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INTRODUCTION

The purpose of this article is to contribute to the

following two basic problems on Gelfand-Kirillov (GK-) dimension:

(I) Under what conditions is the GK-dimension of an algebra,

or of a module, an integer (er co ) ?

(.11) If 0 -+·N ... M-+ W-fo 0 is an exact sequence of modules over

an algebra S, when does the equality

GK(M) = max {GK(N), GK(W)} hold?

Recall that, in (11), one always has GK (M) ~ max { GK (N), GK (W)} .

If equality holds for all short exact sequences of S-modules,

then GK-dimension i5 said to be exact for S-modules. In general,

exactness fails quite drastically, even in situations which are

otherwise considered to be well-behaved. For example, G. Bergman

[3] has constructed an affine PI-algebra S having an ideal

I of square 0 such that I i5 cyclic a5 right ideal of S ,
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yet GK (S) = 3 > GK (S/I) = 2 . Thus quite stringent conditions

have te be imposed on the algebra er the modules in question

for equality to hold in (11). On the other hand, the integrality

question (I) presumably has a positive answer for many classes

of algebras and modules that are of interest. Although the

GK-dirnension of an algebra (module) can be 0,1,00, or any real

number ~2 (0,00, or any real nurnber > 1 'i Warf ield [19]), i t

tends to be an integer or 00 in most cases which arise naturally.

Thus ne example of an affine algebra S which i5 either Noetherian

er finitely presented but has finite non-~tegral GK-dimension

seems to be known. However, positive" results are rare. Some

exceptions, where GK-dimension is knoWn to be an integer or 00,

are: flnitely presented monomial algebras (Govorov [10]), almost

commutative algebras (Tauvel [18]), and Noetherian PI-algebras

(Lorenz-Small [14]).

GK-dimensio~, by its definition, measures the rate of growth

of the steps in certain canonically defined filtrations on

algebras and modules. Often, however, finer~:aspects of these

filtrations are of interest in their own right, and some of these

aspects are considered in detail in the present article.

Sections 1 and 2 form a unit and are devoted to studying

the behaviour of the above filtrations under intersection with

submodules (Section 1') or ideals (Section 2). The· motivating

problem here 1s the exactness problem (11) and, in Section 1, we

prove a number of exactness results which use certain finiteness

assumptions on the graded modules that are associated with the

filtrations in questien. Our methods in this section very nearly
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border on abstract nonsense. Yet, once the foundations have

been laid in sufficient generality in Section 1, they then

very easily yield a result (Proposition 2.8) proving the equality

GK(S) = GK(S/I) for nilpotent ideals IeS which are finitely

generated as right ideals·under relatively mild assumptions on

the algebra S/I. They are tr'ivially satisfied, for example,

if Sll i5 a finitely generated right module over a commutative

~ub~~~ebr~_ Cll , a situation which iscrucial in the proof of

integrality for the GK-dimension of Noetherlan Pl-algebras ([14],

see also [12, Lemma 10.13]).

In Section 3, which is independent of the prev~ous sections,

we study Poincar~ series of graded modules. By essentially

paraphrasing the usual proof of the classical Hilbert-Serre

Theorem in a suitable non-commutative setting, we obtain a

rationality result for Poincare series of Noetherian graded

modules over an interesting class of graded algebras which. in

cludes, for exarnple, positively graded'affine Pl-algebras., This

result has applications to both the integrality problem (I) and'

the exactness problem (lI).

The final Section 4 is again formally independent of the

rest of the article. GK-dimension is not even explicitly mentioned

in this section, but the motivation.for the material presented

h~re comes from the earlier results on GK-dimension and Poincare

series which all use certain finiteness assumptions on (associated)

graded modules. We study a construction of associated graded

rings and modules which is closely r·elated to but different from

the usual construction and seems to be more perspective in some
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respects. This eonstruetio~ is not new: When applied to the

I-adie filtration of a ring R, it yields the so-ealled Rees

ring of the ideal I, and it has also been used by Quillen in

[15, proof of Theorem 7]. Thus sorne of the results diseussed

in Section 4 rnay very weIl be known, in some form, but the

construction probably deserves to be popularized among non

commutative ring theorists.
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NOTATIONS AND CONVENTIONS ,_.

All rings considered in this article are associative and

have a 1. which is interited by subrings. When not explicitely

specified otherwise, modules will be understood to be right

modules. Throughout, R denotes a commutative field which will

be the base field for all algebras and vector spaces under con-

sideration. Vector .space dimensions, dirn. , and GK-dimensions

GK(.) , refer to k., and· "finite-dimensional" will be abbreviated

"f.d." ."The subspace generated by a collection of elements

a,ß, ... in a given vector space will be denoted by <a,ß, ••• >k.

