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0. Introduction

It is known that the eigenvalues of the laplacian for a compact riemannian
manifold determines the set of the length of closed geodesics on it to some
extent, which is due to Colin de Verdiére [3], Chazarain [2], and Duistermaat-
Guillemin [4]). Here and throughout the paper we consider laplacians acting
on functions. In some cases these results are strong enough to show some
spectral rigidity of a riemannian manifold (cf. Guillemin-Kazhdan [5], Kiyohara
{6]). On the other hand, Weinstein [7] proved that if the geodesic flows of two
compact riemannian manifolds are symplectically isomorphic, then the
distribution of the eigenvalues of their laplacians are agmptotically similar.

In this paper we consider the geodesic flows of surfaces diffeomorphic to

2-sphere S2 or the real projective plane RP? which admit S!'-action of
isometries, and prove two results. The first one is as follows: There are
riemannian metrics on S such that the corresponding geodesic flows are
mutually symplectically isomorphic. It is well known that the geodesic flows
of Zoll surfaces — surfaces of revolution all of whose geodesics are closed — are
mutually symplectically isomorphic (cf. Besse [1]). Our example is a
generalization of those. As a consequence, we know that for those surfaces the
corresponding laplacians have asymptotically similar eigenvalues by
Weinstein's resuit.

The second one is concerning the spectral rigidity, which may be stated as



follows: Let {g} be a one-parameter family of riemannian metrics on RP? of
the form described in section 1. Assume that the corresponding leplacians
have the same eigenvalues, and also assume that each g, satisfies some
generic condition on the length of closed geodesics. Then each (RP2 g, are
mutually isometric (cf. Theorem 3.2).

In section 1 we describe the geodesic equation in terms of the polar
coordinates and solve it. Then the criterion of the closedness of a geodesic
and its length are given in terms of the first integral which is defined by the
rotational isometries. In section 2 we give examples of symplectically
isomorphic geodesic flows. In this section we also prove that under some
assumption, an infinitesimal deformation of an energy function E is an image
of E by an infinitesimal symplectic transformation if and only if its average
over each closed geodesic is zero. This result is crucial in the next section
In section 3 we show some spectral rigidity for RP2 In the case of analytic
metrics the assumption can be slightly weakened.
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1. Geodesics on S2 with Sl-action of isometries

In this section we refer to Besse [1], Chapter 4. Let g be a riemannian
metric on S? which admits non-trivial Sl-action of isometries. In this case
the fixed point set under the S'-action consists of 2 points, say N and S. By
using the normal polar coordinates (r, 0) centered at N, the metric g is

described as



g = dr? + a(r)? do?

on U=S2-{N,S}= {(r,0) | 0<r<L,6 € R/2nZ}, where the point N
(resp. S) corresponds to r =0 (resp.r=L).
Our first assumption for the metric g is:

The number of r € [0,L] such that a'(r) = 0 is one, and if
(* .
a'(rg) = 0, then a*(rp) # 0.

For example, if (S2 g) has positive gaussian curvature, then this condition is
satisfled. We put a(rp) = M. The condition (*) enables us the coordinate
change r— 0! defined by

a(r) = M sinot

where r € [0, rg (resp.r € [rp L]) corresponds to 8!e [0, m/2] (resp. 61€

(1/2, n]). Putting 6 =02 and dr/d8! = M-H(cos6!), the metric g is written as
g = M?[H(cos 81)Xd61)2 + (5in61)4d62)3

on U={06!6%10<06'<mn 62c R/21Z. In this form g represents a C*
riemannian metric on S? if and only if H isa C* function on {-1, 1] and
H(tl) = 1, H > O (cf. Besse [1] p. 99).

The corresponding energy function E on the cotangent bundle T*S? is

2 2

1 Ny M2
E=— 1zt 2
2M” H(cos8) (sinb")




where (61,621,,n,) are canonical coordinates. Then 1 is a first integral for

the geodesic flow, and we put

Ma=¢C

On the unit cotangent bundle $*S? = EY(1/2), we have ic! S M, and the

geodesic equation becomes

. [ L)
1 1,2 2
do (sing)?  do ¢
dt  MH(cos8) = 9t  M%sing})?

