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Period relations for twisted Legendre equations

by William L. Hoyt

1. Introduction

Fix a square free polynomial T € €[t] andlet L =Ly and q=qp be the
parabolic cohomology group and the quadratic form which are associated as in §§ 3,6 below
with the twisted Legendre equation over C(t)

(i) y2 = Tx(x—1)(x—t) .

In § 3 it is shown that L bas rank 2d+e with 2d = deg(T) if deg(T) is even and
2d = deg(T)-1 if deg(T) is odd and e = the number of a # 0,1 such that T(a)=0.
The main purpose of this paper is to prove that there is a bijective isomorphism

#: 1097€ ¥, 1 such that

(ii) Q(H(xyiXgq o)) = é(xi +o ’%a"‘gdﬂ T xgd-i-e) '

The proof of (ii), which is completed in § 6, is based on general results of Endo [3] which
imply that all elements of L ® € can be represented by periods p(G) of suitable vector
valued integrals of the second kind G = J' dG , that q can be defined by an integral
q(p(G)) = J *GPdG , and that this integral for q(p(G)) has a Z-bilinear expansion in
terms of suitable values of G . Proofs of the results of [3] for the special case considered
here are sketched in § 4 for the convenience of the reader; and explicit expansions for the
integral for q(p(G)) are derived in §§ 6,7. In addition it is shown in § 5 that d = the
geometric genus of an associated elliptic surface X — P, , that the holomorphic



Generalized Hirzebruch Conjecture
for Hilbert-Picard Modular Cusps

SHOETSU OGATA

Hirzebruch [H] conjectured that the signature defects of Hilbert modular
cusps should be given by the values at s = 1 of the corresponding Shimizu
L-functions, which was proved by Atiyah, Donnelly and Singer [ADS1-2]
and by Miiller [Mul]. The conjecture was reformulated in [SO] to the case
of general isolated cusp singularities, and the generalized conjecture was
partially solved by Miiller [Mu2]. In this paper we show that the signature
defects of Hilbert-Picard modular cusps are still given by special values of
Shimizu L-functions. One finds the precise statement in Section 4. This
case is not treated in [SO]. There is another case which is acceptable to
the definition of signature defects by Hirzebruch, that is, Picard modular
cusps. We calculated in [O] the signature defect of Picard modular cusps.

Let F' be a totally real number field of degree n(> 1), K a totally
imaginary quadratic extension of F' and Ok the ring of integers in K.
Let SU(m + 1,1) = {g S SL(TTL + Q,C), *gIm+1:1g = Im+1,1} (m 2
1), where Ipy11 = (Irr;]+1 Bl) The group SU(m + 1,1) acts on
the complex unit ball B,,4; in C™*1 as linear fractional transformations.
SU(m+1,1;0k) 1= SU(m+1,1)NSL(m+2,Ok) is the Hilbert- Picard mod-
ular group. SU(m+1,1; Ok) acts on the product (B,,+1)" of n copies of the
complex unit ball through n embeddings of K in C which are not complex
conjugate each other. The quotient space SU(m + 1,1; Og) \ (Bm+1)" is
the Hilbert-Picard modular variety, and is compactified to a normal complex
space by addition of finite points called Hilbert- Picard modular cusps.

In order to look one cusp it is available to realize (By,41)" as a Siegel
domain of second kind: By a holomorphic mapping

Bm+1 D (21, 2mar) = (V=11 +21),V222,...,V22m41)/(1 — z1) € Dy,

the complex unit ball B4+ is biholomorphic to
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Do = {(z,u1,...,um) € C™ 1 2Imz ~ Y 1" | |u;|* > 0}. Hence (Bm41)"
is biholomorphic to D = (Dy)®. And the group SU(m + 1,1) is trans-
formed into the group Go = {g € SL(m + 2,C);*gH 41,19 = Hmy11} by
conjugation, where

