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O.lntroduction

lt is known that the eigenvalues of the laplacian for a compact riemannian

manifold detennines the set of the length of closed geodesics on it to some

extent which 1s due to Colin de Verdiere 13]. Chazarain [2], and Duistermaat...

Guillemin [4]. Here and throughout the paper we consider laplacians acting

on functions. In same cases these results are strang enough to show some

spectral rigidity of a riemannian manifold (cf: Guillemin...Kazhdan [5]. Kiyohara

(6]). On the ether band, Weinstein [7] proved that if the geodesic ßows of two

compact riemannian manifolds are symplectlcally isomorphie. then the

distribution ef the eigenvalues of their laplacians are asymptotically similar.

In this paper we consider the geodesie flows of surfaces diffeomorphic to

2--sphere S2 cr the real projective plane RP2 which admit Sl..action of

isometries, and prove two results. Tbe first one is as fellows: There are

riemannian metrics on 52 such that the corresponding geodesie ßews are

mutually symplectically isomorphie. It Is well known that the geodesie ßows

ofZoll surfaces - surfaces of revolution an ofwhose geodesics are closed - are

mutually symplectically isomorphie (cf. Besse [I]). Our example i5 a

generalization of those. AB a consequence, we know that for those surfaces the

corresponding laplacians have asymptotically similar eigenvalues by

Weinstein's result

The second ene is conceming the spectral rigidity. which may be stated es



follows: Let {gJ be a one-parameter family of riemannian metrlcs on RP2 of

the form deseribed in seetlon 1. Assume that the eorresponding laplacians

have the same eigenvalues, and also 88sume that each &: satlsfies some

generic condition on the length of elosed geodesies. Then eaeh (RP2.~) are

mutually isometrie (cf. Theorem 3.2).

In seetion 1 we deseribe the geodesie equation in tenns of the polar

coordinates and salve it Then the eriterion of the elosedness of a geodesie

and it8 length are given in terms of the first integral whieh is defined by the

rotational isometries. [n seetion 2 we give examples of sympleetically

isomorphie geodesie nowS. In this seetion we also prove that under some

assumption, an infinitesimal deformation of an energy funetion E i8 an image

of E byan infinitesimal sympleetic transformation If and only If its average

over eaeh elosed geodesie Is zero. This result i8 cruelal in the next seetion

In seetlon 3 we show some speetral rigldlty for RP2. In the case of analytlc

metrics the assumption can be slightly weakened

The author Is grateful to Max-Planck-Institut für Mathematik for the

support during the research.

1. Geodesics on 52 with 51-action of isometries

In this seetion we refer to Besse [11. Chapter 4. Let g be a riemannian

metric on 52 which admits non-trivial 5 1-action of isometries. In this case

the fixed point set under the SI-action consistB of 2 points. say N and S. By

using the nonna! polar coordinates (r. 9) centered at N, the metric g is

described as
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on U = 52 - {N, 5} c {(r, 9) I 0 < r< L, 9 e R/2ttZ }, where the point N

(resp. S) corresponds to r = 0 (resp. r CI L).

Dur first assumptlon for the metric g is:

The number of r E lO,L] such that al(r} CI 0 i8 one, and if

a'(rol = 0, then aa(ro> p O.

For example, If (S2, g) has positive gaussian curvature, then this condition is

satisfied We put a(rO) -= M. The condition (*) enables us the coordinate

change r~ e1 defined by

a(r) CI M sinS I,

where r E [0, ro] (resp. r e [rt) LD corresponds to 91e [0, 1[/2] (resp. Oie

[Tt/2, nD. Putting 9 c 92 and dr/d9 I = M·H(cos91), the metric g is written as

on U = {(SI, 92> I 0 < 01 < n. S2 e R/2nZ1. In this form g represents a COO

riemannian metric on 52 If and only If H Is a COO function on (-1, 1] and

H(± 1) = 1, H > 0 (cf. Besse [1] p. 99).

