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Abstract

We show that the Poincaré bundle gives a fully faithful embedding from the

derived category of a curve of su�ciently high genus into the derived category of

its moduli space of bundles of rank r with �xed determinant of degree 1. Moreover

we show that a twist of the embedding, together with 2 exceptional line bundles,

gives the beginning of a semiorthogonal decomposition. This generalises results

of Narasimhan and Fonarev–Kuznetsov, who embedded the derived category of a

single copy of the curve, for rank 2.

1 Introduction

The derived category of a smooth projective variety is an important invariant, with

ties to mirror symmetry, Chow motives, birational geometry, Hodge theory, noncom-

mutative algebraic geometry. Because one can compute many important invariants

of a variety from it, the derived category connects all these topics. Proving structural

properties for the derived category has implications in all of them.

To study derived categories it is often useful to decompose the complicated trian-

gulated category one is interested in into more tractable pieces. This is done using

semiorthogonal decompositions, which were introduced in [6]. They are particularely

useful for Fano varieties, as these are expected to have a wealth of semiorthogonal de-

compositions. For a state of the art one is referred to Kuznetsov’s ICM address [12]. Our

present work is motivated by this observation, and the role of these semiorthogonal

decompositions in mirror symmetry.

Let C be a smooth projective curve of genus д ≥ 2 and let r ≥ 2 and d be integers

such that gcd(r ,d ) = 1. Then the moduli space MC (r ,L) of stable vector bundles of

rank r and �xed determinant L of degree d is a smooth and projective Fano variety

of dimension (r 2 − 1) (д − 1), such that PicMC (r ,L) � ZΘ. Moreover there exists a

universal vector bundle W (called the Poincaré bundle) onC ×MC (r ,L). In this setting

we can use the Poincaré bundle W to construct a Fourier–Mukai functor ΦW from the

derived category of the curve to the derived category of the moduli of vector bundles,

and this article is devoted to studying this functor.

Observe that in the classi�cation of Fano varieties (which is only known up to dimen-

sion 3, by Mori–Mukai) they take up a special place: in arbitrary dimension the usual
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examples are complete intersections in homogeneous varieties and their blowups,

but MC (r ,L) is not of this form. They also have Fano index 2, whereas it is more

tractable to classify Fano varieties with high Fano index. Understanding their derived

categories will therefore be useful to understand what to expect in general for the

derived categories of Fano varieties.

In [15] Narasimhan showed that the Fourier–Mukai functorΦW is fully faithful, if r = 2,

d = 1, д ≥ 4 and W is suitably normalized (see equation (6)). His proof uses the Hecke

correspondence to check the Bondal–Orlov criterion. Independently, in [9] Fonarev–

Kuznetsov showed the fully faithfulness for r = 2, d = 1 and д ≥ 2 whenC is a generic

curve. Their proof involves an explicit model by Desale–Ramanan [7] of MC (2,L)
when C is hyperelliptic, and checking the Bondal–Orlov criterion in this special case

using the Borel–Weil–Bott theorem.

The �rst result in this article is a generalisation of these fully faithfulness results: the

rank r is now arbitrary, the degree d is 1, and д ≥ д0, where д0 is the smallest integer

such that

(1) 2rд0 − 2(r + д0) ≥ r 2 − 1.

In particular when r = 2, we get that д0 is 4. The vanishing results in theorem 3

together with the Bondal–Orlov criterion then imply the following.

Theorem A. The Fourier–Mukai transform ΦW gives a fully faithful embedding

(2) Db (C ) → Db (MC (r ,L))

for any smooth curve C of genus д ≥ д0.

In [15, remark 4] Narasimhan explains that the results in op. cit. also show that

(3) Θ∨,OMC (2,L),ΦW (Db (C ))

is the beginning of a semiorthogonal decomposition of Db (MC (r ,L)). The second

result in this article is a generalisation and more interestingly an extension of this

result to higher rank: we exhibit a second copy of the derived category of the curve. To

do this we twist the functor ΦW by Θ∨, or equivalently we consider the Fourier–Mukai

functor associated to W ⊗ p∗
2
(Θ∨).

TheoremB. LetC be any smooth curve of genusд ≥ д0, then there exists a semiorthog-

onal decomoposition of the form

(4) Db (MC (r ,L)) =
〈
Θ∨,ΦW (Db (C )) ⊗ Θ∨,OMC (r,L),ΦW (Db (C )),A

〉
,

where A is the left-orthogonal complement to the admissible subcategory generated

by the 2 exceptional objects and the 2 copies of Db (C ).

Remark 1. This result is already new in the case of r = 2. In a work in progress joint

with Sergey Galkin [4] we are studying Db (MC (2,L)) from the point of view of mirror

symmetry for Fano varieties:

1. quantum cohomology can be used to suggest the existence semiorthogonal

decompositions, in the spirit of Dubrovin’s conjecture;

2. there are various conjectures [10] regarding the eigenvalues of the quantum

multiplication c1 (X ) ∗ − that can be checked for MC (2,L).

2



The suggested decomposition into indecomposable pieces (recall that Db (C ) is inde-

composable by [18]) will involve symmetric powers Sym
i C for i ≤ д − 1. For r ≥ 3

the picture becomes more complicated, and it is currently unclear what the systematic

description could be.