0 0 —v/-1
Hm+l,1 = 0 Im 0
v—=1 0 0

Let G := (Gp)™ and I' C G the discrete subgroup corresponding to the
Hilbert-Picard modular group. The isotropy subgroup G, of the point at
infinity of D is a parabolic subgroup P. The group P splits into P = UAM,
where

n

6 0 0
A={l0 I. 0 | €cé>o0}

0 0 671

y3 0 0 B =(By,...,B,), B; € U(m)
M={[ 0 B 0 |eGyS=h, - »ynbrn)y, ¥vi>0 }

0 0 y 1B Y1 -+ -Yn =1, detB; = ﬁ:z

and
1 V-1 =1la*/2+r
U={[a,r]:=10 I a ;

0 0 1
a=(a1,...,an)€(Cm)"‘}
r=(ry,...,mn) € R" '

According to the theory of toroidal embedding [AMRT] we see that a
desingularization of the Hilbert-Picard modular cusp (PNT\ DU {co}, c0)
is given by replacing the singularity co by a toric bundle divisor over an
abelian variety of dimension nm in the sense of Satake[S]. Further we can
easily see that the boundary manifold X of a suitable compact neighborhood
of the cusp obtained by slicing along the cusp is paralellizable. Hence we
can define the signature defect o(X, f) by giving a framing f on X.

I would like to thank Professor I. Satake for suggesting this problem,
and also to the Max-Planck-Institut fiir Mathematik for its hospitality and
financial support.



§1 Hilbert-Picard Modular Cusps. Let F' be a totally real number field
of degree n(> 1) with the ring of integers Op in F', K a totally imaginary
quadratic extension of F' with integers Ok and {®1,%1,...,¢n,Pn} the set
of embeddings of K into C. Let T € K with T = —T and +/—1T < 0.
Then we define an alternating form E: K™ x K™ — F by

E(u,v) = tracegp(*uTd),

where u,v € K™ are regarded as column vectors. Let N be a complete
lattice in ', M a free Z-module of rank 2mn in K™ satisfying the condition
that for ly,ly € M, E(l1,12) € N, and let T’ C O} be a finite index free
subgroup preserving M and N, where the action of T’ on M is component-
wise multiplication and that of T on N is multiplication through the relative
norm of K to F. Set V := Normy,p(T'). Then V C O is a finite index
free subgroup of the group of totally positive units in Op. We may consider
that V acts on M through I'. From this 4-tuple (T, M, N, V) we construct
a normal isolated singularity.

By the embedding ¢ = (¢1,...,¢n) : K — C", we regard M as a Z-
lattice in C™" and N in R®. Then Mr = M®zR ~ C™" and Ng =
N@zR ~ R". We identify Mpr with C™"” through this isomorphism, and
we also denote EQqR simply by E. We define a Hermitian form H :
Mg x Mg — Nc by

H(ll,lg) = E(ll,v—llz)—l-v—lE(ll,lg) for 11,12 ¢ Mg.

We set D := {(z,u) € Ng x Mg;2lmz — H(u,u) € C}, where C := (R5¢)"
the first quadrant cone in Ng. The domain D is biholomorphic to (Bp,41)™.
Let N := N(Ng,Mr) = {[a,7];a € Mgr,r € Nr} be a group with the
multiplication law [a,7][b,s] = [a + b,7 + s — £ E(a,b)]. The group N acts
on D as

[a,7).(z,u) = (2 + 7 +V/=1H(u,a) + QH(U, u),u+ a).

The group V also acts on Ng X Mr. Hence the semi-direct product
S(N,M,V):=N(N,M) %V acts on D. The point p = (/=100,0) at in-
finity of D gives the Hilbert- Picard modular cusp singularity (S(N, M,V)\
D U {p}, p) associated to (T, M, N, V).
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§2 Framed Manifold (X, f). We define a level set Cy(t € R) in C =
(R>0)" by

Cei={(v1,--,¥n) € (R>0)";91.-.yn = €™},
and also define D, in D by
Dy := {(z,u) € Noc x Mg;2Imz — H(u,u) € C;}.

