
Max-Planck-Institut für Mathematik
Bonn

Tropical Plücker functions and Kashiwara crystals of
types A, B, C

by

Vladimir I. Danilov
Alexander V. Karzanov

Gleb A. Koshevoy

Max-Planck-Institut für Mathematik
Preprint Series 2013 (35)





Tropical Plücker functions and Kashiwara
crystals of types A, B, C

Vladimir I. Danilov
Alexander V. Karzanov

Gleb A. Koshevoy

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Central Institute of Economics
and Mathematics of the RAS
47, Nakhimovskii Prospect
117417 Moscow
Russia

Institute for System Analysis of the RAS
9, Prosp. 60 Let Oktyabrya
117312 Moscow
Russia

Laboratoire J.-V. Poncelet
11, Bolshoy Vlasyevskii Pereulok
119002 Moscow
Russia

MPIM 13-35





TROPICAL PLÜCKER FUNCTIONS AND KASHIWARA

CRYSTALS OF TYPES A, B, C.

V.I. DANILOV, A.V. KARZANOV AND G.A. KOSHEVOY

1. Introduction

The notion of crystal introduced by Kashiwara [KN-94] has proved its importance
in representation theory. A finite crystal is a finite edge-colored digraph (directed
graph) in which each connected monochromatic subgraph is a simple path and there
are certain interrelations on the lengths of such paths, described via coefficients of
a Cartan matrix (features of this matrix characterize the crystal type). There are
several models to characterize crystals for a variety of types; e.g., via generalized
Young tableaux [KN-94], Littelmanns path model [Lit-95], MV-polytopes [Kam-10],
the crossing model [DKK-08].

In this paper we propose a new model for free n-colored crystals of type A: the
vertices of the free crystal graph are identified with integer-valued tropical Plücker
functions (briefly, TP-functions) on the n-dimensional Boolean cube and the edges
of color i (yielding the crystal operation i), i = 1, . . . , n, are defined by use of
the restriction of TP-functions to a rhombus tiling which is adapted (in a certain
sense) to this color. The subgraph whose vertices correspond to the submodular
TP-functions is isomorphic to the crystal graph B(∞) which serves a ‘combinatorial
skeleton’ of the canonical basis introduced by Lusztig [Lu-93]. It is well-known that
a submodular function on a Boolean cube defines a polymatroid. If a submodular
function is additionally a TP-function, then the corresponding polymatroid is an
MV-polytope of type A. Moreover, the crystal structure on the submodular TP-
functions coincides with the crystal structure on MV-polytopes of type A defined
in [Kam-07].

This model of A-type crystals is symmetric with respect to the inversion of colors.
This allows us to get a transparent construction of crystals (free crystals) of types
B and C by considering the corresponding symmetric TP-functions and rhombus
tilings. Here we rely on a classical technique of ‘folding’ for Dynkin diagrams and
the result that finite B- and C-crystals can be produced from the inversion-invariant
parts of symmetric A-crystals, see, e.g., [NS-01] (a direct combinatorial proof of that
result is given in [DKK-12], based on the crossing model for A-crystals [DKK-08]
and the so-called worm model for 2-colored B-crystals [DKK-09]). The crystal
structure on symmetric submodular TP-functions coincides with the crystal struc-
ture on MV-polytopes of types B and C defined in [NS-08].

Working with the TP-model of an A-crystal, we also give a transparent descrip-
tion of those vertices (TP-functions) that form the so-called principal lattice of
the crystal. (The existence of this object possessing a number of nice structural
properties was revealed in [DKK-08].)
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The structure of this paper is as follows. In Section 2 we recall definitions
and some basic facts on tropical Plücker functions and rhombus tilings. Section 3
introduces crystal actions (operators) on the set of TP-functions, forming an edge-
colored digraph, and shows that this digraph is indeed the free crystal of type
A. Then we explicitly distinguish in it the subgraph which is isomorphic to the
crystal B(∞) (for the given type A). Section 4 focuses on finite subcrystals of the
constructed free (or B(∞)) crystal, which are typically of more interest for purposes
of representation theory. Section 5 is devoted to a description of crystals of types
B and C by use of symmetric TP-functions on an n-cube (where type B (resp. C)
takes place when n is odd (resp. even)). Sections 6 and 7 contain proofs of two
theorems stated in Section 4.

Acknowledgements. This work is partially supported by the Russian Founda-
tion of Basic Research and the Ministry of National Education of France (project
RFBR 10-01-9311-CNRSLa) and the Max-Planck Institut für Mathematik (Gleb
Koshevoy).

2. Tropical Plucker functions

2.1. For a positive integer n, the set {1, ..., n} equipped with the natural order
1 < 2 < ... < n is denoted by [n]. The collection of all subsets in [n] forms the
Boolean n-cube 2[n]. For A ⊆ [n], we write |A| for the cardinality of A.

Definition. A function f : 2[n] → R is called a tropical Plücker function (or a
TP-function for short) if for any subset A ⊂ [n] and any three elements i < j < k
in [n]−A, the following TP-relation hold:

(2.1) f(Aj) + f(Aik) = max(f(Ai) + f(Ajk), f(Ak) + f(Aij)).

Hereinafter for brevity we write Ai′ . . . i′′ for A ∪ {i′, . . . , i′′}. The set of integer-
valued TP-functions is denoted by TPn, whereas the notation TPn(R) will be used
for the set of real-valued TP-functions.

2.2. As a subset of the space R[n] of all real functions on [n], the set TPn(R)
preserves under multiplication by positive factors, but does not under addition.
More precisely, TPn(R) is a (nonconvex) cone having lineal of dimension 2n formed
by the so-called principal TP-functions; so addition (or subtraction) of a principal
TP-function to (from) any TP-function makes a TP-function as well. Principal
TP-functions are: (i) any affine function of the form α + µ(A), where α ∈ R and
µ is an additive measure on [n], and (ii) any function f(A) depending only on the
cardinality |A| of a subset A ⊆ [n]. The sum of functions of these two types is again
a principal TP-function, and moreover, one shows that every principal TP-function
is obtained in this way. This implies that the space of principal TP-functions has
dimension just 2n.

2.3. TP-functions can be freely defined on certain collections of subsets of [n].
More precisely, a collection (set-system) B ⊆ 2[n] is called a TP-basis, or simply
a basis, if each TP-function is determined by its values on B, and moreover, the
values on B can be chosen arbitrarily. Such bases do exist, and TP-bases of our
especial interest will be those related to rhombus tilings on a zonogon. Let us briefly
recall these notions, referring to [DKK-09b] for details. (For a wider discussion on
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TP-functions, TP-bases, rhombus tilings, and related topics, see also [DKK-10,
DKK-10b].)

