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1. Introduction:

This paper is a study of cohomology theories of various
types on various categories. Basically it is a study of axio-
matics, their interrelationships, and their applications, and

in particular of the type of axiomsystem considered in [1,13,21].

For our purposes a cohomology theory on a space X is
a continuous exact contravariant functor from the category of
closed subsets of X to the category of graded abelian groups.
A homomorphism between two cohomology theores on the same
space is a natural transformation between the contravariant
functors which maps the exact sequences of one into the exact
sequences of the other. We are interested in uniqueness theorems
asserting that a homomorphism which is an isomorphism for
every point of the space as an isomorphism for every closed
subset of the space. Such theorems were proved in [13,21]
for nonnegative cohomology theories. These theorems have as
consequences many results in ordinary cohomology theory pre-

viously obtained using sheaf theory.

In the present paper the condition of nonnegativity is
dropped so that the theory may be applied to extraordinary
cohomology theories. In this casethe uniqueness theorem is
not valid without some additional assuption. We prove it is
valid for finite-dimensional spaces. This form of the unique-
ness theorem has some interesting applications to cohomology
of manifolds. It can also be applied to prove a similar unique-
ness theorem for cohomology theories defined on larger cate-
gories such as the category of all compact spaces and con-

tinuous functions or the category of all locally compact



spaces and proper continuous functions.

On the category of compact spaces we prove that our
cohomology theories are equivalent to continuous theories
satisfying the Eilenberg-Steenrod axioms except the dimen-
sion axiom. As an example, a spectrum of ANR defines a co-
homology theory on the cateqory of locally compact spaces.
Application of the uniqueness theorem to such cohomology
theories provides another proof of the fact that the Chern
character is an isomorphism of K(X) © @ with ﬁev(x;Q)
for every compact space X . We also use the uniqueness the-
orem to give another proof of the duality in stable homotopy

theory for compact subsets of s™.

The rest of the paper is divided into seven Sections
of which the first three are devoted to cohomology theories
on a single space and the last four are devoted to cohomology

theories on categories of spaces.

Section 2 contains the definition of a cohomology
theory on a space and some of its elementary properties.
Section 3 contains a proof that the cohomology theories
considered by Lawson [13] are essentially the same as ours
and that ES theories (which satisfy Eilenberg-Steenrod
axioms) determine cohomology theories. Section 4 is devo-
ted to a proof of the uniqueness theorem for finite dimensio-

nal spaces and to applications of this result to manifolds.

In Section 5 we consider cohomology theories on the

category ccomp of compact spaces and continuous functions

and on the category ¢ of locally compact spaces and

loc comp



proper continuous functions. In each case there is a unique-
ness theorem. We also show that cohomology theories on ccomp
are equivalent to compactly supported cohomology theories

on C . Section 6 is devoted to ES theories on ¢

loc comp comp’

There is a corresponding uniqueness theorem for these, and we
also prove the equivalence of ES theories and cohomology

theories on ¢C -
comp

In Section 7 it is shown that a spectrum of ANR defines

a compactly supported ES theory on ¢C . As a consequence

loc comp
we obtain the theorem concerning the Chern character previous-
ly mentioned. In Section 8 these ideas are applied to stable
homotopy theory. The uniqueness theorem implies the duality

theorem in stable homotopy theory.



2. Cohomology on a space

In this section we present the definition of a coho-
mology theory on a space X and some elementary properties

of such theories. The present definition differs from that in

(21] in that nonnegativity is not assumed.

All topological spaces will be assumed to be normal Haus-
dorff spaces. If H is a contravariant functor from a cate-
gory of subsets (and inclusion maps between them) of such a
space to the category of graded abelian groups (and homomor-
phisms of degree zero between them) we use the following
notation. If H is defined for an inclusion map i:BcA and
u€H(A) then u|BE€H(B) is defined by u|B=H(i)(u). With this
notation the statement that H is a contravariant functor

is equivalent to the two conditions:

i) for u€H(A), ul|A=u , and ii) for Cc<BcA and u€H(A)

then (u|B)|C =u|C . In general we will use p to denote

a homomorphism induced by an inclusion map (i.e.p=H(i) :H(A)-H (B)
for i:BcA). Given a topological space X 1let c¢l(X) denote
the category of all closed subsets of X and all inclusion

maps between them. A cohomology theory H,8 on X consists

of i) a contravariant functor H from cl(X) to the category

of graded abelian groups (H(X)={Hq(x)} such that

gez?
H(¢)=0 and ii) a natural transformation & assigning to

every two closed subsets A,BcX a homomorphism of degree 1
6 : H(AnB)—> H(AUB)

such that the following are satisfied:



Continuity For every closed AcX there is an isomorphism

o : 1im { HY(N)] Na closed nbhd of a in X}~ HY(a)
— ’

where p{u} =u|a for ueHY(N).

MV exactness For every two closed sets A,B in X there is

an exact sequence

[} a B S a
...—> HY(avB)—> ui(a)e HY(B)— HY(ANB)—> Hq+](AUB)—> T

where a(u) = (u|A,u|B) for uEHq(AUB) and

8(u,v) = u|anB-v|anB for ueH¥(n),vend(p).

Remarks (2.1) This definition differs from that in [21]

in that it has not been assumed that H3(a) = 0 for q<0 for
all closed A<X. This is a substantial difference in that the
uniqueness theorem [21, Theorem 2.20] is only proved for finite
dimensional spaces X and, in fact, is false for arbitrary
compact spaces (see Section 4 below). Two other minor differen-
ces with the definition in [21] are to be noted. One is that

we have here used the term "continuity" for what was previous-
ly called "tautness”". The other is that we have here used

"a,B" for homomorphisms previously denoted by "J,I".

(2.2) The continuity property is equivalent to the follo-
wing two conditions. A contravariant functor H on c¢l(X) is
said to be extensive if given uGHq(A) there is a closed nbhd

N of A in X and veHY(N) such that v|A=u. Then H is



extensive is equivalent to the assertion that the homomor-

phism p of the continuity property is an epimorphism.

A contravariant functor H on cl(X) is said to be
reductive if given N a closed nbhd of A in X and
ueHY(N) such that u|Aa=0 then there is a closed nbhd M of
A in N such that u|M=0. Then H is reductive is equiva-
lent to the assertion that the homomorphism p of the conti-

nuity property is a monomorphism.

The terms "extensive" and "reductive" were introduced by
Wallace [23] . Note that the continuity property does not in-
volve the natural transformation & . Thus, we speak of a
continuous H and an exact H,8 . Clearly H 1is continuous
if and only if it is extensive and reductive.

{(2.3) If H,5 is a cohomology theory on X, then its
pth suspension cpH,é where (opH)q(A)=HP+q(A) and
s : HP*9anB) —> Hp+q+1(AUB) is also a cohomology theory on

X for every p€Z .

on X indexed by an arbitrary set J then the direct sum

jPJ Hj'ngsj where

is a family of cohomology theories

(e H.)q(A) = o Hd (o) and @ s.: © HI(anB)— @ HI''(auB)
jeg jeg J j€3 1 je3 3 jes 3

is also a cohomology theory on X (because direct sums commute

with direct limits and preserve exactness).

(2.5) If H,5 1is a cohomology theory on X and G is



a torsion-free abelian group the tensor product H®OG, 601

G

a9+ auB)eG

where (H®G)9(a)=H9(A)eG and se1.:H9(anB)eG — H

G
is also a cohomology theory on X (because tensor product with
G commutes with direct limits and, because G 1is torsion-free,

preserves exactness).

(2.6) Let f:X —> Y be a closed continuous map and

let H,6 be a cohomology theory on X. The direct image f*H,

where (f*H)q(A) = Hq(f-1(A)) for AcY and

s:H3(e @)y ne ' 8)) — BT (£ (a)ue" ' (B)) is a cohomology
theory on Y (closedness 6f f and normality of Y imply that
the collection {f-1(N)|N a closed nbhd of A in Y} is

cofinal in the collection of closed nbhds of £ ! (a) in X) .

The following proposition concerns two consequences of

the continuity property of cohomology theories.

Proposition (2.7) Let H be a continuous contravariant

functor on cl(X).
1) If AcA' are closed subsets of X, there is an isomor-

phism

p: lim {Hq(N)lNaclosed nbhd of A in A'}lw Hq(A)
—_

where p {u} = u|A for ueHd(N) .

2) If (A is a family of compact subsets of X direc-

1hes
ted downward by inclusion, there is an isomorphism

pr lim H A 15~ I A))

where p {u} = “leJAj for uend(a)).

3



Proof. 1) follows as did the corresponding property
for the cohomology theories previdusly defined [21, Lemma 2.13]
2) follows from continuity using the fact that compactness of
A. for each 3j€J implies that if N is any nbhd of jQJAj

J

there is j€J such that A;=N. o

A cohomology theory H,8 is said to be nonnegative if

#9(a) = 0 for g <0 and all closed AcX. The cohomology
theories considered in [21] were nonnegative cohomology theo-

ries.

A cohomology theory H,§ on X is said to be compactly

supported (or to have compact supports) if given uEHq(A)

there is a decomposition A=BUC where B is closed, C is

compact and u|B=0.

A cohomology theory H,§ is said to be additive if given

a discrete* family {Aj} of closed sets there is an iso-

jeI

morphi HY(.u q a q9 to the
rphism (JEJAj)w jI;E H (Aj) sending u€H (ngAj)

family {ulAj}j€J .

In none of the above definitions does the natural trans-

formation 6 enter.

*

A family {Aj}jEJ
to be discrete if every point of X has a nbhd meeting at

most one member of the family. This implies the members of the
family are pairwise disjoint and, since a discrete family is ob-
viously locally finite, if each is closed in X, then ngAj i
also closed in X.

of subsets of a topological space is said



If H,§ and H',8' are cohomology theories on the same

space X , a homomorphism ¢ from H,é§ to H',§' is a na-

tural transformation from H to H' commuting up to sign with

§,8°

Recall {21] that a homomorphism @:G —> G' of degree 0

between graded abelian groups is on n-equivalence if

L' :69 —> ¢'? is an isomorphism for all g<«n and a momomor-
phism for g=n. We prove two results about homomorphisms bet-
ween cohomology theories on the same space X which are assumed
to be n-equivalences for certain subsets of X. (Actually nei-

ther result requires the continuity property.)

Proposition (2.8) Let @:H,$ —> H',§' be a homomorphism

between two compactly supported cohomology theories on X and
suppose there is n€Z such that wC:H(C)-—-> H'(C) 4is an
n-equivalence for every compact CcX. Then wAzﬂ(A)-—>H'(A)

is an n-equivalence for every closed AcX.