The Bondal–Orlov criterion To check fully faithfulness of the Fourier–Mukai

functor ΦW, we will use following criterion due to Bondal–Orlov [6, theorem 1.1]. We

denote the skyscraper at a point x by k (x ).

Proposition 2 (Bondal–Orlov). Let X and Y be smooth projective varieties. Let E be

an object in Db (X × Y ). Then ΦE is fully faithful if and only if

1. HomY (ΦE (k (x )),ΦE (k (x ))) � k for all x ∈ X ;

2. HomY (ΦE (k (x )),ΦE (k (x ))[i]) � 0 for all x ∈ X and i < [0, dimX ];

3. HomY (ΦE (k (x )),ΦE (k (y))[i]) � 0 for all x ,y ∈ X such that x , y and i ∈ Z.

Vanishing results To apply the Bondal–Orlov criterion in the proof of theorem A

we need the following generalisation of [15, parts (1), (2) and (3) of theorem 1.2]. For

any point z ∈ C , we denote by Wz the restriction of W to {z} ×C .

Theorem 3. Let C be a smooth projective curve of genus д ≥ д0, and L a line bundle

of degree 1. Let W be the normalised Poincaré bundle on C ×MC (r ,L). Then

1. H
0 (MC (r ,L),Wx ⊗W∨x ) � k for all x ∈ C;

2. H
i (MC (r ,L),Wx ⊗W∨x ) � 0 for all x ∈ C and i ≥ 2;

3. H
i (MC (r ,L),Wx ⊗W∨y ) � 0 for all x ,y ∈ C such that x , y and i ≥ 0.

For the proof of the semiorthogonal decomposition of theorem B we need another set

of vanishing results, which generalise [15, parts (4) and (5) of theorem 1.2], together

with a new vanishing result.

Theorem 4. Let C be a smooth projective curve of genus д ≥ д0, and L a line bundle

of degree 1. Let W be the normalised Poincaré bundle on C ×MC (r ,L). Then

1. H
i (MC (r ,L),W

∨
x ) = 0 for all x ∈ C and all i ≥ 0.

2. H
i (MC (r ,L),W

∨
x ⊗ Θ∨) = 0 for all x ∈ C and all i ≥ 0.

2’. H
i (MC (r ,L),Wx ⊗ Θ∨) = 0 for all i ≥ 0.

3. H
i (MC (r ,L),W

∨
x ⊗Wy ⊗ Θ∨) = 0 for any x ,y ∈ C and all i ≥ 0.

Remark 5. If r = 2 then parts (1) and (2) are related via Serre duality, but in higher

rank this is no longer the case. In arbitrary rank, (2) and (2’) are related via Serre

duality.

Structure of the paper We prove parts (1) and (2) of theorem 3 in section 3. The

proof of part (3) occupies sections 5 and 6. The structure of the proof is as in [15], but

we highlight the complications arising in the higher rank case.
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The proof of parts (1) and (2) (resp. (2’)) of theorem 4 is done in section 7, where we

prove a more general vanishing statement for exterior powers of W∨x , along the same

lines as sections 5 and 6. Finally, the proof of part (3) occupies section 8.

In section 9 we explain how theorems A and B follows from theorems 3 and 4, and

give some concluding remarks.

Acknowledgements Both authors were supported by the Max Planck Institute for

Mathematics in Bonn. They thank Patrick Brosnan and Sergey Galkin for interesting

conversations, and S. Paul Smith for comments on a draft version.

2 Preliminaries and notation

Let k be an algebraically closed �eld of characteristic 0. Throughout this article we

will takeC a smooth projective curve over k of genus д ≥ 2. Associated to a rank r and

degree d such that gcd(r ,d ) = 1 there exists a smooth projective moduli space MC (r ,d )
of dimension r 2 (д − 1) + 1, with a determinant morphism to Pic

d (C ). Fixing a line

bundle L of degree d on C we can consider the �bre over the point [L] in Pic
d (C ),

which will be denoted MC (r ,L).

Now MC (r ,L) has Pic(MC (r ,L)) � ZΘ with Θ the ample generator of the Picard

group, such that

(5) ωMC (r,L) � Θ⊗−2.

In particular, MC (r ,L) is a (r 2 − 1) (д − 1)-dimensional Fano variety of index 2. We

will also use the appropriate analogues of these results when gcd(r ,d ) ≥ 2. For a proof

one is referred to [8].

AsMC (r ,L) is a �ne moduli space, there exists a universal familyW onC×MC (r ,L), the

Poincaré bundle. This universal family is unique if we normalise it as in [19, remark 2.9]:

if we denote ` ≥ 0 the minimal integer such that `d ≡ 1 mod r then we can assume

(6) c1 (Wx ) � Θ⊗`,

where Wx =W{x }×MC (r,L) .

Remark 6. The dependence on ` is the reason why we have to restrict to d ≡ 1 mod r .

Remark that by Serre duality and tensoring withOC (x ) we can always assumed ∈ [0, . . . , r/2],
as one can identify the moduli spaces for di�erent d , so we will use d = 1. We expect

that for other residue classes the result still holds.