If we put i = arcsin(lci/M) € [0, 1/2], then we see that the geodesic with
N, = ¢ oscillates between the parallels 81 =i and 6! = 1- i Fixsucha
geodesic and let py be a point on the geodesic with 61 =i, Let p; (resp. p,)
be the first point after passing py on the geodesic such that 6! =m-1i (resp.
8! = i). Then from the above equation we see that the time difference between

the points p, and p, isgivenby

H(cosB ) 0!

/ (c/M)?
(8in® )




and the difference of the values of 82 between these points is given by

=

1

%J H(cos9") 2 ao! .
(sing)? 1 . Le/M)

\/  (sin8')

We also see that the differences of time and 92 between the points p, and

pz are twice the corresponding differences between the points py and p;.
Now let us define the integral operators I; and I, for functions F on

[0, 1):

%/2
(1,F)(x) = Fleosh) 4o,
arcsinx 1- xz
(sin)”
af2
(LF)(x) = X Fleos®) de .

I —
arcsin x (81!19)2 1- X 5
(sing)

Proposition 1.1. (i) The geodesic with N3 =c is closed if and only if

(IsHeXtcl/M) enQ, and if (IpHe,X1ci/M) = (n/m)(n/2) (n, m being
mutually prime integers, m > 0), then the length of the closed geodesic is



given by 4mM-(1HXict/M).

(i) X(IgHeo)(X) = (IjHe)(x) .

Here Hg(x) = (1/2){H(x)}+ H(-x)} ., and Q is the field of rational numbers,
and the prime sign means the derivative.

Proof. Let pp py, and p, be as above. Then it is clear that the geodesic is
closed if and only if the difference of the values of 62 between p, and p, is
2n times a rational number, and if this difference is 2ntn/m, (n, m)=1, m>0,
then the length of the geodesic is m times the time difference between the
points py and p, So we have (i). The second assertion is proved by a direct
calculation.

We put

Nic)={weS*'S2IN,=c}, IclSM.

Let {£g be the geodesic flow on S*S2 If the geodesic with 7, = ¢ is closed
and its length is | then &), is the identity on N(c) for any integer k We
say that N(c) is non-degenerate with respect to the mapping &y, if for every
point z € N(c) the fixed point set of the differential of &y at z coincides
with TN(c). The following lemma is easily obtained.

Lemma 1.2 Let 1 and k be as above, and assume that ¢ is not zero nor
tM. Then N(c) is a connected component of the fixed point set of &3 and

is non-degenerate with respect to &y if and only if

(IHey)(ict/M)w O .
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2. Symplectically isomorphic geodesic flows
As we have seen in the previous section, the set of the length of closed

geodesics does not depend on the odd part of H. As a matter of fact, we have
a stronger result. Let

g; = M?{ Hy(cos61)2(d81)2 + (sin81)?(d6?32?} (i =0, 1)
be two riemannian metrics on S2

Theorem 21. If (Hp)., = (Hp.y » then the geodesic flows of (S2 gp) (i =
0, 1) are symplectically isomorphic, i.e, there is a homogeneous symplectic
diffeomorphism ¢ of T*S2- {0-section} such that ¢*E, =E,,

Remark If (Hj)., = 1, then g; are Zoll metrics, and the theorem is
already known in this case (cf. Besse [1} p.122).

Proof. Put Hy = (1-t)Hy + tH; (0St< 1) Then H,> 0, Hd#) =1, and
(Hpey = (Hodey forall t (0, 1]. Let E, be the corresponding energy
function:

E =

1 m . T, l
2M®* Hycos8))® (sine’)’

We consider the following equation for F,:

xE[Ft = Et ’



where Xg is the hamiltonian vector field defined by E, and the dot means
the derivative in t We would like to solve this so that F; isa C* function on
T*S2 - {0-section}, homogeneous of degree one, and also C* in the variable t.
If we find such Fy, then XpE, = -E, . Therefore if we define symplectic
diffeomorphisms ¢, of T*S2 - {0-section} by

