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THIN DISCS AND A MORERA THEOREM FOR CR FUNCTIONS

ALEXANDER TUMANOV*

Introduction

The classical Morera theorem says that a eontinuous funetion f in a domain D c e is

holomorphic if Ir f (z) dz = 0 for any closed curve r in D.

There are generalizations of this theorem to domains and real hypersw-faces in e n .

See [A] and [GS] and references there.

In trus paper, we obtain aversion of thc Morera theorem for CR functions on manifolds

of higher codiInension.

Let M be a snlooth real manifolcl in e n
. Recall that M is generie if the tangent

space TzM spans the whole space e n for z E M. A CR function on M is a continuous

funetion that satisfies the weak tangential Cauehy-Riemann equations. An analytic disc is a

continuous mapping A : LS. ~ en holomorphic in the standard dise.6. = {( E C : 1(1 < 1}.

We say that the dise A is attached to M if it maps the circle b6. to M 1 that is A(b6.) C M.

Let f be a continuous function on areal manifold M c en . We say that f has the

Morera property with respeet to an analytic disc A attached to M if

( f(A(()) d( = O.
JbL:1

(1)

Note that for any analytic disc A attached to M there are also discs attachecl to M that

differ from A by a change of variable in 6. only. Let Ac(() = A( i.=-c()' cER, leI< 1. If a

function f has the Morera property (1) with respect to a11 the cliscs Ac, then

f 0 AI bL:1 extencls holomorphically inside 6.. (2)

Agranovsky and Val'sky [AV}, Nagel and Ruelin [NR], Stout [8], anel othe1's (see [Al, [GS])

show that if a continuous function f on areal hypersurface M C en satisfies (2) 01' even

(1) for dises obtained as sections of M by eomplex lines, then f is a eR function on M.

* Supported in part by NSF Grant DMS~9401652.
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We prove the following theorem.

THEOREM. Let f be a continuous function on a C2 smooth generic manifold M c C n .

Suppose f has the holomorphic extention propcrty (2) far all analytic discs A attached to

M. Then f is a eR EUllction on M.

Dur goal is that the function f in Theorem is merely eontinuous. In case the function f
is Cl smooth, the eonclusion of Theorem follows immediately by applying the holomorphie

extendibility condition (2) to "infinitely smalI" dises attached to M.

In [Tl] we prove an analogue of Theorenl for f E Cl (M) without using arbitrarily

snlall dises. Precisely, if (2) holds for all discs elose to a given disc A, then f is CR in

a neighborhood of A(b~). The author does not have a proof of this version for merely

continuous functions.

Most of the results on the Morera theorem for hypersurfaees were obtained by applying

harmonie analysis (see [A], [GS]). In particulaI', they use homogeneity of the family of

complex lines in C n
. In contrast, we do not use any group structure here. Dur methods

are based on polynonüal approximations.

By Baouendi-Treves's approximation theorem [BT] , a continuous CR function is 10­

cally a unifornl limit of conlplex polynonüals. We show that if a eontinuous function f
satisfies (2) for a special (d - 1) paralneter family of discs, where d = dirn M, then the

approxiInation by polynomials still holds, whence f is a CR funetion.

To obtain the approxiInation result, we construct a farnily of dises that we caU thin.

These are dises stretehed along cOlnplex tangential directions to 11/[. We believe that the

existence of such dises is of interest by itself.

Since our family of discs depends on (d - 1) parameters, we can raise the following

question. Does Theorem still hold if (2) (respectively (1)) is assumed only for a given

"generic" (d - 1) (respectively d) parameter family of dises? If this family does not admit

a "niee" group stueture, this question is open even for M = C.

The paper is organized as folIows. In Section 1, we introduee a special space of

functions on the unit circle. We need this space to estimate solutions to Bishop's [B]

equation. In Section 2, we construct the family of dises. In seetion 3, we give apreeise

version of the main result.

The author would like to thank Mark Agranovsky for useful discussions.

This paper was written when the author was visiting the Max-Planck-Institute for
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Mathematics in Bonn in SUInmer 1995. The author wishes to thank the Institute for the

support, hospitality, and stimulating atmosphere.