Proof. 1) We prove QA:Hq(A)——> 1#'%4a) is an epimor-
phism for gq<n and A closed in X. Let ueH'9(a) where
g<n. Since H' is compactly supported, A=BUC where B is
closed, C ib compact and ulB=0. The following diagram has

exact rows and commutes up to sign

89"V (Bne) 5> B9a) 2> a9 (B)end(c) -8> nd(BnC)
Gﬁlﬂ wl lw ] lw
19V eno)-E> 5 9a)L>nrIm)enrYc)-E> 59 (snc)
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and the vertical maps on the two ends are isomorphisms because
BNC 1is compact and q<n . By [21 , Lemma 2,19 part 2 ],

o'"! (im 9) cim o.

Since (pc:Hq(C)NH'q(C) there is veHY(C) such that <p(v)=ulc.
Then (0,v)en?(B)e HI(C) is such that ©(0,v)=(0,0(v))=(0,ulC)=

=a'(u) so a'(u) € im¢ and, hence, u€ imy.

2) We prove ‘DA:Hq(A) — H'q(A) is a monomorphism for
qsSn. Assume u€HY(a), gsn 1is such that ®(u)=0. Because H
has compact supports, A=BUC where B is closed, C is compact
and u|B=0. The following diagram has exact rows and commutes

up to sign

¥ T m)en? ' (c)E> u¥7 1 Bic)-Ls> w9 (a)2> n9(m)erd(c)
ol ohes lo lo

T e T Vo)LV (Bno)-S BV (a)> 119 (B)entd(c)

and the first vertical map is an epimorphism by 1) above
and the second vertical map is an isomorphism because BNC
is compact and g-1<n . By [21, Lemma 2,19 part 1 ]

ker g N ker ¢ = 0. Since (pc:Hq(C) —_> H'q(C) is a monomor-
phism for gsn it follows that u|C=0 (since ¢ (u)=0 ).

Therefore, af(u)=0 so u€ ker ¢n ker o« and so u=0,
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Proposition (2.9). Let ¢:H,5 —> H',58' be a homomor-

phism between two additive cohomology theories on a paracom-
pact space X. Suppose there is n€ Z and an open covering

U of X such that wA:H(A) —> H'(A) is an n-equivalence for
every A contained in some element of U . Then wA:H(A)-—>H'(A)

is an n-equivalence for every closed AcX.

Proof. Let C be the collection of closed subsets A
of X such that wB:H(B) —> H'(B) is an n-equivalence for
every closed BcA . By the hypothesis of the Proposition every
point of X has a closed nbhd in C . From the definition
of € it is clear that if A',A are closed sets with A'cA
and A€C then A'€C . It follows from theexactness of H,6§ and
of H',6' that if A,B are in C then AUBEC . It follows

from the additivity of H,6 and H',6' that if is

a discrete family in C then ng.Aj is also in C .
Hence, C( satisfies the hypotheses of [17, Theorem 5.5] so

xec L3
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3. Other theories

In [13]) Lawson considered cohomology theories satisfying
axioms similar to, but somewhat different from, those defined in
Section 2. We prove that his definition is essentially equiva-
lent to ours. We also consider theories defined on cl(x)2
satisfying axioms similar to those of Eilenberg and Steenrod

[5] and show that they define cohomology theories.

An L theory H,A on X is defined to be a pointwise taut
cohomology theory on X in the sense of [13]. Thus, it consists

of:

i) A contravariant functor H from cl(X) to nonnega-

tive graded abelian groups such that H(#)=0, and

ii) A natural . transformation of degree 1,
A :Hq(AnB) —_> Hq+1(AUB) defined for every two closed subsets

A,B of X such that intAUBAUintA BB=AUB (in which case we

u
say A,B are an excisive couple in X), satisfying

1) For every x€A where A 1is closed in X there is

an isomorphism

p:lim {HY(N) |N aclosed nbhd of x in A}mHY(x)
—_—2

guch that olul #ulx  for wend (M.

2) For every excisive couple A,B in X there is an

exact seguence

coo2> B¥aus) 2> w9ajend(e)-L> w3 (anB)L> 1 (auB)>...
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where a(u)=(ulA,u|B) and B8(u,v)=u|AnB-v|AnB.

Thus, an L theory differs from a cohomology theory in two
respects. Firstly, in an L theory the continuity property 1)
is for a point x 1in a closed set A rather than for a closed
set A in X. Secondly, in an L theory the natural transforma-
tion A 1is defined and the exactness property 2) of H,A 1is
required only for excisive couples in X whereas in a cohomo-
logy theory & is defined and exactness of H,§ 1is required

for every two closed sets in X.

An L theory is additive if it satisfies the same additivity
property defined in Section 2 for cohomology theories. The
following shows that on paracompact spaces additive L theories
are essentially the same as additive .nonnegative cohomology

theories.

Theorem (3.1). Every nonnegative cohomology theory on X

is an L theory on X. On a paracompact space X every additive
L theory is isomorphic to one obtained in this way from an

additive nonnegative cohomology theory on X.

Proof. If H,§ is a nonnegative cohomology theory on X,
then 1) above follows from 1) of Proposition (2.7) and 2) above
is MV exactness for excisive couples in X which is a conse-
quence of MV exactness for every two closed sets A,B in X.

Thus, H,§ 4is an L theory on X.

Conversely, given H,A an additive L theory on X and

given A closed in X define

73(a) = 1im (H9(N)|N aclosed nbhd of A in X} .
—_—
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Then H is obviously a contravariant functor from cl(X)
to nonnegative graded abelian groups such that H(§)=0 anad

satisfying the continuity property.

To define a natural transformation of degree 1
s : 89(anB) —> §q+1(AUB) such that H,§ satisfy MV exact-
ness for every two closed sets A,BcX we first show that if
A,B are closed sets in X and 0U,V,W are open nbhds of
A,B,ANB, respectively, in X , there exist closed nbhds M,N
of A,B, respectively, such that M,N is an excisive couple
and McU, NcV, MNNcW. Since UNVAW is a nbhd of ANB and
X is normal there exists an open nbhd W' of ANB with
W'eUNVNW . Then A-W',B-W' are disjoint closed subsets of X
so there exist disjoint open nbhds U' of aA-W' and V' of
B-W’ and, without loss of generality, it can be assumed also
that U'cy,V'eVv and U'NV'=p. Then M=U'UW' is a closed nbhd
of A contained in U,N=V'UW' is a closed nbhd of B con-

tained in V, and

int M = M-(MUN)-M = M-U'UW'UV'-T'UW'

MUN

M- Vl_ﬁl aluﬁl__(Vn_ﬁl)Dﬁvuﬁl_V|

Similarly dnty . N = V'UW'~ (T'-W')oV'UW'-T"' so that

T 1Y =\ ! X7 W TTY

(G'UW'=V")U (V' UW'~U" ) intMUN MUintMUN NcMUN
Since MUN = U'UW'UV' = (U'UW'-V')U(V'UW'-0')., it follows
that intMUN MlJintMUN N = MUN . Therefore M,N are closed

nbhds of A,B, respectively, with the requisite properties.



thus, as NN vary over closed nbhds of A,B, respec-
tively, such that M,N is an excisive couple in X, it follows
that n.n;unn.uuu vary over a cofinal family of closed nbhds
A,B,ANB,AUB, respectively. The direct limit of the exact

sequences
cos m0uN) 2> B9 erIm) H> BTN 2> 53T owmy —>...

is an exact sequence

s -
o> B2 auB) 2> T9(a)6id(B) —> FI(ANB) 25 79 (auB) —>...
and defines the natural transformation

3 ; 7d@ans) — 79 aup) .

Therefore, H,5 is a nonnegative cohomology theory on X.

We show it is additive. Let (a4} be a discrete family of

€J
closed subsets of X. For each j? let Uj. = x'jgj' Aj .

Then U = {an}j.eJ is an open covering of X by sets each of
which meets at most ohe member of {Aj} . Llet V be an open
star refinement of ( (which exists because X is paracompact
[4]) and, for each 3J€J , let |

vj = U {VEV| vms,j 1)

Then ~Ajcvj=ﬂj . Furthermore, if V is any element of V and



- 16 -

anj*a, ank#¢ for 3j,k€J there are V',V''€V with
VﬂV'tﬂ,V'nAj#G and VNV'*'sg ,V"nkk#ﬁ . Then V',V''cV*c some
element of U . Since no element of U meets more than one

member of {A.} , it follows that j=k. Hence, every element

Y

of U meets at most one member of Vj}jEJ so{vj}jea is a
discrete family of open nbhds of {Aj}j€J . respectively.
If U is any open nbhd of A=UAj ’ then {UnV;’}j€J a

discrete family of open nbhds of {A.} ¢ respectively, con-
tained in U. For each 3j€J let NJ be a closed nbhd of Aﬁw
contained in UnVj . Then {Nj} is a discrete family of closed
nbhds of {A } , respectively, whose union is contained in U.
This implies that the collection of unions of discrete families
{Nj} where Nj is a closed nbhd of Aj ‘for each 3jeJ is

cofinalin the family of all closed nbhds of A in X. Therefore,

H(A) » 1im {H(N)|N = unj,{nj} discrete, Ny a closed nbhd
—2>
of A, in X}
JT | |
o lim {JGJ H(Nj)l{Nj} discrete, Ny a closed nbhd

°f“Aj in X}

~ E E(Aj)

so H 1is additive.

Clearly there is a natural homomorphism ¢:H,5§ —»H,A de-
fined by ¢{u} = u|A for u€H(N),N a closed nbhd of A . Then
¢ is a homomorphism between two additive L theories on the
paracompact space X. The hypothesis 1) above implies that
@ is an isomorphism for every x€X . By [13,Theorem 3.2} ¢ is
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an isomorphism of L theories. Therefore, H,A is isomorphic

to the L theory determined by the cohomology theory H,§ .

Cohomology theories on X frequently arise from suitable
contravariant functors definedon cl(x)z, the category of pairs
of closed subsets of X. We formalize this using the following
Eilenberg-Steenrod axioms. An ES theory H,§* on X consists

of:

1) a contravariant functor H from cl(X)2 to the cate-

gory of graded abelian groups, and
ii) a natural transformation of degree 1

g+1

s* : H9(B,¢) —> HY ' (a,B)

for every (A,B) in cl(X)2 such that the following hold:

Continuity. For every closed A in X there is an

1somorphism“

p: 1im {HY(N,g)|N aclosed nbhd of A in X}~ EI(A,9)
Sn

where p{u} = u|(A,g8) for uenq(u,a).
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Exactness. For every closed pair (A,B) in X the

following seguence is exact

oS w9, B, g3, B, g3(p,0)-T5 59 (a,B)—> ...

where 1i:(B,#)c(A,f) and 3j:(A,f)c(A,B) .

Excision. For closed sets A,B in X there is an

isomorphism

p: H(AUB,B) = H (A,ANB) .