Then the action of S(IV, M, V') preserves D;. Let X; := S(N, M,V)\D;. Set
X = X,. By composition V 5 (Rso)™ oy R"™, we identify V as a Z-lattice
in R®™!. Then X is just the solvmanifold S(N,M,V)\ S(Ngr, Mg, V&)
and inherits a natural framing f on its tangent bundle induced by the left
invariant framing on the solvable Lie group S(Nr, Mg, Vr).

§3 Representations of S(Nr,Mg,Vr). Let G be the Lie algebra of
S(Nr,Mg,Vr). Denote by Y;,...,Y,_1 € G the elements correspond-
ing to a basis of Lie(Vg) ~ R™!, and by Xi,...,X, € G the elements
corresponding to a basis of Lie(Nr) ~ R™. Let {e1,...,em} be the stan-
dard basis of C™. Then we denote by U;; and V;; € G (: =1,...,n;5 =
1,...,m) the elements corresponding to e; and \/——_lej in z — th component
of Lie(Mg) ~ (C™)™ respectively. Then we have relations:

Vi, Xi] = 2X;, [Vo,Xn] = —2Xn, (i=1,...,n—1,
[Y}ink] =Uik? [Y'ﬁ‘/ik]:‘/ika .7 :1,...,??’2,,
[KaUnk] = _Unka [K)Vnk] = ""Vnk, k= 1)' .. )m)

Uik, Vir] = —d; X,

where d; = ——\/—_lcpj(T) > 0. Theset {Y;, X;,Ujx,Vijr;i=1,...,n—1,5 =
1,...,m and k=1,...,m} forms a basis of G over R, and hence induces
the framing f.

Set Sz := S(N,M,V) and Sg := S(Nr, Mg, Vr). We consider the right
quesi-regular representation of Sz on L%(Sz \ Sr). Let f € C*®(Sz \ Sr).
We may consider f as a function on Sy invatiant under the left action of
Sz. For a fixed v € Vg the function f(-,v) : ' — C is invariant under
the action of M(N, M), hence it belongs to L2(N (N, M)\ N). The right
quasi-regular representation Ra of N on LE(N(N, M)\ N) decomposes
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discretely into orthogonal direct sum Ry = @M () (x € N) of irreducible
representations, each occurring with finite multiplicity m(x). Note that A
is the direct product of copies of a Heisenberg group of dimension 2m + 1.
We know unitary irreducible representation of Heisenberg groups (see, for
example, [Mo]):

Let G* be the dual vector space to G = Nr X Mr. On Ngr we have
an inner product < -,- > defined by R-linear extention of the rational
bilinear form tracep q(zy) for z,y € F. Let Ey := tracep;q(E|mxm).
On Mg then we have a non-degenerate Hermitian form Hy so that its
imaginary part coincides with Fy ®z R. For 7 € Mr C G* we define the
one dimensional representation m, by

7-([a,7]) = exp(27v/—1Ho(T,0a)).
For v € Nr C G* we define the representation 7, on H(w,) = Lg(Wg) =
L2(3tjxVik € N) by

(7u([e, 7)) f)(ve) = exp(27r\/—_1 < v,r — E(wy,v2) + %E(wl,wz) >N)

X f(v2 - w2)1

where W, = {Etijjk EN}~R" and a = wy +wy € W1 & Wa = Mg.
Let N* and M* be the dual Z-modules to N and M with respect to
< -,- >n and Hy, respectively.

LEMMA 3.1. The representation Ry of N on L3(N(N, M)\N') decomposes
as
Ry = @ Tr D @ m(7, )7y,

TEM* veEN*—-0

where m(7,) = /det Ey|Normpm q(»)|™.

For the proof see Theorem 37 of [Mo].

Since Sg is the semi-direct product of A" and Vg, we have the following
lemma.