Rhombus tiling diagrams live within a zonogon; the latter is defined as follows.
In the upper half-plane, take n vectors ξ1 = (a1, 1), ξ2 = (a2, 1), . . . , ξn = (an, 1)
so that a1 < a2 < . . . < an. Then the set Z = Zn := {λ1ξ1 + . . . + λnξn : 0 ≤
λi ≤ 1, i = 1, . . . , n} is a 2n-gone. Moreover, Z is a zonogon, as it is the sum
of n line-segments {λξi : 1 ≤ λ ≤ 1}, i = 1, . . . , n. Also Z is the image by the
linear projection π of the solid cube [0, 1][n] into the plane, defined by π(x) :=
x1ξ1+ . . .+xnξn. The boundary bd(Z) of Z consists of two parts: the left boundary,
lbd(Z), formed by the points (vertices) z`i := ξ1 + . . .+ ξi (i = 0, . . . , n) connected
by the line-segments z`i−1z

`
i := z`i−1 + {λξi : 0 ≤ λ ≤ 1}, and the right boundary,

rbd(Z), formed by the points zri := ξi+1 + . . .+ ξn (i = 0, . . . , n) connected by the
line-segments zri z

r
i−1. So z`0 = zrn is the minimal vertex of Z and z`n = zr0 is the

maximal vertex.
A subset X ⊆ [n] is identified with the corresponding vertex of the n-cube and

with the point
∑

i∈X ξi in the zonogon Z.
By a tile we mean a parallelogram R of the form X+{λξi+λ′ξj : 0 ≤ λ, λ′ ≤ 1},

where X ⊂ [n] and 1 ≤ i < j ≤ n; we also say that R is the ij-tile at X and denote
it by R(X; i, j). (Sometimes we may conditionally call R a rhombus, as the choice
of base vectors ξ1, . . . , ξn that have equal lengths would not affect our description
in essence.) According to a natural visualization of R, its vertices X,Xi,Xj,Xij
are called the bottom, left, right, top vertices of R and denoted by b(R), `(R), r(R),
t(R), respectively. We say that a point (subset) Y ⊆ [n] has height |Y |.

2.4. Definition. A (rhombus) tiling diagram, or a tiling for short, is a collection
T of tiles which subdivide the zonogon Z = Zn (i.e., the tiles cover Z and their
interiors are disjoint).

Here are two possible tilings of the zonogon (hexagon) Z3.
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The set of vertices (edges) of a tiling T is the union of vertices (resp. edges) of
tiles in T . We direct all edges upward and say that an edge parallel to ξi has color
i. The set of vertices of T gives a collection of subsets of [n], called the spectrum
of T and denoted by Sp(T ). Note that the boundary vertices of Zn, viz. the sets
∅, {1}, {1, 2}, . . . , {1, 2, ..., n}, {2, ..., n}, . . . , {n}, belong to the spectrum of each
tiling.

2.5. Example: the standard tiling. An interval in [n] is a subset of the form
{i, i + 1, . . . , j}; the empty set ∅ is regarded as an interval as well. The standard
tiling is the tiling T whose spectrum consists of all intervals. Any tile R of T is
viewed as follows: if the bottom vertex b(R) is an interval I = {i + 1, ..., j − 1},
then the left, right, and top vertices are the intervals l(R) = Ii, r(R) = Ij, and
t(R) = Iij, respectively. The standard tiling for n = 6 is drawn in the picture.
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2.6. It is shown in [DKK-09b] that for every tiling T , the restriction map

TPn(R) → RSp(T )

is a bijection (and similarly when R is replaced by Z). This map is piecewise linear.
One can think of the tilings as playing the role of ‘charts’ for TPn. It is important

to understand how the corresponding ‘coordinates’ are modified when one chart is
replaced by another. The simplest case is when two tilings T and T ′ are connected
by a flip. More precisely, suppose that T contains a hexagon H, i.e. the image by
π of some 3-dimensional face of the solid n-cube. Then H is subdivided into three
tiles in T (see the illustration in Section 2.4). Changing these three tiles by the
other possible combination of three tiles (and keeping all the tiles outside H), we
obtain a new tiling T ′. We say that these T and T ′ are connected by one flip. All
vertices of T and T ′ are the same except for two vertices, which are of the form Aj
and Aik (for some A and i < j < k) and are interchanged under the flip. Recall
that the values f(Aj) and f(Aik) are linked by the TP-relation (2.1).

An important fact shown in [HS-07] is that any two tilings are connected by a
sequence of flips.

2.7. It is often more convenient to work with the excesses of a TP-function on tiles
of a tiling rather than the values of the function themselves.

Let R be an ij-tile with bottom vertex A. For a function f on 2[n], the excess
of f on R is defined to be the number

(2.2) ε(f,R) := f(Ai) + f(Aj)− f(A)− f(Aij).

For a tiling T , if the values of a TP-function f on the vertices of the right
boundary of the zonogon are fixed, then the excesses of f on the tiles of T determine
the values of f on all vertices of T .

To see this, let us use the notion of a snake in a tiling T . This is a directed
path P in T (considered as digraph) which goes from the bottom vertex ∅ to the
top vertex [n] of the zonogon Z. The length (number of edges) of P is equal to n,
and k-th edge of P is congruent to some base vector ξik . Thus, the snake gives the
sequence (i1, . . . , in) of elements of [n]. It is not difficult to show that all numbers
ik in this sequence are different; this property allows us to identify a snake with
the corresponding permutation of the set [n] (or with a complete flag of subsets of
[n]). We use the following simple fact.
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Lemma (see [El-97, Lemma 2.1]). If a snake of T is different from the left
boundary lbd(Z) of Z, then there exists a tile R of T such that both right edges of
R belong to the snake.

Now the above assertion is obtained as follows. Assume that the values of f are
already known for all vertices of T lying on the right from some snake P 6= lbd(Z)
(including P ). Take a tile R as in the lemma. Since the values of f at the three
vertices b(R), r(R), t(R) of R are known, we can compute the value at the fourth
(left) vertex l(R) using the excess of f on R. Accordingly, update P by replacing
the right edges of R by the left edges in it. Continue the process until we get lbd(Z).

2.8. In the previous section we introduced the notion of a snake in a tiling. For
further purposes, it is useful to define an abstract snake to be an arbitrary complete
flag S• of subsets of [n]:

S0 = ∅ ⊂ S1 ⊂ . . . ⊂ Sn = [n], |Sk| = k.

Such a flag determines a path in the zonogon from the bottom to the top. This
path (which we call an abstract snake as well) divides the zonogon into two parts:
the left and right ones. For each part, one can speak about rhombus tilings in it.
A basic fact about these tilings (see [DKK-09b]) is that for each part Z ′, at least
one tiling in Z ′ exists (which may consist of no tiles when the snake coincides with
the left or right boundary of the zonogon), and any two tilings in Z ′ are connected
by a chain of flips. In particular, any abstract snake is realized as a snake of some
tiling of the whole zonogon.

2.9. There are many interrelations between the excesses on different tiles. We
restrict ourselves by exposing such interrelations for the key case n = 3. The
picture below illustrates two tilings of the hexagon Z3 and labels the excesses on
six tiles.
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It is easy to check that these excesses satisfy the linear relations

(2.3) α+ β = β′ + γ′,

(2.4) α′ + β′ = β + γ.