Thus, an ES theory satisfies some of the Eilenberg-Steen-
rod axioms [5] on cl(X)2 . It need not satisfy the homotopy

axiom nor the dimension axiom.

Proposition (3.2). If H,§* is an ES theory on X there

is a cohomology theory H',8' on X such that H'(A)=H(A,{)

and 6'=H'(ANB) —> H' (AUB) 1is suitably defined.

Proof. It is standard [5] that the exactness property
of H implies that H'(#)=H(#,d)=0 and the exactness and
excision properties of H,8* imply the exactness of Mayer-
Vietoris sequences with §' suitably defined. The continuity

of H' follows from that of H.
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In general we do not have a way of associating to a coho-
mology theory on X on ES theory on X. With suitable defini-
tions of cohomology theories and ES theories on larger catego-
ries we will show in 8ection 6 that the two theories are equi-

valent on the category of all compact spaces.

The concepts of nonnegativity, compactly supported and

additivity are defined for ES theories to correspond to kthe

same properties of the associated cohomology theories.

Most of the cohomology theories on X we consider will

be obtained from an ES theory on X using Proposition (3.2).

Example. (3.3) Define 2H on cl(x)? by

AHq(A,B)=H_q(x-B +X-A) (singular homology with an arbitrary but
fixed coefficient group) and define &*:°s¥(B,8) —> n9'1(a,n)

to equal the connecting homomorphism  3:H_ q(x,x-B)—, H_ q-1 (X-B,X~-2a)
of the triple (X,X-B,X-A) . Exactness of the homology sequence

of the triple (X,X-B,X-A) yields exactness of AH,G* . The
excision property for 84 follows from the fact that A,B

closed in X imply that X-B,X-A are open in X so the

inclusion map
(X-B, (X-A) n (X-B)) < ((X~A) U (X-B), X=-A)

incluces isomorphisms of singular homology.

The continuity property for AH follows from the fact
that singular homology is carried by compact sets and the fact

that, as N varies over closed nbhds of A in X,X-N wvaries
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over a collection of open subsets of X directed upward by
inclusion whose union equals X-A and this implies [20, Theo-
rem 4.4.6]

lim {H_q(x,X-N) | N aclosed nbhd of A in X)}m H_q(x,X-A) .
_

Therefore, H,8* 1is an ES theory on X .

In case X is locally compact this theory is compactly
supported. In fact, if zeAHq(A)=H_q(x,x-A) there is an open
set U with compact closure U such that 2z is in the image
of H_,(UU(X-R),X-A) —> H_,(X,XUA) . Then A=(A-U)U ANU where
A-U=B is closed, ANU =C is compact and z|B=0 because

X-B=UU(X-A) so the composite
H_q(UU(x-A).X-A) —_—> n_q(x,x-A) —_> n_q(x,x-a)

is zero.
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4. Finite dimensional spaces

First we present an example to show that the main unique-
ness theorem'[21, Theorem 2.20) generally fails if H,H'
are not nonnegative cohomology theories on X. Then we prove
that the uniqueness theorem is valid for arbitrary H,H' if X
is assumed to be a finite dimensional space (finite dimensional
will mean a finite dimensional separable metric space, as in
[8]). We then present some applications of this uniqueness

theorem to manifolds.

We consider the cohomology theory K(X) defined for a
compact Hausdorff space using complex vector bundles over X
(see Section 7 below). It is well known [10] that K is a co-
homology theory on every compact Hausdorff space X and that
it is periodic of order 2 (i.e. Kq+2(A)nqu(A) for all gq).
Since Ko (A) ~Z @K(A), it follows that K is not a nonnega-

tive cohomology theory.

In [22] there is given an example* of a continuous map
f:X —>Y between compact Hausdorff spaces such that for every
y€Y,f|f-1y:f-1y —> y induces an isomorphism of K(y) with
K(f~'y) but K(Y) 4is not isomorphic to K(X). There is a ho-
momorphism £ £rom the cohomology theory K on ¥ to the direct
image (as in Example 2.6) ka (which is also a cohomology
theory on ¥). This homomorphism is an isomorphism for every
YEY but is not an isomorphism for Y itself. Thus, the

unigueness theorem of [21] is not true for arbitrary cohomolo-

gy theories on a compact Hausdorff space.

* The author is indebted to S. Ferry for pointing out this
example to him.
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In order to extend the uniqueness theorem to arbitrary
cohomology theories we need an inductive argqument based on
something other than degree of cohomology. Such an argument
is possible based on dimension of the subset AcX. First we

establish the following property of finite dimensional spaces

needed for the inductive proof.

Lemma 4.1 Let A be a compact metric space of dimensi-
on q. Given >0 there existsa finite number of closed sets

A1,...,Am such that:

1) »A;ATU...U Am
2) diam Ai se for 1sism

3) dim (AinAj)<q for 1si#jsm

Proof. Because A 1is a compaét metric space of dimensi-
on q there is a finite open covering A=U1U...UUm such
that diam Ui<e for 1sism and dim bdry Ui<q for 1sisq .
Such a covering of A will be called e-thin. We prove by induc-
tion on m that if A has an ¢-thin open covering by m sets,
then A has a closed covering by m sets A.',....,Am satis-
fying 1),2),3) of the Lemma.

In case there is an ¢~thin covering of A by one set U,
we take A,=A and observe that 1) ,2)3) are satisfied (3) is
vacuously satisfied). Now assume m>1 and that the result is
valid for compact sets having an e-thin open covering of m-1
sets. Suppose A=Uﬁl”.uum is an ¢~thin covering of A Dby
m sets. Let A1=ﬁ1 and consider B=A-U, . Then B is a com-

pact metric space of dimension q with the e¢-thin open
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covering V2=Bnuz,,...,vm=BnUm by m-1 sets (note that diam

<¢ for 2s5jsm and, since BNU n(B-uy) is a closed

Vdeiam Uj 3
subset of an(A-Pj)'
dim bdry Vj=dim [Bntn(B-Uj)] s dim[an(A-Uj)]

= dim bdry Uj<q) .

By the inductive hypothesis B=BZU...UBm where Bi is closed,

diam BiSe for 2s5ism, and dim BinBj

Ai=Bi for 2sism . Then A=A1U...UAm s A

diam AiSe for 1s5ism . Clearly

dim AinAj<q if 2si#jsm . For 2sism

<q for 2si*jsm . Define

i is closed, and

dim (A1ﬂAi) = dim (U1ﬂB

R dim [(U1Ubdry 01) nBi]

dim (bdry U,0B,) because U,NB;=4¢

s dim bdry U,<q

so A1,...,Am have all the requisite properties. o



We now prove the uniqueness theorem for finite dimen-

sional spaces.

Theorem (4.2). Let ¢:H —> H' be a homomorphism of

cohomology theories on a metric space X and let n€Z be
such that cpx:H( X) —> R'(x) 1is an n-equivalence for every
x€X. Then N is an n-equivalence for every compact finite

dimensional subset AcX.

Proof. We prove the theorem by induction on the dimen-
sion of the subset A . If A has dimension -1 , then A=§

and cpﬂ is an isomorphism because H(@)=0=H'(f) so tpﬂ is

an n-equivalence. Assume A 1is compact, dim A =g>-1 and the

result is valid for all compact subsets of dimension < q .

1) We prove (pA:Hk(A) —_> H'k(A) is an epimorphism for
k<n . Let u€H'k(A), k<n and assume uf¢ im 9 - By Lemma 4.1

we have closed sets B1,...,Bm such that A=B U...UBm ’

1

diam Bis1 for 1sism and dimBnBj<q for 1si#jsm .

i
We claim there is some 1 with 1sism such that uIBiE imeo.
In fact, if there is no such i 1let Cj=B1U...UBj for

1sjsm . We prove by induction on j that ulcje im ¢ , which

will give a contradiction because Cm=A and ulcm=u¢ imyp by
hypothesis. For Jj=1 we know by hypothesis on ulBi that
u|c1=u|B1€ im¢@ . Assume 3j>1 and ulcj_1€ im ¢ . The following

diagram has exact rows and commutes up to sign

k-1

5
H(Cy_,nB

k a k k k
g > ufey) 2> mfey_pe msy) —E}H (C,_1NBy)

o)~ ol o} ~}ae

k=1 _6: 'k _2'_ vk ok ! k ‘
H (Cy_yBy)—=> H'E(C;)-> H'(Cy ;)0 B (Bj"E”‘*k‘Cj-1ﬂBj)



and the first and last vertical homomorphisms are isomorphisms

because k<n and

dim (C ﬂBj)Sdim ((B1U...UBj_1)ﬂBj) s dim (B1nBjU...UBj_1nBj)<q

3-1
By [21, Lemma 2.19 part 2] a'-1(im 9)c im ¢. The inductive
hypothesis on ulcj._1 implies ulcj_1 € im@ . Also we have supposed
uIBj € im ¢ . Therefore, a' Iu(cj) €imy so ulcj €Eimeo . This
completes the induction. Thus, the assumption that uIBiE ime

for 1sism leads to a contradiction so there is some i such

that ulBii ime.

Choose A, to be a B, such that u|A1¢ im ¢. Then
A=A1,diam A1s1 and u|A1¢ im ¢ . Repeat the argument to obtain

1
A.oA,,A, closed, diam A,s3 and u|A2¢ im ¢ . Continue to ob-

tain a decreasing sequence of closed sets

A3A1 DAZD. .o
such that diam Ais1/2j'_1 and u|Ai¢ im ¢ . Then na, is a single
point, say x, and by continuity of H,H} it follows that
u|x¢ im @, contradicting the hypothesis that ¢  1is an epimor-
phism in dimensions <n . Therefore, u€ im ¥, 80 @, is an

epimorphism for dimensions <n.

2) We prove ¢, : Hk(A) _> H'k(A) is a monomorphism for
ksn . Assume ueﬂk(m ksn 1is such that cph(u) = 0 . We want

toprove u =0 . Assume u+0 and let A = B,U...UB be

1

such that B is closed and diam Bis1 for 1sism and

i
dim (BinBj) <q for 71sisjsm . We claim u]Bi *0 for some



i with 1sism . Otherwise let Cj = B1u...UBj_1 for 1sjsm .
0 (this would give

We prove by induction on j that uICj
a contradiction because 0 = u|C = ulaA = u#0). For j = 1
we know by hypothesis on uIBi that uIC1 = uIB1 =0 .

Assume 3 >1 and that uicj_1 =0 .