LEMMA 3.2. We have the decomposition
L*(Sz\Sr)=L*V\W)® & L*(a)
rEV\(M*—0)
& P mm)L*(Vr)®H(m,).

vEV\(N*-0)
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§4 Signature defects. Assume n(m + 1) = 2k. Let (X, f) be the framed
manifold defined in Section 2. Then there exists a compact oriented man-
ifold W with OW = X. Since X is framed, we can define the Pontrjagin
classes of W as relative classes p; € H*(W,0W). Let Li(p1,...,px) €
H**(W,0W) be the Hirzebruch L-polynomial. The signature defect is de-
fined as

o(X, f) = Lx(p1, . . ., p)[W, OW] — sign(W, OW),

where [W, W] € Hy (W, 0W) is the fundamental class and sign(W, W) is
the signature of the bilinear form on H2?*(W,90W) defined by cup product.
The signature defect is independent of the choice of a bounding manifold

W (cf. [H)).
"THEOREM.

o(X, f) =2""y/det B L(N*,V; —m),
where L(N*,V;s) is the Shimizu L-function defined by

Z sign(NormF/Q(v))

LN" V) = Normze ()"

(Res > 1).
vEV\(N*—0)

COROLLARY. When n or m is odd, o(X, f) vanishes.

PROOF: When n is odd, we have L(N*,V;s) = 0 by definition. When
m is odd, it follows from the zeros and poles of I'-function appearing in a
functional equation of L-function.

§5 Eta invariants. Let X be a (4k — 1)-dimensional compact oriented
manifold without boundary. The tangential signature operator on X is a
first order elliptic differential operator acting on square integrable differen-
tial forms of even degree defined on 2p-forms by (—1)¥*?+1(xd — dx), where
d is the exterior differential and * is the Hodge star operator (see[APS1]).

In this section we define the operator A on the manifold X = S(N, M, V)\
S(Nr, Mr, Vr) by slightely modifying the tangential signature operator as
in [ADS1]. We define A on 2p-forms by

(=D (xd” — dVx),

where dV is the covariant differential of the flat connection V defined by
the framing f. The space of square integrable forms of even degree on X is
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identified with L2(Sz \ Sr) ®c (A®*G* ® C), where A®*G* := @257 A% G*
is the set of even degree alternating forms on ¢ with values in R Put
M = A®PG @gr C, which is identified with the space of constant forms of
even degree on X.

ProrosITION 5.1.

7](A, 0) —= 2nm\/ detEgL(N*, V, —-m).

For the proof of the proposition we devote the rest of this section and the
next section.

LEMMA 5.2. On L?(Sz \ Sr) ®c M, the operator A is written as

-1
A= ZY®F+Z{Z Uik ® B + Vie ® ED) — V=1X, ® E;,
=1 j=1 k=1

where F,,EEQ,EJ- € End(M), F; and EJ(L) are skew Hermitian and E; are
Hermitian. Moreover F} = (E§2 > = —1,E} = 1 and distinct pairs anti-

comimaute,

PROOF: It follows from that A is self-adjoint and that A? has the same
leading symbol as that of the Laplace-Beltrami operator on forms.

Now consider the diffeomorphism . : Dy — Dy defined by 9:(z,u) =
(e7%'z,e"'u). By the diffeomorphism ; we identify X; = Sz \ D; with
S(e=*N,e *M,V)\ Sgr. Set Sz(t) := S(e™2*N,e"*M, V). On the compact
solvmanifold Sz(t)\ Sr the framing f defines a metric, g;, and the operator
A, we denote it by A(t). We define a diffeomorphism ¢, : Sz(t) \ Sgr —
Sz \ Sr by ¢:(Sz(z,u,v)) = Sz(e?*z,elu,v). Transform the operator A(t)
on Sz(t) \ Sgr to an operator B on Sz \ Sg: For & € L*(Sz \ Sr) ® M,

B(®)(Sz9) = A()(@ 0 ge)(07 ' (S29)).
Then we have for f @ w € L*(Sz \ Sr) ® M

n—1
B(f®w)=) Yif ® Fw

i=1

+ Y e Y (Unf ® Bjw + Vinf © Ejw) - *V=1X,f ® Bw).