If V is a subspace of aR-algebra S, then we put

V (n) = 'I n - V
<v 1 • v 2 • • • · •v t ;Iv~ n, v i E > k. c S

the subspace generated by all products of length at most n

in S with factors taken from V . Here, a product of negative

length is 0 , and a. product of length 0 is 1 ES. The sub

algebra of S generated by V will· be denoted by k[V] , so

k. [V] = u V (n) eS. Finally, all fil trations considered in this
n

article are understood to be exhaustive and increasing.
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-1. GENERALITIE5'ON EXACTNES5

Throughout this section, 5 will denote a ~-algebra.

Definition. Let N c M be 5-modules. We will say that

N is finitely controlled in M, and write N 9 M:, if the

following condition is satisfied:

(1) For all finite-dimensional (f.d.) subspaces E c'M and

V c 5 . there. exist f.d. subspaces E1 c N and v
1

c 5 such that,

for all n, N n E·V(n) c E
1

.V
1

(n) .

Remarks 1.1. rf, in the above definition, M/N is finitely

generated over 5, say M = E·S + N with E a f.d. subspace

of M, then it suffices to check (1) for this particular E

alone in order to ensure that N ~ M. To see this, note that if

F c M is any f.d. subspace then F c E·X + F
1

for suitable f.d.

subspaces X c Sand F 1 c N. Hence, for any subspace V c 5,

N n F·V(n) c N· n (E.XV(n) + F V (n) ) = (N n E. XV (n) ) + F .V(n)
1 • 1

c (N n E.V (n)) + F .V(n) (n ~ 1) ,
1 1

where V
1

= V + XV c S .
Similarly, if S is affine over ~, then it suffjces to

verify (1) for any f.d. generating subspace V of s.

Part (i) of the following lemma explains the interest of

finitely controlled submodules for our purposes. In part (ii),

we list same formal properties of the relation ~ which are

analogous to.corresponding properties of the relation of being

a direct summand. Indeed, if N is a direct summand of M,

then obviously N ~ M .

Lemma 1.2.

i. Suppose that N ~ M. Then GK(M) = max {GK(N) ,GK(M/N)}.



- 7 -

ii. Let N eWe M be a chain of S-modules. Then

N fi M ~ N €i W ,
W tM M Q W/N tJ M/N ,

and

N Ei W and W (i M ~ N ~ M and W/N li M/N .

map.

Proof. In (i) and (ii), let M ~ M/N be the canonical

(i). If E c M and V c 5 are f.d. subspaces, then ~

yields

dim E.V(n) = dirn (N n E.V(n» + dirn E.V(n)

S dim E
1

.V
1

(n) + dim E.V(n) ,

where E1 c- N and V1 c S are as in (1). In view of [12,

Lemma 2.1(al], this shows that GK(M) $ rnax {GK(N) ,GK(M/N)}.

Part (i) now follows from [12,Proposition 5.1 (b)].

(ii) . Far- the most part, this is routine. We anly show

that W Ei M follows from N ti M and W fM M . Fix f.d. subspaces

E c M and V c S . Then W ~ M irnplies that W n E.V(n) c

F.X(n) + N for suitable f.cl. subspaces F c W and X c S . Put

G:= E + F c M and Y:=·V + X c S Then N n G.y(n) c G1 · Y1
(n).

for suitable G
1

c N and Y1 c S , and so

w n E.V(n) c (F.X(n) + N) n G.y(n) = F.X(n) + (N n G.y(n»

c F.X(n) + G .y (n) c E .V (n)
1 1 1 1

wi th E1 = F + G1 c Wand V1 = X + Y1 eS., •

For sirnplicity, the following results will be stated under

the assumption that certain modules are finitely generated. This

is justified by the fact that GK-dimension is defined locally.

We -will use the following terrninology. A filtration F =
{R(n) I n E Z} of a k-algebra R will be called standard if
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R (n) _- V(n) f f d b v R If R(n) c V(n)or some . . su space c .

holds for all n., then F will be called substandard. In

.either case, the corresponding subspace VeR generates R

as R-algebra so that R must be affine. On the other hand,

if F =. {R(n) I 'n E Z} 1s any filtration of R with R(-1) = 0 ,

R(O) = ~ and such that grF(R):= e R(n) /R(n-1) is affine
n

over R then F is easily seen to be substandard.

Lemma 1.3. Let N c M be S-modules and suppose that

M = E·S + N for some f.d. subspace E c M which satisfies the

following condition

(2) Every f.d. subspace V c S is contained in a subalgebra

R = R(V) c S having a substandard filtration F = {R(n)} such

that ~ NnE.R(n) /NnE.R(n-1) is finitely generated as grF(R)-module.
n

Then N ei9 M •

Proof. By Remark 1.1, it suffices to check (1) for the

given subspace E . Fix V c Sand let Rand F be as in (2)

above. Then our assumption on e NnE.R(n) /NnE.R(n-1) irnplies
n

that, ,for sorne s,

N n E.R(n) c (N n E . R,( s) ) . R(n- s ) c E .R(n) (n ~ 0) ,
1

where E 1 = N n E . R (s) c N . Moreover, VeR (t) for sorne t and
R(n)c X(n) for some f.d. subspace X c R . Hence

where V = x(t) eR. This shows that
1 N li M . •

Proposition 1.4. Let W be an S-rnodule with a f.d. generating

subspace G c W satisfying the following condition

( 3)

R =
that

Every f.d. subspace V c S 1s contained in a subalgebra

R(V) c S having a substandard filtration F = {R(n)} such

gr (W):= e G·R(n) /G.R(n-1) is finitely presented over
G, F n

Then, for all exact sequences 0 - N ~·M - W - 0 of S-modules
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terminating in W, one has N ~ M and so GK(M) = max {GK(N),

GK (W) } .