The corresponding energy function E on the cotangent bundle T*S2 is
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where (0 I,02,1'1I,ll2l are canonical coordinates. Then 112 is a first integral for

the geodesic flow, and we put

On the unit cotangent bundle 5.52 = E-l( 1/2) , we have I c I ~ M , and the

geodesic equation becomes

If we put i = arcsin( I c I IM) e [0, lt/21, then we see that the geodesic with

1'12 =: C oscillates between the parallels 0I =i and 0I = 1t - L Fix such a

geodesie and let Po be a point on the geodesie with 01 = 1. Let PI (resp. P2>

be the first point after passing Po on the geodesic such that 91
Cl 1t - i (resp.

e1 = I). Then from the above equation we see that the time difference between

the points Po and PI is given by

1
H(cosa ) deI,

2
1 _ (c/M)

(sine l)2
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and the difference of the values of 92 between these points is given by

We also see that the differences of time and 92 between the points Po and

P2 are twice the corresponding differences between the points Po and PI'

Now let us define the integral operators 11 and 12 for functions F on

[0, 1) :

'1/2

(11F)(x) c I F( cose) da.
orciln"~

'Jl-~

:/2

(I:!>(x) =x I F( cose) 2 da.
arcSlnx (sin9)2 1 _ x

{sin9)2

Proposition 1.1. (i) The geodesie with T)2 = c is closed if and only ir

(I 2HevX I c11M) e nQ , and If (12HevX I c I IM) = (n/m)'(Tt/2) (n, m being

mutually prime integers, m > 0), then the length of the closed geodesie i8
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given by 4mM·(I 1HcvX I c 11M).

(Li) x·(I 2Hev)'(x) :: (IIH.ev)'(X) •

Here Hcv(x) 1:1 (1/2){H(x)+ H(-x)} t and Q is the field of rational numbers,

end the prime sign means the derivative.

Praof. Let Pr; PI' end P2 be as above. Then it 1s clear that the geodesie 18

closed If end only if the difference of the valuea of 92 between Po and P2 i8

Zn: times 8 rational number, end if this difference is 2Ttn/m. (n. m)= 1, m>O,

then the length of the geodesie is m times the time difference between the

points Po and P2- So we have {i}. The second assertion is proved by a direct

calculation

We put

N(c) = {w e S*S2 I '12 I: c} , I c I ~ M .

Let {~J be the geodesic Oow on S·S2. If the geodesie with T)2::1 c is closed

and its length i8 ~ then ~ld is the identity on N(c) for any integer k. We

say that N(c) is non-degenerate with respect to the mapping ~kl if for every

point z e N(c} the fixed point set of the differential of ~kl at z coincides

with Tr;N(c}. The following lemma is easily obtained

Lemma 1.2. Let I and k be as above, and assume that c i8 not zero nor

±M. Then N(c) is a connected component of the fixed point set of ~kl and

is non-degenerate with respect to ~kl if and only if

6



2. Symplectically isomorphie geodesie flows

As we have seen in the previous section, the set of the length of elosed

geodesics does not depend on the odd part of H. AB a matter of fact, we have

a stronger result Let

be two riemannian metries on 52.

Theorem 21. If (Holev = (HI)ev ' then the geodesic flows of (52, gt> (i =:

0, 1) are symplectically isomorphie, i.e., there is a homogeneous symplectic

diffeomorphism , of T*S2 - {o-section} such that ,*EI = ~.

Remark. If (HJev = 1, then gi are Zoll metrics, and the theorem i8

already known in this case (cf Besse [1] p.122~

Proof. Put Ht cz (l-t)Ho + tH1 (0 ~ t ~ 1~ Then fit > 0 , Ht<±) = 1 , and

(HJev :::2 (Ho>ev for all t e [0, 1]. Let E,; be the corresponding et:tergy

function:

