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ANDY TONKS

INTRODUCTION

Recently it was shown by Kapranov [4] that the combinatorics of the permuto­
hedra and associahedra can be combined to givo a 'hybrid' family of polytopes,
the permutoassociahedra. In this short note wo put forward a slightly different
point of view: the associahedra can themselves be seen as retracts of the perrnuto­
hedra. We construet a natural eellular quotient map from the permutohedron Pn

to the associahedron 1(0+1' In dimension 3 we also give ](5 as the eonvex hull of a
partieular subset of the usual vertiees of P4 •

1. THE QUOTIENT MAP

We begin by reealling the definitions of the permutohedra and thc assoeiahedra.
See [4] and the referenees there for more details.

The permutohedron [5, 8] (or zilchgon [2], or pa1'allelohedron [1]) Pn is the eonvex
huB of the n! vertices (1r- 1 (I), 1r- 1(2)"" ,1r-1(n)) E IR o

, for permutations 1r E So'
As a cellular eomplex Pn is the realization of the poset Pn of partitions of J1. =
{I, 2, ... , n}. That is, an (n - l')-ccll of Pn is labclle<:l by a tu pie (A 1, A2, ••• , Ar) of
non-ern pty disjoi nt subsets of 11 with UAi = J1.. A perm utation 1r E Sn gives a O-eell
of Pn via Ai = {1r(i)}, and the I-skeleton of Pn is just the Cayley graph of Sn' An
r-eell (A i );'=1 is isomorphie to the produet Pa1 X Pa'J X ••• X Par' where ai = IAil,
and its boundary eonsists of those cells given by further partitioning the Ai' Note
that Pn is (n - I)-dimensional.

The associahedron [9, 10] (or Stasheff polytope) I(n is the realization of the poset
Kn of braeketings of n variables, or equivalently of rootOO trees with nieaves Of of
eertain subdivisions of the (n + l)-gon. It has dimension n - 2. An (n - 1')-eell of
I(n corresponds to a (meaningful) insertion of r - 2 pairs of parentheses into the
expression XIX2'" X n , or to a rooted tree with nieaves and l' - 1 internal nodes.
The boundary consists of the cells obtained by inserting further parentheses into
tha expression. By [3, 6], the assoeiahedroll ](n mayaiso be obtained as the convex
hull of a particular collection of Cn -l points in IR"+l, where Cn = n~l e:) is the nth
Catalan number. These vertices correspond to the complete bracketings, the binary
trees, or the triangulations of the (n + l)-gon.
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FIGURE l. The permutohedron and associahedron of dimension 2.

Definition 1.1. Consider a relation rv on P Il as folIows. For a partition (Ai)~

we say that A k - l and A k are independent if there exists x E Ui>k Ai such that
maxAk _ 1 < x < min A k or maxAk < x < min Ak - 1• Then rv is the equivalence
relation generated by

(All A2l ··· I All) rv (All'" ,Ak - 2l A k - l U A k , Ak +l , •.. lAll)

if Ak - l and Ak are independent.

To give the motivation for this definition, consider a composite of n +1 variables
Xl X2 ••• XIl+I which is to be evaluated. Thcre are n composition operations to be
performed, and so n! ways of carrying out thc evaluation] which we can think
of as the vertices of Pn . Similarly wc interpret a general face of PIl , given by a
partition (A;)i;;;;ll as the following evaluation procedure: carry out simultaneously
("in parallel") the composition operations betwcen Xi and Xi+l for i E All then on
the resulting terms carry out the composition operations indicated by A2l then for
A3l alld so on. An (n - r)-dimensional face of P,~ gives a procedure for evaluating
the composite XIX2 •• • Xn+l in r stages.

To any such evaluation procedure there is an associated tree, with n + 1 leaves
labelIed by the variables Xi and at least r internal nodes labelIed by the composi­
tions. Thus we have constructed a function from partitions of!! to trees with n +1
leaves:

B : Pn --+ Kn +l .