Adding up these relations, we obtain one more identity

(2.5) α+ α′ = γ + γ′.

If f is a TP-function, we also should add two inequalities

(2.6) β = min(α′, γ′),

(2.7) β′ = min(α, γ).

We can take arbitrary numbers α, β, γ and define α′, β′, γ′ with help of the above
relations (and vice versa). A ‘more symmetric’ way is to begin with the quadruple
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α, γ, α′, γ′ satisfying (2.5) and express β and β′ by using formulas (2.6) and (2.7).
The ‘most exotic’ way is to deal with the quadruple β, γ, β′, γ′ satisfying two in-
equalities β ≤ γ′ and β′ ≤ γ and the condition that at least one of them holds with
equality. Then α is expressed as β′+γ′−β, whence α ≥ β′. Since γ ≥ β′ and since
β ≤ γ′ or β′ ≤ γ turns into equality, we obtain β′ = min(α, γ). Similarly for α′.

As a consequence, we conclude that if α, β, γ are nonnegative, then α′, β′, γ′ are
nonnegative as well, and vice versa. Moreover, if α, α′ = 0, then β, γ, β′, γ′ = 0.

2.10. Here we give an excess description of principal TP-functions.

Proposition. Let f be a TP-function. The following assertions are equivalent:
(i) the function f is a principal TP-function;
(ii) if R and R′ are two tile having the same height, then ε(f,R) = ε(f,R′);
(iii) the same as in (ii) when both R,R′ belong to the same tiling of the zonogon.

Proof. Let f be a principal TP-function, i.e. f is the sum of an affine function
and a cardinality function of the form ψ(| · |) (see 2.2). Since affine functions
have zero excesses (and are characterized by this property), one may assume that
f(·) = ψ(| · |). Then the excess on a tile depends only on the height of the tile (and
is equal to the ‘second difference’ of the function ψ). This proves the implication
(i)⇒(ii). The implication (ii)⇒(iii) is trivial.

Now suppose that (iii) is valid. Subtracting from f an appropriate function
ψ(| · |), we may assume that all tiles of a tiling T have zero excesses. Subtracting
an appropriate affine function, we may assume that f has zero values on the right
boundary of the zonogon. Then (see 2.7) f is 0 at every vertex of T . According
to 2.6, we obtain that f is 0 everywhere. �

3. The structure of An-crystals on TP-functions

3.1. A pre-crystal (with n colors) is a certain digraph K = (V (K), E(K)) in which
each edge is colored by one of colors 1, . . . , n. In other words, the edge set E(K) is
partitioned into n subsets E1, . . . , En; we say that an edge in Ei has color i. The
first axiom of pre-crystals says that for any color i, the subgraph (V (K), Ei) is a
disjoint union of (simple directed) paths which may be finite or infinite. The move
along an edge e = (u, v) of color i is understood as action of (crystal) operator i at
the vertex u, and we write iu = v. This is a partial operator on V (K), and if there
is no edge of color i leaving a vertex u, then we say that i does not act at u.

The inverse (partial) operator i−1 is defined in a natural way: if i acts at u and
v = iu, then i−1 acts at v and i−1v = u.

A morphism K → K ′ of two n-colored pre-crystals is a mapping ϕ : V (K) →
V (K ′) which commutes with the operators i, i = 1, . . . , n, in the sense that if i acts
at a vertex v of K, then i acts at the vertex ϕ(v) of K ′, and ϕ(iv) = iϕ(v).

3.2. The second axiom of pre-crystals involves a (generalized) Cartan matrixM =
(mij), where i, j ∈ [n]. The entries ofM are integers satisfyingmii = 2 andmij ≤ 0
for i 6= j. We denote i-th row (mi1, . . . ,min) of M by mi, and consider the rows as
elements of the abelian group Zn.

When mij is −1 for |i− j| = 1, and 0 for the other cases i 6= j, the (pre-)crystals
related to M are said to have type A or, more precisely, type An.
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The (full) commutative M -pre-crystal is meant to be the set Zn in which the
action of each crystal operator i consists in adding the vector mi. A pre-crystal K
is called an M -pre-crystal if there exists a morphism, also called a weight mapping,
of K to the commutative M -pre-crystal.

However, just non-commutative (pre-)crystals are of most interest in represen-
tation theory. In particular, so are Kashiwara crystals (associated with irreducible
highest weight integrable modules over quantized universal enveloping algebras).
In what follows we restrict ourselves by the case of a non-degenerate Cartan ma-
trix (with linearly independent row vectors mi). For elements (vertices) u, v of a
pre-crystal K, we write u � v if there exists a word w using letters i (but not
their inverse ones), i = 1, . . . , n, such that v = wu. In other words, in the digraph
K there is a directed path from u to v. The binary relation � is reflexive and
transitive. The existence of a weight mapping together with linear independence of
mi’s implies antisymmetry of �. Thus, � is a partial order on the set of vertices
of K. Moreover, the poset (V (K),≺) is Zn-graded, i.e., for each i, any closed (non-
directed) cycle in K has equal numbers of forward and backward edges of color
i.

When K has a (unique) vertex v such that v � w (resp. v � w) for all vertices
w, we call v the source (resp. sink) of K. Relying on [KN-94], we say that an M -
pre-crystal K having source (or sink) is an M -crystal if for any two colors i, j, the
subgraph of K induced by the edges of colors i and j yields an M [i, j]-crystal. In
other words, in order to define n-colored crystals, it suffices to be able to define two-
colored ones. A connectedM -pre-crystal is a freeM -crystal if, for anyM -crystalK,
there is a morphism ofK into the freeM -crystal. For types A,B,C, there have been
known nice local axiomatics and direct combinatorial constructions; see [Ste-03] (for
local axioms of simply-laced crystals), [DKK-07] (for A2), and [DKK-09] (for B2);
in its turn, type C2 is obtained from B2 by swapping the colors.

3.3. We will use some facts about An-crystals from [DKK-08]. Let K be an An-
crystal with source s. Let ci denote the maximal length of a path of color i beginning
at s. This is a nonnegative integer or ∞. It turns out that the tuple c = (c1, . . . , cn)
of these numbers (parameters of the crystal) determines the crystal. Moreover, for
any c, there exists a (unique) crystal with these parameters c; we denote it by
K(c). If all numbers ci are finite, then the crystal K(c) is finite and has sink.
Reversing the colors (i.e., replacing i by n + 1 − i), we obtain the crystal K(c),
where ci := cn+1−i. And reversing the edges of K(c) while preserving their colors,
we again obtain the crystal (isomorphic to) K(c).

There is a unique morphism ofK(c) to the crystalK0 := K(+∞, . . . ,+∞) which
sends the source of the first crystal to the source s0 of the second one. The image
in K0 of the sink of K(c) is called a principal vertex and denoted by p(c). The
set of vertices p(c) (over all c) is called the principal lattice of K0; as a poset, it
is isomorphic to Zn

+ equipped with the coordinate-wise order. To obtain a finite
crystal, one should take a principal vertex p and form the interval between the
source s0 and p in K0 (i.e., the subgraph formed by the vertices and edges contained
in paths from s0 to p).