The following diagram has exact rows and commutes up to

sign

k-1 k-1

k-1 8 §_ .k a_ .k k
H™ '(C;_J)8H (BJ.)—>H (C nBj)——>H (cj)-—>n(cj_1)en (Bj)

3 =1
@+ R + 0 + @

k=1 k=1 . & ko ok X
H (Cj_1)01-l (Bj)-—>H (Cj-1nBj)—"H ‘Cj)—>H (cj_1)gn (Bj)

and the first vertical homomorphism is an epimorphism by 1)
above and the second vertical homomorphism is an isomorphism

because dim (C nBj)'<q . By [21, Lemma 2.19 part 1] ,

j-1
ker afNtker ¢ = 0 . Since

a (ulcj) = (uICj_1,u|Bj) = (0,0) =0

ulcje ker. aN ker ¢ so uICj = 0 . This completes the in-
duction. Thus, the hypothesis that uIB1 = 0 for all 1sism
leads to a contradiction so there is some i such that
uIBi=t0 .

Choose A, to be a B, such that u|A1=r0 » continue

as above to obtain a decreasing sequence of closed sets

A:A1DA2=..C



such that diam Ais1/21-1 and ulAi# 0 . Then NA;, 1is a point
X€X and by continuity of H and H', u|x #0 contradicting

the hypothesis that e, ¢ Hk(x,) —_ n'k(‘x) is a monomorphism
for ksn . Therefore, u =0 so LY is a monomorphism for

dimensions sn . o

Corollary (4.3) Let ¢ : H—> H' be a homomorphism of

cohomology theories with compact supports on a finite dimen-
sional space X and let n be such that Py 3 H(x)—> H' (x)1is

an n-equivalerce for every ,f_x.'lhenwA is an nequivalence for every closed
AcX.

Proof. By Theorem 4.2. is an n-equivalence for

“a
every compact subset AcX. The corollary follows from this

and Proposition (2.8).

Corollary (4.4). Let H be a cohomology theory with

compact supports on a finite dimensional space such that H(x)
is nonnegative for every x € X. Then H(A) is nonnegative

for all closed subsets AcX.

Proof. Let O be the trivial cohomology theory on X
(i.e. O(A) = 0 for closed AcX). Clearly O has compact
supports. There is a homomorphism ¢: O —> H , and the
hypothesis on H 4implies that 0, O(x) —> H(X) 1is a
O-equivalence for all x€X . By Corollary (4.3), ¥, is a
0-equivalence for every closed AcX , which implies H(A)

is nonnegative for every closed AcX.
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Examples. (4.5) Let X be a paracompact n-manifold with

or without boundary and consider the cohomology Al-l defined in
Example (3.3) on X. This is a cohomology on X with compact
supports such that AHq(x)=ﬂ_q(x,x-x)=0 for g#-n so o-nAH(x)
is nonnegative for every x€X (where o-nAH is as defined in
Remark (2.3)). By Corollary (4.4) o Mu@;) is nonnegative for
all closed A or, equivalently, Hq(x,x—A) =0 for all g>n
and all closed AcX.

(4.6) Let X be a paracompact n-manifold with bdry X.
We prove that for singular homology Hq(x-i) ~ Ho (X) for all q
(see also [16]). It suffices to prove Hq(x,x—)'() = 0 for all q.
Let °H be the compactly supported cohomology theory on X
defined in Example (3.3) and consider its restriction H' to X
(i.e. for A closed in X we have H'3(a) = H_ (X, X-2).
Then H' (x)- = 0 for all x€X. The unigque homomorphism
® : O —> H' of the trivial cohomology to H' is such that
¢, 1s an isomorphism for all X€X. By Corollary (4.3), @,
is an isomorphism for all closed AcX. Taking A = X we see

that aq(x,x-i{) =g 9%) = 0 for all q.

Corollary (4.7). Let ¢@: H-—> H' be a homomorphism of

additive cohomology theories on a locally compact finite dimen-
sional space X such that, for some n , Py is an n-equiva-

lence for every x € X. Then ¢, is an n-equivalence for every

closed AcX.

Proof. By Theorem (4.2), @p is an n-equivalence for
every compact AcX. Since X is locally compact, X has an
open covering U such that every closed subset contained in

some element of U is compact. The Corollary follows from
this and Proposition (2.9). a
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Example (4.8) Let X be a paracompact n-manifold with

v v .

bdry X . We show that for C&ch cohomology 53 (x) mHY (X, X-X)
v

for all q (see also [16]). It suffices to prove nq(x,x-i)so

for all q. There is an additive cohomology theory H on X
with H(A)=;(X,X—A) for closed AcX. The unigue homomorphism
@ : O —> H of the trivial cohomology theory(which is additive)
into H has the property that @, ¢ O(x) —> H(x) 4is an
isomorphism for all x€ X. It follows from Corollary (4.7)

that € is an isomorphism for all closed Ac<cX . In particular
taking A = X we have

v
0 = H(X) = H(X,X~-X) .



5. Cohomology theories on cateqories of spaces

In this section we consider cohomology theories defined
on categories of topological spaces and continuous functions.
These consist of contravariant functors and natural transfor-
mations on the category whose restriction to cl(X) is a co-
homology theory on X for every object X in the category.
The categories of interest are the category of all compact
spaces and continuous functions and the category of all locally
compact spaces and proper continuous functions. We prove the
uniqueness theorem for cohomology theories on these two cate-
gories. We also‘show that cohomology theories 6n the category
of compact spaces are equivalent to compactly supported coho-

mology theories on the category of locally compact spaces.

We begin by considering cohomology theories on cubes.

By a cube we mean a product space where Ij is a

je3 13
closed interval of IR for each j€J. Given a cube C(J)=j%$ Ij

and given a subset J'cJ let C(J')=;El, Ij . There is a

canonical projection map pJ,=C(J)——> Cc(J').

Lemma (5.1). Let ¢@: H-—> H' be a homomorphism of

cohomology theories on a cube C(J) and let n€Z be such
that Py H(A) —> H' (A) 1is an n-equivalence for every A
of the form A = p;1(x) where F is a finite subset of J
and x €C(F). Then L7\ is an n-equivalence for every closed

AcC(J).



Proof. 1) Let F be an arbitrary finite subset of J
and let HF,H'F be the cohomology theories on C(F) which
equal the direct images (in the sense of Example (2.6)) of
the cohomology theories H,H' on C(J) under Pp ¢ C(J)—> C(F)
(so HF(B) = H(p;1(B)) and Hé(B) = H'(p;1(B)) for every
closed B<C(F)). The hypotheses on ¢ imply that ¢ induces
a homomorphism Op * HF —_> H'F of cohomology theories on
C(F) which is an n-equivalence for every x€ C(F). Since C(F)
is a finite dimensional compact space, it follows from Theorem
(4.2) that Pp is an n-equivalence for every closed B<C(F).

2) Let A be a closed subset of C(J) and for F a

finite subset of J let AF = p;1

pF(A) . If PcF' are finite
subsets of J, there is a projection p : C(F') —> C(F) such
that Pp = p°pF, . It follows that pF(A)=ppF.(A) 80

1

Pps (A)cp Pp(A) and

Apr = Ppr (Ppe (A)) ©pp1 (67 'pL (M) = pplpg(R) = A, .

Hence, the collection {AFIF finite €« J} is a family of
closed subsets of C(J) directed downward by inclusion. Clearly

Ach, for every F so Acg Ap .

We show A = g A, . If y€C(J)-A there is a nbhd of y
disjoint from A (because A is closed). Every nbhd of y con-
tains a subset of the form p;1(N) where F is a finite sub-
set of J and N is a closed nbhd of pF(y) in C(F). Clear-
ly pg'(N) is diejoint from A if and only if N 1is disjoint
from pF(A) . This implies pr(y)ﬁ pF(A) and so
y¢p£,1 pp(R) = A, . Therefore, Da=a.



It follows from Proposition (2.7) part 2) that
lim {H(AL) |F finite ¢ J}~H (A) and lim {H' (A) |F finite
j:S}suH'(A) . By 1) above, wJ:HF(pF(A)I_:—> H'F(pF(A)) is
an n-equivalence for every finite FcJ. This is equivalent to
the assertion that cp:H(AF) —_> H'(AF) is an n-equivalence for
every finite FcJ. Passing to the direct limit we see that

@:H(A) —> H'(A) is an n-equivalence for an arbitrary closed.

AcC(J) . o

Let C be a category of topological spaces and conti-
nuous functions such that if X is an object of (¢ then

cl(X) 1is a subcategory of C . A cohomology theory H,§ on C

consists of:

i) A contravariant functor H from ( to the category
of graded abelian groups such that H(g) = 0 ,

and

ii) A natural transformation 6:H9(anB) —> Hq+1(AUB)
for every triad (X;A,B) in C (by such a triad
we mean X is an object of C and A,B are closed

subsets of X)
such that for every object X in (C the restriction of H,§

to c¢l(X) 1is a cohomology theory on X.

A cohomology theory on ( is nonnegative, compactly sup-

ported or additive, respectively, if its restrictibn to cl(X)

has the corresponding property for every object X in C.
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A cohomology theory H,§ is invariant under homotopy if for

every fo,f1 ¢t X —> Y which are homotopic in C (i.e. there
is a continuous map F : XxI —> Y in C such that
F(x,())=f0 (x), F(x,l-,)=f1, (x) for all x€X) then

H(f=H(£,) : H(Y) —> H(X) .
Of primary interest are the categories ccomp of all

compact spaces and continuous functions and C of

loc comp
all locally compact spaces and proper continuous funtions.

Proposition (5.2). Every cohomology theory on C

comp
is invariant under homotopy.

Proof. It is shown in [11] that every contravariant
functor H on Ccomp whose restriction to c¢l(X) 1is continuous
for every compact space X is invariant under homotopy.

A homomorphism ¢:H,§ —> H',6' between two cohomology
theories on the same category C is a natural transformation
of degree 0 from H to H' commuting up to sign with §,6°
for every triad (X;A,B) in C . We have the following exten-

sion of the uniqueness theorem.

Theorem (5.3). Let ¢:H,§ —> H',§' be a homomorphism

between cohomology theories on ccomp such that for some one-~

point space P,wp H(P) —> H' (P) is an n-equivalence for some

n€Z . Then Py

H(X) —> H'(X) 1is an n-equivalence for every

compact space X .
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Proof. Because H,H' are contravariant functors on
ccomp it follows that for every one-point space Q,
0q ¢ H(Q) —> H'(Q) 1is an n-equivalence. Consider a cube
C(J) = ;EI Ij and let ye€C(F) for F a finite subset of J.
Since the projection map pg : p;1(y) —> y 1is a homotopy
equivalence, there is a commutative square whose vertical maps

are isomorphisms by Proposition (5.2)

¢
H(y) x>  H'(y)
H(pg) ln ~lu (pgp)

Hipg (v)) 2> B (pg (¥))

It follows that w:H(p;1(y))——> H'(p;1(y)) is an n-equivalence
for every finite FcJ and every y €C(F) . By Lemma (5.1),

©n is an n-equivalence for every A cC(J) . Since every com-
pact X is homomorphic to a closed subset of some cube,

@y : H(X) —> H'(X) 1is an n-equivalence for every X.