Proof. By Lemma 1.2(i), it ·suffices to prove N ~ M .

We check (2) in Lemma 1.3 for E c M any f.d. subspace mapping

ente G . 80 let V c 8 be given and let R = R(V) and F be

as in (3). Then, setting" gr(N) = ~ NnE.R(n)/NnE.R(n-1), we have
n

an exact sequence of (graded) grF(R)-modules

Here, the middle term is finitely generated and the end term is

finitely presented over gr F (R) . Hence -the initial term is
-.-

finitely generated over gr F (R) , as required; in ( 2) • •
Note that, in (3) above, the existenee of a finite presentation

is automatie if grF(R) is right Noetherian. Thus we obtain the

following result, due to Tauvel [18].

Corollary 1.5 (Tauvel). If S has a filtration F = {s(n)},

8(-1) = 0 , 5(0) = k , such that grF(S) is affine·over k and

right Noetherian, then GK is exaet for S-modules.

The above results can sometimes be applied by first dropping

to suitable subalgebras as deseribed in the following lemma.

Part (1) 1s probably well-known, but unrecorded as far as I know.

Lemma 1.6. Let ReS be algebras such that 5 is finitely

generated as right R-module.

i. If M is an S-module, then GK(MR) = GK(MS).

1i. If N c Mare S-modules, then NR 9 MR ~ NS 8 MS .

Proof. Fix a f.d. subspace G c 5 such that 1 t:: G and

S = G·R . Then, for any f.d. subspaee V c S , there exists a f.d.

V
1

c R with V·G c G·V . Hence V (n) c G·V (n) holds for all n1 1
and so, if E c M is a f.d. subspace, then
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E.V(n) c F.V (n)
1

and N n E.V(n) c N n F.V (n)
1 '

where F = E·G c M . As E c M and V c S are arbitrary, the

first inclusion shows that GK(MS ) S GK(MR) , whereas the second

inclusion proves that N
R

~ MR implies NS 9 MS . The rest is

now clear. •

We end this section with a few comments on bimodules. Let

Rand T be- k-algebras. Then (R,T) -bimodules R~ (with

identical R-operations on both sides, as usual) are right modules

over 5 = ROP ~ T and so the.foregoing applies. Part (i) of the

following lemma is again a relatively straightforward but useful

extension of well-known facts (e.g., [4,Lemma 2.3]) which is

extracted from the proof of (ii).

Lemma 1.7. Let RNT c R~ be (R,T)-bimodules and assume

that ~ is finitely generated. Then

i. GK(R~) = GK(~) ~ GK(RM)

ii. NT ~ ~ implies RNT ~ R~ · If NT is finitely

generated, then the converse holds.

Proof. Let E c M and V c S = ROP <i T be f.d. subspaces.
k.

Choose a f.d. subspace G c M with E c G and M = G·T , and

choose V1 ROP V
2

- c T f.d. with V c V1 <i V2
and V1·G cc ,

G.V
2 . Then

E.V(n) c V (n) .G.V (n)
1 2

c G V (2n) = G.x(n) ,
· 2

where X = V2 (?) c T is finite-dimensional. As E and V are

arbitrary, this proves that GK(MS ) ~ GK(~) , the non-trivial

part of (i). Also, by considering intersections with N , we

conclude that NT ~ ~ implies NS ~ MS . The proof of the

converse, under the assumption that NT is finitely generated,

proceeds in a similar fashion. •
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2. FACTORING OUT IDEALS

Thraughout this section, S denotes a k-algebra.

We will study the relationship between GK(S) and GK(S/I),

where I is an ideal of S , with special emphasis on the case

where I is nilpotent and finitely generated as right ideal. In

principle, this is of course a very special case of the exactness

problem studied in Section 1. However, the following lemma which

is implicit in work of Lenagan [13] shows that, in certain cases

of interest, the general exactness problem can be reduced to the

situation considered in this section.

Lemma 2.1. Consider the following conditions:

GK is exact for S-modules.

( a)

(b)

(c)

Then

For all ideals I

For all ideals I

of Sand all t ~ 1, GK(S/I) = GK(S/I t ).

and J of S, GK(S/IJ) = max{GK(S/I) ,GK(S/J)}.

i. (c) -> (b) -> (a) •

ii. If S is righ~ Noetherian and satisfies Gabriel's

H-condition (see below), then also (b) ~ (c).

