0 |A|-
Introduce a complex parameter p, |p| < riry. Take inner radius to be |p|/ra,
with |p| < rire. 71, r2 must be sufficiently small to ensure that the disks do
not intersect. Excise the disks

{2as |2a] < |plrz "} € W,

to form a twice-punctured surface

S0 = 2O\ {24,124l < lplrz "}
a=1,2

Identify annular regions A, C 1), A, = {z,, lplr=t < |za] < 74} as a single
region A = A; ~ Aj via the sewing relation

Z122 = p,

to form a compact genus two Riemann surface £ = S(M\{A4; U Ay} U A4,
parameterized by

D ={(r,w,p) e H; x Cx C ,|w— A >2\p‘% >0, A€ A}
2.2. The Prime form. Recall the prime form E(z,2') [M,F1,F2]

E(g)(z,z’) _ v [:ﬂ ({ZZ/ 1/|Ql(9))
((2)2¢(2")?

is a holomorphic differential form of weight (—%, —%) on X9 x £,

1 1
/ -1 .1 /
~(z—2")dz"2dz""2 forz~ 2,

E(g) (27 Z/) = _E(g) (Z/7 Z)?
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Q(Q)

and has multipliers 1 and e~ ™*%j —Javi along the a; and b; cycles in z. Here

C2) = Y00 | 5] (012wi(2),
i=1

(a holomorphic 1-form, and let ¢ (z)% denote the form of weight 3 on the double

cover $@) of £9)),
In particular, the prime form on the torus is [M]
1

EW(z,2)=KWV(z -2 7) dzz dz'""2,

H(z, 7
K(l)(Z,T) = (‘911’&07)')’

for z € C and 7 € H; and where ¥;(z,7) = ¢ Bﬁ} (z,7).
2.3. The Szegl kernel. The Szeg6 Kernel [M, F1,F2] is defined by
v [Z} (fzzf V) dz3dz'2

g} 0ED(z,2) *—7

for z ~ 2/,

59 m (z,2'|) = 0[

with ¢ [g} (0) # 0,

9]':—6_27ri’8j, ¢j:—€27riaj, j:]-,---797
where E(g)(zl, z9) is the genus g prime form. The Szeg6 kernel has multipliers
along the a; and b; cycles in z given by —¢; and —0; respectively and is a
meromorphic (1, 2)-form on X9 x £(9).

272
5 |0] 1) = -5 {Z] (<, 2),

where 071 = (6, 1) and ¢! = (¢; }).

(2
Finally, we describe the modular invariance of the Szegé kernel under the

symplectic group Sp(2g,7Z) where we find [Fay]

} (z,2'|QW),
with §; = —e~2mi8i | §; = —2mid;
~BY _(A B\ (-8 L ( —diag(AB")
a ¢ D a 2\ diag(CDT) )’
Q= (AQ+B)(CQ+D)™',
where diag(M) denotes the diagonal elements of a matrix M.
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On the torus (M) the Szegé kernel for (6, ¢) # (1,1) is

s [ Z } (2,2|7) = P [ Z ] (z—2',7) dz? dz'%,

where

9 % () _
(2)en - S

k—f—)\
= _21—0 Lgh+A”
keZ

for ¥1(z,7) =9 [

[SIENIES

] (2,7), gz = €%, and ¢ = exp(2miA) for 0 <\ < 1.

2.4. Genus two Szegd kernel in torus self-sewing (p-formalism). It is
convenient to define k € [ 5 2) by ¢2 = —e?™*, Then we prove [TZ1] the
following

Theorem 4 (Tuite-Z). S is holomorphic in p for |p| < riry with
§P(a,y) = 5 (2,y) + O(p),

for z, y € SW where SO (2, y) is defined for k% —1, by

o [JJesrer = (Gmaten)

S [%ﬂ (x —y+ Kkw,T)

00 [52] (kw, 1) KO (2 —y.7)

with similar expression for S(_lz (z,y) for k = —5.