This respects the poset structures since taking a finer partition gives further paren­
theses or extra internal nodes. The function is also surjcctive: for any tree, choose
an ordering of the internal nodes which respects the natural partial order. Such an
ordering defines a composition procedure and hence a partition which under Bgives
the original tree. There is a choice of ordcring when two Hodes in the tree corres­
pond to terms which are to be composed later; the composition may be carried out
first at one node then at the other , or both simultaneously. As in definition 1.1 we
call such nodes independent. It is c1ear that () maps two partitions to the same tree
if and only if they are equivalent under the relation rv. Thus K n +l ~ Pnl rv and B
is the quotient map P n --+ Pnl rv.
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FIGURE 2. The trees associated to P3 and /(4'

Taking the realization of the map B gives:

Proposition 1.2. There is a natural cellular quotient map of (n - l)-dimensional
complexes

from the permutohedron to the associahedron.

The restriction of () to the vertices is (essentially) the function from Sn to binary
trees used by Lod ay [7].

In dimension two, Bconsists of quotienting one of the edges of the hexagon to give
a pentagon. We can see this arising quite naturally in homotopy theory, as folIows.
We consider the hexagon as the space of paths through the cube: the vertices of
the former correspond to the six paths th rough the edges of the latter, with edges
corresponding to the homotopies between paths given by the six square faces. But
the cube is in turn the path space of a 4-simplex u. Five of the faces of the cube
correspond to actual homotopies of homotopies of paths, given by the faces of u.
The sixth, however, is the product of the homotopies given by a(012) and u(234).
It is this square which corresponds to the "degenerate" edge of the hexagon.

2. DIMENSION THREE

Consider the function 4> givcn by thc rcstriction of () : P4 -7 [(5 to the vertices of
the permutohedron P4- We define a right inverse ~ : 1(5 -7 P4 to tP with the property
that for any face F of !(s the vertices {~(v) : u a vertex of F} are coplanar.

For eight of the vertices v E 1(~ there is a unique vertex ~(v) E P4 such that
qn(u) = v. For the remaining vertices we make the following choices:

(XtX2)(X3(X4X5)) H 4312
((XtX2)X3)(X4X5) H 1243

(XtX2)((X3X4)Xr;) H 3412
(XdX2X3))(X4Xf» H 2143

((XtX2)(X3X4))X5 H 3124
Xl ((X2X3)(X4Xs)) H 2431

We check the coplanarity of the vertices {~(v) : v a vertex of F} for the faces
F of the associahedron. For vertices u of the pentagon F = (XIX2)X3X4XS we
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note that the 1,(v) all lie in the plane AI + ] = A2 (and of course LAi = 10) in
}R4 = {(AI1 A2' A3' A4)}' Similarly I, maps thc vertices of F = XtX2X3(X4XS) to the
plane A4 + 1 = A3' For the remaining pentagonal and square faces the vertices are
mapped to vertices of original faces of the permutohedron. In fact we have

Proposition 2.1. The associahedron ](s may be defined as the convex hull of sub­
set {i,(u) : u a vertex of !(5} of the usual vcrtices of the permutohedron P4 in }R4.

Furthermore [(5 may be obtained from P4 by intcrscction with the region AI +1 ~ 02,
A4 + 1 ~ A3.

... ...........-
~ ......... -

....-

FIGURE 3. /(s obtained from E.. by two pcrpendicular cuts.

Remark 2.2. There is no corresponding result for [(6 and Pfj. The vertices of the
faces Xl (X2X3)X4XSX6 and XIX2X3(X4Xfj)X6 of [(6 would have to be mapped to the
hyperplanes A2 = 1 and A4 = 1 respectively. But then I, must map the vertices of
the intersection XI (X2X3) (X4X5)X6 to points with A2 = A4 = 1, which is dearly not
the case for any vertices of Ps.
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