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THIN DISCS AND A MORERA THEOREM FOR CR FUNCTIONS

ALEXANDER TUMANOV¥*

Introduction

The classical Morera theorem says that a continuous function f in a domain D C C is
holomorphic if [ f(2)dz = 0 for any closed curve I in D.

There are generalizations of this theorem to domains and real hypersurfaces in C™.
See [A] and [GS] and references there.

In this paper, we obtain a version of the Morera theorem for CR functions on manifolds

of higher codimension.

Let M be a smooth real manifold in C". Recall that M is generic if the tangent
space T, M spans the whole space C" for z € M. A CR function on M is a continuous
function that satisfies the weak tangential Cauchy-Riemann equations. An analytic discisa
continuous mapping A : A — C™ holomorphic in the standard disc A = {¢ € C: [¢] < 1}.
We say that the disc A is attached to M if it maps the circle bA to M, that is A(bA) C M.

Let f be a continuous function on a real manifold M C C". We say that f has the
Morera property with respect to an analytic disc A attached to M if

/ FLA(Q)) d¢ = 0. (1)
bA

Note that for any analytic disc A attached to M there are also discs attached to M that
differ from A by a change of variable in A only. Let A¢(¢) = A(F55),c€R,|c| < 1. Ifa
function f has the Morera property (1) with respect to all the discs A, then

f o Alpa extends holomorphically inside A. (2)

Agranovsky and Val’sky [AV], Nagel and Rudin [NR], Stout [S], and others (see [A], [GS])
show that if a continuous function f on a real hypersurface M C C™ satisfies (2) or even

(1) for discs obtained as sections of M by complex lines, then f is a CR. function on M.

* Supported in part by NSF Grant DMS-9401652.
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We prove the following theorem.

THEOREM. Let f be a continuous function on a C? smooth generic manifold M C C™.
Suppose f has the holomorphic extention property (2) for all analytic discs A attached to
M. Then f is a CR function on M.

Our goal is that the function f in Theorem is merely continuous. In case the function f
is C'! smooth, the conclusion of Theorem follows immediately by applying the holomorphic
extendibility condition (2) to “infinitely small” discs attached to M.

In [T1] we prove an analogue of Theorem for f € C*(M) without using arbitrarily
small discs. Precisely, if (2) holds for all discs close to a given disc A, then f is CR in
a neighborhood of A(bA). The author does not have a proof of this version for merely
continuous functions.

Most of the results on the Morera theorem for hypersurfaces were obtained by applying
harmonic analysis (see [A], [GS]). In particular, they use homogeneity of the family of
complex lines in C™. In contrast, we do not use any group structure here. Qur methods

are based on polynomial approximations.

By Baouendi-Treves’s approximation theorem [BT], a continuous CR function is lo-
cally a uniform limit of complex polynomials. We show that if a continuous function f
satisfies (2) for a special (d — 1) parameter family of discs, where d = dim M, then the

approximation by polynomials still holds, whence f is a CR function.

To obtain the approximation result, we construct a family of discs that we call thin.
These are discs stretched along complex tangential directions to M. We believe that the

existence of such discs is of interest by itself.

Since our family of discs depends on (d — 1) parameters, we can raise the following
question. Does Theorem still hold if (2) (respectively (1)) is assumed only for a given
“generic” (d — 1) (respectively d) parameter family of discs? If this family does not admit

a “nice” group stucture, this question is open even for M = C.

The paper is organized as follows. In Section 1, we introduce a special space of
functions on the unit circle. We need this space to estimate solutions to Bishop’s [B]
equation. In Section 2, we construct the family of discs. In section 3, we give a precise
version of the main result.

The author would like to thank Mark Agranovsky for useful discussions.

This paper was written when the author was visiting the Max-Planck-Institute for
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Mathematics in Bonn in summer 1995. The author wishes to thank the Institute for the

support, hospitality, and stimulating atmosphere.

1. A special Lipschitz space

Let C** denote the space of all functions with derivatives to order k satisfying a Lipschitz
condition with exponent . We denote the norm in this space by ||.||x,o and the norm in
the space C* by |[.||x-

In this section we introduce a suitable space of functions that are C1® except at

finitely many points where they are only C%<,

Let ay,...,ax be distinct points on bA. For a function f on bA, we set f'(c') =
df (e®®)/df. Let x(¢) = (¢ —a1)...(¢ — ax).

DEFINITION 1.1. Let 0 < o < 1. Let F%(aq, ..., ax) be the set of all functions on bA
for which the following norm in finite.