3.4. Next we describe the structure of an n-colored pre-crystal (an An-crystal, in
fact) on the set TP = TPn+1(Z) of integer TP-functions on 2[n+1]. We need to
introduce two notions.
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A tile R on the zonogon Z = Zn+1 is called left if both of its left edges belong
to the left boundary of Z; in this case we also say that R is pressed to lbd(Z). If
R is situated at height h, then its bottom, left, and top vertices are b(R) = [h− 1],
l(R) = [h], and t(R) = [h + 1]. We will denote such an R by LRh. The right tile
RRh at height h is defined in a similar way w.r.t. rbd(Z).

Let us say that a tiling T of the zonogon Z fits to a (crystal) color i (i = 1, . . . , n)
if T contains the left tile LRi. By reasonings in 2.7, for any i, there exists a tiling
which fits to color i1.

Now we can define the action of operator i on a TP-function f ∈ TP . Choose a
tiling T fitting to the color i. Then the function if is defined by the rule

(3.1) (if)(v) =

{
f(v) + 1, if v = [i],
f(v) for the other vertices v of T

(taking into account that Sp(T ) is a TP-basis; see 2.6). In other words, within the
‘chart’ T , the action of i is simply the increase by 1 of the value of f at the only
vertex v = [i]. Note that this action may cause changes of f at many vertices of the
Boolean cube which are beyond Sp(T ). We have the following important property:

The operator i as in (3.1) is well-defined, that is it does not depend on the choice
of a tiling fitting to color i.

This follows from the fact that any two tilings containing the tile LRi are con-
nected by a sequence of flips which do not change the tile LRi (by reasonings
in 2.8).

3.5. Theorem. The operators i (i = 1, . . . , n) endow the set TP = TPn+1 with
the structure of an An-crystal.

Proof. It is easy to see that each operator i is invertible (as we always can reduce
by 1 the value at the vertex [i] of a tiling fitting to color i). Therefore, each orbit
produced by operator i is a path infinite in both directions. Assigning to a TP-
function f the vector

∑
i=1,...,n f([i])ai ∈ Zn (where ai is i-th row of the Cartan

matrix for An), we obtain an appropriate weight morphism.
So we have an An-pre-crystal K on TP and wish to show that it is An-crystal.

To this aim, consider actions of two operators i and j.
If j 6= i ± 1, then i and j commute. Indeed, in this case there exists a tiling

fitting simultaneously to both colors i and j.
Now suppose that j = i+ 1. We have to show that the restriction to colors i, j

produces an A2-crystal. Equivalently, we may assume that n = 3. Moreover, one
may consider only TP3-functions f that are equal to 0 at the right boundary of
the hexagon Z3 (see explanations in 3.7 below). We show that our pre-crystal K is
isomorphic to an A2-crystal constructed by the crossing model from [DKK-07].

Let a, b, c, c′ denote the values of a function f as above at points 1, 12, 2, 13,
respectively; see the picture.

1A tiling which fits to color i corresponds to a reduced decomposition of the inverse permutation
which starts with i-th transposition si.
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Since these values determine f , we can conclude that the vertices of K one-to-one
correspond to the quadruples (a, b, c, c′) satysfying the TP3-relation

(3.2) c+ c′ = max(a+ 0, b+ 0) = max(a, b).

The action of operator 1 consists in increasing a by 1, whereas b and c do not
change. As to c′, it increases by 1 if a ≥ b, and preserves if a < b. Operator 2 acts
in a similar way: it increases b by 1 and increases c if b ≥ a, preserving the other
values.

It is convenient to consider the excesses α, β, γ, α′, β′, γ′ as in Section 2.9; in our
case we have γ = c, γ′ = c′, β = b− c, and β′ = a− c′. Relation (3.2) is equivalent
to the inequalities α ≤ c and β ≤ c′ together with the requirement that at least
one of them turns into equality. In terms of excesses, operator 1 acts as follows: it
increases β′ by 1 if β′ < γ, and increases γ′ by 1 if β′ = γ. Operator 2 acts in a
symmetric way (updating β, γ′). As a result, we obtain the behavior as described
by the crossing model for A2-crystals in [DKK-07].

This completes the proof of the theorem. �

3.6. Proposition. The crystal operators i commute with the addition of any prin-
cipal TP-function.

In other words, for any TP-function f and any principal TP-function p,

(3.3) i(f + p) = if + p.

This follows from two observations. Firstly, if + p is a TP-function. Secondly, this
function coincides with the function i(f + p) within any tiling fitting to color i.

Thus, addition of a principal TP-function is an automorphism of the crystal TP .

3.7. Since the crystal operators do not change values of TP-functions on the right
boundary of the zonogon Z = Zn+1, these values give n + 2 invariants for crystal
actions (since rbd(Z) has n + 2 vertices). This implies that the crystal TP is not
connected as graph. Fixing values x on rbd(Z) (where x is an (n + 2)-vector),
we obtain a subcrystal of TP , denoted as K[x]. We will show later that K[x]
is connected (see Corollary 4.5). Since the crystals K[x] are isomorphic for all x
(which follows from Proposition 3.6), we can restrict ourselves by considering the
crystal K = K[0]. Its vertex set consists of all integer TP-functions which take zero
values on the right boundary of Z.

3.8. Consider the set P of principal TP-functions belonging to the crystal K =
K[0]. It consists of principal TP-functions which are zero on the right boundary of
the zonogon. By Proposition 2.10, such a function is determined by (arbitrarily)
choosing excesses at heights h = 1, . . . , n. This gives a natural isomorphism between
P and Zn. Following [DKK-08], we call P the principal lattice of the An-crystal
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K (cf. 3.3). In Section 4 we will use the basis of the abelian group P consisting
of principal TP-functions π1, . . . , πn, where πi is defined by the following three
conditions:

a) πi takes zero values on the vertices of the right boundary of the zonogon;
b) πi has zero excess on any tile at height different from n+ 1− i;
c) πi has excess 1 on any tile at height n+ 1− i.

4. Subcrystals in K

The An-crystal K formed in the previous section is not bounded (or free) in both
forward and backward directions, the operators i and i−1 are defined everywhere,
and any string (word) of such operators is applicable at any vertex. In this section
we show that every finite A-crystal is realized as a subcrystal of this free crystal K.

We begin with a description of the order � on the group P of principal elements
of the crystal K. As is said in 3.8, this group is naturally identified with the group
Zn.

4.1. Proposition. Under the identification of P with Zn, the restriction of the
order � (on V (K)) to P coincides with the coordinate-wise order on Zn.