Jj=1 k=1



Since B is an Sg — invariant operator, we can decompose B into the sum
of the operators on the representation spaces of Sg on L%(Sz \ Sr). We
can decompose B = B, +Er€V\(M‘—0) B, + Zuev\(N. —oy By according to
the decomposition obtained in Lemma 3.2.

LEMMA 5.3. We have

Br=i:aii ®F:

+orv=1 Z t+; Z{HO(T Usk) ® ES + Ho(r, Vi) ® ESY)
k=1

and

V—Za ® F; — Z H'yJZ{ZTr\/ 1<v,X; >th3k®E(l)
Yi
=1 k=1

0

(2) — .

Proor: It follows from Lemmas 3.1 and 3.2.
LEMMA 5.4. We have
n(Bo,s) =0 and u(B,,s)=0 forall 7€ M"

PROOF: From Lemma 5.2, F; are Hermitian and unitary matrices. Since
E;By*E; = —By and E;B,*E; = —B,, we have n(By, s) = —n(By, s) and
n(Br,s) = —n(Br,s).

LEMMA 5.5. For sufficiently large Res, we have

n(B,s) = vV detE Z |Norm g q(v)|"n(B,, s).

vEV\(N*-D0)

PRroOOF: It follows from Lemmas 3.2 and 5.4.
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86 Proof of Proposition 5.1. Let

m

B,j=—e > (2rV/~1 <1, X; > djtjx @ B\ + o—
k=1
+2r < v, X; > 2112 g EJ‘.

(2)
Ot jx k)

Then we have

- 0 :
(Bu)? = %2 3 {=(57=)" + (2 <, X; > djtjp)") @1id
k=1 J
+ e (2ry/ -1 < 1, X; >) ®id

m
— X Wion /1 <1, X; >0 Y EYED.
k=1

Put
Z{ (3 )2+(2W<V,X > djtje)’}.

LEMMA 6.1. ‘A; on L*(R™) has eigenvalues

{2ndj| < v, X; > |3 @ + 1,19 = (1, 1D) € (Z50)™).
k=1

PROOF: Let hp,(z) := (—1)"‘6’“2(d—d:;)me“”‘2 be the Hermite polynomial for
nonnegative integer m, which satisfies the Hermite differential equation:

d ., d
(d_a:) hm(z) — 2:1‘3;]2,,1(3:) + 2mhn,(z) = 0.
Set fm(z) := =% /2Ry (z). Then {fm(z)}_, forms a complete orthogo-

nal basis of L*(R). Set gm(y) := fm(1/27d;j| < v,X; > |y). Then gm(y)
satisfies the differential equation

d
{@rd;| <0, X; > 1)’y = (=)' }gm(v) = 27d;| < v, X; > |(2m + 1)gm(y).
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Hence if we put
i(t) == [ gu(ts)
k=1

for I =(h,...,lm) € (Z>0)™, then {®;} forms a complete orthogonal basis
of L2(W2) and satisfies

Z{ (3 )2—1—(271' < v, X; > dity)?}8; = 2nd;| < v, X; > |Z(2zk+1)q>,
k=1

Next we simultaneously diagonalize the operators +/ —1E§}C)Eﬁ). Since

(117(1)E(2))2 = —1 and since distinct pair among {\/——lEﬁ)Eﬁ);l <j<

n, 1 < k £ m} commute, we can decompose M into the direct sum of

= {v € M;v/— E(I)E( )v = g;pv for all j and k}, where € = (1) €

{—I—l —1}7™. Put g E {+1 —1}™™ with all (j, k)-components equal to +1.
Then for any € € {+1,—1}"" the mapping

