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NON ABELIAN EXTENSIONS AND HOMOTOPIES

HANS-JOACHIM BAUES

The motivation for this paper is the classical problem of topology to find simple
algebraic models of homotopy categories of spaces. For example I(an [12] uses
free simplicial groups as such lllodeis. Curtis [7] showed that sinlplicial groups of
nilpotency degree m suffice to model the hOlll0tOpy category of simply connected
n-dimensional CV";-spaces with n S; 1+{logz (1n +1)}. Here {a} is the least integer
2:: a. Is a further simplification possible? We restriet to the hOlnotopy category
CW(n, n + k) as a test case where CvV(n, n + k) consists of CVv-complexes with
cells only in dimension n and n + k. Using theorem (5.8) we show that an algebraic
model of the category CW(2,4) can be given only in terms of groups of nilpotency
degree 2 while Curtis needs nilpotency degree 4 in this case; see (5.11).

A CvV-colllpiex ]{ in C lV(n, n +k) is the mapping cone of a lllap, m = 11 +k - 1,

Ci : lvI(A,1n) -t lvJ(X, n)

where A, X are free abelian groups and M(X, m) is the Moore space of){' The
hOlllOtOpy type of ]( is determined by the hOlllomorphislll

a : A --+ r~-l (X)

induced by Ci. Here the homotopy group

r~(x) = 7rn+kA1(X, 17.) (1)

is computable via the Hilton-Milnor theorenl in terms of hOIllOtOpy groups of
spheres. For free abelian groups A, X, B, Y we consider hOlnotopy COlnmutative
diagrams together with homotopies H, m = n + k - 1,

M(B,m) e
) lvJ(A, m,)

bi =!b- in (2)

lvI(Y, n) ) 1\1(..'\, n)
ij

The main result of this paper describes algebraic Ill0dels of such cliagnuns. They
are used to represent 1110rphislllS in the category CW(n, n + k). The homotopy

classes of (, i], a, bare deternüned by the induced hOIllomorphislllS e,1J, a, b in the
commutative diagram

Typeset by AJv1S-T&'\.
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B e
) A

bl la (3)

r~-l (Y) r~-l (.\'")
11.

Two homotopies H,H' : i]h ~ ät differ by a lnap a: A1(B,nl + 1) ---+ lvI(X,n)
which represents a homolnorphislll

Hence homotopies in (2) yielel a connection between the functors r~-l anel r~. "Ve
describe this connection algebraically by a 'non-abelian extension'

(4)

where G is a free group with Gab = ...Y. Here 8~ is a functor which carries a free
group to a crossed nl0dule; this functor can be clescrihed by use of the differential
in the Moore chain cOluplex of a Silllplicial group G(...Y, n) representing the loop
space rlM(X, n). Using J~ we are ahle to construct 'algebraic honl0topies' which
represent homotopies H in (2); see §4 and §5. This ainl leads HB to the algehraic
concepts in § 1, §2, §3 where we introduce ahelian groups anel hOillonl0rphisms

Ext~"(A,B, er) ---+ Pext}\" (A, B, 0') ---+ H2 (gr(A, !(), Horn. (-, B)) (5)

which are binatural for ]( -nl0dules A, B. Here er' is an additive subcategory of
the category of crosseel lllodules. The group Ext2 , Pext2 are generalizations of
thc classical functor Ext 2 , anel H2 is the COhOlllOlogy of a category. Thc natural
transformation (5) yields as a special case a transformation of Jibladze-Pirashvili
(3.11 [11]).
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§ 1 Linear extensions of categories and the COh011101ogy of categories

An extension of a group G by a G-moclule A is a short exact sequence of groups

(1.1 ) o --+ A ---+ E ---+ G --+ 0
i p

where i is cOlupatible with the action of G. Two such extensions E and E' are
equivalent if there is an isomorphisIll E: E ~ E' of groups with p' E= P ancl Ei = i' .
It is weIl known that the equivalence classes of extensions are classifiecl by the
cohomology H 2 ( G, A).