We will prove this proposition in Section 4.5. Assuming its validity, we observe
that the basic principal TP-functions πi (defined in 3.8) can be obtained from
zero function by applying some words using ‘letters’ 1,2, . . .n. Words of this sort
are explicitly indicated in [DKK-08, Expression (6.4)], called fundamental words,
and we recall them to make our description more self-contained. Namely, define
(fundamental) words W1,W2, . . . ,Wn as

(4.1) Wi = ((n− i+ 1)(n− i) · · ·n) · . . . · (23 · · · (i+ 1)) · (12 · · · i).

Here Wi consists of n − i + 1 ‘blocks’, and j-th ‘block’ (from the right), where
j = 1, . . . , n − i + 1, is the sequence of operators j, . . . , j+ i− 1 (applied in the
reverse order). Thus,

W1 = (n) · . . . · (2) · (1),
W2 = ((n− 1)n) · . . . · (32) · (21),

· · ·
Wn = (1 . . . (n− 1)n).

Then πi = Wi0.

4.2. For a principal vertex p of the crystal K, we denote by Kp (resp., Kp) the
subgraph of K induced by the vertex subset {f ∈ V (K) : p � f} (resp., {f ∈
V (K) : f � p}). The vertex p is the unique minimal vertex (the source) of Kp;
similarly, p is the unique maximal vertex (the sink) of Kp. We shall see later that
these digraphs (and their intersections) are An-crystals. Since

Kp = p+K0 Kq = q +K0,

(in view of (3.3)), it suffices to consider the pre-crystals K0 and K0.

We will take advantages from an ‘excess’ description ofK0. Recall that a function
f on a Boolean cube is called submodular if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )
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holds for all X,Y ⊂ [n], or, equivalently, the excesses of f on all abstract tiles are
nonnegative. In case of TP-functions, the latter can be weakened.

4.3. Lemma. (see [DKK-09b]). A TP-function f is submodular if and only if the
excesses of f on all tiles of some tiling T are nonnegative.

For completeness of our description, we give a short proof of this lemma. It
consists of three simple observations.

a) Every tile R(X; i, j) is contained in some tiling.
b) Any two tilings are connected be a sequence of flips.
c) If a tiling T ′ is obtained from a tiling T by one flip, and if the excesses on all

tiles of T are nonnegative, then the same is true for T ′. (Indeed, we can reduce the
zonogon to a hexagon. For a hexagon, the assertion was shown in Section 2.9.) �

4.4. Theorem. A vertex (TP-function) f of K belongs to K0 if and only if it is
submodular.

To prove this, we first show that any vertex f of K0 is submodular. This is so
for f = 0. Therefore, it suffices to show that if is submodular provided that f
submodular. Let T be a tiling fitting to color i. Since i increases by 1 the excess
on the tile LRi of T and does not change the excesses on the other tiles of T , the
new function if is submodular on T , and hence (by Lemma 4.3) it is submodular
everywhere.

A proof of the converse assertion will be given in Section 6.

4.5. Corollary. The pre-crystal K = K[0] is connected.

Indeed, let f be an arbitrary vertex of K. For a sufficiently large positive princi-
pal TP-function p, the function f+p is submodular. By Theorem 4.4, f+p is of the
form w0 for some word w (composed from operators i). Then f = w(−p). On the
other hand, p = v0 for some word v (by the same theorem), whence −p = v−10.
We obtain f = wv−10, and therefore the vertices f and 0 are connected by edges
in K. �

There is another interesting corollary. Let f be a submodular TP-function, and
let its excesses on all left tiles be equal to 0. Then f is an affine function.

Note also that Theorem 4.4 implies Proposition 4.1. Indeed, for an element p of
the principal lattice of K, the following assertions are equivalent: p is submodular,
and p is a nonnegative linear combination of the basic functions π1, . . . , πn.

4.6. Arguing as in 3.5, we obtain that the pre-crystal K0 is an An-crystal.
According to 3.2, a finite An-crystal is obtained by choosing a principal vertex

p � 0 and forming the interval in K from 0 to p. In other words, the subgraph
Kp

0 := K0 ∩ Kp equipped with the induced color structure is a finite connected
An-crystal with the source 0 and the sink p.

Note that the crystal K0 is ‘anti-isomorphic’ toK0. More precisely, reversing the
edges of K0 and renumbering colors i as n+1− i, we obtain a crystal isomorphic to
K0. Such a bijection between the elements of K0 and K0 is called Schützenberger’s
map. However, it is not straightforward to give an explicit formula for this map.
Next we accomplish this task for the 2-colored case.

To this end, recall (see 2.9 or 3.5) that a TP3-function with zero values on
the right boundary of the hexagon Z3 is represented by a quadruple of excesses
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(β′, β, γ′, γ) satisfying two inequalities β′ ≤ γ and β ≤ γ′ together with the condi-
tion that at least one of them should be equality. It is convenient to represent this
by the following crossing diagram:

�
�
�
��@

@
@
@R β′γ′

γ β

(where the arrows go from bigger values to smaller ones and their crossing symbol-
izes the tightness of one of the two relations). Crystal operator 1 tries to increase
β′ by one; if this is forbidden by the equality β′ = γ, then 1 increases γ′. Operator
2 acts similarly in the second level.

The submodularity condition (viz. belonging to K0) is given by two inequalities
β ≥ 0 and β′ ≥ 0. Under Schützenberger’s map the quadruple (β′, β, γ′, γ) is

mapped to the quadruple (β̃′, β̃, γ̃′, γ̃) = (−γ,−γ′,−β,−β′) represented by the
diagram

�
�
�
��@

@
@
@R −γ−β

−β′ −γ′

Here operator 1 on K0 is transformed into operator 2−1 on K0. Indeed, the action

of 2−1 on a quadruple (β̃′, β̃, γ̃′, γ̃) consists in attempting to decrease γ̃, and if this

is impossible, to decrease β̃.

4.7. Generalizing the above observation, we give an ‘excess’ description of vertices
of Kp.

Theorem. Let p be a principal TP-function in K. Then p belongs to Kp if and
only if the inequality ε(f,RRi) ≤ ε(p,RRi) holds for each right tile RRi.

In particular, f belongs toK0 if and only if all excesses ε(f,RRi) are nonpositive.
The theorem can be reduced to this particular case. Indeed, f belongs to Kp ⇔
f − p ∈ K0 ⇔ ε(f − p,RRi) ≤ 0 ⇔ ε(f,RRi) ≤ ε(p,RRi). A proof for this
particular case will be given in Section 7.

4.8. Theorems 4.4 and 4.7 imply that a function f ∈ V (K) belongs to the crystal
Kp

0 = K0 ∩Kp if and only if

(a) ε(f,R) ≥ 0 for each tile R;
(b) ε(f,RRi) ≤ ε(p,RRi) for i = 1, . . . , n.

In particular, the intersection of the crystal Kp
0 with the principal lattice P con-

sists of TP-functions of the form
∑

i ciπi, where 0 ≤ ci ≤ ε(p,RRn−i+1), yielding
a rectangular integer ‘box’. (Recall that πi has excess 1 at level n− i+ 1; see 3.8.)

For a tuple c = (c1, . . . , cn) of nonnegative integers, we denote the crystal Kp
0

by K(c), where p =
∑

i ciπi. Such a notation is justified by the following facts
(cf. 3.3).