Corollary (5.4). Let ¢:B,6 —> H',§' be a homomor-

phism between compactly supported cohomology theories on

Cloc comp such that for some one-point space

P,(pp s H(P) —> H'(P) is an n-equivalence for some n €Z . Then

Wy ¢ H(X) —> H'(X) 4is an n-equivalence for every locally

compact space X.



Proof.  Since ccomp is a subcategory of cloc comp ’

we can apply Theorem (5.3) to deduce that Oy : H(X) —> H'(X)
is an n-equivalence for every compact X . The Corollary fol-

lows from this and Proposition (2.8).

In the above Corcllary we used the fact that Ccomp is a

subcategory of C . Therefore, every cohomology theory

loc comp

on cloc comp defines by restriction a cohomology theory on

Ccomp . We now present a way of obtaining a compactly supported
cohomology theory on cloc comp from a cohomology theory on
ccomp L ]

For a subset AcX we say A is cobounded in X if

X-Aa is compact. We need the following lemma.

Lemma (5.5). Let H be a contravariant functor from

cl(X) to graded abelian groups such that H(g) = 0 and such

that for every AcX

(*) p: lim {H(N) [N a closed cobounded nbhd qf A
—_—>

Then H 1is continuous and compactly supported.

Proof. We first show H is continuous. Clearly (*)
implies it is extensive. To show it reductive assume N 1is a
closed nbhd of A in X and u€H(N) is such that ula =0 .
By (*) there is a closed cobounded nbhd N of N in X and
u€H(N) such that u = u|N . Then u|A = 0 so, again by (*),
there is a closed cobounded nbhd M of A in N such that
u|M = 0 . Then NNM is a closed nbhd of A in N and
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u|NAM = U|NAM = 0 proving H is reductive. Therefore, H is

continuous.

To show H is compactly supported let u€H(A) . By (*)
there is a closed cobounded nbhd N of A in X and VvEH(N)
such that v|A = u . Since v|g - = 0 because H(g) = 0 it
follows from (*) again that there is a closed cobounded M in
N such that v|[M =0 . Let B=ANM and C =13 - M . Then

A = BUC where B is closed, C is compact and u|B = 0

Given an arbitrary locally compact space X let x* be
the compact space consisting of X together with exactly one
more point = such that X* {=}= X . In case X is compact,

x* is the topological sum of X and {«} . In case X is
non-compact, x* is the one~point compactification of X . Note

that AcX=A'cx’ , g* = {«} , anda (anB)* = a*nB" ,

(auB)” = aA* uB* for A,B closed in X .

Proposition (5.6). Given a cohomology theory H,éon Cco

mp
there is a compactly supported cohomology theory §,3 on Cloccomp
where H(X) = ker [H(x+) £ H(»)] for a locally compact
space X .

Proof. H 1is defined by the above. To define 3 note
that if A is a closed subset of X and c : A' —> = is

the constant map, then the composite

H(e) —BEL, g@aY) > H(e)



is the identity. Therefore, in the following commutative dia-

gram with exact rows the vertical maps are epimorphisms

oo STV a%BN) S B9t ) % 59 aY) ¢ #Y(8*)-E> k9 a*aBh)S> ...
p ¢ o 4 o | ) |

oo 2T T @) L pe) 2 5Ye) @ HY(x) Erpd(e) s> ...

It follows that there is an exact sequence of the kernelsof o

oo B89 (anp) -S> §¥9(auB) B> 79 (a) 0 §Y (B)2> §Y(ANB) 2> ...

This defines the natural transformation 3 and shows that H,%

satisfy MV exactness.

Clearly H(P) = ker [H(=) £ H(»)] = 0 and the closed
nbhdsof A’ in X' are precisely the sets N* where N 1is
a closed cobounded nbhd of A in X . Hence, the continuity of

H on Xx' implies

p ¢ 1lim {H(N)|N a closed cobounded nbhd of A in X} ~H(A)
—
It follows from Lemma (5.5) that H is continuous and compact-

ly supported on X .
o
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Theorem (5.7). The map H,5§ to H,T is an equivalence

between cohomology theories on Ccomp and compactly supported
cohomology theories on Cloc comp
Proof. Given H,s on Ccomp let H,6§ Dbe the compact-

ly supported cohomology theory on ¢ defined by it as

loc comp
in Proposition (5.6). If X 1is any compact space, the exactness
of 0 = H(f) —> H(X') %> H(X) @ H(=) —> H(f) = 0 implies
that #(X) = ker [H(X') > H(»)]~H(X) . This shows that ¥
when restricted to Ccomp is isomorphic to H . Similarly T
restricted to compact triads is isomorphic to § . Thus, the re-

striction of H,¥ to Ccomp is isomorphic to H,§ .

Conversely, let H',8' be a compactly supported cohomolo-

gy theory on ¢ and consider ¥',¥' where

loc comp
H' (X) = ker (u' (x*) 2> H'(=)] for a locally compact space X .
From the commutative diagram (where X = BUC,B closed, C compact)

' 8*nc) &> ' (x*) > ' (B")e H'(C) —> H' (B'hC)

=4 } =

H' (BNC) > H'(X) %> H'(B) @ H'(C) —> H' (BNC)

we see there is a well defined isomorphism
0: H' (X*) m H'(X)

such that u€H'(X) with X = BUC,B closed, C compact and

ul|B = 0 equals 6 (u') where u'en'(x’) 1is such that u'|B'=0



and u'|c = u|c . Then 6 induces an isomorphism of H',3'

with RH',8' on C

loc comp



6. ES theories on categories of spaces

We consider ES theories on a category of topological
spaces and continuous mappings. Since ES theories define coho-
mology theories, the uniqueness theorem is valid for ES theories.
We also show that there is an equivalence between ES theories
and cohomology theories on the category of all compact spaces
and continuous functions. Thus, cohomology theories are "single
space” equivalents to ES theories. Other single space equivalents

to ES theories have been given in [3,7,12].

Let C be a category of topological spaces and continuous
functions such that if X is an object of € then c¢l(X) is

a subcategory of C . An ES theory H,é6* on C consists of:

i) A contravariant functor H from C2

(the category of
closed pairs in C) to the category of graded abelian
groups,

and

ii) A natural transformation &% : Hq(B,¢) —> Hq+1(A,B)

for every (A,B) in C2

such that for every object X in C the restriction of H,6*

to cl(x)2 is an ES theory on X.

Since ES theories are continuous, the result in [11] im-
plies they are invariant under homotopy. Therefore, they are
continuous extraordinary cohomology theories because they
satisfy all of the Eilenberg-Steenrod axioms [5] except the

dimension axiom and are continuous.
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As in Proposition (3.2) every ES theory on ( determines

a cohomology theory on C . The concepts of nonnegativity,

compactly supported, and additivity for ES theories on C are
defined to correspond to the same properties of the associated

cohomology theories.

A homomorphism ¢ : H,6* —> H',8'* between ES theories
on C 1is a natural transformation of degree 0 from H to H'
commuting up to sign with &*,6'* for every pair (X,A) in Cz.

The following uniqueness theorem for ES theories is valid.

Theorem (6.1). Let : H,6%* —> H',8'* be a homomorphism

between two compactly supported ES theories on Cloc comp such
that for some one-point space P ,wp : H(P,8) —> H'(P,¥) is
an n-equivalence for some n€ Z . Then ¢ :H{X,A)—> H'(X,A)

is an n-equivalence for every locally compact pair.

Proof, The homomorphism ¢ determines a homomorphism

¢ : H,§ —> H',§' between the cohomology theories on C, camp
defined by the ES theories H,8* and H',8'* respectively.
Since these are compactly supported and © is an n-equiva-
lence for the one-point space P, it follows from Corollary
(5.4) that @ is an n-equivalence for every locally compact
space X . This is equivalent to the assertion that

Y : H(X,p) —> H'(X,¥) is an n-equivalence for every locally
compact space X . Then the "five-lemma" shows that

¢ : H(X,A) —> H' (X,A) 1is an n-equivalence for every locally

compact pair.
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The next result asserts the equivalence between cohomo-

logy theories and ES theories on CComp .

Theorem (6.2). The assigment of a cohomology theory to
an ES theory is an equivalence on Ccomp .

Proof. We have already seen that for an ES theory H,8* on
Ccomp there is associated a cohomology theory H',§' on ccam;

with H'(X) = H(X,f) for every compact space X .

For the converse we consider for every compact space X
the cone CX over X with vertex v (so CX is the join of
X with a point v not in X). Given a cohomology theory

[} [} E.
H',§ on Ccomp define a contiravariant functor H on ciomp

by
H(X,A) = ker [p : H'(XUCA)—> H'(CA)]
(in case A = @, CA = {v} ). Then
H(X,0) = ker [p : H'(XU{v})—> H' (V)]
and by the exactness of
B (9)-3> B (xUu{v) 2> B (x)@ H' (v)E> B (g) ,

there is an isomorphism a': H(X,f@) mH'(X). Therefore, con-

tinuity of H' implies continuity of H.
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To define &* and verify exactness for H,§* note
that 6's H' (A) —> H'(XUCA) for the triad (CX;X,CA) has
image lying in ker [p : H'(XUCA) —> H'(CA)] by exactness

of the MV sequence of X,CA . Therefore,

im [é§': H'(A) —> H' (XUCA)] c ker [p: H' (XUCA)—> H' (CA)]l=H(X,A)

Thus, there is a unique homomorphism ¢&*:H(A,§) —> H(X,A)

such that there is a commutative square

H(A8) 2>  H'(A)
s* § XY
H(X,A) c H' (XUCA)

Then 6* is a natural transformation of degreetdefined for

2
comp

constant map, the composite

every (X,A) in C . Purthermore, if c:XUCA —> v 1is the

H' (v) 2€) gv(xuca) —E—> H' (CA)

is an isomorphism (by Proposition (5.2) since clca:ca —> v
is a homotopy equivalence). Therefore, in the commutative dia-
gram with exact rows all vertical maps are epimorphisms

veo—> H'(A) 2> H' (XUCA) —> H' (X)®H' (CA) —> H'(A) <> ...