Using W and the projections

(7)

C ×MC (r ,L)

C MC (r ,L)

p1 p2

we can then construct the Fourier–Mukai functor

(8) ΦW = Rp2,∗ (p∗1 (−) ⊗W) : Db (C ) → Db (MC (r ,L)).
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3 Generalisation of a result byNarasimhan–Ramanan

In this section we prove parts (1) and (2) of theorem 3. At this point it is not required

that d = 1, it is enough that gcd(r ,d ) = 1.

For (1) it su�ces to observe that the result cited in [15] (i.e. [16, theorem 2(b)]) is

already valid for all ranks. However for the proof of (2) [16, proposition 7.7] is used,

which is only given for д = 2. We will show that the expectation expressed in [16, re-

mark 7.2] is correct, and that the vanishing of cohomology of adx W (i.e. the restriction

to {x } ×MC (r ,L) of the traceless endomorphisms of W) is indeed valid in arbitrary

rank, using some new information on Hodge numbers which was not available when

op. cit. was published.

Proposition 7. LetC be a smooth projective curve of genus д ≥ 2, and L a line bundle

of degree d on C such that gcd(r ,d ) = 1. Let W be the normalised Poincaré bundle

on C ×MC (r ,L), where gcd(r ,d ) = 1. For all x ∈ C and i ≥ 2 we have that

(9) H
i (MC (r ,L), adx W) = 0

The proof of [16, proposition 7.7] can be generalised to arbitrary rank, provided one

has control over the Hodge numbers h
1,i (MC (r ,L)). In order to do this, we will use

the closed formula for the Hodge–Poincaré polynomial as obtained in del Baño [2,

corollary 5.1]. Recall that the Hodge–Poincaré polynomial HP(X ,x ,y) of a smooth

projective variety X is given by

∑
p,q≥0 h

p,q (X )xpyq .

The formula
1

in loc. cit. gives the Hodge–Poincaré polynomial of MC (r ,d ), and �x-

ing the determinant changes the Hodge–Poincaré polynomial by removing a fac-

tor (1 + x )д (1 + y)д arising from the Jacobian of C . Taking these observations into

account, and denoting 〈α〉 the decimal part of a real number α , we have

(10)

HP(MC (r ,L),x ,y) =
∑

r1+...+r`=r

(−1)`−1
((1 + x )д (1 + y)д )`−1

(1 − xy)`−1

·
∏̀
j=1

r j−1∏
i=1

(1 + x iyi+1)д (1 + x i+1yi )д

(1 − (xy)i ) (1 − (xy)i+1)

·

`−1∏
j=1

1

1 − (xy)r j+r j+1

· (xy)
∑
i< j ri r j (д−1)+

∑`−1
i=1 (ri+ri+1 )〈−(r1+...+ri )d/r 〉

where we sum over all compositions of r .

From this we can read o� the following dimensions.

Lemma 8. We have that

1. h
0,1 (MC (r ,L)) = 0,

2. h
1,1 (MC (r ,L)) = 1,

3. h
2,1 (MC (r ,L)) = д,

1
There is a minor typo in the second summation in the exponent of the last factor in [2, corollary 5.1].
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4. h
i,1 (MC (r ,L)) = 0 for all i ≥ 3.

Proof. We observe that the only composition r = r1 + . . . + r` contributing to the

coe�cient of x iy is the composition with ` = 1. Indeed, developing all the denominators

as a power series in xy and multiplying them, we see that factor on the fourth line of

(10) is zero for ` = 1 and bounded below by 2 for ` ≥ 2. Hence for the equalities in the

lemma, it su�ces to understand the contribution with ` = 1.

In this case the only non-trivial factor in (10) is the second one. It now su�ces to

observe that there will not be a monomial y, that xy appears with coe�cient 1 by the

factor (1 − xy) in the denominator for i = 1, that x2y appears with coe�cient д by the

factor (1 + x2y)д for i = 2 and that there cannot be any monomials of the form x iy
for i ≥ 3. �

Proof of part (2) of theorem 3. It su�ces to combine proposition 7 with the de�ning

short exact sequence

(11) 0→ adx W→ End(Wx ) � Wx ⊗W∨x → OMC (r,L) → 0,

and the vanishing of the higher cohomology of the structure sheaf as MC (r ,L) is

Fano. �

Remark 9. One can actually prove more. Recall that the level of a Hodge structure is

de�ned as the maximum value of |p − q | as (p,q) ranges over h
p,q , 0. In [3] it was

shown that for MC (2,L) the level of H
i (MC (2,L),Q) was bounded above by bi/3c.

For r ≥ 3 the same is true, which immediately implies lemma 8. For i � 0 this bound

can even be improved, but we haven’t found a nice closed formula for it.

4 Determinant of cohomology

One of the main ingredients in the proof of part (3) of theorem 3 is an explicit description

of the determinant of cohomology. The following proposition is a generalisation

of [15, proposition 3.1], taking the extra complication for arbitrary r and d such

that gcd(r ,d ) = 1 into account.