We now describe linear extensions of a small category e by a "natural system" D.
The equivalence classes of such extensions are equally classified by the cohomology
H 2

( e, D). A natural system D on a category e is the appropriate generalization
of aG-module. -

(1.2) Definition. Let C be a category. The category of factorizations in e, denoted
by Fe, is given as follows. Objects are lllorphisms 1,9, ... in C and morphislllS
1 --+ 9 are pairs (Q', ß) for which

A 0') A'

11 19

B (ß B'

COlllmu tes in C. Here Q'1ß is factorization of g. Composition is defincd by (a' ,ß')(0', ß) =
(a'a,ßß'). We clearly have (a,ß) = (O',I)(l,ß) = (l,ß)(O',I). A natural system
(of abelian groups) on C is a functor D : FC --+ Ab. The functor D carries the
object 1 to D f = D(/) anel carries thc morphism (0', ß) : 1 --+ 9 to the induced
homomorphism

D(a,ß) = a*ß* : D I --+ DaIß = Dg

Here we set D(O',I) = a*, D(I,ß) = ß*.

We have a canonical forgetful functor 7r : FC --+ cop x C so that each bifunctor
D : cop x C --+ Ab yields a natural systelll Drr ,asweIl denoted by D. Such a
bifunctor is also called a C -bimodule. In this case D I = D(B, A) clepends only on
the objects A, B for all f E C(B, A). Two functors F, G : Ab --+ Ab yield the Ab
-bimoelule

H om(F, G) : Abop x Ab --+ Ab

which carries (A, B) to the group of honlomorphislllS H orn(FA, GB). If F is tbe
identity functor we write H O1n( -, G).

For a group G and a G-moclule A the corresponding natural systenl D on the
group C, considered as a category, is given by D g = A for 9 E G and 9*Cl = g' Cl for
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a E A, g* a = a. If we restriet the following notion of a "linear extension" to the
case C = G and D = A we obtain the nation of a group extension above.

(1. S) Definition. Let D be a natural system on C. We say that

D~E~C

is 30 linear extension of the category C by D if (30), (b) and (c) hold.

(a) E and C have the SaIlle objects anel p is a fuH functor which is the identity
on objects.

(b) For each I : A -+ B in C the abelian group Dfacts transitively anel
effectively on the subset p-l (/) of lllorphisms in E. 'Ve write /0 + er for the
action of er E D f on 10 E p-l (J).

(c) The action satisfies the linear distributivi ty law:

(/0 + 0') (gO + ß) = logo + /*ß + g*O'.

Two linear extensions E and E' are equivalent if there is an isolllorphislll of cate­

gories E : E f"'V E' with P'E = panel with €(/o + er) = E(/o) +er for Jo E Mor(E), 0' E
Dpfo' The extension E is split if there is a functor s : C --+ E with ps -1. vVe
obtain the canonical sR1it linear extension - -

(d)

as follows. Objects in C x D are the sanle as in C and 1110rphisnls X --+ 1/~ in C X D
are pairs (/, er) where / : X --+ Y E C and a E D(f). The composition law is given
by

(e) (I, a )(g, ß) = (/g, J*ß + g* a)

Clearly the projection C x D --+ C carries (/,0:) to / aJlel the action D+ is given by
(/1 0') + ci = (I, 0: + 0") for ci E D (I) . A spli t ting fune tor s yields the equivalenee
of linear extensions

(f) E:CxD~E
- -

given by E(/, 0') = s(f)+o:. V'ie also consider the following maps between linear extensions

D + ) E p
) F

(1.4) ld lf l~

D' + ) E'
pi

) F'
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Here t, and <p are functors with p' t = <pp and d : D f --+ D~f is a natural transfor­
mation cOlnpatible with the action +, that is

t(fo +a) = t(fo) + d(a)

for a E D f. Let C be a slnall category and let lvI(C, D) be the set of equivalence
classes of linear extensions of C by D. Then there is a canonical bijection

(1.5)

which maps the split extension to the zero elelnent, see IV §6 in Baues [2]. Here
Hn(c, D) denotes the cohomology of C with coefficients in D which is defined
below. vVe obtain a representing cocycle-~t of the COhOlllOlogy class {E} = 'ljJ(E) E

H2 (C, D) as follows. Let t be a "splitting" function for p which associates with
each morphism f : A --+ B in C a morphism Jo = t(f) in E with pJo = J. Then t
yielcls a cocycle ~t by the formula

(1.6) t(gJ) = t(g)t(f) + ~t(g, f)

wi th ~ t (g, f) E D(g f) . The COhOlllOlogy dass {E} = {~t} is trivial ifand only if
E is a split extension.