1. A special Lipschitz space

Let Ck,o denote the space of all functions with derivatives to order k satisfying a Lipschitz

condition with exponent 0'. We clenote t he norm in this space by 11.11 k ,0 and the nonn in

the space C k by 11.llk'

In this section we introduce a suitable space of functions that are C 1,o except at

finitely many points where they are only cO,a.

Let a1, ... ,ak be distinct points on bb... For a function I on bb.., we set I' (eiß) =
dl(eiß)/dfJ. Let x(() = (( - ad··· (( - ak).

DEFINITION 1.1. Let °< Cl: < 1. Let F a (a1l"" ak) be the set of all functions on bb..

for which the following norm in finite.

111/111 = 111110 + Ilxl'Ho,Q'

We will write :Fa instead of :F0 (ab' .. , ak) if it is eIear 01' uninlportant what ab ... , ak

are.

PROPOSITION 1.2. Let 0 < a < 1.

(i) Let I E :Fa. Then 1/'1 ::; const 111I111 . IxI 0
-

1
.

(ii) F O c Co,o (bb..); 11/110,0:S const III!III.

(iii) Let H E C2
, U E :Fa, H(O) = 0, dH(O) = 0. Then IIIH 0 ulll ::; const11H112111u111 2.

(iv) Let T denote t}le Hilbert transform on bb... Then IIITIII < 00.

The constants above depend on a1, ... ,ak and a only.

PROOF. By partition of unity, FO(a1,"" ak) = L:~=1 :Fa (aj). Therefore, in proving

(i)-(iv), we can assume that k = 1, X(() = (- a, a E bDr., :F0 = :F°(a).

(i) We have

1(( - a)f'(() - ((1 - a)f'((l)1 ::; Ilxf'llo,al( - (11°· (1.1)

Let (1 ~ a. Then ((1 - a)f'(() ~ 0, otherwise f would be unbounded. Passing to the

limit in (1.1) as (1 --t a, we get the necded estimatc.

(ii) follows by integrating the estimate (i).
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(iii) follows by straightforward estimates. Indeed, by definition, IIIH 0 ulll = llH 0

ullo + Ilx(H 0 u),llo,Q' The first term IIH 0 ullo obviously satisfies the needed estimate

because IH(u)1 ~ constilHI12 . lul2.

To estimate the second term, for brevity, we set ßf = 1((1) - 1((2), where (1, (2 E

bß. Then ß(fg) = ßf g((l) + f((2)ßg. Let H' denote ßHjßu. We have IH'(u)1 ::;

constilHI121ul, Ißul ::; Illulll·l(l - (21 0
. Therefore,

Iß(X(H 0 u)')1 = Iß(X(H' 0 u)u')l ::; Iß(xu')I· IH'(u((l))1 + I(XU')((2)1 . Iß(H' 0 u)1

::; Illulll' IIH' 0 ullol(l - (21
0 + llluill . IIHI121ßul

::; constilHI12111ulii . 1(1 - (21 0
,

what we need.

(iv) Let 1<1 denote the inner limiting values of the Cauchy type integral of a function

f on the unit circle:

. 1 1 I(() d(
(KI)(z) = 11m -2' ( ,z E bß.

1'-1-0 7ft bC:J. - TZ

Since T can be expressed in terms of K, it suffices to show that K is bounded in :Fa.

Let D be the differentiation with respect to thc complex variable, that is (D f) (ei8) =
f'(eiO)j(ie ilJ ). Let M a be the multiplication by x(() = ( - a. We note that K commutes

with D anel almost commutes with !vIa, that is KD = DK, KMaf = MaI<f + JbC:J. f(() d(.