%‘Pt(co) = (Xp)gw » W) =0, 0E T*S° - {0-section} ,

then (9/0t}.'E, = O, and the theorem will be proved
We can describe the solution explicitly: If (81, 62 e U = S2 - (N, S},

A
-1 2MzEt'7I§'Yz

F6l62n,m)=—— [ &
' " 2ME, IM’E,

)y dy

where A = 1);sinf!/H(cos0!) , &nd if the base pointof ® is N or S, then
F{®) = 0. Here G € C%[0, 1] is defined as follows: Since I:It =H,-Hy isan

odd function and vanishes at x = £1, we can write

Hy(x) - Ho{x) = x(1 - x2) G(x2) .

It is easy to see that F, is of class C* and satisfies Xg, Fe = Et on
(T*U - {O-section}) x {0, 1. Moreover we have



b
_|' E(&o) ds = F(&o) - F(&w)

forany w € T*S? with 2E{w) = 1 and any real numbers a and b. Here {€3}
is the geodesic flow with respect to the energy function E, From this
formula it is now clear that F{w) is the C* function of (0, t)€

(T*S2- {O-section}) x[0, 1].

This theorem combined with the result of Weinstein stated in Introduction
yields the following

Corollary 22. Let g, and g, be as above, and assume that (Hpey = (Hy)ey -
Let Ajx (i = 0, 1) be the k-th eigenvalue of the laplacian A&i‘ Then

IAgx -Ax! remains bounded when k tends to «.

Under some assumption the converse of the infinitesimal version of
Theorem 2.1 is also true. For a riemannian metric g =
M2{ H(cos01)Xd6)2+ (sin61)%d62)2} on S? we put

Cg = {c €(-M, M) | geodesic of (S% g) with 1, = c is closed}.

For ¢ € C; we denote by I(c) the length of the corresponding closed

geodesic. Let us consider the following condition for the metric g:

(#) Cg is dense in [-M, M].



Proposition 2.3, Assume that the metric g satisfies the condition (#),,
and let C, be a subset of Cy such that Cy is still dense in [-M, M]. Let

n? n2 1 13 H(cosd!)
. 1 T, H(cos9)
H(cos8)® (sino})® M? H(coss!)?®

E=-£3{
M

be an infinitesimal deformation of the energy function E. Suppose that

|
JE{Q@) dt=0

for every @ € $*S? with n ) = ¢ € Cy, where 1 = Kc). Then M=0 and H
is an odd function.
Proof. From the assumption we have
1 2 1
n,(t)” H(cos9'(t))

'l' ———dt=-MMI ,
H(cos9'(t))

where £ = (04(t), 6%t), ny(t), nAt)). The left hand side of this formula is equal

to
= 2
omM® [ H(cosd)) /1-(—‘:/3’1-)—2 e |
(sin®Y)

where m s the natural number defined in Proposition 1.1 (i), and 1 =
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arcsin(!c!/M) {0, n/2]. Since 1= 4mM(,H.)}(!c!/M), we have

/2 2 )
' Y [1-—%— ge! M 1LH )
H_{(cos9 - = - — - ,
arw'[nx ~ (smel)z M '

where x = Icl/M .

Since this formula holds for any ¢ € Cy, and since C; is dense in
[-M, M], it follows that it holds for all ¢ € [-M, M]. So let us define an
integral operator 15 for functions F on [0, 1] by

X 1
(IR)(x) = JF‘(y)\/ X - y2 dy = X J' Fxyw 1 - y2 dy .
Then we have the identity

i :
I 1_—})( 1-x2)=-%(Ile)(x) , xel0, 1] .

Note that the function Hw(y)/(l- ¥ isofclass C* on [0, 1], because
f-I(:l) = Q. From the definition of I3 we see that

H
I{ —5)X0)=0,

1-

while (I;H}(1) = (1/2) H,(0) # O. Hence we have M = 0, and

[



H,,
13(----)(x)= , X0, 1} .
Y

Therefore the proposition will be proved if we show the injectivity of the
operator I3:C*[0, 1] = C%[0, 1], which will be done in the next lemma.