A= [1f1lo + 1xf Ho,a-

We will write 7 instead of F*{ay,...,ax) if it is clear or unimportant what a;,...,ax
are.
PROPOSITION 1.2. Let 0 < ¢ < 1.
(i) Let f € F=. Then |f'| < const|||f]|| - Ix|®~!.
(it) 7o c CO(bA); ||fllo,a < const ||l
(iii) Let H € C%, u e F*, H(0) =0, dH(0) = 0. Then |||H o ul||| < const||H]||z|||u|||%
(iv) Let T denote the Hilbert transform on bA. Then |||T|f| < 0.
The constants above depend on a,, ..., a, and a only.
PROOF. By partition of unity, F*(ay,...,ax) = Z?zl F(a;). Therefore, in proving
(i)-(iv), we can assume that k =1, x(¢) =( — a, a € bA, F* = F*(a).
(i) We have

(¢ = a)f'(€) = (¢1 = a) F(C)] < lIxFMo,alC — Gal™. (1.1)

Let (3 — a. Then ({; — a)f'(¢) — 0, otherwise f would be unbounded. Passing to the

limit in (1.1) as {; — a, we get the needed estimate.

(ii) follows by integrating the estimate (i).
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(iii) follows by straightforward estimates. Indeed, by definition, |||H o u||| = {|H o
ullo + ||x(H o u)'|lo,a. The first term ||H o ul|o obviously satisfies the needed estimate
because |H(u)| < const||H]||z - [u]?.

To estimate the second term, for brevity, we set Af = f((1) — f({2), where {1,(; €

bA. Then A(fg) = Afg(G1) + f((2)Ag. Let H' denote 8H/Ou. We have |H'(u)] <
const|| H|lzful, |Au| < [[fufl] - |¢1 — C2|*. Therefore,

|AGX(H o u)')| = |A(x(H o w)u')] < JAGcw)| - [H (w(C))] + [(xw')(G2)] - |AH 0 )]
S ludll - [1H o ullol¢y = G2l + Hlulll - [ H]|2|Au]
< const|| H|[z[[|ull] - [C1 — G2,

what we need.

(iv) Let K f denote the inner limiting values of the Cauchy type integral of a function
f on the unit circle:

1 d
(Kf)(z) = r_lgrlo 2 N %g, z € bA.
Since T can be expressed in terms of K, it suffices to show that K is bounded in F¢.
Let D be the differentiation with respect to the complex variable, that is (Df)(e*®) =
f'(e%)/(ie*). Let M, be the multiplication by x(¢) = ¢ — a. We note that K commutes
with D and almost commutes with M,, that is KD = DK, KM, f = MaKf-i-fbA f(¢) d¢.
Hence, K commutes with M, D. Since K is bounded in C%, by (ii) and definition of F¢,
this implies immediately that K whence T is bounded in F<.

Proposition 1.2 is proved.



2. Thin discs

Let M be a generic manifold in C™ and My C M a totally real submanifold of dimension
n. Since we are interested in local questions, we can assume that M and My are defined

in a neighborhood of zero by a parametric equation
y = h(z,t), (2.1)

where z+iy = z € C*, t € R! is a parameter, h is a C? smooth function in a neighborhood
of zero in R? x R!. For ¢t = 0, the equation (2.1) defines M,. We assume that

8h(0,0)/0z =0,  Oh;(0,0)/0t, =656, 1<j<n, 1<k<l (22

where 8, is the Kronecker symbol. It is easy to see that dimM = d = n+[, CRdimM = 1.
We call z and ¢ that satisfy (2.1) the z- and ¢-coordinates of the point z = z + iy € M.
The distance from z € M to My is comparable to |t|, where ¢t is the t-coordinate of z. The
equation (2.1) is convenient to construct discs attached to M by Bishop’s equation [B].

PROPOSITION 2.1. For every p € M close to zero, and every small R' valued function
t € C%*(bA) (0 < a < 1) such that the t-coordinate of of p is t(1), there exists a unique
analytic disc ( — A(() attached to M such that A(1) = p and the t-coordinate of A(() is
t(¢) for ¢ € bA.

PRrOOF. Let { — A(() = z(¢)+iy(¢) be an analytic disc attached to M with A(1) = p.
Since the disc is attached to M, we have y(¢) = h(z((),t({)) for { € bA, where t({) is the
t-coordinate of A((), ( € bA. Since the functions z and y are harmonic conjugates, the
function z must satisfy the Bishop equation

& = —Tih(z,t) + zo, (2.3)

where z¢ is the z-coordinate of the given point p, T7 denotes the harmonic conjugation
operator on bA normalized by the condition (T7¢)(1) = 0. That is Ty¢ = T'¢ — (T'$)(1),
where T is the standard Hilbert transform.

One can check that for b € C? with small 8h/8z, small t € C®%(bA), the mapping
x — —~T1h(z,t) + zo is a contraction in a small ball in C%%(bA). Thus, given sufficiently
small zo € R™ and t € C%*(bA), the equation (2.3) has a unique solution that defines the

needed disc. The proof is complete.