{ bo Vo
.o s> 0 —> H'(CA) s 06 H!'(CA) —> 0 -—> e



Hence, there is an exact sequence of kernels
A H' (A) —> H(X’A) —_—> H' (X) —2 H' (A) D e

Replacing H'(A) by H(A,¥) and H'(X) by H(X,#) we ob-

tain the exact sequence
cor —> HEA,H D mx, 0B 5 (x, ;) ELL, m(a,0-Es ...

where 1i:(A,f) <(X,#) and j:(X,g)< (X,A). Therefore, H, &*
satisfy exactness.
To prove the excision property let (X;A,B) be a triad

in Ccomp and consider the commutative diagram with exact rows

H'(A) @ H' (cB)-E> 1 anB)-2> ' (auce)-2> H' (a) @ B' (B)E> B' (ANB)

ptes p Vs p+ &4 p R+ p

H' (A) exr(cuvm)yﬁo-H'uvmr§¥»H'uwcuvm)rﬁo»H'uuea'«:UmB)r£>H'UVB)

From the "five lemma" the middle vertical map is an

isomorphism and there is a commutative square

H' (AUCB) £> H'(cB)
p + &Y op

H' (Auc(anB)) 25> H'(C(ANB))

Therefore, H(AUB,B) =ker [ p :H'(AUCB)—> H'(CB)] is isomorphic
to H(A,ANB) =ker [ p :H'(AUC(ANB))—> H'(C(ANB))] by the re-

striction map.
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Thus, H,8* is an ES theory on Ccomp . It is clear

that a' induces an isomorphism of H(A,#) with H'(A) so
the cohomology theory induced on Ccomp by the ES theory
H,8* 1is isomorphic to the original cohomology theory H',$'

on C

comp *

Conversely, if H,§6* is an ES theory on Ccomp and
H',8' is the corresponding cohomology theory on Ccomp let
H",6" be the ES theory on C constructed as above from

comp
H',§'. Then

H" (X,A)

ker [H®' (XUCA)—> H'(CA)]

ker [H(XUCA,@)—> H(CA,$)]

From the exact sequence

O, H(XucA,cA)—> H(XUCA,@)—> H(CA,B)2>

we see that ker [H(XUCA,@g)—> H(CA,@)] SsH(XUCA,CA). Since

there is an excision isomorphism

H(XUCA,CA) s H(X,A)

we finally obtain H"(X,A) sH(X,A). This isomorphism carries

§" to &% and completes the proof.
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7. Cohomology defined by spectra

In this section we show that a spectrum of ANR defines .

an ES theory on the category ¢C . In particular, K-

loc comp
theory, which is defined by such a spectrum, is an ES theory.

The uniquness theorem of the preceding section yields another
proof of the fact that the Chern character is an isomorphism

of X900 with ﬁev (rational c&ch cohomology with compact

supports ) on Cloc comp °

For a pointed space X we let cox denote the reduced

cone over X (so cox = IAX where 0€I is the base point
1

of I) and I, X = S AX the reduced suspension of X. If

0
(X,A) is a compact pair with base point X, €EA and Y s

a pointed space there is an exact sequence of based homotopy

classes [20]

(5! - L N
.o m—te—> [‘ZOA;Y]—’&> [xucoa;yl—£> (X;Y]2> [A;Y]

where i : AcX, 1 : X<XUC, A and X : XUC,A —> I, A is the

map collapsing X to the base point. In case Y is an ANR
(absolute neighborhood retract for normal spaces) the con-
tractibility of COA implies that the quotient map

q: X UCOA —> X/A induces, for every n20 , a bijection

n

(zy ¥ 1 [ 2] (x/A) ;Y] ~l 2]

(XUCA);¥] . Since qoT = k:X—> X/A

where k 1is the gquotient map, there is an exact sequence

1t

(T 5 k¥ o
> [ I AIY ] —> [X/A;Y] —> [X;Y] —>[A;Y]

0
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where 6:[}:3+l A;Y] —> [zg(x/A);Y] is defined to equal

the composite

-1 #
(tgq) (23 i) : [zg” Az;Y] —> [zg(xucoA);Y] —> [28(X/A);Y]

Now suppose ® = {Yk,.sk : %Yk — Yk+1} is a spectrum

of pointed ANR's. Define

H q = l—_im o .
{X,n:0) 2> (L g (X/A;Y, o 1)

where the direct limit is with respect to the maps

L )

(

Taking the direct limit of the exact sequences above we obtain

an exact sequence
& if q i q_s" +
se e =D {X,A@}q——> {X,x0;®} ——D {A'xo@} v {X,A)@fl —— . e

where 1i: (A,xo) c (x,xo) P K (x,xo) c (X,a) .

2
loc comp

every locally compact space X there is associated a compact

We consider the category C . As in Section 5 to

space x* with base point * such that X% {=}= X . Define
2
a contravariant functor qa on cloc comp by

q
Hg (X.A) = {(x;a*;@? and define a natural transformation

6*3 %5 (A,8) —> q§;1(x,h) to be the homomorphism 6* in the

exact sequence above for the pair of pointed spaces (x+,A+).
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Theorem (7.1) For every spectrum () of ANR there
is a compactly supported ES theory Wg,c* on Cloc comp °
Proof. From the exact sequence above for the pair
(x+,A+) it is clear that qg,c* satisfies the exactness
property for the pair (X,A). It also satisfies excision be-
cause if (X;A,B) 1is a locally compact triad then (x*;A+,B+)
is a compact pointed triad with atu’ = (AUB)+ and

A+nB+ = (AnB)+. Therefore, there are isomorphisms

(a*us*, B ;@1 9

{(a*, anB) " @1 9 = H@(A.Aﬂa) .

]

Hé (auB,B) = {(auB)*,B*:@1¢

~ { a%,a"nB" ;@19

1

If (X,A) 1is a locally compact pair, then (x+,A+) and

n n
0 0

is an ANR it follows that

(Z x*, £ A+) are compact pairs for every n. Since Y
n+q

1| B a closed nbhd of A*in X" [1:3 A+;Yn+ ]

. n

Yn+q

Taking direct limits with respect to n we obtain an iso-

morphism

p:lim {{B;¥ }9|B a closed nbhd of A" in x*}w{a%;¥}9

Since the closed nbhds B of A" in x* are exactly the sets

of the form B = N* where N 1is a cloéed cobounded nbhd of

A in X , it follows that
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ps lim>{l-&(N)I N a closed cobounded nbhd of A in X}wl-!&(A) .

Since l-@(ﬂ) = 0 it follows from Lemma (5.5) that }b is

continuous and compactly supported.

We consider a spectrum of ANR that defines the ES theory

known as K-theory. Let Gn(m'“) be the complex Grassmannian.

of n-dimensional (complex) subspaces of c™

and let U(m)
denote the group of mxm unitary matrices. In [2] there

is defined a continuous map v, ¢ L Gn(mzn)-—o U(2n) (where

I Gnttzn) is the unreduced suspension of Gn(mzn)) such
that the composite
2n,, I 2n vn#
LA (Gn(m })y—> “i+1(z Gn(m ))—> ni+1(u(2n))

is an isomorphism for 0 <1is2n. Since the reduced suspension
zOGn(mzn) (where Gn(mzn) is given a base point) is obtained
from the unreduced suspension by collapsing the closed inter-
val equal to the suspension of the base point of Gn(mzn),

it follows that vn also defines a map of the reduced suspen-

sion

v o, 2n,
Vp ¢ zocn(m )—> U(2n)
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such that the composite

Zo v' #

v (6 (@) 0> 5 (2,6 @2™)—B> ¥, (U(2n))

i+1

is an isomorphism for 0 <is 2n. There is also a fibration

2

(¢2n+2n ) .

u(2n+2n?) /u(20%)—> v(2n+20?)/u(2n)x0(20?) = G,

in which wi(U(2n+2n2)/U(2n2)) =0 for i1s2(2n) = (2n)? .

Since the fibeerf this fibration is U(2n) and

dim U(2n) = (2n)2, it follows that there is a map

b, ¢ (CuU(2n),U(2n))—> (u(2n+2n2) /u(2n%), U(2n))

(where U(2n) has been given an arbitrary base point) hence

2n+2n2)

a map uﬁ : zOU(Zn)——> Gzn(m such that the composite

I u' ¥ 2

0 n 2n+2n
ti(U(Zn))——> vi+1(on(2n))———> “i+1(G2n(c })

is an isomorphism for :l.<(2n)2 . Since the canonical map

2 2

n+2n ))—> Gan(c4n ) induces a homomorphism

2
GZn(m

2 2

2n+2n )) —> ti(Gan(ﬂ:4n )) which is an isomorphism

"i(GZn(m
for i<4n , composing uﬁ with this canonical map gives a
map

2
. o 4n
u; : £°U(2n) > Gan(m )



which induces an isomorphism for i< 4n. Thus, we have a

spectrum X of ANR

G1(E2), U(2),yG2(¢4), ui), cg(e'®y, vaie), G128(¢256),...

whose maps are v;, uq,vé, u;,vé,ug,v'128,..mhe correspon-
ding ES theory is denoted by K and is known [10] to be

periodic of period 2 (i.e. Kq+2(x,A)nqu(x,A)) and that for

Z even

a one-point space P, Kq(P)~ 0 odd °

Let ﬁev be the ES theory defined in terms of rational

c&ch cohomology with compact supports by

® ﬁi(x,A;Q) g even
vq i even ©
H (X,a) =
ev vi
® Ho (X,A;@) g odd
i odd

This is an ES theory on ¢ (by analaques of Remarks

loc comp
(2.3) and (2.4) for ES theories). By an analogue of Remark

(2.5) for ES theories there is also an ES theory KeéQ on

Cloc comp °

v

The : Chern character [10] Ch : Ke@ —> Hev

is a

homomorphism of ES theories on Cloc comp °
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Theorem (7.2). For every locally compact space X,

. g9 yq
ch : XKI(x) @ @mH]  (X).

Proof. Since K @ @ and ﬁev_ are both compactly

supported ES theories on c and Ch 4is an isomor-

loc comp
phism for a one-point space [10] , the result follows from

Theorem (6.1).

1f @-= {Y, ,e,} is a spectrum its lomotopy groups nq@)

are defined by wq@ = l;m>{'n+qwn)} . If (D is an ANR

spectrum, it is clear that if P is a one-point space, then
x-@ (p,9) m_q@) for all q.

1f @@ are spectra, amap g : @—> @ between them
is defined to be a seguence of pointed continuous functions
9y Yk—> Yl'c for each k such that the following square is

homotopy commutative for every k
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Such a map g induces a homomorphism 9y ¢ uq.(®)-—->nq(@')
and, in case Y,Y' are ANR spectra, it induces a homomorphism

gs ¢ *b——> kb. of the corresponding ES theories.

Theorem (7.3). Let g : @ —_— @' be a map between

ANR spectra which induces an isomorphism 9y * "y (@) an@')

for all q . Then for every locally compact pair (X,A),

9 3 H@(xlA) Nl’@r (X,n) .

Proof. Since 9y is an isomorphism, it follows that
if P is a one-point space, then g, : H@(P,m ~H®. (p,8) .
Since H®,H®, are compactly supported ES theories on

Cloc comp ' the result follows from Theorem (6.1).
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8. Duality in Ig‘,

We introduce the functional spectrum I (A,B) whose
Kth term consists of the space of continuous functions
(a*,B")—s (Sk;w) topologized with the compact-open topolo-
gy. For (A,B) a closed pair in R" we show that the nth
suspension of this functional spectrum is equivalent to a spec-
trum defined by (]Rn-B ,IRn-A) . This leads to a duality the-
orem a corollary of which is the result [14] that for A,B
compact subsets of s there is an isomorphism of stable homo-

topy classes.
{a;s"-}9 m(B;s"-2239 .

k as (:le)+ = ]Rku{w} with =« as base point.