Proof. (i) is straightforward.

(ii). Recall that 5 satisfies the H-condition, by definition,'

if for every finitely genera ted right S-module M there exists a

positive integer n such that s/anns(M) embeds into Mn.

Consequently, GK(M) = GK(S/annS(M» holds for all finitely

genera ted S-modules M. Also, since S is right Noetherian,

exactness for finitely generated S-modules implies exactness in

general. It is now clear how to derive (c) fram (b). •

Right Noetherian rings satisfying the H-condition are

identical with the so-called right FBN-rings [8,Section 7].

Prominent examples are right Noetherian PI-algebras, for which
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the exactness question is open. ( GK 1s however known to be

exact for two-sided Noetherian P1-algebras [12,Section 10].)

Lemma 2.2. Let 1 be an ideal of S. Then

GK(S) ~ max {GK(S/1), GK(SI S)} .

If SIS ~ SSS ' then equality holds.

Proof. Consider the exact sequence 0 ~ I ~ S ~ S/I ~ 0 of

(S,S)-bimodules and use the fact that GK(S) = GK(SSS) and

GK(S/1) =' GK(S(S/1)S) , by Lemma 1.7(i). The last assertion follows

from Lemma 1.2(i). •

Rernark 2.3. Using Remark 1.1, one easily verifies that

SIS e SSs is equivalent_to

(4) For all f.d. subspaces V c S there exist f.d.subspaces

1 1 c I and WeS such that, for all n ~ 0,

I n v(n). c L w(i) .I
1

.W(j) .
i+jsn

Of course, equality also holds in Lemma 2.2 whenever I

contains a right (or left) regular element of S . For then Ss

embeds into I S and so GK(S) :=' ~~~~S) s GK(S1 S ).. But, in view

of Lemma 2.1 (a), our rnain interest lies in the case where I 1s

nilpotent.

Example.s 2 .4. (a) Assume that S = I $ T , where T 1s a

subalgebra of S and I is an ideal of square 0 . Then SIS il

SSS . For, if V c S is a f.d. subspace, then V c U $ W for

suitable f.d. subspaces U c I and W c T , and :1 2 = 0 implies

I n V(n) C L W(i) .u.w(j) •
i+jsn-1

S -- [AO MB] -This applies in particular to algebras of the form
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M e (A x B) , where A and B

bimodule. We conclude that

are· k-algebras and M
A~~

is a

<~ t I u+v ~ n>~ + <~ I u+r+s S n-1>~u, ,v ~ u,t,r,s ~

GK([~ ~]) = rnax {GK(A) ,GK(B) ,GK(A~)} .

This sharpens [12,Proposition 5.8].

(b) Set S = k{X,y}/(y)4 = k[x,y] where {X,Y} is free

on {X,Y} , and take I = (y)2 eS. Then GK(S) = 4 , GK(S/I) = 2 ,

and GK(SI S ) = 3 • The former two equalities are well-known and

easy to prove. To compute GK(SI S ) note that the monomials

~ := xUyxvyxr and xUyxvyxryx s (u,v,r,s non-"u,v,r ~u,v,r,s:=
negative integers) form a k-basis of I . Moreover,

Y:= <x,y>k ~ 1 + 1 ~ <x,y>k generates Sop ~ S as k-algebra. If

E c I is a f.d. subspace, then there exist p,q ~ 0 such that

E c L yxty.y(q) . Moreover,
tsp

yxty.y(n) =

+ <~ Iu,v,t,s u+v+s S n-1>k ·

Thus dim yxty.v(n) grows like n J , which proves that GK(SI
S

)

= 3 • Therefore, the inequality in Lemma 2.2 is strict in this

case.
I

Further examples with SI S 5 SSS can be obtained from

Lemma 2.7 below. We now turn to the case where I is finitely

generated as a right ideal of s.

Lemma 2.5. Let I be an ideal of S .

i. If 15 is finitely genera ted and SI S 8 SSS ' then

15 ~ 55

ii. If 1 5 5 Ss then, for any integer t ~ 1,

GK(5) = max {GK(S/I) ,GK(I t
S

)}

In particular, if I is also ,nilpotent, then GK(5) = GK(S/I)
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Proof. (i) is a special case

(ii). Fix t ~ 1 and let V

Using our assumption I S e Ss ' we

and V = V0 c V1 c ... C Vt =: weS

I n V. (n) c G·V. (n
1
).

~ ~+

of Lemma 1.7(ii).

be a f.d. subspace of S.

find f.d. subspaces GeI

such that, for all n ~ 0 ,

For each n, fix subspaces X. (i=O, ... ,t) of V. (n) withL,n ~

(I n v. (n)) e x. = V. (n) . Then
~ ~,n ~

vi(n) c X. + G·V. (n
1

)
~,n ~+

and so
V(n) c X + G.X + + Gt - 1 X + Gt.W(n) .