N
D=

Let kg = k + (—1)%, for a = 1, 2 and integer k > 1. We introduce the
(1 )(
Y)

moments for Si

Gab(kv l) = Gab

2(ka+lb 1 s
= p(2m]£ ( fé : [1:‘7 ka(yb) le(l)(«Tmyb) d:z:2 dybg
zg) J Cy(yp
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with associated infinite matrix G = (Gg(k,l)). We define also half-order
differentials

(1) 5 (ka—3
ha(k,z) = h, [9 ] (R e —

—ka g(1) 3
ya S/q Ty Ya dya )
¢(1) féa(ya) ( )

21

_ e p3 (ka3 "
_ . _ —ka ¢(1) (.
ha(kvy) - ha [¢(1)] (H’ k>y) - 27 fi}a(ma) J:E Sl-i (xa,y) dx

and let h(z) = (ho(k,z)) and h(y) = (ha(k,y)) denote the infinite row vectors
indexed by a, k. From the sewing relation z;2z9 = p we have

ISIEFSIEY

)

for £ € {£+/—1}, depending on the branch of the double cover of »(1) chosen.
It is convenient to define

T =¢GDY,
with an infinite diagonal matrix

DO(k,1) = [ 9(;1 _00 ] 5(k,1).

Defining det (I — T") by the formal power series in p

logdet (I —T) =Trlog(I-T)=-> %TT(T”),
n>1
we prove in [TZ1]
Theorem 5 (Tuite-Z).
a.) (I-T)1 = Y nso I™ is convergent for |p| < rira,
b.) det (I —T) is non-vanishing and holomorphic in p on DP.
Theorem 6 (Tuite-Z). S®)(z,y) is given by

SO (z,y) = SO (x,y) + h(x) DT - T) 'R (y).

3. INTERTWINED n-POINT FUNCTIONS

As in ordinary (non-intertwined) case [DLM1,H,MN,MT1,MT3,MT4,MTZ,
T7Z2,71] we construct in [TZ4] the partition and n-point functions [DVFHLS,
EO,FS,GKV,GV,KNTY,Pe,R,TUY, U] for vertex operator algebra modules.
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3.1. Torus intertwined n-point functions. Let g;, fi, i =1,2be VOSA V
automorphisms commuting with ov = (—1)?(v. For u € V,,, and the states

V1,...,0, € V we define the intertwined n-point function [TZ4] on the torus
by
Z(l) |:§1:| (ua 22; V1, T15. ..} Uny Tni U, 21; T)

Lsg, (0 L
= STry,,, (f1 Y (qz2 2O, ng> Y(q @1, q1)

Y (L0 Y Lﬂgil(o)— Log, (0)—c/24
Y (g, vn, gn) Y | g2y U,qz | q ;

where ¢ = exp(27iT), qr = exp(zr), ¢z, = exp(z;), j =1, 2; 1 <k < n, for
variables 1, ..., T, associated to the local coordinates on the torus, and u is
dual for u with respect to the invariant form on V;,4,. The supertrace over a
V-module N is defined by

STry(X) =Try(0X).

For an element u € V4, of a VOSA g-twisted V-module we introduce also
the differential form

| f1 . o R
]F( ) |:g :| (u7227 V1,21 ---5 Un,Tn; U, 21; 7-)
1

_ L0 | N . . . TR
= Z( ) |:g :| (U,ZQ, V1, T1y+++3Un,Tn;U, 21, T)
1

Az gt T )
=1

associated to the torus intertwined n-point function.

3.2. Genus two partition and n-point functions in p-formalism. Let f;,
i =1, 2 be automorphisms, and Vo4, be twisted V-modules of a vertex operator
superalgebra V. For x1,...,z, € X1 with |z1| > |p|/r2 and |z — w| > |p|/r1,
k =1,...,n, we define the genus two n-point function [TZ4] in the p-formalism
by

Z(Q) |:§:| (’Ul’,Il;...;Un,xn;Taw?p)
= Z Z PAAS [Z] (u, w + 22501, 15 . . . 3 Un, T foll, 215 T),
]

k>0 uE Vg, [k

where (f,g9) = ((fi),(gi)), where f (respectively g) denotes the pair fi, fo
(respectively g1, g2). The sum is taken over any Vg4,-basis.
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In particular, introduce the genus two partition function

z® B] (rwp) = Y 2z [fl] (u, w; fo 1,05 7),

u€V0g2 gl

where Z(1) [gﬂ (u,w; fo w,0;7) is the genus one intertwined two point func-

tion.

Remark 1. We can generalize the genus two n-point function by introducing
and computing the differential form associated to the torus n-point function
containing several intertwining operators in the supertrace as well as corre-
sponding genus two n-point functions.

