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INTRODUCTION

Recently it was shown by Kapranov [4] that the combinatorics of the permuto-
hedra and associahedra can be combined to give a ‘hybrid’ family of polytopes,
the permutoassociahedra. In this short note we put forward a slightly different
point of view: the associahedra can themselves be seen as retracts of the permuto-
hedra. We construct a natural cellular quotient map from the permutohedron P,
to the associahedron K, ;,. In dimension 3 we also give K5 as the convex hull of a
particular subset of the usual vertices of Fs.

1. THE QUOTIENT MAP

We begin by recalling the definitions of the permutohedra and the associahedra.
See [4] and the references there for more details.

The permutohedron [5, 8] (or zilchgon (2], or parallelohedron [1]) P, is the convex
hull of the n! vertices (7~1(1),771(2),...,71(n)) € R", for permutations = € S,,.
As a cellular complex P, is the realization of the poset P, of partitions of n =
{1,2,...,n}. Thatis, an (n—r)-cell of P, is labelled by a tuple (Ay, As, ..., A,) of
non-empty disjoint subsets of » with | J A; = n. A permutation 7 € S, gives a 0-cell
of P, via A; = {=(2}}, and the 1-skeleton of P, is just the Cayley graph of S,. An
r-cell (A;)i_, is isomorphic to the product P, X Py, X --- X P, , where a; = |4;],
and its boundary consists of those cells given by further partitioning the A;. Note
that P, is (n — 1)-dimensional.

The associahedron {9, 10] (or Stasheff polytope) K, is the realization of the poset
K, of bracketings of n variables, or equivalently of rooted trees with n leaves or of
certain subdivisions of the (n -+ 1)-gon. It has dimension n — 2. An (n — r)-cell of
K, corresponds to a (meaningful) insertion of r — 2 pairs of parentheses into the
" expression T{Zj...Z,, or to a rooted tree with n leaves and » — 1 internal nodes.
The boundary consists of the cells obtained by inserting further parentheses into
the expression. By [3, 6], the associahedron K, may also be obtained as the convex
hull of a particular collection of ¢,_; points in R"*!, where ¢, = n+r1 (2”") is the nth
Catalan number. These vertices correspond to the complete bracketings, the binary
trees, or the triangulations of the (n + 1)-gon.
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FiGURE 1. The permutohedron and associahedron of dimension 2.

Definition 1.1. Consider a relation ~ on P, as follows. For a partition (A;)}
we say that A;_; and A, are independent if there exists z € |J;5x A; such that
max Ax_; < ¢ < min A, or max Ay < ¢ < min Ax_;. Then ~ is the equivalence
relation generated by

(AI!A21"- :An) ~ (Ala"' 1Ak—21Ak—l UAkiAk+11"' pAn)
if A,_; and A, are independent.

To give the motivation for this definition, consider a composite of n 4 1 variables
Z1Ty...2Tn41 which is to be evaluated. There are n composition operations to be
performed, and so n! ways of carrying out the evaluation, which we can think
of as the vertices of P,. Similarly we interpret a general face of B, given by a
partition (A;)I_,, as the following evaluation procedure: carry out simultaneously
(“in parallel”) the composition operations between z; and x4, for : € A, then on
the resulting terms carry out the composition operations indicated by A,, then for
As, and so on. An (n — r)-dimensional face of P, gives a procedure for evaluating
the composite z,2,...2,4, in r stages.

To any such evaluation procedure there is an associated tree, with n + 1 leaves
labelled by the variables z; and at least r internal nodes labelled by the composi-
tions. Thus we have constructed a function from partitions of n to trees with n 41
leaves:

6:P, > Kngr-

This respects the poset structures since taking a finer partition gives further paren-
theses or extra internal nodes. The function is also surjective: for any tree, choose
an ordering of the internal nodes which respects the natural partial order. Such an
ordering defines a composition procedure and hence a partition which under 8 gives
the original tree. There is a choice of ordering when two nodes in the tree corres-
pond to terms which are to be composed later; the composition may be carried out
first at one node then at the other, or both simultaneously. As in definition 1.1 we
call such nodes independent. 1t is clear that # maps two partitions to the same tree
if and only if they are equivalent under the relation ~. Thus K,,4; = P,/~ and
is the quotient map P, = P,/ ~.
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FIGURE 2. The trees associated to P and K,.

Taking the realization of the map 6 gives:

Proposition 1.2. There is a natural cellular quotient map of (n — 1)-dimensional
complexes

p 9

from the permutohedron to the associahedron.

I(n+1

The restriction of 8 to the vertices is (essentially) the function from S, to binary
trees used by Loday [7].

In dimension two, # consists of quotienting one of the edges of the hexagon to give
a pentagon. We can see this arising quite naturally in homotopy theory, as follows.
We consider the hexagon as the space of paths through the cube: the vertices of
the former correspond to the six paths through the edges of the latter, with edges
corresponding to the homotopies between paths given by the six square faces. But
the cube is in turn the path space of a 4-simplex o. Five of the faces of the cube
correspond to actual homotopies of homotopies of paths, given by the faces of o.
The sixth, however, is the product of the homotopies given by ¢(012) and o(234).
It is this square which corresponds to the “degenerate” edge of the hexagon.

2. DIMENSION THREE

Consider the function ¢ given by the restriction of 8 : P, — K5 to the vertices of
the permutohedron P;. We define a right inverse ¢ : I{5 — P4 to ¢ with the property
that for any face F of K5 the vertices {¢(v) : v a vertex of F'} are coplanar.

For eight of the vertices v € Ky there is a unique vertex ¢(v) € P, such that
¢1(v) = v. For the remaining vertices we make the following choices:

(z122)(z3(2azs)) — 4312 (2122)((zaz4)zs) = 3412 ((z(22)(z3T4))Ts > 3124
((z122)Ta) (azs) ¥ 1243 (z1(2273)) (z4ms) = 2143z, ((z223) (z425)) — 2431

We check the coplanarity of the vertices {¢(v) : v a vertex of F} for the faces
F of the associahedron. For vertices v of the pentagon F = (z,2;)z3z475 we
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note that the ¢(v) all lie in the plane A; +1 = A, (and of course }_A; = 10) in
R* = {(A1, A2, A3, Aq)}. Similarly « maps the vertices of F = z,2,z3(z425) to the
plane Ay 4+ 1 = A3. For the remaining pentagonal and square faces the vertices are
mapped to vertices of original faces of the permutohedron. In fact we have

Proposition 2.1. The associahedron K’s may be defined as the convex hull of sub-
set {¢(v) : v a vertex of K5} of the usual vertices of the permutohedron Pj in R*.
Furthermore K5 may be obtained from P; by intersection with the region A;+1 > A,,
A+ 12 As

0%,

FIGURE 3. K obtained from £ by two perpendicular cuts.

Remark 2.2. There is no corresponding result for Ks and Fs. The vertices of the
faces z(z23)T4zs26 and z,2223(2425)ze of K would have to be mapped to the
hyperplanes A, = 1 and Ay = 1 respectively. But then ¢ must map the vertices of
the intersection z,(zsx3)(z425)zs to points with Ay = Ay = 1, which is clearly not
the case for any vertices of Ps.
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