O,n 1,n ... · t-1,n

Letting S ~ S/I denote the canonical map, we have dirn Xi

= dirn ~(n) ~ dirn W(n) for all n and i. Therefore, settin~n
~ t-1 t t

g:= 1 + dirn G + ••• + dirn G and F:= GeI , we obtain

dirn V(n) S g.dim W(n) + dirn F.W(n)

This proves that GK(S) s max {GK(S/I) ,GK(I t
s )} , and hence (ii) .•

The rest of this section is devoted to a particular class of

exarnples with SI S 8 SSS .

Definition. AR-algebra S will be called strongly finitely

presented if there exists a f.d. subspace V c S such that

(a) S = R[V] , i.e., V generates S as k-algebra,

and

(b) grv(S):= ~ v(n)/v(n-1) is a finitely presented k-algebra.
n

The algebra S will be called locally strongly finitely presented

if every affine subalgebra of S is contained in a strongly

finitely presented subalgebra of S .
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Remarks and Examples 2.6. (a) Strongly finitely presented

algebras are finitely presented. Indeed, if V c S is as in the

definition, then there is an obvious exact sequence 0 ~ J ~ ~{V}

~ S ~ 0 , where ~{V} is free on a k-basis of V. Hence

grv(S) .~ grv(~{v})/grv(J) ~ k{V}/grv(J) , where grv(J):=

~ Jnv(n)/Jnv(n-1) . By (b), grv(J) is finitely generated as ideal

of k{V} , and hence so is J.

(b) Recall that an algebra S is called almost commutative

if there exists a f.d. generating subspace V c S such that

grV(S) is.commutative. In this case, grv(S) is affine and

commutative, and hence finitely presented. Thus almost commutative

algebras are strongly finitely presented.

(c) Using the Artin-Tate Lemma, one easily shows that any

affine k-algebra which is finitely generated as module over its

center is strongly finitely presented. Somewhat more generally,

if S = L i ;1 RY i for same subalgebra Rand if R =,k[W] with

WeR f.d. such that <y.W, Y Y lall j,p,q>~ c L. t
1 WYi and] p q I~ ~=

grw(R) is left Noetherian and finitely p~esented, then grv(S)

is left Noetherian and finitely presented for V = <W,Y 1 ' ... 'Yt>k .

(d) If S is strongly finitely presented, then grv(S)

is not automatically finitely presented, for any generating

subspace . V , but V must be carefully chosen. Far example, take

S = k{X,B}/(X 2 -1,XBXB-BXBX) = k[x,b] , where k{X,B} is free on

{X,B} . Then S is a skew group ring, S • k[a,b]*C 2 ' with

k[a,b] the polynomial ring in two variables a and b which

are interchanged by the action of C 2 = <x> . Thus S is an

affine Noetherian PI-algebra which is in fact a finitely generated

module over its center.

Taking V = <x,b>k C S we have

so that

that T

T is not finitely presented. For later use, we also note,
is not Noetherian. Indeed, if ~ and ß denote the
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images of X and B in T and- I = ( t; ) is the ideal generated

by t; , then I 3 = 0 and 1 2 is free as left and right T/I-

module on {t;ßnt; In ~ 1 } . Thus T has infinite uniform dimension

(left and right) .

On the other hand, (c) above implies that S 1s strongly

finitely presented. In fact, if W = <x,b,a:= xbx>k eS, then

grw(S) ~ k{X,A,B}/(X 2 ,AB-BA,XA-BX,AX-XB)

which 1s finitely presented, and Noetherian.

The following lemma is analogous to Proposition 1.4.

Lemma 2.7. Let R be a k-algebra which is locally strongly

finitely presented. Then, for all exact sequences of k-algebras

o ~ I ~ S ~ R ~ 0 , one has SIS 5 SSs .

Proof. Let V c S be a f.d. subspace.- By assumption on R,

there is a f.d. subspace WeS such that V c 5 0 := k[W] and

Ra := n(SO) is strongly finitely presented, with n(W) being the

required subspace. Using the filtrations w(n) on So ' n(w(n))

on RO ' and- 1 n w(n) on 1 0 := I n So ' we have an isomorphism

of associated graded algebras

Since gr(RO) is finitely presented and

gr(I O) is finitely generated as ideal of

that there exists an 5 ~ 1 with

is affine,

. It follows

I n w(n) c L w(i). (I n w(s)) .w(j)
i+j~n

for all n. Since V c w(d) for some d, we conclude that

SI S 0 sSS (see Remark 2.3). •

We summarize our discussion in the following proposition

which generalizes [14,Lemma 3].
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Proposition 2.8. Let I be an ideal of S which.is

finitely generated as right ideal and suppose that S/I is a

finitely generated right module over same subalgebra which 1s

locally strongly finitely presented.