4.9. Proposition. (i) ci is the biggest number k such that the function ik0 belongs
to the crystal K(c).
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(ii) cn−i+1 is the biggest number k such that the function (i)−kp belongs to the
crystal K(c).

Proof. Let us prove assertion (ii); assertion (i) follows from (ii) and general
properties of An-crystals exposed in 3.3 (see also 7.4).

Since p =
∑

i ciπi, the excess of p on any tile R at height i is equal to cn−i+1

(by the definition of π• in 3.8). In particular, ε(p, LRi) = cn−i+1, where, as before,
LRi is the left tile at height i. Consider a tiling T fitting to color i (i.e. containing
LRi). Operator i−1 decreases the excess on LRi by 1. If we apply i−1 k times, where
k ≤ cn−i+1, then the excess of the function f := i−kp on LRi is still nonnegative.
The excesses on the other tiles of T do not change. Therefore, f is submodular, and
property (a) in 4.8 is satisfied. Property (b) in 4.8 is also true, due to Theorem 4.7.
Hence, f ∈ K(c). If we apply operator i−1 to p more than cn−i+1 times, then the
excess on LRi becomes negative and the function f gets outside K(c). �

5. Symmetric extracts from crystals of type A

5.1. The Dynkin diagram An has an obvious symmetry, inversion τ , which trans-
forms each color i into the opposite color n + 1 − i := i. In a crystal K(c) with
source, if we change the colors of edges to the opposite ones, we again obtain an
An-crystal, but now with the ‘reversed’ parameters c := (c1, . . . , cn).

Suppose that a tuple c of parameters is symmetric, i.e., c = c. Then there is a
(unique) automorphism of the digraph K(c) which brings each edge to an edge of
the opposite color; we call it the (color-reversing) symmetry of K(c) and denote by
τ as well. This symmetry is extended in a natural way to paths and other objects
in K(c). In particular, consider a directed path P = (s = v0, e1, v1, . . . , ek, vk = v)
going from the source s of K(c) to a vertex v. Then there exists a (unique) path P
‘symmetric’ to P , namely, (τ(v0), τ(e1), τ(v1), . . . , τ(ek), τ(vk)); it starts at s and
ends at τ(v).

Let S be the set of self-symmetric vertices v of K = K(c), i.e., τ(v) = v. This

set can be endowed with a structure of colored digraph, denoted as K̃ = (S, Ẽ),

with the set of colors Ĩ = I/τ . The construction of K̃ depends on the parity of n
and yields either a Bm- or Cm-crystal, where m := dn/2e.

5.2. We begin with the case of an odd n = 2m − 1, which is slightly simpler.

The factor-set Ĩ consists of colors 1̃, . . . , m̃. An edge of color 1̃ goes from a self-
symmetric vertex u to a self-symmetric vertex v if they are connected in K(c) by a

path u
1→ w

n→ v (and hence, by a path u
n→ w′ 1→ v), where we write u′

i→ v′ for

an edge of color i from u′ to v′. We may write 1̃ = 1n = n1. Colors 2̃, . . . , m̃− 1
are defined similarly. And the edges of color m̃ coincide with the original edges of

color m (connecting self-symmetric vertices). The resulting m-colored digraph K̃
is called the symmetric extract from the crystal K(c).

Two simplest examples for n = 3 (and m = 2) are illustrated below. The first

picture shows the A3-crystal K(0, 1, 0) (left) and its symmetric extract K̃ (right).
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s6
sXXXXz c���1 cXXXXz

���1
s6
s

2
1

3 1

3

2

s
s s

s
6

-

6

2̃

1̃ 2̃

The next picture shows the A3-crystal K(1, 0, 1) and its symmetric extract K̃.
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The above two extracts K̃ are the simplest cases of B2-crystals, with the param-
eters (0, 1) and (1, 0), called the ‘fundamental’ B2-crystals (cf. [DKK-09]). Similar
property takes place in a general case: for n = 2m− 1, the symmetric extract from
an An-crystal with a symmetric parameter c is the Bm-crystal with the parameter
(c1, . . . , cm). This property (as well as its counterpart for A- and C-crystals in case
n = 2m) follows from a general result on ‘folding’ on Dynkin diagrams and related
crystals (see, e.g. [NS-01]); a purely combinatorial proof is given in [DKK-12]. In
the rest of this section we discuss (without proofs) such an interrelation between
crystals of types A,B,C in terms of our TP-model.

5.3. In case of an even n = 2m, the factor-set Î consists of m colors 1̂, . . . , m̂ (here
we prefer to use ‘hats’ rather than ‘tildes’). Given a symmetric An-crystal K(c),

the edges of colors 1̂, . . . , m̂− 1 connecting self-symmetric vertices are defined as
before. For example, 1̂ = (2m)1, 2̂ = (2m− 1)2, and so on. The edges of color m̂
are defined more tricky. Self-symmetric vertices u, v are connected by edge of color
m̂ from u to v if K(c) contains a path of length 4 from u to v whose edges have
colors m,m+ 1,m+ 1,m, in this order (implying the existence of a path with the

sequence of edge colors m+ 1,m,m,m+ 1). The resulting m-colored digraph K̂ is
just the symmetric extract from K(c).

Symmetric A4-crystals are rather large and cumbersome to draw, and we are able
to illustrate only one example here: the picture below shows the crystal K(1, 0, 0, 1)
(left) and its symmetric extract (right).

Notice that the above extract K̂ looks like the symmetric extract from K(0, 1, 0)
drawn in 5.2, but now the colors are interchanged. This matches the fact that a B2-
crystal with parameters (c1, c2) is isomorphic to the C2-crystal with the swapped
parameters (c2, c1).
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5.4. Next we discuss models of crystals of types B and C by use of symmetric TP-
functions. Let us consider the inversion on the set [n+1], which maps i to n+2− i.
This induces inversion τ on the Boolean cube 2[n+1] defined by τ(A) := [n+1]−A
for A ⊆ [n+ 1]. For example, τ(∅) = [n+ 1] and τ({1}) = {2, . . . , n+ 1}.

One can extend τ to an inversion of the zonogon Z = Zn+1. To this end, we make
the reflection with respect to the center of Z. This maps Z onto itself (interchanging
the top and bottom vertices), and a point v of the zonogon represented by a set
A ⊆ [n+ 1] is mapped to the point τ(v) represented by the set τ(A).

For a function f on 2[n+1], we can consider the symmetric function τ∗(f) defined

by τ∗(f)(A) := f(τ(A)). Let T̃P denote the set of (self)-symmetric TP-functions
f on 2[n+1], i.e., τ∗(f) = f . According to 5.2 and 5.3, this set can be endowed by
the structure of B- or C-crystal. We will describe the action of crystal operators

on the set T̃P . This depends on the parity of n.