We consider a thin disc on the complex plane C. Let A, be the domain in the upper

half-plane bounded by the real axis and the arc of the circle {w € C : |cosar—iwsinan| =

5



1}. This domain has corners at +1 with angles ar. The domain A, approaches the
segment [—1,1] as o« — 0. Let ¢ : A — A, be the conformal mapping such that ¢(1) =0,
@¢(+i) = £1. The mapping ¢ can be easily defined by an explicit formula. Note that
¢ € CO=(A).

We set 7(¢) = Im¢(¢). Then (T37)(¢) = —Re¢(¢). Note that 7(e*) > 0, and
7(e*?) =0 for 14| < 7/2.

We consider discs attached to M with t-coordinate t = A7, where A € R!. This leads

to the equation

z = ~Tih(z, A7) + x9. (2.4)
The solution to this equation defines a family of discs ¢ — A((, zg, A), where zg € R™ and
X € R! are small. The boundary of each disc of this family is split into two parts. The

mapping A sends the right (respectively, left) half-circle to My (respectively, M\ Mp). We

claim these discs are thin as follows.

PROPOSITION 2.2. The family ¢ — A((,zo, ), 7o € R™, A € R! has the following

properties.
(i) The family A is C%® in { uniformly in 2o and A\; A is C! in xg and A uniformly in (.
(ii) For (o € bA with Re(y < 0, the evaluation map (g, A) — A((o, zo, A) is a diffeomor-
phism from a neighborhood of zero in R™ x R! to a neighborhood of zero in M. For
A =0 or (p =1, this map sends (xg, A) to o + ih(zp,0) € My.
(iii) There are g > 0, ¢ > 0 such that for any 0 < € < €p, the set {A((,z0,A) : ¢ €
bA, |zo] < ¢, |A| = €} contains a neighborhood of zero in M.

(iv) The family A is C' in ( € bA except at { = +1. Let v = A" = 0A(e'?,zo, \)/08,
A= (A,0) € C*. Then for small o, the direction of v is close to that of A. Precisely,

lim limsup |v/[v| £X/[A]| =0 for +Ree? < 0.
270 (20,1)—(0,0)

PRrRoOOF. The proof of (i) and (ii) is quite standard. The existence of the solution
of class C®® has been already proved in Proposition 1. Estimates in C%® show that
A(¢, o, A) is CO! in xg and X. Therefore one can differentiate the equation (2.4) with re-
spect to zop and A. Estimates show again that the derivatives still have Lipschitz regularity
with respect to all the variables (see, e. g., [T2]). Plugging 2o =0, A = 0 in the equations

for the derivatives, by (2.2), we get the Jacobian matrix at zero of the evaluation map in

(arfome oi10r) = (0 o)
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where 1 is the identity matrix, and the asterisk denotes unimportant matrix elements.
Since 7({o) > 0 for Relp < 0, the first statement of (ii) follows. Plugging A =0or (o, =1
n (2.4), by uniqueness, we get the second statement of (ii).

The property (iii) follows from (i) and (ii} by a simple continuity argument. Indeed,
the family of discs A is also a one parameter deformation of maps A¢, : B? x S'=1 — M,
where BY C R7, is the ball of radius ¢ and Si-1 ¢ R} is the sphere of radius ¢, the
parameter is (g € bA. By (ii}, the image of, say A_; is a smooth tube-like hypersurface
around a piece of My in M. On the other hand, A; maps (29, A) to My. The deformation
is “small” since the discs ¢ — A((,zg, A) have diameters comparable to |A| = € (see (2.9)

below). Therefore, choosing € much smaller then ¢, we get what we need.

The most important part of Proposition 2 is (iv) which expresses the fact that the
discs are thin. One cannot prove (iv) by estimates in the standard Lipschitz spaces since
the discs are merely C%2,

We show that the solution to (2.4) is in F* = F(—1,1). We first note that ¢ =
—T\1+1ir € F*, which can be seen from an explicit formula for ¢. We also note that there
is C > 0 such that

[(Tar)'| > Clx|*. (2.5)
Let z = 2o + u. We rewrite (2.4) in the form
w = F(u), where F(u) = —T1h(zo -+ u, AT). (2.6)
Consider the successive approximations:
ug = 0, w1 = Fuy).

One can see that F is a contraction in C%®. Hence, the sequence converges in C%2, It
suffices to show that the sequence is bounded in 7. Then by the Arzela lemma, there is

a subsequence that converges to the solution in F.