M VTEDED v, -V
(J,k):ej=-1
is bijective. Hence dimV, = dimM /2"™ = 2n(m+2)-2,
LEMMA 6.2. (B, ;)? restricted to L*(R™) ® V, has eigenvalues

2 omd;| < v, X; > | Y (2T +1) + €M (21 < v, X >)?
k=1

- 62t+2yj (27('(1_,' <v, XJ‘ >) Zsjk.
k=1
Consider the operator (}:};1 B, ;)? = > i=1(By;)? on LX(Wy) @ M =
(®"L*(R™)) ® M. Let £ be any eigenspace of 3 ;_,(B, ;)?. Then there
exists an integer a such that

TH(Bjle) = a{e? " 2md;] < 1, X; > | (I +1)
k=1

m
+ e (21 < v, X >)2 — 2T (27d; < v, X >) Zejk}l/z.
k=1
On the other hand we have the following.
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LEMMA 6.3.. For any eigenspace £ of the operator ) ;_,(B,,;)* we have
Tr(B,,,jlg) € 2112 (271' < v, XJ' >)Z.

PROOF: Any eigenspace £ has the form )~ V,;y. No E;f,c) preserves V.. But
only E; preserves it. Hence Tr(B, ;l¢) = e*'72% (27 < v, X; >)Tr(Ejl¢).
Since Ej|¢) = %1, we have the lemma.

We assume Tr(B, jl¢) # 0, then we have

lij)=0 and e;p =1 forallkif <v, X; >>0,

or
IEC") =0 and g =-1 forall kif <v,; ><0.

For v € N* — {0} we define e(v) = (gx(v)) € {+1,—1}"" such that
eix(v) =11 < v, X; >> 0 and that ejp(v) = -1 < v, X; >< 0. We
denote by B, o the operator B, restricted to L*(Vr) ® Ve(,).

LEMMA 6.4.
n(Bva 3) = U(BV,U’ S)'

PRrROOF: From Lemma 6.2 we have a series of finite dimensional vector
bundles on Vr. Except for the bundle associated to V,(,), any bundle
associated to £ C L%(W;) splits into the direct sum of the bundles with the
same rank with respect to eigenvalues of B, ; with Tr(B, j|¢) = 0. Since
F; and B, j, (j/ # j) anticommute with B, ;, we have Tr(B, ;) = 0, hence
W(BV,J'|5)3) =0.

B, o has the form

n—1 a n
=1 Jj=1

where F; and E; are regarded to be restricted to V,(,). Fortunately this
operator B, o has the same form as that of the operator A, in [ADS1]. In
fact we have

B, = sign(Norm(v))|Norm(v))*/™(e2t/2) By,
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where B, = h S 07 8/0(2y:) ® Fi + Y =1 € Ejand h= |Norm(v)|~1/™.
If we restrict t € R to t > 0, we can apply the method in Sections 5 to 12
in [ADS1] to get Proposition 5.1 for the operator A(t) (¢ > 0). The only
difference is the normalization constant because of dimV,(,) = on(m+2)-2,

Note that A(0) = A and that n(A(%),0) is independent of £ > 0.

87 Proof of Theorem. In this section we connect with the eta invariant
of A and the signature defect.

Let W be an oriented compact Riemannian manifold of dimension 4k =
2n(m + 1) with W = Sz \ Sg. Asssume that the metric on W is the
product metric in a neighborhood of OW. From Theorem 13.1 in [ADS1]

we may write
24,0 = [ Dot
w

where [; is an integer and Dy is invariant under scaling of the metric on W.

Let H:=1® M C L?*(Sz\ Sr) ® M be the space of constant forms and
H~ the orthogonal complement.

LEMMA 7.1. Given positive constant ¢, we may assume
KerB(t)=H and B()—c>0 on H<

for sufficiently large t.

ProorF: It follows from Lemma 5.3.