T)2 1)2
E=_l_{ 1 + 2 }

t 2M2 f\( coQ) 1)2 (sin8 1)2 •

We consider the following equation for Ft :
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where Xii is the hamiltonian vector field defined by EtJ and the dot means

the derivative in t We would like to salve thls so that Ft 18 a coo functlon on

T*S2 - ~o-section}f homogeneous of degree one. and also e oo in the variable t
I

If we find such Ftt then X'tE,; = -Et. Therefore if we define symplectlc

diffeomorphisms 't of T*S2 - ~o-section} by

then (a/at>tt*E,; aI 0 , and the theorem will be proved

We can describe the solution explicitly: If (9 1, 92> e U t:I 52 - {N. 5},

where A = "11 si1131/Ht<ces9 1) , end if the base point of CI) i8 N or S, then

Ft<(i)) = o. Here G e eOO(O, 1] Is deflned as fellows: Slnce Ht = H1- Ho 18 an

odd function and vanishes at x = ±1, we can write

.
lt i8 easy to see that Ft is cf class eoo and satlsfles XEtFt Cl Et on

(T*U - {Q-section}) x 10, 1]. Moreover we have

8



for any we T*S2 with 2Et(w) = 1 and any real numbers a and b. Here (~~

is the geodesie flow with respect to the energy function Et- From this

fonnula it is now clear that Ft<w) 18 the Coo function of «(), t) e

(T *52 - {Q-section) x [0. 1].

This theorem combined with the result ofWeinstein stated in Introduction

yieIds the following

Corollary 2.2. Let go and gl be as above. and assume that (Ho>ev m (H1)cv .

Let A.Lk (i = 0, 1) be the k-th eigenvalue of the laplacian 8gt' Then

IA.o~ - Ä,1,k I remains bounded when k tends to 00.

Under some assumption the converse ofthe infinitesimal version of

Theorem 2.1 is also true. For a riemannian metric g =

M2{ H{cos91)2<d91)2+ (sin91)2(d92>2} on 52 we put

Cg :::c {c e (-M, M) I geodesie cf (52, g) with 112 = c 18 closed}.

For C E Cg we denote by lee) the length of the eorresponding closed

geodesic. Let us consider the following condition for the metric g:

(#>t Cg 18 dense in [-M. MJ .
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Proposition 2.3. Assume that the metric g satisfies the condition (I>',

and let Co be a subset of Cg such that Co is still dense in [-M, M]. Let

be an infinitesimal deformation of the energy function E. Suppose that

I

[E<~0l) dt = 0

. .
for every (I) E 5*52 with Tliro) = c E Co ,where 1 c l(c). Then M = 0 and H

is an odd function.

Proof. From the assumption we have

where ~ c (9 1(t). 92<t), Tl l(t), TJit)). The left hand side of this formula is equal

tu

where m is the natural number defined in Proposition 1.1 (i), and i =
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arcsin( Ic 11M) e [0, 1t/2]. Since 1= 4mM(11Hcv}{ Ic 11M) , we have

1J,/2

I H",,(cose
1
)

arcs1nx

where x = leiIM.

5ince this fonnula holds for any c e Co , and since Co i8 dense in

[-M, M], it follows that it holds for all C E [-M, M]. So let us define an

integral operator 13 for functions F on (0, 1] by

x 1

(I:i'(x) = [Fl.YlJx
2

- y2 dy = i [F(xy)M dy .

Then we have the identity

Note that the function Hev(y)/(1- fl> Is of class eoo on [0, 1], because
,
H(±l) R O. From the definition of 13 we see that

.
Her

I~ ~)(O) = 0 ,
1- y

.
while (I JHcvXl) = (1t/2) Hev(O) " O. Hence we have M = 0 , and
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·Hev
IJ -2 )(x) = 0, xe [0, 1] ·

1- Y

Therefore the proposition will be proved if we show the injectivity of the

operator 13 : Coo[O, IJ ~ Coo[O. 1) , which will be done in the next lemma

Lemma 2.4. The operator 13 is injective.

Proof. Let l& be the operator for the functions F on [0, 1] defined by

1

(Il)(X) = ; [Ftry 6 dy .
1- Y

We will show that 14 0 (d/dx) 2 018 Is the identity mapping on COO(O, 1).