Hence, K COlnnlutes with lvIaD. Since K is bounded in Co,a, by (ii) and definition of Fa,

this implies imlnediately that K whence T is bounded in :FQ
•

Proposition 1.2 is proved.
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2. Thin discs

Let M be a generic manifold in e n and Mo C IvI a totaUy real submanifold of dimension

n. Since we are interested in local questions, wo can assume that M and Mo are defined

in a neighborhood of zero by a parametric equation

y = h(x, t), (2.1)

where x +iy = z E e n
, t E R 1 is a paranIetel' , h is a c 2 smooth function in a neighborhood

of zero in R~ x R~. For t = 0, the equation (2.1) defines Mo. We assume that

fJh(O, 0)/8x = 0, 1 ~ j ~ n, 1 ~ k ~ l, (2.2)

where 8jk is the Kroneekel' symbol. It is easy to see that dirn M = d = n+l, CRdimM = l.

We caU x and t that satisfy (2.1) the x- and t-coordinates of the point z = x + iy E M.

The distance from z E M to Mo is cOluparable to Itl, where t is the t-coordinate of z. The

equation (2.1) is convenient to construct discs attached to M by Bishop's equation [B].

PROPOSITION 2.1. For every p E AI elose to zero, and evelY small R 1 valued function

t E Co,Q(b~) (0 < Cl: < 1) such tllat the t-coordinate of of p is t(l), there exists a ullique

analytic disc ( 1-+ A(() attached to M such that A(l) = p and the t-coordinate of A(() is

t(() for ( E b~.

PROOF. Let (1-+ A(() = x(()+iy(() be an analytic disc attached to IvI with A(l) = p.

Since the disc is attached to M, we have y(() = h(x((), t(()) for ( E bß, wherc t(() is the

t-coordinate of A((), ( E b6.. Since the functions x and y are harnlonic conjugates, the

function x luust satisfy thc Bishop equation

x = -Tlh(x, t) + xo, (2.3)

where Xo is the x-coordinate of the given point p, Tl denotes the harmonie conjugation

operator on bß norrnalized by the condition (Tl eP)(l) = O. That is TleP = TeP - (TeP)(l) ,
where T is the standard Hilbert transfonn.

One can check that for h E C 2 with small fJh/fJx, small t E Co,Q(bLl), the mapping

x 1-+ -Tlh(x, t) + Xo is a contraction in a small ball in Co,Q(b.6.). Thus, given sufficiently

small Xo E Rn and t E CO,a(b.6.), the equation (2.3) has a uniqlle solution that defines the

needed disco The proof is complete.

We consider a thin disc on the eOlnplex plane e. Let 6.Q be the elomain in the upper

half-plane bounded by the real axis anel the are of the circle {w E e : Icos a1r-iw sin a1r1 =
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I}. This dOInain has corners at ±1 with angles a1T. The domain .6.0: approaches the

segment [-1, 1] as a ----t 0. Let cj; : .6. ----t .6.0' be the conformal Inapping such that cj; (1) = 0,

cj;(±i) = ±l. The Inapping cj; can be easily defined by an explicit formula. Note that

cj; E CO,O' (K).

We set T(() = Im<j>((). Then (TlT)(() - -Re<j>((). Note that T(e iB ) 2:: 0, and

T( eiB) = 0 for 101 < 1T/2.
We consider discs attached to !vI with t-coordinate t = AT, where A E R i . This leads

to the equation

(2.4)

The solution to this equation defines a fanüly of discs ( I---? A(C xo, A), where xo E Rn and

A E R l are small. The boundary of each disc of this family is split into two parts. Thc

mapping Asends the right (respectively, left) half-circle to A10 (respectively, M \ Mo). We

claim these discs are thin as folIows.

PROPOSITION 2.2. The family ( I---? A((, xo, A), xo ERn, A E R l 1188 the following

properties.

(i) T1le family A is CO,O' in ( uniformly in xo and Aj A is Cl in xo lLnd A unifonnly in (.

(ii) For (0 E b.6. with Re(o < 0, tlle evaluation n1ap (xo, A) I---? A((o, xo, A) is a diHeomor­

phisIll fronl a neighborhood of zero in Rn X R l to a neighborhood oE zero in M. For

A = °01' (0 = 1, this map sends (xo,..\) to xo + ih(xo, 0) E Mo.

(iii) There are €o > 0, C > 0 such that for any 0 < € < €o, the set {A(C xo, A) (E

b.6., Ixo I :::; c, IAI = E} contains a neighborhood of zero in M.