Proposition 10. Let C be a smooth projective curve of genus д ≥ 2, and L a line

bundle of degree d on C such that gcd(r ,d ) = 1. Let W be the normalised Poincaré

bundle on C ×MC (r ,L), where gcd(r ,d ) = 1. Then there exists an isomorphism

(12) det

(
Rp2,∗ (W)∨

)∨
� L⊗(1−`d )/r+`(1−д)

where ` ≥ 0 is minimal such that `d ≡ 1 mod r .

Proof. Consider the moduli spaceMC (r ,L
∨). The family of vector bundlesW∨ onC×MC (r ,L)

gives an isomorphism

(13) ϕ : MC (r ,L)
�
→ MC (r ,L

∨).

Let us denote the ample generators of Pic(MC (r ,L)) (resp. Pic(MC (r ,L
∨))) by Θ

(resp. Θ′). By [15, proposition 2.1] we get that

(14) Θ � ϕ∗ (Θ′) �
(
det(Rp2,∗W∨)∨

) ⊗r
⊗ det(W∨x )

⊗−d+r (1−д) .
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Because W is normalised we get detWx � Θ`
as explained in section 2, where ` is the

minimal non-negative integer such that `d ≡ 1 mod r . Hence we obtain

(15) Θ �
(
det(Rp2,∗W∨)∨

) ⊗r
⊗ Θ⊗`d+`r (д−1) .

This proves the proposition. �

In appendix A we give an alternative proof of this result using the Grothendieck–

Riemann–Roch formula.

5 Cohomology vanishing for Wx ⊗ W∨y in high de-
grees

From this point on we will impose the condition that d = 1. As mentioned before, we

expect the result is still valid for any degree coprime to the rank, but leave this for

future work.

We will split the proof of the vanishing as stated in part (3) of theorem 3 into two

parts: �rst we show it for i ≥ r 2, and then we deal with the vanishing in low degrees

in section 6. For both parts we use the Hecke correspondence, which we will recall now.

Hecke correspondence Let x ∈ C be a closed point. If we restrict the Poincaré bun-

dle W to {x } ×MC (r ,L), we can consider the projective bundle π : P(Wx ) → MC (r ,L).
We will denote the projective bundle by Q (W,x ).

A point q on Q (W,x ) corresponds to the vector bundle Wπ (q ) together with a mor-

phism Wπ (q ) � k (x ). We can take the dual of the kernel, which is a vector bundle

of rank r and determinant L∨ ⊗ OC (x ) of degree 1 − d . The variety Q (W,x ) can be

seen to parametrise a family of such bundles. However in general the family of vector

bundles may not be semistable.

Consider the short exact sequence

(16) 0→ E1 → E→ k (x ) → 0,

on a curve C , where E1 and E are vector bundles of rank r and deg(E) = 1. Then we

have the following:

Lemma 11. If E is stable, then E1 is semistable.

Proof. First observe that the slope µ (E1) = 0. Suppose that E is not semistable. Let F

be a subbundle of E1 such that µ (F) > µ (E1) = 0. Let r ′ = rankF. Now since E is

stable, we have

(17) 0 < µ (F) < µ (E) =
1

r
.

But this is impossible since 0 < r ′ < r and deg(F) > 0. �
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The above lemma shows that Hecke transforms for degree one bundles preserves

semistability. Thus we get a diagram

(18)

Q (W,x ) B P(Wx )

MC (r ,L
∨ ⊗ OC (x )) MC (r ,L).

ψ π

Remark 12. When d , 1 we don’t have a well-de�ned morphismψ in (18), there is

only a rational morphism. It is conceivable that using parabolic bundles it is possible

to resolve the indeterminacy, and continue the proof in this way. We leave this for

future work.

With the above considerations, the statement and proof of [15, proposition 3.3] gener-

alises to the following.

Lemma 13. Let Θ′ be the ample generator of Pic(MC (r ,L
∨ ⊗ OC (x )). Then

(19) ψ ∗ (Θ′) � OQ (W,x ) (1)

The following proposition is a generalisation of [15, proposition 3.2].

Proposition 14. Let C be a smooth projective curve of genus д ≥ 2, and L a line

bundle of degree 1 on C . Let W be the normalised Poincaré bundle on C ×MC (r ,L).
For all x ,y ∈ C such that x , y the vector bundle Wx ⊗W∨y ⊗ ω

∨
MC (r,L)

is ample.

Proof. By lemma 13 we get that OQ (W,x ) (1) is nef, hence Wx is nef. By [14, proposi-

tion 6.2.12(iv)] the exterior power

∧r−1 Wx is again nef, and so

∧i Wx ⊗ Θ is ample.

Using the ampleness of

(20)

∧r−1
Wx ⊗ Θ �

∧r−1
Wx ⊗ Θ∨ ⊗ L⊗2

�
∧r−1

Wx ⊗ detW∨x ⊗ Θ⊗2

� W∨x ⊗ ω
∨
MC (r,L)

we can conclude that

(21)

Wx ⊗W∨y ⊗ ω
∨
MC (r,L) � Wx ⊗ Θ ⊗W∨y ⊗ Θ

� Wx ⊗ Θ ⊗
∧r−1

Wy

is again the tensor product of a nef bundle with an ample bundle, so is ample itself. �

From this we get the vanishing of Wx ⊗W∨y in high degree.

Corollary 15. We have that for i ≥ r 2.