Now let C(t) be the tangential signature operator on the compact solv-
manifold Sz(¢)\ Sr. Then for f ® w € L*(Sz(¢) \ Sr) ® M,

CE)(f@w)=A({)(f@w)+ f & Cow,

where Cj is the restriction of C(t) to H. Note that Cy € End(M). Let us
deform linearly from A(t) to C(¢). Set

Axi=(1=-XNAR)+AC(t) =AY+ ACp for 0< A<
LEMMA 7.2. For sufficiently large t we have

H for A =0,

Kerda(t) = {KerCo for A>0.
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PROOF: We can choose a positive constant ¢ in Lemma 7.1 so that ¢ >

IColl®.

Fix t sufficiently large so that Lemma 7.2 holds and denote A,(¢) by
simply Ax. Then

T](A,\,O) = n(AJ\|HJ~,O) + W(A)«'H:' 0)

LEMMA 7.3. The eta invariant n(Ax|g+,0) is continuous in A.

PROOF: From Lemma 7.2 we see that zero is not eigenvalues of A|p..
Since the discontinuities are produced by the zero-eigenvalues (see [APS2]),
the result follows.

In the following we simply denote by the same symbol A(¢) the operator
on Sz \ Sr transformed by the diffeomorphism ¢; : Sz(t)\ Sr — Sz \ Sr
defined in Section 5. We may regard this as changing the metric gy on

S2\ Sw by (671)° g
From Theorem 4.2 in [APS1] we have

Iy = ] Dy — n(Ax,0),
1%74

where [, is integer and D) is continuous in A.

LEMMA 7.4. For all 0 < A <1 we have
77(14%0) = 0.

PROOF: From the argument in pp. 67-68 of [APS1] it is sufficient to
consider *d on the space of constant (2k —1)-forms Q2F~! := 1@ A?*~1G*®
C.

We denote by yi,zj,ujx and v € G* the dual elements to Y;, X;, U,
and Vji, respectively. Then the volume form

n—1
/\(:t:,-/\y,')/\:nn/\ /\ (ujk/\vjk)
=1 1<j<n,1<k<m

13



defines the Hodge star operator *. And the exterior differential d acts as

m
dy; = 0, dz; = —2y; A z; + d; Zu,‘k A Vig,
k=1

n—1 m
dz, =22yi/\$n+dn2unk/\vnk7

i=1 k=1

n-—1
dugk = —yi Atir, Gk = Y Y5 AlUnk,
=1

n—1
dviy = —Yi A g, dvng = Z Y; A Vag,
Jj=1

wherez=1,...,n—land k=1,...,m.
For 8 € %71 we may write

0=z ANyr, Nug i, ANvi,k,-

Set F':= {9 € ng_l; Jl = J2 and I(l = Ifz}
CLAIM 1. sign(*d|q2e-1) = sign(*d|p).

PROOF OF CLAIM 1: Let 6/ =25, Ayr, Aug i, Avsk, € Q2572 Choose
j€e{l,...,n}and ke {1,...,m} sothat j ¢ J; UJy or k ¢ Ky UKj,. Set
6~ =6 Aujx and 0% = 6’ A vjr. Then we have *d8T = — x d§~.

We denote simply by w;x = ujx Avjk. Then we may write 6 = x5, Ayy, A
wrrx € F. Next we define the weight w(8) = (4,...,1,) of § € F by

1 if eI,
0 otherwise.

Li=6(h, i)+ (k) € TKG =i}, é(h,i) = {

Set Fp := {0 € F;w(8) = w(*db)}.
CLAIM 2. sign(*d|p) = sign(xd|F, ).

The claim follows from the fact that (xd)? preserves weights.
If we set w(6) = (14,...,1,) for 8 € Fg, then w(*df) = (m+1-4,...,m+
1—1,). When m is even, hence F; = 0. We assume m is odd in the
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followings. We can easily see that d restricted to Fy coincides with the
operator 2};1 > e ext(w;k)int(X;). Hence (*d)? does not affect on the
factor yr,. But *d transforms yy, to yp; up to sign, where I, = {1,...,n —
1} — I. Thus we conclude that sign(xd|g,) = 0.