(1. 7) D e fillition. Let C be a small category ancl let N n ( C) be the set of sequences
()'1, ... , An) of n composable 1110rphisms in C (which are the n-sin1plices of the
nerve of C). For n = 0 let No(C) = Ob(C) be the set of objects in C. The cochain
group pn = pn (C, D) is the abelian group of all functions

(1)

with C(.Al, ... ,.An) E D Al O ••• OA n • Addition in pn is given by adding pointwise in the
abelian groups D g • The coboundary B : pn-l --+ pn is defined by the formula

(2)
n-l

+ L(-l)i c(.Al'''' ,Ai"\i+ll'" ,.An)
i=1

For n = 1 we have (8c)(,,\) = .A*c(A) - ,,\*c(B) for .A : A --+ B E J\T1 (Gf). Oue can
check that Be E p1l for e E pn-l and that aa = O. Hence the cohomology groups

(3)
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are defined , n 2:: O. These groups are discussed in Baues [2]. By change of the
universe cohomology groups Hn(C, D) can also be defined if C is not a SIllall
category. A functor cjJ : C' --+ C illchlces the hOlll01TIOrphisrTI

(4)

where cjJ* D is the natural systerll given by (cjJ* D)f = DrjJ(f). On cochains the lllap
4>* is given by the formula

where (A', ... ,A~) E Nn(C'). A natural transformation T D --+ D' between
natural systems induces a hOm0l110rphis111

T* : HH(C,D) --+ HH(C,D')

by (T.f)(Al"" 1 An) = T)..f(Al"" 1 An) where T).. : DA --+ D~ with ..'\ = /\1 0 ... 0 An
is given by the transforlllation T.
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§ 2 Extensions of J(-nlodules

Vve introduce various generalizations of the classical group of 2-fold extensions
Ext2

. For this we need the foUowing notations; see also [3J. Let G1' be the category
of groups and N be a group. An N-group (or an action of AT on a group M) is a
homomorphism h from N to the group of automorphisms of Ai. For x E IvI, 0' E N
we denote the action by XO = h(o:-] )(x). The action is trivial if ,'Ca = X for all x, 0:.

For a homolllorphisnl 0: : G ---+ 1V in Gr an 0: -crossed homomorphism 9 : G ---+ IvI
is a function 9 satisfying

(2.1 ) g(x' y) = g(x)o(y) . g(y)

for x, y E G. For example given homomorphisms g, h G ---+ 111 the function
- 9 + h : G ---+ M defined by

(-g + h)(x) = g(x)-l . h(x)

for x E G is a g-crossed hOlnomorphism where we use the action of M on M by
inner automorphism. VVe define for functions 1', s : G ---+ IvI the SUlll l' + s by

(2.2) (1' + s)(x) = r(x) . s(x)

where the right hand side is the product in M. A crossed lnodule 8 : M ---+ N is
a homomorphism in ~ together wi th an action of 1V on NI such that for x, y E
M, 0: E N we have

(2.3)

A morphism 8 ---+ 8' between crossed lnodules is a commutative diagram in Gr

IvI g) M'

N f) N'

where 9 is I-equivariant, that is g(XO) = (gx)f(o). This is a weak equivalence if
(I, g) induces isomorphisIllS 7r2 (B) ~ 7r i (B') for i = 1, 2 where 7rl (C)) = cokernel (B)
and 1r2 (8) = kernel (8). For a crossed module 8 the group 1T2 (8) is abelian anel
central in At anel 7rl(8) acts on Jr2(8) by x{o} = XO for x E Jr2(O), {O'} E Jrl(O).
Let C1'OSS be the category of crossecl Inoelllles anel let abcross be the fuU subcategory
of all crossed modules 8 for which Jr} (8) is abelian anel acts triviallyon 7r2(8).