Similar to the ordinary genus two case [TZ2], we define the differential form
[TZ4] associated to the n-point function on a sewn genus two Riemann surface
forv; € V and x; € £P?), i =1,...,n with |z;| > |p|/r2, |z; — w| > |p|/71,

F(2) |:£:| <U17 <oy Uns T, va)

A [ch] (1,215 Oy i Ty w, p) [ daef™,
=1

4. FREE FERMION VOSA

4.1. Torus intertwined two-point function. The rank two free fermionic
VOSA V(H,Z + £)®?, [Ka] is generated by ¢* with

[ (m), ™ ()] = 6m,—n—1, [ (m),¢" (n)] = 0, [~ (m), ¢~ (n)] =0,
The rank two free fermion VOSA intertwined torus n-point function is pa-
rameterized by 6; = —e 201 ¢ = —e?™M and ¢y = —e 2T, [TZ2, TZ4]
where
ofi = 627ri61a(0)7 og1 = 6—27ria1a(0) ogs = 627”'/4(1(0)’

)

for real valued ay, 51, K, (01,¢1) # (1,1).
Foru=1®e" =e" € V,y, and v; = 1,7 = 1,...,n we obtain [TZ4] the
basic intertwined two-point function on the torus

20 [0 05 gy %205 )

g1
= STrVog1 (fly <q£2(0)6n7 Qz2> Y (qZLl(o)efmy qZI) nggl (0)70/24) .
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We then consider the differential form

1
Gg) |:f :| (xlayla"'vxnayn)
g1
O [ ] ok it vt g s o= O
== @ (6 awv’(p a$17,¢ 7y17"'7,¢ 7xna¢ s Yns € 7077—)?
associated to the torus intertwined 2n-point function
1 - _ _
A |:§1:| (e w; T 9Ty T YT g e, 05 1),

with alternatively inserted m states ¢ and n states ¢~ distributed on the
resulting genus two Riemann surface 22 at points z;, Yi € @ i=1,...,n.
We then prove in [TZ4]

Theorem 7 (Tuite-Z). For the rank two free fermion vertex operator super-

algebra V' and for (6, ¢) # (1,1) the generating form is given by

Gg) |:§1:| (:Elaylv O a$n7yn)

=z [fl} (e”jw; e ", 0; T) detS,(.ﬂl)7
g1

1 9 [%ﬂ (kw, T)

n(r) KW(w,7)~ 7

zW [51} (e, w; e%,0; 7) =
1

is the basic intertwined two-point function on the torus, and n X n-matrix

é1
of the Szegd kernel.

s — [S,({l) [01] (@i, y5 | T,w)}, i, 7 = 1...,n, with elements given by parts

4.2. Genus two partition function. In [TZ4] we then prove:

Theorem 8 (Tuite-Z). Let V,g,, i = 1, 2 be 0g;-twisted V-modules for the
rank two free fermion vertex operator superalgebra V. Let (0, ¢) # (1,1). Then
the partition function on a genus two Riemann surface obtained in the p-self-
sewing formalism of the torus is a non-vanishing holomorphic function on DP
given by

Dm0 {50
1

where Z() [gi] (e, w;e™*,0;7) is the intertwined V-module Vyg4, torus basic

two-point function.
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We may similarly compute the genus two partition function in the p-formalism
for the original rank one fermion VOSA V (H , L+ %) in which case we can
only construct a o-twisted module. Then we have [TZ4] the following

Corollary 1 (Tuite-Z). Let V' be the rank one free fermion vertex operator
superalgebra and fi, g1 € {0,1}, a = 1, 2 be automorphisms. Then the par-
tition function for V-module V54, on a genus two Riemann surface obtained
from the p-formalism of a self-sewn torus ¥V is given by

rankl rankl

z@ [f] (T,w,p) = 7z [fl] (e®,w;e ", 0;7)det (I — T)1/2,
Y g1

where Z(l)

rank 1 [fl] (e",w; =" 0; T) is the rank one fermion intertwined parti-

g1
tion function on the original torus.

4.3. Genus two generating form. In [TZ4] we define matrices
S@ = (5(2)($i,yj))= s& = (S'gl)($i,yj)> ’

H* = (b)) (k,0)), H™ = ((B()) (1,1)) "

S@ and S,(.@l) are finite matrices indexed by ;, y; for ¢, j = 1,...,n; HT is
semi-infinite with n rows indexed by x; and columns indexed by £ > 1 and
a =1, 2 and H~ is semi-infinite with rows indexed by [ > 1 and b = 1,2 and
with n columns indexed by 7;. We then prove

Lemma 1 (Tuite-Z).