(22) H
i (MC (r ,L),Wx ⊗W∨y ) = 0

Proof. It su�ces to apply Le Potier vanishing [14, theorem 7.3.5] to the ample vector

bundle Wx ⊗W∨y ⊗ ω
∨
MC (r,L)

of rank r 2. �
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6 Cohomology vanishing forWx⊗W
∨
y in low degrees

To �nish the proof of part (3) theorem 3 we need to show vanishing in degrees i ≤ r 2−1.

For this we will use the morphismψ from (18).

Because degL∨ ⊗ OC (x ) = 0 is not coprime with r , there is a dense open subset

(23) M
s

C (r ,L
∨ ⊗ OC (x )) ( MC (r ,L

∨ ⊗ OC (x ))

of stable vector bundles, the complement being the strictly semistable locus.

Remark 16. If we take a stable bundle V ∈ MC (r ,L
∨ ⊗ OC (x )), then by [17, re-

mark 5.2(v) and lemma 5.6(i)] the Hecke transform of V is also stable.

Using remark 16, the proof of [15, proposition 3.4] also gives a proof of the following

generalisation.

Proposition 17. The restriction ofψ to M
s

C (r ,L
∨ ⊗ OC (x )) is a Pr−1-�bration. More-

over, for every point y ∈ C \ {x } the restriction of π ∗ (Wy ) to a �bre ofψ in the stable

locus is isomorphic to OPr−1 (1)
⊕r

.

For completeness’ sake, we give the proof.

Proof. Consider a pointm ∈ Ms

C (r ,L
∨ ⊗ OC (x )), which corresponds to a stable vector

bundle V on C of rank r and determinant L∨ ⊗ OC (x ). We wish to show that

(24) π ∗ (Wy ) |ψ −1 (m) � OPr−1 (1)
⊕r .

Let us denoteVx = Vx ⊗ k (x ) the �bre of V at x . Then as in [16, §4] we obtain a family

of vector bundles K (V) on C parametrised by P(Vx ) � P
r−1

, where T = Speck is just

a point. It should be mentioned that we will also use results from [17, §5], and it is

important to highlight remark 5.7 of op. cit., which explains how the results in §5 of

op. cit. are to be interpreted in the context of [16, §4], in particular we have x ∈ C
�xed.

As K (V) is a family of stable vector bundles of rank r and determinant L, the universal

property of MC (r ,L) gives us a morphism

(25) f : P(Vx ) → MC (r ,L)

which is a closed immersion by [17, lemma 5.9], where in the setting of loc. cit. we

restricted the morphism to the point x ∈ C . The same universal property gives us an

isomorphism

(26) ( f × idC )
∗ (W) � K (V) ⊗ д∗ (ξ )

on P(Vx ) × C , for some line bundle ξ on P(Vx ), where д : P(Vx ) × C → P(Vx ) is the

projection onto the �rst factor. We wish to determine the line bundle ξ more explicitly,

and we do this by computing the restriction f ∗ (Θ).

First, by [17, remark 5.7 and corollary 5.16] we get an isomorphism

(27) f ∗ (ωMC (r,L) ) � ω⊗2
P(Vx )
,

9



and as MC (r ,L) is Fano of index 2 we get

(28) f ∗ (Θ) � OP(Vx ) (r ).

On the other hand, using (26) we get

(29)

f ∗ (Θ) � f ∗ (det(Wy ))

� det(K (V) |P(Vx )×{y } ⊗ ξ ).

But as K (V) |P(Vx )×{y } � O⊕r
P(Vx )

by [16, remark 4.7], we get

(30) f ∗ (Θ) � ξ ⊗r .

Hence ξ � OP(Vx ) (1), and (26) gives

(31) f ∗ (Wy ) � OP(Vx ) (1)
⊕r .

Finally, similar to [16, §5] there exists a commutative diagram

(32)

P(Wx )

P(Vx ) MC (r ,L)

π

f

F

such that the image of F is identi�ed withψ−1 (m). But then (24) follows. �

We will need the following codimension estimate for the preimage under ψ for the

strictly semistable locus. The proof is similar to that in [20, §2.V.A], but we will now

�x the determinant.

Lemma 18. Denoting U B ψ−1 (Ms

C (r ,L
∨ ⊗ OC (x )) we have that

(33) codimQ (W,x ) (Q (W,x ) \U ) ≥ 2(r − 1) (д − 1) − 1

Proof. Let M be a line bundle of degreem. Recall that polystable bundles in

(34) K B MC (r ,M) \Ms

C (r ,M)

are direct sums of stable bundles with the same slope. If we denote a = gcd(r ,m) ≥ 2

and r0 = r/a we get

(35)

dimK = max

c=1, ..., ba/2c

(
r 2
0
(c2 + (a − c )2 (д − 1) + 2 − д

)
= (2r 2

0
+ r 2 − 2rr0 − 1) (д − 1) + 1,

where we can choose the determinant for one of the summands freely.

In the situation of (18) we have d = 1, and hence r0 = 1. By a generalisation of the proof

of [20, lemma 5], it follows that the �bers of the mapψ are at most (r − 1)-dimensional.