Then, for all integers t ~ 1 ,.

GK(S) = max {GK(S/I).,GK(It
S )} .

In particular, if I is also nilpotent, then GK(S) = GK(S/I).

Proof. By Lemma 1.6(i), we can assurne that S/I is

locally strongly finitely presented. The result now follows

from Lemmas 2.7 and 2.5. •
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3. A NON-COMMUTATlVE-HILBERT-SERRE THEOREM

In this section, we prove a rationality theorem for

Poincare series -of graded modules which extends the classical

Hilbert-5erre Theorem to certain non-commutative graded algebras.

Gur proof is a modification of the usual proof of the Hilbert

Serre Theorem as given, for example, in [1,Theorem 11.1].

We will be concerned with graded algebras

which have the following three properties:

S = ED 5
n>O n

(1) S is affine over ~ and connected (i.e., 50 = ~ ), and

GK(5)< CD •

(2) Every graded ideal I of S contains a finite product

of primes P ~ I. These can be chosen to be graded, because

if P is prime then so is ED pns
n n

( 3 ) If P is a graded prime ideal of S, P ~ ED S , then
n

5 = 5/P contains a non-zero normal elementn>O

which is homogeneous of positive degree. Here, an element

x E S is called normal if Sx = xs.

The main examples we have in mind are as follows. Note that,

in these examples, a stronger form of ( 3 ) holds: x E S can

even be chosen to be central in s. Note also that the center

of a graded algebra is a graded subalgebra.

Examples 3.1. (a) Affine graded (connected) PI-algebras.

For these, GK(S) < CD is due to Berele [2] (or see [12,Corollary

10.7]), (2) is a consequence of A. Braun's theorem [7], and (3)

follows from the fact that any non-zero ideal of a prime (or

even semiprime) PI-algebra S intersects the center of S non

trivially [16,Theorem 1.6.27].

(b) Enveloping algebras U = U(g) of finite-dimensional
t

graded Lie-algebras g = ~ g. , where the g. are subspaces
i= 1 ~ 1.
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with [g"g,] c g'+j = 0 for i+j > t) and U is graded
~ J ~

as in [11, Sect~on 8. 2]. Here, GK (U) = dirn g ( [ 12 , Theorem 6. 10] ) ,

(2) is clear, since U i5 Noetherian, and (3) follows from the

fact that U is polycentral, because g i5 nilpotent ([9,

Proposition 4.7.1]). Dur theorem thU5 in particular implie5

[11,Satz 8.1], except for the precise form of l.c.m.{k.}.
~

Assumption (1) above implies that any finitely generated

graded S-module M = !B
O

M satisfie5 dirn M < CD for all n.n> n n
Thus the Poincare series P (t) of M can be defined by

M

1:
n>O

E: z[ t .D •

Theorem 3.2. Assurne that S = e' sn>O n
Then, for any Noetherian graded S-module M

a rational function" of the form

satisfies (1),(2),(3).

= e O M , PM(t) isn> n

s
= f(t)/ n

i=1

where f(t) E Z[t].

Proof. If GK(S) = 0 , then Sand M are finite-dimensional

and so PM(t) t Z[t].

Suppose that GK(S) > 0 and that the assertion is true

for all graded homomorphic images S of S which satisfy

GK(S) s GK(S) - 1. By assumption (2), there are graded prime ideals

Pi (i=1, ••• ,r) of S, not necessarily distinct, so that'

M·P 1P2 • ... ·Pr = O. Setting MO = M, Mi = Mi - 1 ·Pi (i ~ 1) we

obtain a decreasing sequence of graded submodules of M, with

M = O. 5ince PM(t) = 1:.:1 PM IM' (tl , it suffices to show that
r ~- i-1 ~

each PM' IM' (tl has the required form. Thus, after replacing
~-1 ~

M by Mi-1/Mi and 5 by 5/P i , we may assume that S is a
prime ring.

Now let

say. Then xS

x E S be normal, as in (3), with x c S (m > 0),
m

is a graded ideal of S with GK(s/xS) ~ GK(S) - 1,
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since x is regular in S ([12,Proposition 3.15]). Moreover,

K:= annM(x) and. M·x are graded submodules of M, and hence

K and L:= M/M·x are graded No~herian S-modules which are in

fact modules over S/xs. By assumption, PK(t) and PL(t) have

the desired form. Furthermore, for each n, we have an exact

sequence of vector spaces

We deduce that

·x
Mn --. M ~ L =.M IM.x ~ 0 .n+m, n+rn n+m n '

dirn Mn +m - dirn Mn = dirn Ln +m - dirn Kn

holds for all

all n 4!:. 0 in

n and, multiplying with

Z[t], we obtain

and summing over

for some polynomial h(t) E Z[t] of degree < m. This implies the

result. •

Let us record the following (standard) consequence which

formed our ori9inal motivation for proving Theorem 3.2.