(1) + o
det [ %_ 5? IT)Q } = det S@ det(I — T),

with T, D%.

Introduce the differential form

Gg?) |:§:| (xlvyla e 7$n,yn)

:F(Z) |:£:| (¢+7¢77~-7T/1+71/’757"w7p)7

associated to the rank two free fermion VOSA genus two 2n-point function
Z(2) |:£:| (¢+7 T1; 1/}_, Yis- -3 w+7xn ;w_7yn; T, va)7

with alternatively inserted n states ¥™ and n states ¢y~. The states are
distributed on the genus two Riemann surface Y@ at points z;, Yi € 2@,
i1 =1,...,n. Then we have
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Theorem 9 (Tuite-Z). All n-point functions for rank two free fermion VOSA
twisted modules V4 on self-sewn torus are generated by the differential form

62 ] v = 20| T () e 52,

where the elements of the matriz S = [S(Q) {Z} (@i y; | T, w)}, i,7=1,...,n

and Z() [ﬂ (1,w, p) is the genus two partition function.

5. MODULAR INVARIANCE PROPERTIES

Following the ordinary case [DLM1, MT3, MT5] we would like to describe
modular properties of genus two ”intertwined” partition and n-point generat-

ing functions. As in [MT3], consider H C Sp(4,7Z) with elements

1 0 0 b
a 1 b c
M(av b7 C) = 00 1 —a
0 0 0 1
H is generated by A = 1(1,0,0), B = ;(0,1,0) and C = p(0,0,1) with

relations [A, B|C~2 = [A,C] = [B,C]
where I'y & SL(2,7Z) with elements

. We also define I'y C Sp(4,Z)

al O b1 O
0 1 0 O

M=1 0 04 0 | ayd; — bicy = 1.
0 0 0 1

Together these groups generate L = H x Ty C Sp(4,7Z). From [MT3] we find
that L acts on the domain D” of as follows:

w(a,b,c).(r,w,p) = (7,w+ 2mwiat + 2mib, p),
( ) a1T + b1 w p
* 7-7 w7 = ) ) *
m P cC1T + d1 1T + dl (617' + d1)2

We then define [TZ4] a group action of v; € SL(2,Z) on the torus intertwined

fi

two-point function Z(1) [91 (uw, w; v,0;7) for u, v € Vgt

zW [2”% (u,w; v,0; 7) = Z1) ('71~ [QD (u,y1.w; v,0; 71.7),

ay; b
f11911

c1 d
f11911

multiplier egll) [i;ﬂ € U(1), [MTZ], [TZ1]. Then we have [TZ4]

with the standard action ;.7 and v;.w, and ;. {fl} = [

} , and the torus
g1
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Theorem 10 (Tuite-Z). The torus intertwined two-point function for the rank
two free fermion VOSA is a modular form (up to multiplier) with respect to L

A [f”% (u, w; v,0; 7)
1

_ f1:| wtutwtv+rk? r7(1) |:f1:| . .
= € CT+d Z U,’U),’U70,7'7
" [91 (@ ) g1 ( )

where u, v € Vyq.

The action of the generators A, B and C' is given by [TZ1]

J1 f 1 fig20 i f

Al 2| = | 1 fze Bl =|f2ao c| 2| =|fone
91 e e 91 g1 ) g1 91 )
g2 g2 92 g2 g2 g2

In a similar way we may introduce the action of v € L on the genus two
partition function [TZ4]

20| s =2 (5| 1 ]) e,

g
b
[
2 | _ 2
- a 101 gill
g2 g2

We may now describe the modular invariance of the genus two partition
function for the rank two free fermion VOSA under the action of L. Define
a genus two multiplier 6(72) [g } € U(1) for v € L in terms of the genus one

f f
2L =)

for the generator v € I'y. We then find [TZ4]

multiplier as follows

Theorem 11 (Tuite-Z). The genus two partition function for the rank two
VOSA is modular invariant with respect to L with the multiplier system, i.e.,

e

Finally, we can also obtain modular invariance for the generating form

G7(12) |:.£:| (J"la Yty -y xn,yn),

for all genus two n-point functions [TZ4].
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Theorem 12. Gg) {ﬂ (T1,Y1y- -+ Tn, Yn) s modular invariant with respect

to L with a multiplier.
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