Thus we see that the dimension ofψ−1 (K ) is at most (2+r 2− 2r − 1) (д− 1)+ 1+ (r − 1).
Hence we get that

(36)

codimQ (W,x ) (Q (W,x ) \U )

= (r 2 − 1) (д − 1) + r − 1 − dimψ−1 (K )

≥ 2(r − 1) (д − 1) − 1.

�
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Remark 19. If r = 2, it is known that ψ is surjective by [17, lemma 7.3] and the

inequality in the statement of lemma 18 is an equality.

In corollary 15 we have shown the vanishing of H
i (MC (r ,L),Wx ⊗W∨y ) for i ≥ r 2.

We can now show vanishing for i ≤ r 2 − 1.

Proof of part (3) of theorem 3. By the Leray spectral sequence for ψ and (19) we get

that

(37)

H
i (MC (r ,L),Wx ⊗W∨y ) � H

i (Q (W,x ),OQ (W,x ) (1) ⊗ π
∗ (W∨y ))

� H
i (Q (W,x ),ψ ∗ (Θ′) ⊗ π ∗ (W∨y )).

Let д0 be the smallest integer such that

(38) 2rд0 − 2(r + д0) ≥ r 2 − 1,

where we have used the codimension estimate from lemma 18. Then by [11, §III.3] we

have an inclusion

(39) H
i (Q (W,x ),ψ ∗ (Θ′) ⊗ π ∗ (W∨y )) ↪→ H

i (U ,ψ ∗ (Θ′) ⊗ π ∗ (W∨y ))

for i ≤ r 2 − 1.

By proposition 17 we have that ψ restricted to U is a Pr−1-�bration. Applying the

projection formula

(40) R
jψ∗

(
ψ ∗ (Θ′) ⊗ π ∗ (W∨y )

)
� Θ ⊗ R

jψ∗ (π
∗ (W∨y ))

and using that the �bers of π ∗ (W∨y ) restricted to ψ−1 (p) for p ∈ Ms

C (r ,L
∨ ⊗ OC (x ))

are isomorphic to OPr−1 (−1)
⊕r

we are done. �

7 Cohomology vanishing forW∨x andWx ⊗ Θ∨

In this section we prove parts (1), (2) and (2’) of theorem 4. The proof goes along the

same lines as the proof of part (3) of theorem 3, and uses ingredients from sections 5

and 6.

To prove cohomology vanishing for W∨x and Wx ⊗ Θ∨ we prove the following more

general vanishing statement for

∧j W∨x with j = 1, . . . , r −1. Setting j = 1 and j = r −1
then implies the result, as

(41)

∧r−1
W∨x � Wx ⊗ Θ∨

because detWx � Θ.

Proposition 20. For any i ≥ 0 and for j = 1, . . . , r − 1 we have that

(42) H
i (MC (r ,L),

∧j
W∨x ) = 0

whenever д ≥ дj , where дj is the smallest positive integer satisfying the condition

(43) 2rдj − 2(r + дj ) ≥

(
r

j

)
− 1.

11



Proof. The strategy of the proof is similar to the proof of part (3) of theorem 3. First

we claim that

∧j W∨x ⊗ ωMC (r,L) is ample. This follows from the isomorphism

(44)

∧j
W∨x ⊗ ωMC (r,L) �

∧r−j
Wx ⊗ Θ

and the fact that Wx is nef, using lemma 13, as in the proof of proposition 14

Thus by Le Potier vanishing [14, theorem 7.3.5] we get that

(45) H
i (MC (r ,L),

∧j
W∨x ) = 0

for i ≥
(
r
j

)
, as in section 5. Thus now we only have to prove vanishing when i <

(
r
j

)
.

As in section 6 the Leray spectral sequence tells us

(46) H
i (MC (r ,L),

∧j
W∨x ) � H

i (Q (W, z),
∧j

π ∗ (W∨x ),

where z is any point on C \ {x }.

Assuming that д ≥ дj and using the codimension estimate of lemma 18 together

with [11, §III.3], we obtain an inclusion

(47) H
i (Q (W, z),

∧j
π ∗ (W∨x ) ⊆ H

i (U ,
∧j

π ∗ (W∨x )

for any i <
(
r
j

)
and U as in lemma 18. Now by proposition 17, we get thatψ restricted

to U is a Pr−1-�bration.

Moreover by proposition 17, we see that the �ber of π ∗ (W∨x ) restricted to ψ−1 (p)
for p ∈ M

s

C (r ,L
∨ ⊗ OC (z)) is isomorphic to OPr−1 (−1)

⊕r
. In particular, the �bers

of

∧j π ∗ (W∨x ) restricted toψ−1 (p) are direct sums of line bundles of degree −j. This

implies that R
kψ∗ (

∧j π ∗ (W∨x )) is zero, hence we are done. �

8 Cohomology vanishing forW∨x ⊗Wy ⊗ Θ∨

In this section we discuss the vanishing result of part (3) of theorem 4 required for the

proof of theorem B. We will recall the notion of k-ample vector bundles, as the role of

Le Potier vanishing in the proof of theorem 3 will be replaced by Sommese vanishing.

De�nition 21. Let X be a projective variety. A line bundle L is said to be k-ample if

1. some power of L is globally generated, i.e. L is semi-ample;

2. the �bers of the morphism

(48) X → P(H0 (X ,L⊗r )∨)

have dimension at most k .