We regard s
Given a locally compact pair (A,B) let F(A,B;Sk) be the
space of all continuous functions (A+,B+)——> (Sk,“) in the
compact-open topology with the constant map At —>« as base
point. Clearly F(A,B;Sk) can also be regarded as the space

of pointed continuous functions A+/B+-—9 Sk

in the compact-
open topology. It follows from the exponential theorem [41],

the compactness of A" and the fact that Sk is an ANR that
F(A,B;Sk) is an ANR (the proof of Theorem 4 on p. 38 of [15]

applies to our case as well).

It is known [6] that if (A,B) is a locally compact pair
the restriction map F(A,ﬂ)sk)-—> F(B;E;Sk) is a fibration
with fiber F(A,B;Sk). Therefore, there is an exact sequence

of homotopy groups
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(8) e —> w  (F(ABISS) ) —> vy (F(A:8:85))—> w,, (F(B,0;5%)

k-1

S (F(A,B;S })—/™> ...

Tq+k-1

k+1

Define ¢, :EOF(A,B;Sk)——> F(A,B:S*T) by (e (ta)) ()=

= taf(a) for taf GEOF(A,B;Sk) = s'AF(a,B;s¥), a€A and

k 1 ck k+1

}:OS = S AS" NS . Let I (A,B) be the spectrum

{F(A,B;Sk), ek} . The direct 1limit over k of the exact se-
quence (*) wusing the maps € is an exact sequence

s —> 'Hq(F (a,B))—> Nq(JF (A,B))—> ﬂq(lF (B,ﬂ))—>uq_1(1E‘(A,B))—> .

extending indefinitely on both ends.

2
loc comp

by p o (A,B) =1r_q(]F(A,B)) and a natural transformation

If we define a contravariant functor F* on C

s* : ¥4 (B,#)—> Fq” (A,B) to correspond to 3 in the exact
sequence above, we see that I* ,6* satisfy the exactness
property of ES theories. We shall prove that IF* ,6* is an

ES theory on € , but first we establish the following.

loc comp

Lemma (8.1). Let (K',K) be a compact pair,N a closed

cobounded nbhd of A in X, and A : K—> F(N,ﬂ;sk),

TR K'é-> F(A,ﬂ;sk) continuous functions such that u|K 1is
the composite K—A—> F(N,D:Sk)—&> FXA,ﬂ;Sk) . Then there is a
closed cobounded nbhd N' of A in N and a map

A' P K'—> F(N,!:Sk) such that A'|K is the composite
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]
K> F(N',ﬁgsk)JL? F(N',ﬂ;Sk) and u is the composite

k' p(n,9:852s Fa, ;85 .

Proof. By the exponential theorem the functions A and
B correspond to continuous functions X : (KxN" ,K x =) —> (Sk,w)

and ¥ : (K'xA*,K'xe)—> (S¥,=) such that T|K«Aa*=m|KxA®.

Therefore, there is a continuous function
- + + k
f : (KxN UK'xA ,K'xe) —> (S, =)

such that E|R«N' = X and F|k'xa* = §i. since K'sN’ 1is

k

compact, KxN'UK'xA* 1is closed in K'xN' and s is an ANR,

there is a nbhd U of KxN+UK'xA+ in K'xN+ and an exten-

k of T . U contains a subset of the form

sion f': U —> s
K'xN'’" whexe N'' is a closed cobounded nbhd of A in N and
f’l K'xN'" corresponds by the exponential theorem: to a map

A' ¢ K'—> F(N,ﬂ;sk) having all the requisite properties.

Theorem (8.2). The pair ¥F* ,s* is a compactly suppor-

ted ES theory on cloc comp °

Proof. We have already seen that exactness is satisfied.
The excision property is also satisfied because if (X;A,B)
is a locally compact triad then there are homeomorphisms for

each k

F(AUB,B;S*) mP((A*UB*) /B*;5%) mF(a*/(A*nB*)15%) mF(A,A N B;5K)
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so the map of spectra F (AUB,B)—> T (A,ANB) induces an
isomorphism of homotopy groups. Therefore, ) (AUB,B) =

= 1_g(F (AUB,B))~ v_ (¥ (A,ANB)) ~ ¥ (A,AnB) for all q. To
complete the proof it suffices to show that for every locally
compact space X the restriction of the functor If'(-,ﬁ)

to cl(X) satisfies Lemma (5.5). Clearly T (8,8) = 0 so
we need only verify that the following homomorphism is an

isomorphism

*
p: lim (¥ (N,8)|N a closed cobounded nbhd}~F (A,§)
of A in X
To show p 1is an epimorphism let 4 : Sk+‘3—> F(A.B;Sk)
represent an element {[u]}(-:rq(]F (a,8)) = F 3 (a,0) vhere AX. By
Lemma (8.1) with K' = S5*d,K = =, N = X, A:e —> F(X,8;S™)

k+q —_ F(A,ﬂ;Sk) we obtain

the unique pointed map, u : S
a closed cobounded nbhd N' of A in X and a map

Al : Sk'"q —_— F(N',lgsk) representing an element

{2l €wq(]F (N',8)) whose restriction to F (A,f) equals
{{lul}. This implies p is an epimorphism.

k'+q

]
To show p is a monomorphism let A : S —->F(N,¢;Sk )

represent an element {[ 1]} Gnq(N,m whose restriction to
F (A,§) is 0 (where N is a closed cobounded nbhd of A in X).
Then there is a map u : COSk+q —_— F(A,ﬂ;sk) for some k 2k'
such that ulsk+q = pb(Xt-k.X). By Lemma (8.1) with

K' = Co_sk+q,x = xg_k' Sk'+q = Sk'“:i and the maps

k+q

ck=k' k+q

. —> F(a,0:5%)

— F(N,ﬁ;sk), [ 3 COS

there is a closed cobounded nbhd N' of A in N and a map

A: S



- 58 -

A' COSk+q _ F(N'.ﬂ;sk) such that A'ISk'"q = p'o A. There-
fore, {[1]} maps to 0 in ¥ (N',f) proving p is a mono-

morphism.

Let T be an arbitrary but fixed triangulation of s?

with =« as vertex and let T(k) be the ktl'l

barycentric
subdivision of T for k&2 0. For a closed subset 2AcR‘=s"- (=}
let '1'k (A) be the compact polyhedron equal to the union of
all closed siﬁplexes of (k) disjoint from A% = AU (=} .

Clearly Tk(A) ch+1 (A) for all k 20. We also have:

Lemma (8.3). (1) AcBcR'= 'rl"(s) cT, (A) for all

k20
(2) A,BcR" = T\ (AUB) = T, (A) NT, (B) for all k20

(3) A,BcR"= for every k20 there is N, such that

k
if k' 2N, then Tk(AnB) STy, (a) UTk' (B) .

(4) ANcR" where N is a closed cobounded nbhd of
A in R" = for every k20 there is a closed cobounded nbhd

N' of A in R® guch that N'cN and T (N') = T, (N).

Proof. (1) If AcB and s is a closed simplex of
T‘k) disjoint form B, 8 1is disjoint form A. Hence,
Tk(B) ch (a).
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{(2) By (1) Tk(AUB)ch(A) and Tk(AUB)ch(B) so
Tk(AUB)csz(A)I\Tk(B) . Given x 1let s be the unique closed

(k)

simplex of T containing x in its interior. Then

X €Tk(A) nTk(B) if and only if sc Tk(A) nTk(B) , but this
implies s 1s disjoint from A and from B so is disjoint

from AUB. Therefore, Tk(A) nTk(B) c:Tk(AUB) .

(3) Tk(AnB) is the union of a finite number of closed
simplexes, say Tk(AnB) = s1u...Usr. For each j,sj is dis-
joint from ANB so sjnA and sjnB are disjoint compact sets. Let
d j >0 be the distance between them (in some metric on Sn)
and let . d = min {d1,...dr} + choose Nk so that k' 2 N,
implies that the diameter of every closed simplex of T(k")
is less than d. If s' is any closed simplex of T(k')
contained in sj for some 15jsr , then diam s' <d de
so s8' cannot meet both A and B. Therefore, either
s' ETk.(A) or s' eTk.(B) . Hence, for

k? sz, Tk(AnB) c'rk. (A) u'rk. (B).

(4) For Acr® ,Sn-Tk(A) is an open nbhd of A*. Let
M be aclosed nbhd of A' contained in Sn-'l‘k (A). Then
M - {«} is a closed cobounded nbhd of A in IR" . Since
T, (A) c8"-M = s" - (M-{=})", it follows that T, (A) €T, (M-{=} ).
If N 1is any closed cobounded nbhd of A in r" , then
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N' = NNn(M-{«}) is a closed cobounded nbhd of A in r"
such that N'cN and since N'cM-{=} , it follows from

(1) that
Tk(A) €Ty (M=-{=}) ch(N') c T, (A)

so that Tk(N') = Tk(A) .

Given a closed pair (A,B) in R" we define a spec-

th k + +
trum @ (A,B) whose k term is 20 (Tk(B) /Tk(A))

with continuous maps

olsg (@ /e ) = X @)t — K e, ), )

where the last map is the (k+1)st reduced suspension of the

map (T, (B) /. Ty (A)')=>(T,,, (B)*/,, . (A)") induced by the in-

+ + + +
clusion (TR(B) ,Tk(A) ) :(Tk”(B) ,Tk”(A) ) .

*
We define a contravariant functor € on cl(JRn )2

q - - k + +
by €%(A,B) I_q(E(A:B)) _L%_ng{l_q_k (20(Tk(8) /Tk(A) ))}

To define the natural transformation c*:u:q(s,ﬁ)—> mq”(A,B)
recall [20, Corollary 9.3.6 on p. 487] that the collapsing

map
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(ztwk(3)+,z§Tk(A)+)'-—> (zg(wk(3)+/q((A)+).~)
induces isomorphisms
PRty MR STARSIVEINT LSt Nt DN M RSD

for 1is2k-2 (because the kth reduced suspension of a
space, or pair, is (k-1)~- connected) . Hence, the connecting

homomorphisms

k

. k + k + k + +
0:%_oudZo T (B) Iy Ty (B) )—> 7 (E,Ty (B) ", IyT, (A) )

-q+k-1
for various k correspond to a homomorphism

6* 3 “_q(m(Brﬂ))"—> “...q_1(m(A'B))
This is a natural transformation of degree 1 from &*(B,#) to
ct*(A,B) for (A,B)E€ cl(an)2 such that €*,6* gatisfy

the exactness property of ES theories.