Lemma 2.4. The operator I3 is injective.

Proof. Let I; be the operator for the functions F on [0, 1] defined by

(1) = —J F(xy) —== dy .

iy

We will show that I,  (d/dx) 2 <l is the identity mapping on C*{0, 1}
Observe that (d/dx)? °l3 is continuous as the operator C40, 1} = CYp, 1],
and also that I, is continuous as the operator CY%0, 1] =C%0, 1] . Since
polynomials exist densely in C0, 1], it will suffice to consider the operators

for polynomials. Since the operators are linear, it is therefore enough to verify
Iy «(d/dx) 2 oI5 (xK) = xk
for every integer k2 0. We put

174
¢, = 'l' (sin6)* de .
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Then it is easy to see that I3(x¥) = (¢, /(k+2)) x¥*2 , I(x¥) = (2/m) ¢}, x¥, and

(k+1) ¢y ¢y, = 1/2, which prove the lemma.

3. Some spectral rigidity
Let g = gy y be a riemannian metric on S? of the form

M2{ H{cos01)2(d8")2 + (sin01)2(d6?)?} .

Let Cg’ be the set of all ¢ e(Cg- {0, tM}) such that (I;H.)(lcI/M)# 0 and
that there is no ¢' (s tc) in Cg and no integer k2 1 satisfylng l(c) = k'l(c’) ,
i.e, the fixed point set of Ew_., is just N(c)u N(-c). We consider the following

condition for g:
(#) Cg' is dense in [-M, M}.

Let py Ko . be the eigenvalues of the operator V’W » Where Ag is the
laplacian. Set o(s) = Z G(S-u.j) € S(R), and let 3(8) be its Fourier transform.
Then we know that th; singular support of the distribution G isincluded in
{kl(c) I c€Cy, k=0, 1, 2.} and it includes {lc) | c €Cg} (cf
Duistermaat-Guillemin [4] §4) .

Theorem 3.1. Let g =gy g, (It <€) be a one-parameter family of
riemannian metrics on S? such that Ag, are isospectral, and that each g,

satisfies the condition (#),. Then M, =M, and (Hy, = (Hpe, . In particular,

13



the corresponding geodesic flows are mutually symplectically isomorphic.

Proof. Let L be the length function with respect to the metric g, Letus
take c € Cﬁj' with ¢> 0 and (IX{Hp)eXc/M o) = (n/m){n/2) . Since
(Ix{Hpw)(c/M o » O, the mapping (z t) = (I {HpeX2). t) i8 2
diffeomorphism around (z t) = (¢/Mg 0). Hence there is a unique C* curve
¢, for small 1ti suchthat cg=c and (I{Hy)Xcy/My = (n/m)(n/2).

We would like to show that L{c,) = lg{c) if 1t! is sufficiently small
Assume that this is not the case. Then there is a sequence t; (i = 1, 2..) such
that 1t;1 |0 as i—« and ly(cy) # lofc). Let 0 be the distribution
described above defined for the metric g, (and hence for g, by the
assumption). Since lyc) is isolated in the singular support of 3, we may
assume that each lq(cti) does not belong to the singular support of rh
Therefore there is an integer k;2 1 and ¢ €[0, My] with cj'¥ ¢, such that
lyfcy) = Kyly{eq). Since the value of I)(Hye, (ttisityl) is bounded both from
above and from below, it follows that m;, the denominator of
(2/m)-(1{He)evXc /M), and ky (1= 1,2.) are bounded from above. Thus,
taking a subsequence if necessary, we may assume that kj=k, my=m' (i =
1, 2.) and ¢{' convergesto c¢' € [0, Mg] as i—¥ . In case k> 1, we have
Ig{c) = Klfc'), and this contradicts the assumption that ¢ € Cq - In case Kk =
1,wehave ¢ =c' in the same reason, and hence m = m'. Then we have
{a 1(Hti)w)(c {/Mti) = (Il(Hti)w)(ctl/Mti) . Hence (I,(Hti),,)'(x) = () for some X
between ¢{/M;, and c /M, , and therefore (I)(Hp).,)'(c/M o) = O, which
also contradicts the assumption c € Cg . Hence we have Ifcy) = lglc) for
sufficiently small {tl.