A vector bundle E on X is said to be k-ample if the line bundle OP(E) (1) is k-ample.

The notion of 0-ampleness agrees with ampleness and furthermore k-ampleness im-

plies (k + 1)-ampleness.
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Proposition 22. LetC be a smooth projective curve of genusд ≥ 2 and L a line bundle

of degree 1. Let W be the normalised Poincaré bundle on C × MC (r ,L). Then Wx
is (r − 1)-ample.

Proof. By the generalisation of [20, lemma 5] we know that the �bres of the morphismψ
in the Hecke correspondence of (18) are at most (r − 1)-dimensional. Moreover, we

have already (see 19) shown that

(49) OQ (W,x ) (1) � Θ′,

where Θ′ is the ample generator of the Picard group of MC (r ,L
∨ ⊗ OC (x ) ). Since Θ′

is (0-)ample, we get by [14, example 6.2.19(ii)]) that OQ (W,x ) (1) is (r − 1)-ample. In

particular this implies that Wx is (r − 1)-ample. �

We will use this to prove part (3) of theorem 4.

Proof of part (3) of theorem 4. Let x and y be any two points of C , not necessarily

distinct, and denote

(50) V B Wy ⊗W∨x ⊗ Θ.

By proposition 22 we know thatWx andWy are (r−1)-ample. Now by [13, theorem 3.5]

we get that both

∧r−1 Wx and Wy ⊗
∧r−1 Wx are (r − 1)-ample. By our choice of

normalisation of W there is a natural isomorphism

(51) V � Wy ⊗W∨x ⊗ Θ � Wy ⊗
∧r−1

Wx .

Thus, we can conclude that the vector bundle V is (r −1)-ample. It follows by Sommese

vanishing [21, proposition 1.14], that

(52) H
i (MC (r ,L),Wy ⊗W∨x ⊗ Θ∨) = 0

for all i ≥ r 2 + (r − 1).

Since ω∨
MC (r,L)

is isomorphic to Θ⊗2 we get by Serre duality that

(53) H
i (MC (r ,L),Wy ⊗W∨x ⊗ Θ∨)∨ � H

(r 2−1) (д−1)−i (MC (r ,L),Wx ⊗W∨y ⊗ Θ∨).

The same argument shows that

(54) H
(r 2−1) (д−1)−i (MC (r ,L),Wx ⊗W∨y ⊗ Θ∨) = 0

when (r 2 − 1) (д − 1) − i ≥ r 2 + (r − 1).

Combining the above with (52), we get that if (r 2 − 1) (д − 1) ≥ 2(r 2 + r − 1), then the

cohomology H
i (MC (r ,L),V) vanishes for all i . But this is satis�ed for all д ≥ 4. �

9 Concluding remarks

The proofs of theoremsA and B We can now explain how the vanishing theorems

imply the fully faithfulness of the Fourier–Mukai functor, and how they give the

semiorthogonal decomposition of (4).
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Proof of theorem A. The Bondal–Orlov criterion from proposition 2 can be applied

using theorem 3. �

For the proof of theorem B we need to use the following lemma.

Lemma23. LetX be a smooth projective variety. Let F : A ↪→ Db (X ) andG : B ↪→ Db (X )
be admissible embeddings. To check that A is in the right orthogonal to B, it su�ces

to check this for spanning classes for A and B, i.e. whether

(55) HomDb (X ) (G (T ), F (S )) = 0

for all objects S in a spanning class for A and all objects T in a spanning class for B.

For sake of notational simplicity a spanning class will be closed under shifts.

Proof. We need to check that

(56) HomDb (X ) (G (B), F (A)) = 0

for allA ∈ A and B ∈ B. Applying the adjunctionG a GR
this is equivalent toGR◦F (A)

being isomorphic to 0 for all A. This in turn is implied by

(57) HomB (T ,GR ◦ F (A)) = 0,

where T runs over a spanning class for B. Now applying G a GR
and F L a F , this is

equivalent to

(58) HomA (F L ◦G (T ),A) = 0,

which is equivalent to F L ◦ G (T ) being isomorphic to zero for all T . This in turn is

implied by

(59) HomA (F L ◦G (T ), S ) = 0,

where S runs over a spanning class for A. �

Proof of theorem B. The orthogonality criterion from lemma 23 can be applied to the

images of Db (C ) under ΦW and ΦW ⊗ Θ∨ by using the spanning class given by the

skyscrapers, and using part (3) of theorem 4.

The other orthogonality checks (there are 5 more) follow from Kodaira vanishing, and

parts (1) and (2) of theorem 4. �

On theorem B for rank 2 and genus 2 It is expected that in theorem A the condi-

tion on the genus is not essential, and combining [15, remark 5] with [9, theorem 1.1]

we know that the functor ΦW is fully faithful for r = 2 and all д ≥ 2, so a posteriori

we can conclude the vanishing results in theorem 3.

But when r = 2 and д = 2 it is shown in [6, theorem 2.9] that (3) is the whole

semiorthogonal decomposition, i.e.