Theorem (8.4) ¢t*,86* 1is a compactly supported ES

theory on R,

Proof. We have seen above that €*,6* satisfy exact-
ness. To verify excision assume A,B are closed subsets of

R" . By (2) of Lemma (8.3)

k,, + + _+ k L+ mt
l%?;!k,q(xo(fk(B) /(Tk(A) nTk(B ”))hsl%?;ﬂk_q(zo(Tk(B) /Tk(ALB m}

= ¢9(auB,B) .
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From (3) of Lemma (8.3) for given k if k' sz there are

homomorphisms induced by inclusion

Thq (T0 (T ) P um (B) ) /1y (A) TN —> w (55 (T, (anB) /Ty (A) )

|

Temq (20 (T () 70T, (B) YT, () T))
implying that

}%?>{rk_q(t§((Tk(A)+UTk(B)+)/Tk(A)+))}@l%?>{uk_q(£§(Tk(AnB)+/Tk(A)+))}

= ¢9(a,AnB)

+ + +, _ + + +
Since T, (B) /(Tk(A) nT, (B) )-(Tk(A) UT, (B ))/Tk(A) , it

follows that ;%?>{'k_q(z§(rk(a)*/(Tk(A)*nTk(B)*)))}~

BB, (g (25 (T, M) *uT, (B) ) /T ()} so that €% (AuB,B) m

Eq(A,AnB) and excision is satisfied.

To complete the proof we show that the functor c*(-,0)
satisfies Lemma (5.5). Clearly €*(§,f#) = 0 . Hence, we only

need verify that

p ¢ lim {C*(N,f) [N a closed cobounded}s CT*(A,#)

nbhd of A in R"
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To show p is an epimorphism let

k-q _, z};(Tk(ﬂ)W'rk(A)") represent an element

wneSs
v € (E(R,0) = c9(a,9) for some AcR". By (4) of Lemma (8.3)
with N = Rn there is a closed cobounded nbhd N' of A in
R"™ such that Tk(N') = Tk(A) . Then u 4is also a map from
s 9 jnto }:lg(Tk(ﬂ)+/Tk(N')+) so determines an element

w'€ n__q(cm' +#)) whose restriction to C€(A,§) equals w .
Thus, p 1is an epamorphism.

k-q

To show p is a monomorphism let X : S —_—

z:('l‘k(ﬁ)*/ Tk(N)"’) represernt an element uelq(c(u,a)) whose
restriction to C(A,f#) = 0 (where‘ N 1is a closed cobounded
nbhd of A in R" ) . Then there is a map TR Cosk.-q —_—

k

—> zo' (T), (/s Ty (a)*) for some k'zk such that

k'-k

k'-q
S 0

ni = ploel () where p° :Zl(;'(Tk(ﬂ)+/‘1‘k(N)+) -_>

—> 1§ (T, (M '/, (A1*)  1s induced by inclusions

+ + + + + +
(1 " N e @, N e, T, @

By (4) of Lemma (8.3) there is a closed cobounded nbhd N°'
of A in R® such that N'cN and Ty (N')= k.(A) .

Then u 4s also a map from cosk'-q to I :'(Tk"a)+/Tk'(N')+)

implying that « restricts to. 0 in C(N',f). Thus, p is

a monomorphism.
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By the last result &*,é* is a compactly supported ES
theory on r" . By Theorem (8.2) the restrictioﬁ of IFP* ,8*
to R is also a compactly supported ES theory on R™ . This
implies that o F* ' 8% is also an ES theory on r"

{where ol is defined as in Remark (2.3) so that
(o"F* )9a,B)= FI'" (a,B)).

Since ¥F* (A,B) is the ES theory defined by the spectrum
F (A,B), a“r# (A,B) 1is the ES theory defined by the spectrum

n h

EOJF* (A.B) whose mth term is the (n+m)t term of I (A,B).

We shall define a map of spectra
: C(a,B) —> I T (A,B)
for (A,B)E cl (Rn )2 . This will induce a homomorphism

q = —_ n
T=(a,B) w_q(l!(A,B)) > ﬂ_q(zolF(Ao B))ﬁgn_q(l"(A ¢+B))

= FI'" (a,B) = (o"¥*)9(a,B)

and u, will be a homomorphism from €*,é6* to e LT

Given a closed pair (A,B) in R® for every k20

there is a continuous map

k

A ',]Rn"k“{ 0} ’

L ka(Tk(B),‘rk(A))x(A,B)—-—> (R xR? =rP*
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defined by xk(x,‘y’,z) = (x,y-2) for xe¢€ :IRk ,'y'ETk(B),ZEA.

Since Tk (B) is a compact subset of r" 'Ak is a proper

map so extends to a continuous map

Ay ¢ (RS x (T, (B),T, (A))x(A,B)]"—> (RPR R ot

There is a canonical homeomorphism

(RS (7, (8),7, () x(a,B)1"w s¥ 4 (7, (B)*, 7, (M) ") a(a",B")

Therefore, A; can also be regarded as a map

Ay ska e ®*, T (%) A @,BY— (sK,s n+k_{0})

This map A; has the following two properties.

1) If (A',B') < (A,B), then (T, (B),T,(A)) € (T, (B'), T, (A"))
and x';lsk AT, (B)*, T, ()T A (a7 ,B ) )=

S lIs®a (1, B)", T () At )]

2) For any k20, (Tk(B) ,'rk(A) ) e ('1‘k+1 (B) ' Ty i (aA)) and

ke B e @ ) A @B = 100
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Since « 1is a deformation retract of Sn+k—{0} if
i: (Sn+k-¢)C(Sn+k,Sn+kf{ 01}) is the inclusion map, there

is a map

k

Tt SS A B, T @) A aY,BYY)— (s7K,x)

such that A]': i o'i; and this condition determines T;

up to homotopy. We may also consider 7; as a pointed map
T; : SkA(Tk(B)+/Tk(A)+)A(A+/B+)——> gh*k | By the exponential
theorem [4] T;; "carresponds to a continmwous function

R k + . . n+k
b ¢ Ig(T (B) /T ()T )—> F(a,Bis™K)

By 2) above the following square commutes up to homotopy

k + + k+1 + +

Loky + | ML TS

] |
zOF(A,B;s"*k) otk o pa,B;s™t*t))

Therefore, {u,} 1s a map of spectra
k
B : C(A,B)—> zgr.-' (A,B)

and it follows from 1) above that the map
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g, + €4(a,B)—> (o"¥*)9 (a,B)

is a natural transformation from €* to onl?* . It is easy to
verify that u, commutes with 6* for the two ES theories

so it is a homomorphism of ES theories.

Theorem (8.5). The homomorphism u, : c*.6*+anI‘* 6%

is an isomorphism of ES theories on Rr" .

Proof. Using the "five-lemma" it suffices to prove
that pu, is an isomorphism of the corresponding cohomology
theories. Since each is compactly supported and R is finite
dimensional, it suffices to prove u, is an isomorphism for

(x,8) for every x € R" . But F(x,{a;sk)msk 80

zgr (x,4) 4is the spectrum Sn,Sn+1,... . Also the pair

(Tk(ﬂ),'rk(x)) for k 1large is an n-cell together with

the complement of an open n-cell inside it and the map

k

i :zg(Tk(¢)+/Tk(x)+)—> sh* is of degree 1. Therefore,

n
By = Dg(C(x, @) )mx_ (I, F (x,4)) for all q .

Corollary (8.6). If (aA,B), (C,D) are closed pairs

in R" there is a duality isomorphism

at/B*;e(c,0) 19~ ict/p*e(a,B) 19 for all q .
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Proof. If (C,D)€cl (R®)? then by Theorem (8.5)

there is amap u : €(C,D)—> zgm'(c,o) such that

Ba 3 7o (E(C,D))m wq(igl‘ (c,D)) for all gq.

Since both €(C,D) and 231‘(C,D) are ANR spectra, it
fallows from Theorem (7.3) that for every locally compact

pair (A,B)

q q
w, ¢ H (A,B)  H (A,B)
¥~ €(c.D) ZoF (C,D)

or equivalently,

My
at,eie,p))19 ~ {A*,B*;zgr (c,n0)19

= lim {[zX@*/B*);F(c,D;s™" ¥ )
X

By the exponential theorem the last limit is isomorphic to

lim {[Zg(A+/B+)AA(C+/D+);Sn+k+q]} . There are canonical

homeomorphisms

z’g(a*/s*) a (c*/D*) ms¥ A (a*/B*) A (c*/DY)

%A (c*/D*) A (A*/B") mzK(C*/D") A (a%/B%)

so that



- 69 -

a*,8",e(c,0)19 ~ Lim_{ [25(C+/D+)A.(A+/B+);Sn+k+q]}

~ lim { [ zg(c’/D*);F(a,Bis™ ) ))

k

s {C+,D+;£3F (a,8)19

In case (A,B) 1is also a closed pair in R" there is

also an isomorphism
+ _+ q By + .+ .n q

Combining these isomorphisms gives the result.

Our final result is due to Lima [14]. In the proof we
essentially show that for a compact Aczsn, the spectrum of

n-1

s"-a and Lo F (A,f) are equivalent (compare with [9,

Theorem 4.5]).

Corollary (8.7). Let A,B be nonempty proper compact

subsets of S". Then

(a;s"-B}9 w(B;s™2a)}9 for all gq .

Proof. If ¢ is a homeomorphism of s® and the result
is valid for A,B it is also valid for o(A),B and A,¢@(B)

80, without loss of generality, we can assume « €ANB.
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Then A = (A')+, B = (B')+ for closed subsets A',B' cR".

By Corollary (8.6) there is a duality isomorphism
(at/etie 0% 8/t a,9))9

For k large Tk(¢) is a closed n-cell containing
Tk(B') and, therefore, Tk(¢)+/Tk(B')+ has the same homoto-
py type as onk(B') » and we have
(8')") 11

(/T

k+qg

vt +, ' q _ k . k"'q
/07w e 9119 =L ((zg@) 257 (x K+q

k k
“lim>{[ZO(A)’ZO

+q+1

, Tk+q(B')]} .
(where in the above Tk(B') is given an arbitrary base point
for k large enough which is also the base point for Tk.(B')
for k' >k and for Sn-B). Since {Tk(B')}k is an increasing

sequence of subspaces of s™~B such that U int Tk(B')=Sn-B,
k

it follows that for the compact space A,

g+1
0

n_ e L '
(s B)]~_1_}:t_x_n> {[A.Eo T (B')1} ,

[A;z
and this implies that

(™81 s 1w (1h ()25t e, (B cA /0t e (B 0019
k

similarly {(B;s"-a19*1m(B'*/8%;c(a',9)19 . Combining these

isomorphisms with the duality isomorphism gives the result.
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