Let s> Yy{s) be the geodesic of (S2 g, with unit speed which

14



corresponds to 7, = ¢,. We take it so that y(s) is also smooth in the variable

t. Then we have

: 9 a

J&(&Yt(s).wt(s)) ds=1, 1=1lc)=1fc) .
Applying (d/0t))..q to both sides,

!
J oo VfS), o V()

12 & Vo O ¥ ds| =0

I t=0

where V denotes the covariant derivative with respect to the metric gy. The
second term of the left hand side of this formula is

1
d ) d
2!‘5&(-3774@. s VNds| =0.

=0

Hence we have

jézocgéo) ds=0
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for every we S*S? with njw)=—ce€ Ceo and 1= ly(c) . Then it follows from
Proposition 2.3 that Mo =0 and (lzlo),,, = 0. Since this is true for every t
(1t) <¢), we consequently have M; = My and (H,)., = (Hp)ey -

Next we consider the case of real projective plane RP2 Let g bea
riemannian metric on RP? whose riemannian covering 'E on S? is of the
form M2{ H(cos81)2(d08!)2 + (81n61)2(d62)2}, In this case H is an even
function, i.e, H(x) = H(-x). Let C':g' and the length function | are as before.
Then the length function L:C3—R as geodesics on RP? is given by

i(c)/2 if m is odd
e = I(c) if m iseven .

where (ILHXici/M) = (n/m)(n/2) , (n,m)=1,m>0.

Let {£;} be the geodesic flow on S*RPZ? and let N(c) (ic!<M) be the
set of all covectors on RP? with 7, = c. Asin the case of S2 we define Cq
as the set ofall c € (C'i - {0, tM}) such that (I;H)(Icl/M)+# O and that the
fixed point set of §yy is just N(c)UN(-c). And the corresponding condition

is
(#)g Cg isdense in [-M, M].

Theorem 3.2. Let g (Itl <€) be aone parameter family of riemannian

metrics on RP2 such that their riemannian covering g, on S2 are of the

form described above. Suppose that the corresponding laplacians Ag, are
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mutually isospectral and that each g, satisfles the condition (#)3. Then g, =

g (Itl <¢g).
Proof. Let E, (resp.Et) and & (resp. E}) be the energy function and the

geodesic flow corresponding to g, (resp. gy, and let L, and 1 be the
corresponding length function. As in the proof of Theorem 3.1, we have

Ly(d
J E(t'o) ds=0

for every © € S*RP? such that nj{w) = c € Cg,'. This implies that

Iy
JEt(E;m) ds=0 .

Since Cq' is dense in [-M,, M}, we can apply Proposition 23 and obtain the

theorem.
In the case of analytic metrics we can slightly refine the result.

Theorem 3.3. Let g, (itl <€) be areal analytic one parameter family of
analytic riemannian metrics on RP? such that the riemannian covering g, on
S? are of the form described before. Suppose that the corresponding
laplacians Ag, are mutually isospectral, and that Cqo 1saninfinite set. Then

ge=8o0 (Itl <g).



Proof. Let c >0 be an element of C, ', and let c, be as in the proof of
Theorem 3.1. In this case ¢, isan analytic functionof t (1t <¢) and we

have (I;Hy{c¢/My) = (I3HoKc/M o) and La(cy) = Lyfc) .
As in the proof of Theorem 3.1 we have

L

J‘ét(ggm) ds=0

where T0) = ¢, and L = Ly{cy) = Ly(c) . Then from the proof of Proposition
2.3, we see that the equality

Ht 2 I{"It
I{ 1f“)( 1-X7 ) = - E(IIHQ(X)

y

holds for x = ¢,/M,. Since the number of such x is infinite, and since both
sides are analytic in x over the closed interval [0, 1] (note that Ht is an

even function), it follows that the above equality holds for all x € [0, 1}. Then
the proof of Proposition 2.3 implies that Mt =0 and f-lt =0.
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