Remark. When m is even, we can also prove Lemma 7.4 by employing
the same argument of the proof of Lemma 14.8 of [ADS1].

LEMMA 7.5. ly = sign(W, 0W).

PROOF: From Theorem 4.14 of [APS1] we have !, = sign(W, 0W). From
Lemmas 7.3 and 7.4 we see that n(Ax,0) is continuous in A. Since an
integer-valued function I = fw Dy —n(Ax,0) is continuous, !, is constant.

Next we must identify the integral [i,, Dy. Let h be a nonnegative C'°-
function on I = [0, 1] satisfying
0<h<1, h(0,1/4))=1 and hk([3/4,1])=0.

As in Section 13 in [ADS1] we extend the flat connection V on Sz \ Swr to
a metric connection ¢ on W so that its torsion tensor is AT(V) on OW x I
and vanishes on the rest. We denote by p;(¢) the j-th Pontrjagin form

defined from the curvature form of ¢ by means of the Chern-Weil theory.
Then

Li(p1,...,px)[W,0W] = /W Li(p1(9), ..., px(4)),

where p; € H% (W, 0W; Z) are the relative Pontrjagin classes associated to

the framing f. We put Q(¢) := Lx(p1(¢),...,pr(¢)) for simplicity. The
signature defect is

o(S2(t) \ Sr) = [W Q($) — sign(W; OW)

= /W Q(¢) — /w Dy + n(A(t),0).

We may choose the connection ¢ so that it defines the integrand Dy as in
Theorem 13.2 of [ADS1]. Since the integrands 2(#) and Dy restricted to
W — O0W x I coincide, the integrals turn out

[ @@-p0= [ @@-Do.
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Up to now we have seen that

\/c‘;WxI(Q(QS) - DD) = G(Sz(t) \ SR,f) — U(A(t),())
= U(X7 f) - U(A, 0)

(7.6)

The first equality holds for sufficiently large ¢t and the second one follows
from the result of Section 6 and the invariance of the signature defects under
diffeomorphism.

We will consider the behavior of the integral in (7.6) under changing ¢ of
the metric (p; 1)*g: on Sz\ Sr. The integrand is a O(4k)-invariant 4k-form
and has weight zero under scaling the metric ¢ — u%g. Moreover we have

LEMMA 7.7. On OW x I we have
Q¢) — Do = Y _ ai(h)P{(T(V)),

where a;(h) is apolynomial in h and in the derivatives of h with values
in 1-forms on I, and P;(T(V)) is an O(4k — 1)-invariant 4k-form valued
polynomial in the components of T(V) and in its covariant derivatives with
respect to the flat connection V. Moreover each P; has nonnegative weight.

For the proof see Proposition 13.5 of [ADS1].
Every invariant polynomial is a finite linear combination of elementary

monomials m(T(V)) in the torsion tensor T(V) with values in g-forms de-
fined in [ABP].

LEMMA 7.8. If we change the metric go on Sz \ Sr by (©; *)*g:, then ele-

mentary monomials m(T(V)) with (4k — 1)-forms change as multiplication
by e2n(m+1)t.

PROOF: Recall [ABP] that an elementary monomial m(T) with values in
g-forms is given by

m(T) :iTal ---Ta"a
q

where Ty = Ty, apa3,04...00, the indices ay,...,a; refer to covariant deriva-
tives. Alternation runs over ¢ indices and the remaining indices are con-
tracted. Since T = T(V) is parallel, the indices &' have the length three.
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If all indices o in T, are contracted, it is not affected by the change of the

metric. Hence ¢ = 4k — 1 indices of alternation change m(T) totally by
e?n(m—}-l)t.

From the equation (7.6) and Lemmas 7.7 and 7.8 we see that

U(Xaf) =n(4,0).

Combining this equality with Proposion 5.1 we complete the proof of The-
orem.
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