(iv) The family A is Cl in ( E b.6. except at ( = ±1. Let v = A' = aA(e iB , xo, ..\)/80,

.\ = (A,O) E cn . Then for small 0, the direction of v is elose to that oE.\. Precisely,

tim limsup Iv/lvl±.\/IAll =0 for±ReeiB <0.
0:-0 (Xo,>')-(O,O)

PROOF. The proof of (i) and (ii) is quite standard. The existence of the solution

of class CO,O' has been already proved in Proposition 1. Estimates in CO,O: show that

A (( , xo, A) is CO,I in xo and A. Therefore oue can differentiate the equation (2.4) with re­

spect to xo and A. Estinlates show again that thc derivatives still have Lipschitz regularity

with respect to all the variables (see, e. g., [T2]). Plugging xo = 0, A = °in the equations

for the derivatives, by (2.2), we get the Jacobian matrix at zero of the evaluation map in

the (x, t)-coorclinates:

(
ax/axo ax/aA) = (1 *)
at/axo at/B"\ 0 T(Co)l '
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where 1 is the identity matrix, and the asterisk denotes unilllportant lnatrix elements.

Since T((O) > °for Re(o < 0, the first statement of (ii) folIows. Plugging A = 0 01' (0 = 1

in (2.4), by uniqueness, we get the second statenlent of (ii).

The property (iii) follows frorn (i) and (ii) by a sirnple continuity argument. Indecd,

the family of discs A is also a one parameter deformation of maps A(o : BJ; X S~-l -t M,

where B~ C R~o is the ball of radius c and S~-l C R~ is the sphere of radius €, thc

parameter is (0 E bLi.. By (ii), the image of, say A_ I is a smooth tube-like hypersurface

around a piece of Mo in M. On thc other hand, Al maps (xo, A) to Mo. The deformation

is "small" since the discs ( t-+ A(C xo, A) have diameters comparable to lAI = € (see (2.9)

below). Therefore, choosing € lnuch snlaller then C, we get what we need.

The 1110St iInportant part of Proposition 2 is (iv) wmch expresses the fact that the

discs are thin. One cannot prove (iv) by estinlates in the standard Lipschitz spaces since

the discs are merely Co,O.

We show that the solution to (2.4) is in :F0 = :F0
( -i, i). We first note that 4> =

-Tl T + iT E :FCl
, which can be seen from an explicit fornlula for 4>. We also note that therc

is C > 0 such that

Let x = Xo + u. We rewrite (2.4) in the form

(2.5)

u = F(u), where F(u) = -Tlh(xo + u, AT). (2.6)

Consider the successive approximations:

Uo = 0, Uj+l = F(Uj).

One can see that F is a contraction in Co,o. Hence, the sequence converges in CO,a:. It

suffices to show that the sequence is bounded in :Fa:. Then by the Arzela lemma, therc is

a subsequence that converges to thc solution in :Fa:.

By Taylor's forulula,

h(xo + u, t) = h(xo, 0) + ht(xo, O)t + hx(xo, O)u + H(xo, u, t),

11H(xo,., .)112 ~ constllhl1 2, H(xo,u, t) = O(lul 2 + It I2).

Plugging (2.7) in (2.6) yields

7

(2.7)

(2.8)



By Proposition 1.2 and (2.7), we have

IIIT1ulii ::; constll!ulll,

Therefore, estinlating (2.8) yie~ds

IIIF(u)111 = 0(1.-\1) + o(l)lllu lll

Hence, the solution to (2.4) is in :Fa and

as Xo --+ 0, .-\ --+ O.

Illx - xolll = liluill = 0(1.-\1) (2.9)

For t,.-\ E R l , we set t = (t,O) E Rn, ~ = (.\,0) E Rn. By (2.2), we have h(x, t) =
t +O(lxl 2 +It12 ). The equation (2.4) is aperturbation of the trivial "equation" obtained by

neglecting thc big "0". Therefore, the discs ( 1---7 A((, xo,.-\) are perturbations of the flat

discs ( 1---7 Ao((, xo,.\) = -~TlT + Xo + i~T. The direction of A~ = -~(TlT)' + i~T' = ~q/

is elose to that of ~ j ust because the domain ß a is elose to the segment [-1, 1J.