5.5. The case of an odd n = 2m − 1 is simpler because in this case there exist
symmetric tilings. Below we draw two symmetric tilings for n = 3.
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If a tiling T is symmetric (i.e. τ(T ) = T ), then any symmetric function on the
set of vertices of T can be uniquely extended to a symmetric TP-function on 2[n+1].

To define operators ĩ, take a symmetric tiling T fitting to color i (which fits to color
τ(i) = n+ 1− i as well). (Arguing as in 3.3, one can show that such a tiling does
exist.) When i 6= m, we simultaneously increase by 1 the values at the symmetric
vertices [i] and τ([i]) = [2m − i], preserving the values at the other vertices of T .
When i = m, we increase by 1 the value at the self-symmetric point [m].

5.6. For an even n = 2m, there are no symmetric rhombus tilings. For this reason,
we work with symmetric hexagonal-rhombus tilings. ‘Tiles’ of such a tiling T are



16 V.I. DANILOV, A.V. KARZANOV AND G.A. KOSHEVOY

either usual tiles R (then T should contain their symmetric tiles τ(R)) or symmetric
(relative to τ) hexagons. As before, any symmetric TP-function is determined by
its values at the vertices of such a T . To show this, it suffices to consider in detail
the case of a single hexagon, i.e., the case n = 2. (One can understand this case as
taking the symmetric extract from an A2-crystal.)

The picture below illustrates the hexagon Z3 with two possible rhombus tilings
on it, and indicates the values of a symmetric TP-function.
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c′

d

d′

a′

b′

By the symmetry, we have obvious equalities a = b, a′ = b′, c = c′, and d = d′.
The TP3-condition takes the form

2c = max(a+ b′, b+ a′) = a+ a′.

We observe that the values of a symmetric TP-function on the boundary vertices
determine its values at both inner vertices by the rule: c = (a+ a′)/2.

One can see how the operator 1221=2112 acts on a symmetric TP-function.
Namely, 1 increases (by 1) a and c′, then 2 increases b, then the second application
of 2 increases b and c, and the last application of 1 increases a. As a result, a and
b increase by 2 (while c and c′ increase by 1).

Returning to an arbitrary even n, we have the following description of crystal

operators 1̂, . . . , m̂. For i < m, operator î acts as follows. Take a symmetric
hexagonal-rhombus tiling fitting to the color i (and 2m+ 1− i) and increase by 1
the values of the function at the vertices [i] and [2m + 1 − i]. As to the action of
m̂, one should take a symmetric hexagonal-rhombus tiling containing the hexagon
using the vertices [m− 1], [m], [m+1], [m+2], and increase by 2 the values of the
function at [m] and [m+1] (preserving the values at the other vertices of the tiling).
Two symmetric hexagonal-rhombus tilings for n = 4 are drawn in the picture.
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In fact, we have described above the free TP-crystals of types B and C. To obtain

crystals K̃(c̃) (with sources), one should extend c̃ to an appropriate symmetric tuple
c and consider symmetric TP-functions in the crystal K(c) (we omit details).
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6. Proof of Theorem 4.4

We have already shown that if a TP-function f is submodular, then it continues to
be submodular after application of every crystal operator i. It remains to show the
following ‘converse’ property: if f is a nonzero submodular integer TP-function,
then for some color i, the function i−1f is submodular as well.

An idea of the proof is simple. Due to the submodularity, the excess of f on
any tile is nonnegative. Hence, there exists a tile R with a strictly positive excess.
The idea consists in showing the existence of a ‘more left’ tile also having positive
excess. Eventually we obtain a ‘leftmost’ tile with positive excess which is pressed
to the left boundary of the zonogon Z, i.e., the left tile LRi. Then we can apply
to f the operator i−1 and the obtained function i−1f is again submodular, whence
the result easily follows.

First of all we should explain which tile is meant to be ‘more left’ to a given tile.
Assign to each tile R = (A; i, j) the following permutation σ(R) on [n + 1].

(Recall that A ⊂ [n + 1], i, j /∈ A and i < j.) We set σ(R) := (A, i, j, B), where
B := [n+ 1]−Aij, and the sets A and B are ordered by increasing their elements.
For instance, if a is the biggest element of A, and b is the smallest element of B,
then the permutation has the form . . . aijb . . .. As is explained in Section 2, there
exists a tiling containing both the tile R and the snake σ(R). If R is the left tile,
then σ(R) is the identical permutation id (corresponding to lbd(Z)). We say that
a tile R′ is more left than a tile R if σ(R′) is closer to id than σ(R) (in the sense
of weak Bruhat order).

Now suppose that R is a non-left tile with positive excess. Let σ(R) = (A, i, j, B).
Let a be the biggest element of A, and b the smallest element of B. We consider
two cases.

Case 1 : a > j. Extend R to the hexagon with the bottom vertex A− a and the
left boundary going along edges of colors i, j, a (in this order). See the picture:
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By a remark in 2.9, at least one of the left tiles in the hexagon, ρ or ρ′, has
positive excess. The permutation σ(ρ′) has the form ((A − a) ∪ i, j, a, B) and is
closer to id than σ(R) = (A, i, j, B). And the permutation σ(ρ), which has the form
(A− a, i, j, B ∪ a), also is closer to id than σ(R).

Case 2 : i < a < j. Extend R to the hexagon with the bottom vertex A− a and
the left boundary going along edges of colors i, a, j. See the picture:
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As before, at least one of the left tiles in the hexagon has positive excess. In all
cases the corresponding new permutation is closer to id that σ(R).

Arguing similarly for B, we obtain that if b < j, then there exists a more left
tile with positive excess than R.

Finally, assume that R is such that a < i and b > j. This implies that j = i+ 1
and the tile R is pressed to lbd(Z).

Theorem 4.4 is proven.

7. Proof of Theorem 4.7

7.1. In Section 4 we introduced the important subgraph K0 in K. Theorem 4.7
gives another description of this subgraph. More precisely, let K− be (the subgraph
induced by) the set of functions f in K which have nonpositive excesses on all right
tiles: ε(f,RRi) ≤ 0 for any i = 1, . . . , n. Theorem 4.7 says that K0 = K−.

To prove this, we have to show two properties. The first one (see parts 7.2–7.3
below) is that the set K− is stable under action of operators i−1. Together with
the trivial fact that 0 ∈ K−, this gives the inclusion K0 ⊆ K−. The second one is
that 0 is the (unique) sink of the digraph K−. In other words, we have to prove
that i 0 /∈ K− (this is rather easy and is shown in 7.4), and that if for a function
f ∈ K−, the function if do not belong to K− for any i, then f = 0 (this is more
difficult and is shown in 7.5–7.7).

7.2. For i ∈ [n], we write i for n + 1 − i. We assert that if j 6= i, then the excess
on the tile RRj does not change under the action of operator i−1: ε(i−1f,RRj) =
ε(f,RRj). This follows from the observation that in case i+ j 6= n+1, there exists
a tiling containing both tiles LRi and RRj . It is easy to construct explicitly such
a tiling, and we leave it to the reader.