By Taylor’s formula,

hzo + u,t) = h(zg,0) + hy(zo,0)t + hy(zo,0)u + H(zo,u,t),

) ) (2.7)
|1H (2o, -, )|z < constl|hll2,  H(zo,u,t) = O(Jul” + [¢]).
Plugging (2.7) in (2.6) yields
F(u) = —ht(mo,O)ATlT - hx(:ﬂo, O)Tlu - TlH(CE[),’U, AT) (28)
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By Proposition 1.2 and (2.7), we have
Tl < constlllulll,  |[|T2H (zo, u, AT)I|| < const|lAfl2(]llull® + [A?).
Therefore, estimating (2.8) yields
WE@) = O(A) + o(lllulll  as @0 —0, A—0.
Hence, the solution to (2.4) is in F* and
Iz = zolll = lilulll = O(|A]) (2.9)

For t,A € R}, we set £ = (t,0) € R, A = (),0) € R*. By (2.2), we have h(z,t) =
t+O(|z|*+1t|*). The equation (2.4) is a perturbation of the trivial “equation” obtained by
neglecting the big “O”. Therefore, the discs ( — A((, 2o, A) are perturbations of the flat
discs ¢ — Ao(C, o, A) = —ATiT + zg + iAr. The direction of A) = —A(Ty7) + iAr’ = ¢’
is close to that of A just because the domain A, is close to the segment [—1,1].

We compare the discs A and Ag in the space F*. By (2.8), we get
llz = (2o — hu(z, 0)ATA T[] = {l{u + hi(z, 0)ATh7]| = o(|A})
as zg — 0, A — 0. Note that by (2.2), |h(z,0)A — | = o(]A]), also. Hence,
llz = (zo = ATa7)[l| = o(JA])-
Therefore, by Proposition 1.2 (i),
&+ X(Tar)'| = |x]1° " o(|Al). (2.10)
By (2.2), the direction of v = A’ = 2’ + ih(z, A7)’ is close to that of 2’ 4+ iAr’. The latter,

by (2.5) and (2.10), is close to the direction of A) = —~A(Ti7)’ + i’ = A¢’, whence to
that of A.

The proof is complete.



3. Main result

Let { — A((,zo,A) be the family of discs from Proposition 2.2 and let € > 0 and ¢ > 0

satisfy (iii) of this proposition. We need (iii) only to reduce by 1 the number of parameters.
Recall dimM =d=n+1L

THEOREM 3.1. Let f be a continuous function on M defined by (2.1). Suppose foA|pa
extends to be holomorphic in A for the (d — 1) parameter family of discs ¢ — A(C, zo, A),
where |zg| < ¢, |A| = €. Then f is a CR function in a neighborhood of zero in M.

PRrROOF. We follow the proof of the Baouendi-Treves approximation theorem. We set

(@) = (N/m)2 [ flw)e NEmv  duy A A du, (3.1)
Mo
where (z — w)? = (z; — w1 )2+ + (2, —wy,)?. If M is small, then by (2.2), there is k < 1
such that
Im(z — w)| € x |Re(z — w)| (3.2)

for z,w € My. This condition ensures that Ky {(z,w) = (N/?T)“/2e‘N(z“”)2dw1 A Adwy
forms a §(z — w)-shaped sequence as N — oo, z,w € My. Thus, fy converges to f

uniformly on M.

We will show that fn converge to f on boundaries of the discs { — A((, zg, A),
|zo| < ¢, |A| = €. By Proposition 2.2 (iii), they fill a neighborhood of zero in M. Hence,
the function f will be a CR function in that neighborhood as a limit of a sequence of the

entire functions fy, completing the proof.

Without a loss of generality, we choose the disc with A = (¢,0,...,0), zo = 0 and
show that fi converge to f on the boundary of this disc. We consider a (n —1) parameter
subfamily of ¢ — A((,zo,A) with fixed A = (¢0,...,0) and fixed zo; = 0, the first
component of zg. Using this subfamily, we perturb My by replacing for each disc the part
of its boundary in My by the other part. We set

Ki = {A(C,fﬂo, )\) : |Cl =1, iReC > 0! Imﬂl < 6/2:5':01 = 0}

K, is an open subset of Mp. The set K_ is C! smooth, but presumably, merely C%¢
up to the boundary. Nevertheless, for small o, the tangent planes 7T, K_ are close to
R7?. Indeed, T,K. at z = A(e'®,zo,)) is spanned by v; = dA(e*, 2, \)/00 and v; =
aA(em,:no,)\)/c?‘:cgj, where 1 < j < n. By Proposition 2.2 (ii, iv), the direction of v; is
close to the z;-axis for 1 < j < n.



Let My = (M\ K;)UK_. Since f extends holomorphically to the discs, the integrand
in (3.1) also extends there. Therefore, we can replace integration over My by integration
over M;. For small ¢, the condition (3.2) still holds for 2 € M; near A(¢,0,A) and every
w € M, by the above remark regarding T, K _. Hence, fy converges to f at z = A({,0, A),
what we need.

The proof is complete.
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