We compare the discs A and Ao in the space :Fa. By (2.8), we get

as Xo --+ 0, .\ --+ O. Note that by (2.2), Iht(x, 0).-\ - .\1 = 0(1.-\1), also. Hence,

Illx - (xQ - .\T1T)111 = 0(1.-\1)·

Therefore, by Proposition 1.2 (i),

(2.10)

By (2.2), the direction of v = A' = x' + ih(x, .-\T)' is elose to that of x' + i~T'. The latter,

by (2.5) anel (2.10), is elose to the direction of Aü = -~(TlT)' + i~T' = ~q/, whence to

that of .-\.

The proof is cOlnplete.
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3. Main result

Let ( t-'Jo A((, xo,.A) be the fanlily of cliscs fronl Proposition 2.2 anel let E > 0 and c > 0

satisfy (iii) of this proposition. We neecl (iii) only to reduce by 1 the nunIber of parameters.

Recal! dirn lvI = d = n + l.

THEOREM 3.1. Let! be a continuous Eunction on M deflned by (2.1). Suppose foAlb.6.

extends to be 1l010morphic in ~ for t}le (d - 1) paraIlleter Eamily oE discs ( t-'Jo A ((, Xo 1 A),

where Ixol :S c, lAI = E. Then ! is aeR. Eunction in aneighborhood oE zero in M.

PROOF. We follow the proof of the Baouendi-Treves approximation theorem. We set

fN(Z) = (N/-rr)n/2 r !(w)e-N(z-w)'l dWl I\. ... I\. dWn1
lIdo

(3.1)

where (z - w)2 = (Zl - Wd2 + ... + (zn - wn )2. If M is smalI, then by (2.2), there is K. < 1

such that

IIln(z - w)1 :S K.jRe(z - w)1 (3.2)

for Z,W E Mo. This condition ensures that KN(Z,W) = (N/-rr)n/2 e-N(z-w)2 dw1 1\.·· ·I\.dwn
forms a 8(z - w)-shaped sequence as N -t 00, Z, w E Mo. Thus, IN converges to !
uniformlyon A10 '

We will show that f N converge to ! on boundaries of the discs ( t-'Jo A ((, Xo, A),

Ixol :S c, lAI = E. By Proposition 2.2 (iii), they fil! a neighborhood of zero in NI. Hence,

the function ! will be a eR function in that neighborhood as a limit of a sequence of the

entire functions f N, completing the proof.

Without a loss of generality, we choose the disc with A = (E, 0, ... ,0), Xo = 0 and

show that ! N converge to f on the boundary of this disco We consider a (n - 1) paranIetel'

subfanlily of ( t-'Jo A((, Xo , A) with fixed A = (E, 0, ... ,0) anel fixeel XOl = 0, the first

component of Xo. Using this subfamily, we perturb Mo by replacing for each disc the part

of its boundary in NIo by the other part. We set

K± = {A((, Xo, A) : 1(1 = I, ±Re( > 0, lxol < c/2, XOl = O}.

K+ is an open subset of Mo. The set K_ is Cl smooth, but presulnably, merely cOla

up to the boundary. Nevertheless, for small 0:, the tangent planes TzK_ are clo.~e to

R~. Indeed, TzK- at Z = A(eiO,xo,A) is spanned by VI = 8A(eiB
, xo, A)/88 and Vj =

8A(e iO , xo, A)/8xOj, where 1 < j ::; n. By Proposition 2.2 (ii , iv), the direction of Vj is

elose to the xj-axis for 1 :S j :S n.
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Let MI = (M\K+)UK_. 8ince f extends hololnorphically to the discs, the integrand

in (3.1) also extends there. Therefore, we ean replaee integration over Mo by integration

over MI' For small a, the eondition (3.2) still hülcls für z E MI near A ((, 0, ,,\) and every

W E MI by the abüve remark regarding TzK_. Henee, IN eünverges to I at z = A((, 0, "\),

what we need.

The prüof is eomplete.
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