(60) Db (MC (2,L)) =
〈
Θ∨,OMC (2,L),ΦW (Db (C ))

〉
.
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In particular, theorem B cannot hold for r = 2 and д = 2, so we cannot have the

vanishing result in part 3 of theorem 4. We leave it to the interested reader to compute

directly on the intersectionQ1∩Q2 of 2 smooth quadrics in P5 that the sheaf cohomology

of the tensor product of the restriction of (dual) spinor bundles twisted by OQ1∩Q2
(−1)

is non-zero.

On the other hand, for all other combinations of rank and genus (and degree) it is

expected that theorem B holds.

Generalised Picard bundles The fully faithfulness result from theorem A allows

us to reprove known results on the inversion of generalised Picard bundles, and their

deformation theory, originally proven in [1, 5]. This is remarked upon in [15, remark 1]

in the case when r = 2. We will now give some details in the more general case here.

De�nition 24. Let E be a semistable vector bundle of rank n and degree e , such that

(61) re + n > rn(2д − 2).

Then the Fourier–Mukai transformΦW (E) is again a vector bundle, of rank re+n+rn(1−д),
called a generalised Picard bundle.

The �rst result that follows from theorem A is [5, theorem 19]. Recall that the kernelWR

for the right adjoint of ΦW is given by W∨ ⊗ p∗
1
(ωC )[1]. By fully faithfulness we have

a natural equivalence ΦWR ◦ ΦW � idDb (C )) .

Proposition 25 (Inversion formula). Let E be a vector bundle as in de�nition 24. Then

there exists an isomorphism

(62) E � R
1p1,∗

(
p∗
2
(p2,∗ (p

∗
1
(E) ⊗W) ⊗W∨ ⊗ p∗

1
(ωC )

)
.

Similarly we can describe the deformation theory of generalised Picard bundles as in

[5, theorem 22]. As the in�nitesimal deformation theory of any sheaf E on a smooth

projective variety X is described by H
i (X ,End(E)) for i = 0, 1, 2, the fully faithfulness

of ΦW gives the isomorphism in the next theorem.

Proposition 26. Let E be a vector bundle as in de�nition 24. Then there exists an

isomorphism

(63) Ext
i
C (E,E) � Ext

i
MC (r,L) (ΦW (E),ΦW (E))

Proof. One uses that

(64) H
i (C,End(E)) � Ext

i
C (E,E)

and

(65) H
i (MC (r ,L),End(ΦW (E))) � Ext

i
MC (r,L) (ΦW (E),ΦW (E)),

and the left-hand sides are isomorphic by fully faithfulness. �

So the (in�nitesimal) deformation theory of a generalised Picard bundle agrees with

that of the original bundle. In particular, if E is simple, then by Riemann–Roch the

deformation space has dimension n2 (д − 1) + 1.
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A An alternative proof of proposition 10

Because MC (r ,L) is Fano, we have an isomorphism Pic(C ×MC (r ,L)) � PicC ⊕ Z.

Using this isomorphism we have

(66) c1 (W) = c1 (Wx ) + d .

For a vector bundle E we will use the following shorthand

(67) N2 (E) B c1 (E)
2 − 2 c2 (E).

We start with a preliminary lemma.

Lemma 27. We have an equality

(68) r · p2,∗ (N2 (W)) = −2[Θ] + 2d c1 (Wx ).

Proof. By [19, theorem 1] we have that

(69)

−2[Θ] = [ωMC (r,L)]

= c1

(
detRp2,∗ adW

)
.

Using Grothendieck–Riemann–Roch we can further rewrite this to

(70)

c1

(
detRp2,∗ adW

)
= ch(p2, ! adW)deg=1

= p2,∗
(
(ch(adW) ⊗ p∗

1
tdC )deg=2

)
= p2,∗

(
(ch(End(W)) ⊗ p∗

1
tdC )deg=2

)
.

Restricting ourselves to the terms that contribute to the part in degree 2 we obtain

(71)

p2,∗
(
(ch(End(W)) ⊗ p∗

1
tdC )deg=2

)
= p2,∗

(((
r 2 +

1

2

N2 (W ⊗W∨)
) (

1 +
1

2

p∗
1
c1 (TX )

))
deg=2

)
= p2,∗

(
1

2

N2 (W ⊗W∨)
)

= p2,∗

( r
2

(
N2 (W) + N2 (W

∨)
)
+ c1 (W) c1 (W

∨)
)

= p2,∗
(
rN2 (W) − c1 (W)2

)
.

�

We will now apply the normalisation for the Poincaré bundle W.

Proof of proposition 10. By Grothendieck–Riemann–Roch we get

(72)

c1 (detRp2,∗W∨) = ch(p2, !W
∨)deg=1

= p2,∗
(
ch(W∨)p∗

1
tdC

)
= p2,∗

((
r − c1 (W) +

1

2

N2 (W)
) (

1 +
1

2

p∗
1
c1 (TC )

)
deg=2

)
= p2,∗

(
1

2

c1 (W)p∗
1
c1 (KC )

)
+
1

2

p2,∗N2 (W)

= (д − 1) c1 (Wx ) +
1

r
(−[Θ] + d c1 (Wx ))

16



where in the last step we used lemma 27. Now proposition 10 follows from (6). �
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