Corollary 3.3. If S = €I) S satisfies (1),(2),(3) and
n~O n

M = €I) M is a Noetherian graded S-module, then GK(MS ) isn:2:0 n
an integer. Moreover, GK is exact for Noetherian g·raded

S-modules.

Proof. Using the formula GK(MS ) = l~m logn dM(n) , where

dM(n) = I: dirn M ([ 12,Lenuna 6.1]), and the explicit form of
m~n m

PM(t) as given in .Theorem 3.2, it follows that GK(MS ) is

equal to ordt =1 PM(t) , the order of the pole of PM(t) at t = 1.

This proves integrality of GK(M
S
). Exactness also follows, because

if 0 ~ N ~ M ~ W ~ 0 is an e~act sequence of Noetherian graded
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S-modules (respecting degrees), then PM(t) = PN(t) + Pw(t)

and so ordt =1 PM(t) ~ max {ordt =1 PN(t), ordt=1PW(t)} .•

Theorem 3.2 can also be used, in the usual fashion, to

define a notion of multiplicity for Noetherian graded S-modules

by considering Hilbert-Sarnuel polynomials. Refined versions of

the above exactness statement can then be derived as in

[11,Kapitel 8] or [12,Chap. 7], for example.

The familiar exarnples of affine PI-algebras with non-integral

GK-dimension ([S,Satz 2.10] or [12,Theorem 1.8]) show that a fairly

strong assumption on the module M is needed for PM(t) to have

the form described in· Theorem 3 .. 2. Unfortunately, our assumption

on M to be Noetherian limits the usefulness of the result in

dealing with an apriori ungraded affine algebra by first passing

to an associated graded algebra. Noetherianness tends to get lost

in the process. An explicit example is given by Example 2.6(d)

and an even simpler example fellows.

Example 3.4. Let G = <x,YI x 2 = (xy)2 =.1> be the infinite

dihedral group and let S = ~G be the greup algebra of G. Then

S is a finitely generated module over its center and S = ~[V]

with V = <x,y>k • But, setting T = grV(S), one easily checks

that

T ä· k {X , Y } / (X;Z , YXY ) = k. [ ~ , Tl ]

where ~ and Tl denote the images of X and

If I = (~) is the ideal of T generated by

and 1 2 = .e I. where I. = ~Tlj~·T = ~nj~·k
J~1 ] ]

ideal of T. Thus T has infinite uniform dimension. 1f, instead

of V, the subspace W = <x,y,y~1>k. of S is used, then

is a finitely generated module over the cornrnutative subalgebra

generated by the images of Y and Y1 . Hence grw(S) is Noetherian.
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These examples make it clear that Theorem 3.2 ~oes not

immediately yield the known.fact that (affine) Noetherian

PI-algebras have integral GK-dimension (Lorenz-Small [14]).

What 1s required here is the existence of "good" generating

subspaces in the sense of the following

Question. If S is an affine (right) Noetherian PI-algebra,

does there exist a f.d. generating subspace V of S such that

grv(S) 1s (right) Noetherian ?

It rnay be·worthwhile to investigate, quite generally, the class

of all k-algebras S having the property that for all f.d.

subspaces V c S there exists a f. d.. subspace W = W(V) c S

with V c k[W] and grw(k[W]} (right) Noetherian. If such a W

exists, then it can even be chosen so that V c W (cf. Lemma 4.2).

We also remark that, in both examples discussed. above, the

Poincare seies P(Vit) of T = grv(S) is read~ly shown to be

rational, even though T is.not Noetherian. But J. T. Stafford

[17] has constructed affine PI-algebras S having f.d. generating

subspaces V c W so that the Poincare series P(Vit) of grV(S}

is rational whereas P(Wit) i5 irrational.
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4~ ON ASSOCIATED GRADED R~NGS &~D MODULES

In this ~ection, we

and modules G(M) which

on a ring" R , or module

over the usual associated

will study certain graded rings G(R)

can be associated with a given filtration

M , and which have some advantages

graded rings and modules.

We consider aC-algebra R, where C is a central subring

of R, together with a filtration F = {R(n) I n E~} such that

o = R(-1) c ... c R(n) c R(n+1)

C C R(O), R(n)R(m) C R(n+m) .

c ... c R = U R(n),
n

Furthermore, let

G = {M(n)ln E Z}

M be a filtered R-module with filtration

satisfying, for some mO'

o = M(mO) c

M(n) .R(m) c

(n)
... c M

M (n+m) .

M
(n+1)

c c ... c M

In addition to the usual associated graded rings and modules

gr(R) = grF(R) = ~ R(n) /R(n-1) and gr(M) = grG(M) = 9 M(n) /M(n-1),
n n

we will consider the graded subring

of the polynomial ring R[X] and the graded G(R)-module

Of course, G(R) and G(M) could have been defined without

explicitly refering to the lI variable" X, in analogy with

gr(R~ and gr(M) , but X will be a convenient notational

device in the following. Note that X i5 a central element of

G (R) •

The following lemma shows that, as far as finiteness

conditions and Poincare series are concerned, the constructions
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G(M) and gr(M) are essentially equivalent. However, as the

proof will demonstrate, the relationship of G(M) to both M

and gr(M) 1s quite perspective, thereby making G(M) a useful

link between M and gr(M).