7.3. The case j = i = n− i+ 1 is less trivial. The above argument does not work
because the corresponding tiling does not exist. Also in a general case operator i−1

may change the excess on the tile RRj . We assert that this excess either preserves
or decreases by 1.

To prove this, we draw the ‘track’ of color i+ 1 pressed to a lower boundary of
the zonogon as shown in the picture:
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When this track is removed, in the rest of the zonogon we can draw a similar
track of color i pressed to a lower boundary. These two tracks form a partial tiling
‘beginning’ with the left tile LRi, which we call the ‘visible’ tiling. Also within
the same domain we can constract another tiling; it is formed by a track of color i
and a track of color i+ 1. This ‘hidden’ tiling, drawn by dotted lines in the above
picture, ‘ends’ with the right tile RRj .

By combining both tilings, we can see a gallery of cubes whose facets include
tiles with edges of colors i, i + 1. We label the vertices by letters b, l, t, r with
corresponding indices as indicated in the above picture. When we apply operator
i−1 to a function f , the value at the vertex l1 decreases by 1 whereas the values at
the vertices b•, r• and t• do not change. We are going to compute the change of the
value at the vertex ln (and simultaneously at all l1, . . . , ln). We will prove in 7.5
a more general fact: for any k, the value at the point lk either does not change or
decreases by 1.

7.4. For simplicity let us first consider the case of zero function f . We assert that
the function g = i−10 takes value −1 at all points l1, . . . , ln. Indeed, by the TP-
relation applied to first cube, and the equality g(l1) = −1, we obtain g(l2) = −1.
From the latter, we obtain g(l3) = −1, and so on until we get g(ln) = −1.

The same argument shows that for any integerm, the function im0 takes valuem
at the point ln. In particular, the excess of the function on the right tile RRi is m.
Together with the assertion in 7.2, this proves the first assertion in Proposition 4.9.

7.5. Let us return to a general TP-function f and to the assertion in 7.3: the
application to f of operator i−1 either does not change the value at the point lk or
decreases it by 1. We prove this by induction on k; for k = 1 the assertion is trivial.
Let us consider k-th cube in the above picture; it is as illustrated:
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Due to TP-relation (2.1), we have the equality

f(rk) + f(lk+1) = max(f(tk) + f(bk+1), f(lk) + f(rk+1)).
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By induction the value at lk either does not change or decreases by 1. Also the
values at the points b, t, r do not change. If the value at lk does not change, then
the value at lk+1 does not change as well. If the value at lk decreases by 1, then
the value at lk+1 either does not change or decreases by 1.

7.6. Proposition. Suppose that a function f in K− has the following property:
if does not belong to K− for any i = 1, . . . , n. Then f = 0.

To show this, it is convenient to work with the standard tiling. It has the track
of color 1 pressed to the left boundary of zonogon. Denote the vertices of this
track (or lbd(Z)) as ∅ = t0, t1, . . . , tn, tn+1, and the vertices of the right boundary
of the track as r0 = ∅, r1, . . . , rn. On the other hand, the vertices rj belong to the
left boundary of the smaller zonogon Z ′ obtained by removing from Z the track
of color 1. Then Z ′ is just the zonogon induced by color 2, . . . , n + 1 (or vectors
ξ2, . . . , ξn+1).

First we consider the actions of operators i for i = 2, . . . , n. These actions are
‘not visible’ on the standard tiling because it does not fit to any of these colors.
To make them ‘visible’, we extend each pair of tiles of types 1i and 1(i+ 1) to the
hexagon as illustrated in the picture:
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In addition, we consider the ‘dotted tiling’ on the hexagon; its interior contains
vertex t̃. By TP-relation (2.1), we have

f(t̃) + f(ri−1) = max(f(ti−1) + f(ri), f(ti) + f(r̃))

and a similar relation holds for the function g := if .
Recall that operator i increases by 1 the value at ti and does not change values

at ti−1, ti+1, ri, ri−2, and r̃. The above-mentioned TP-relations give two possible
cases:

1) either f(ti−1) + f(ri) > f(ti) + f(r̃), and therefore the value at ri−1 does not
change (i.e., f(ri−1) = g(ri−1));

2) or f(ti−1) + f(ri) ≤ f(ti) + f(r̃), and therefore the value at ri−1 increases by
1.

7.7. We assert that only the second case is realizable. Indeed, suppose that the
value at ri−1 does not change. Then operator i does not change the function f
within the zonogon Z ′. More precisely, for a tiling T ′ on Z ′ fitting to color i, the
values at vertices of T ′ preserve. Then the values at vertices of any tiling on Z ′

are not changed, in particular, at the vertices of the right tiles RRj , j 6= n + 1.
Therefore, the excesses on these tiles continue to be nonpositive. The excess on
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RRn is not changed as well (see 7.3). But this means that the function if belongs
to K−, contrary to the supposition.

Thus, we have

(7.1) f(ti−1) + f(ri) ≤ f(ti) + f(r̃)

and the action of i increases by one the value at the point ri−1. Hence, in the
restriction of f to the Boolean cube 2{2,...,n+1} operator i acts precisely as the cor-
responding operator of the same color i (i = 2, . . . , n). By the inductive assumption,
we obtain that the function f is zero on the restriction to 2{2,...,n+1}.

In particular, f(ri) = f(r̃) = 0. Therefore, relations (7.1) give

(7.2) f(t1) ≤ f(t2) ≤ . . . ≤ f(tn).

7.8. Finally, we show that all values f(ti) are zeros (implying that f is zero on all
vertices of the standard tiling, whence it is zero everywhere). Here we use operator
1 (which was not used so far).

Let us consider again the standard tiling and the tracks of colors 1 and 2 in it.
They cover some ‘horn’ domain; see the following picture (where vertices on the
tracks are labeled as t•, r•, b•).
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As before, we also consider another, ‘hidden’ tiling on the same ‘horn’ domain;
new vertices are labeled as l•. Note that the values of f at the vertices b• and r•
are equal to 0 because they belong to the smaller Boolean cube. The values of 1f
are equal to 0 at these points as well, because the standard tiling fits to color 1.
Due to TP-relations, we have

f(ri−1) + f(li) = max(f(ti−1) + f(ri), f(ti) + f(bi−1)).

Since f is zero at b• and r•, these relations give

f(li) = max(f(ti−1), f(ti)).

Similarly,

(1f)(li) = max((1f)(ti−1), (1f)(ti)).

We are interested in the value at the point ln because it is equal to the excess
on the right tile RRn. We know that (1f)(ti) = f(ti) for i = 2, . . . , n, and that
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(1f)(t1) = f(t1) + 1. Moreover, in view of (7.2), we have

f(ln) = f(tn) 1f(ln) = max(f(t1) + 1, f(tn)).

Now since f ∈ K−, we have f(ln) ≤ 0. And 1f /∈ K− implies 1f(ln) > 0. It is
possible only if f(tn) ≤ 0 and f(t1) ≥ 0. Together with (7.2), this gives f(ti) = 0
for each i = 1, . . . , n.

This completes the proof of the theorem.
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