Observe that (d/dx)2 0 13 i8 continuous as the operator C~O, 1) ~COlo, 1] ,

and also that 1.( i8 continuous as the operator CO[O, 1] ~ COlD, IJ. Since

polynomials cxist densely in c2{O. 1], it will suffice to consider the operators

for polynomials. Since the operators are linear, it is therefore enough to verify

fer every integer k ~ O. We put

1f,/2

ck = [(SIn8)k d8 .
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Then it is easy to see that Ig(x k) = (ck/(k+2» Xk+2 , 4(xk) = (2/lt) Ck+l xk , and

(k+l) ck ck+l :D n/2 . which prove the lemma

3. Some spectral rigidity

Let g = gM,H be a riemannian metric on S2 of the form

Let Ci be the set of all C E (Cg- ~OJ ±M}) such that (IJHev)'( I C 11M) "" 0 and

that there is no c (p te) in Cg and no integer k ~ 1 satisfying l(e) = k·l(c') ,

ie., the fixed point set of ~l(C) is just N(e)u N(-e). We eonsider the following

condition for g:

(Ih Ci i8 dense in (..M. M).

Let J.L), J.L2' - be the eigenvalues of the operator Vßg + 1 ,where ßg 1s the

laplacian Set u(s) = ~ ö(s-~j) E SI(R) , and let S(s) be its Fourier transform.
J

Then we know that the singular support of the distribution <1 is ineluded in

i k·l(c) lee Cg , k :0 0, 1, 2,...}, and it ineludes i l(c) lee Ci} (cE

Duistemtaat·Guillemin (4] §4) .

Theorem 3.1. Let gt = gMtJlt (I tl < t) be a one-parameter family of

riemannian metrics on 52 such that ßgt are isospeetral, and that each gt

satisfies the condition (#)2. Then Mt 1:1 Mo and (Hvev = (HO>ev. In particular,
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the corresponding geodesie nows are mutually symplectica1ly isomorphie.

Proof. Let lt be the length function with respect to the metric gt- Let us

take c e eil
l with c> 0 and (li HolevXc/M 0> = (n/m)·(1t/2). Since

(liHolev)I(C/M 0>" O. the mapping (z, t) -+«(1 i Ht>evXz). t) i8 a

diffeomorphism around (z. t) 11I (c/M() 0). Hence there is a unique Coo curve

ct tor small I t I such that Co = c and (IiHtlav)(c JMJ = (n/m)-(tt/2) .

We would like to show that lt(ctl c 1o(c) if I tl i8 sufficiently small

Assume that this 18 not the case. Then there 18 a sequence ti (i CI I. 2...) such

that I ti I ! 0 as l-i 00 and ltt(Cti) ~ lo(c). Let 0 be the distribution

described above defined for the metric ~ (and hence for gt by the

assumption). Since 1o(c) is isolated in the singular support of a, we may
A

assume that each ltt(Ctt) does not belong to the singular support of (J.

Therefore there is an integer ki ~ 1 and cil E [0, Mti] with Cil" ct
i

such that

Iti(cti) ::: krlti(c 11). Since the value of 11(Htlev (I t Is I t 11 ) i8 bounded both from

above and from below. it follows that mt. the denominator of

(2/tt)'(liHt t)evXc t'/Mtt) • and kt (i = 1. 2,..) are bounded trom above. Thus.

taking a subsequence ifnecesS8IY, we may assume that k1= k, Mi = ml (1 =
I

1, 2,..) and Cil converges to c' E [0, Mol as i-+ 00. In case k> 1 , we have

lo(c} = k'lo(cl
), and this contradicts the assumption that c e Cg. In case k =

1 , we have c = Cl in the same reason, and hence m = ml. Then we have

(I t(Hti)ev)(c il/Mti) = (I1(Hti)evXct/Mti). Hence (It(Hti)ev)I(X) a 0 for some x

between C11/Mti and ctlMti J and therefore (I1{Holev)l(c/M 0) Ja 0 , which

also contradicts the assumption c E Ci. Hence we have It(ct> = lo(c) for

sufficiently small I tl .