Lemma 4.1 (notation as above) .
..

i. G(M) is finitely generated (fin. presentedi Noetherian)

as G(R)-module if and only if gr(M) is finitely generated (fin.

presentedi Noetherian) as gr(R)-module. In this case, M is

finitely generated (fin. presentedi Noetherian) as R-module.

11. G(R) is finitely generated (fin. presentedi right

Noetherian) as C-algebra if and only 1f the same holds for gr(R).

In this case, R is finitely generated (fin. presentedi right

Noetherian) as C-algebra.

1ii. Assume that all M(n) are finitely generated as

C-modules and let A be an additive integer-valued function on

the class of all fin1tely generated C-module5. Put

(n) n
PG(M) (t):= ~ )..(M ) t-

Then, in Z(t), we have

P (t):= L ).. (M(n) IM(n-1)) t n •
gr (M) n

(1 - t) .PG(M) (t) = Pgr(M) (tL·

Proof. Part (iii) i5 obvious, and (ii) is similar to (i)

and, for the most part, follows from the proof of (i). 80 we

will concentrate on (i).

We will use the following trivial fact: If S is any ring,

I is an ideal of S , and M i5 an S-module which is finitely

generated (fin. presentedi Noetherian), then M/M·I; M ~ 5/1
8

is likewise, as module over 5/1.

Consider the following ideals land J of G(R):

I : = G (R) • X = (B R (n-1 ) xn , J: = G ( R) • (X - 1) •
n

Then G(M)·I = G(M)·X = (B M(n-1)xn
I G(R)/I D gr(R) ,and

n
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G(M)-/G(M)-·I ~ gr(M). In view of the above remark, this proves the

implications "q " in (i). Similarly, G(R)/J ~ R via I:rnxn ... .rrn
and G(M)/G(M)·J ~ M via I:mnXn ~ I:mn , which proves the assertions

about M as R-module in (i).

As to the implications ".e- II

G(M) (n):= ~ M(min(m,n))xm ,
m

, we cansider the filtrations

G(R) (n):= e R(rnin(m,n)xm

m

of G(M) and G(R). It is readily checked that G(M){n) .G(R) (rn)

c G(M) (n+m) and, clearly,

G (M) (n) / G (M) (n-1) so m M ( n ) Xm
m~n M(n-1 )

Therefore,

gr (G (M) )

and similarly

~ gr(M) fil C[X]
C

gr (G (R» ~ gr (R) (i C[X] .
. C

oUsing the Hilbert Basis Theorem and [6,§2 n 9,Cor. 1], we obtain

the following implications:

gr(M) fine generated (fin. presented; Noetherian) over gr(R)

~

gr(G(M» fine gen.. (fin. pres.; Noetherian) over gr(G(R)

~

G(M) fine gen. (fin. pres.; Noetherian) over G(R).

This completes the proof of (i). •

Another advantage of G(M) over gr(M), besides its more

obvious connection with M, comes fram the fact that variations

of the filtration G are more easily dealt with using GG(M)

rather than grG(M). The proof of the lemma below should serve as
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an example. We will use the following notation. If VeR is a

C-submodule generating R as C-algebra, then we write Gv(R) =
GF(R) where F = {v(n)} is the V-filtration of R.

Lemma 4.2. Let V be a finitely generated C-submodule of

R generating R as C-algebra and put W = v(d), for some fixed

d ~ 1.

Then GV(R) is (right) Noetherian if and only if GW(R) is

(right) Noetherian.

Proof. Since v(n) c w(n) = V(dn) holds for all n, we

have inelusions of C-algebras

S:= ~ w(n)xdn c GV(R)
n

Here,"S is isomorphie to

A:= ~ V(rn)Xmc:G (R)
VO:s;rn::s;d-1 .

Gw(R)

we have

via x ~ xd • Moreover, setting

So Gv(R) is finitely generated as (left and right) S-module.

This proves ".." .

For the eonverse", note that

with B = e v(m)xrn .
d%m

Thus, for any right ideal I of S ,

and sirnilarly for left ideals. •

The examples in 2.6(d) and 3.4 show that Lemma 4.2 fails to

hold in general if V is more freely varied. Note that the last
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part of the above argument works for general filtrations F = {R(n)}

and shows that if G(R) = GF(R) is (right) Noetherian then so is

Gd eR) = GFd (R) , ~here ' Fd =' {R (dn) }. Moreever, assuming the

Poincare series PG(R) (t) is defined as in Lemma 4.1 (iii), it is

not hard to show that if PG(R) (t) is rational then PGd(R) (t)

i5 also rational.
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