Let s -+ yt<s) be the geodesie of (S2. gJ with unit speed which
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corresponds to T}2 = ct - We take it so that yt<s) is also smooth in the variable

t Then we heve

11~(:S Yt(s), :SYt(s» ds = 1, 1= It(cJ ~ lo(c) ·

Applying (a/at) It=O to both sides,

I

l
a a

+ 2 ~(V:u~ -a Yt(s), -a yt(s» ds I = 0
VI"'" S S t:::rO

where V denotes the covariant derivative with respect to the metric go- The

second term of the left band side cf this formula is

Hence we have
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for every (OE 5.52 with lliro) m C E CgO' and 1 CI lo(c) . Then it follows from

Proposition 2.3 that Mo == 0 and (HcJev = o. Since this is true for every t

( I tl < e) • we eonsequently have Mt:::l Mo and (Ht>ev c: (HcJev .

Next we consider the ease of real projective plane RP2. Let g be a

riemannian metrie on RP2 whose riemannian covering g on 52 is ofthe

form M2{ H(cos91)2(d91)2 + (sine 1)2(d92)2}. In thJs case H Is an even

function. Le., ~(x) CE H(-x). Let Ci and the length function I are as before.

Then the length function L: Ci~R as geodeslcs on RP2 is given by

{

I( e)/2 if m is odd
I..(c) =

I( c) If m is even .

where (I2HX I e I IM) CE (n/m)'(1t/2) , (11, m) c: 1 • m > 0 .

Let {~s} be the geodesie flow on S-RP2 and let N(c) (lei< M) be the

set of all covectors on RP2 wlth 112 == c. As in the case of 52, we define Ci.
as the set of all e E (Ci - {O, :tM}) such that (I1H)'( I c IIM) ~ 0 and that the

fixed point set of ~l(C) i8 just N(c) u NI-c). And the corresponding condition

i8

(#)3 Ci i8 dense in [-M, M] .

Theorem 3.2. Let ~ (I tl < e)" be a one parameter family ofriemannian

metrics on RP2 such that their riemannian covering ~ on 52 ore of the

fann described above. Suppose that the corresponding laplacians Ögt are
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mutually isospectral and that each gt satisßes the condition (')g. Then gt =

~ (Itl < t) .
.- ~

Proof. Let Ec (resp. Et> end ~~ (resp. ~i> be the energy function end the

geodesie flow corresponding to gt (resp. gt> t end let 4 and 1c be the

carresponding length function As in the prao! ofTheorem 3.1. we have

Lt(q

p:t(~lJl) ds .. 0

for every mE S*RP2 such that llim) ce c e Cgt'. This implies that

Since Cgt
l is dense in [-Mt. Md. we can apply Proposition 2.3 and obmin the

theorem

In the case of analytic metrics we can slightly renne the result

Theorem 3.3. Let gt (I tl < t) be a real analytic one parameter family cf

analytic riemannian metrlcs on RP2 such that the riemannian covering t on

52 are of the form described before. Suppose that the corresponding

laplacians Ögt are mutually isospectral, and that ego' is an infinite set Then

gt = ~ (I t I < t) .
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Proof. Let c> 0 be an e~ement of ego" and let Ct be as in the proof of

Theorem 3.1. In this case Ct Is an analytic function of t (I tl < t) and we

heve (l2HJ(c t/MJ • (I2Ho)(c/M 0> and 4(eJ = Lo(c) ·

AB in the praaf of Theorem 3.1 we have

where l)';"co) = ct and L = l.t(cJ = LrJ.c). Then from the proof of Proposition

23, we see that the equality

hoJds for x - tt/Mt. Since the number of such x i8 infinite, and sinee both

sides are analytie in x over the closed interval [0, 1] (note that ~ is an

even funetien), it fellows that the above equality holds for all x e [0, 1]. Then
. .

the proof of Proposition 2.3 impUes that Mt = 0 and Ht:l 0 .
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