{2.4} Definition. Let a E abc1'osS and let f : 7f1 ---+ Jr} (8) anel 9 : Jr2 (8) ---+ 7r2 be
homomorphisms in Ab. Then we define f* (fJ), 9* (8) E abc1'oss by the following
COffilllutative diagraln
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1f2(f*8) !vI
reD) N') 1fj

I

1 11 11 1/'11
~-

(1) 1f2 (8) M
D )N 1fI (8)

gl 19 .! 11 11,..

7f2 AI' ) N ) 1fl (g. 8)g. e8)

Here (9,9) is a central push out diagram, that is M' = 1f2x1vJ/ "" where (x +
g(a), y) "" (x, a + y) for x E 7f2, a E tr2(8), Y E At.!. The action of N on A1' is given
by (x, y)er = (x, Ver). Moreover (1, f) is a pull back diagram in Gr and the action

of (a, ß) E N' on !vI is defined by yCer,ß) = yQ, a E N, ß E 7f1. Using the product
of groups one gets for B, 8' E aberass the object 8 x B' E aber'ass,

tr2 (8) X 1f2 (B')

! 11
~

1r2 (B x 8')

----+) AI x Al' 8xal

----+) N x N' 1rI ( 8) X 7f1 ( B' )
l

111

1r1 (8 x 8')

with the action of (o:, ß) E N xN' on (x, y) E AlxM' given by (x, y)CCl'!ß) = (xCl', yß).
We say that a subcategory er C aber'oss is additive if for 8,8' E er and 1näps f,9
as above f* B -t B --+ 9* B E er and B x B' E er. These are the operations used for
the definition of the 'Baer-sum' in (2.5) below.

We now describe examples of additive subcategories in abo'oss. A centrallnap
B : 1vI --+ N is a homolllorphism fron1 an abelian group M to the center of a group N.
This is the same as a crossed module for which the action of f\l on A1 is trivial. Let
cent be the category of central n1aps 8 for which trI (8) is abelian. This is a fuH an<;l
additive subcategory of abcrass. Moreover let Pai1'(Ab) be the category of pairs
in Ab; objects are hOlnonl0rphisms in Ab. This is a fuH alld additive subcategory
of cent. Further eXaInples of additive suhcategories in abcross are given by the
categories rquad and squad in (2.10) below.

Let !{ be a category. A !{ -Illodule A is a functor A : !( --+ Ab. Morphisms between

!( -modules are naturalb-ansformations. Let Ab/{ b;the category of !( -I110dules.

(2.5) Definition. Let A, B be ]( -lllodules and let C1' be an additive subcategory
of abc1·oss. We consider extenSions J in er which are natural exact sequences of
groups

(1) o--+ B(X) --+ M(..\':) 0J!4 N(..\':) --+ A(X) --+ 0
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where 0 : !( --+ Cl' is a functor, X E ](. Here we have A(X) = 7rlO(X) and
B(X) = 7r20(X). An equivalence relatio~for such extensions is generated by the
relation that J '" B' if there is a diagranl

0 ) B(X) JvI(X) 0 N(X) ) A(..-Y") ) 0) )

(2) I 1m 1nI11 I1

0 ) B(X) ) lvI'(X) 01

) N'(..-Y") ) A(..-Y") ) 0

which is natural in )( E !( where (11/., n) : 0 --+ 0' is a natural transfonnation in cr.
Let

(3) ExtJ«(A, B, Cl')

be the set of equivalence classes of such extensions (in general this is only a set
in a suitable universe, comparc the rcmark at thc end of III.§ 5 of Mac Lane [13]).
Morphisms j : A' --+ A, 9 : B --+ B' between ]( -modules inchlce functions j*, 9*
on (3) with j*{o} = {j*o}, 9*{0} = {9*0} where we apply (2.4) (1). We define the
surn of equivalence classes {o} + {o'} = {J +o'} by the Baer sun1

(4)

where \l B : BEI? B --+ Band ßA : A --+ A EI? Aare the folding 111ap and the diagonal
respectively, \lß(bo,b}) = ba +b1 , ßA (a) = (a, a). For the definition of 0+0' we use

, the additive structure of Cl' in (2.4). A functor ep : C --+ ]( induces a hOlnon10rphism

(5) ep* : Ext!';;{A,B,cr) --+ ExtQ.(Aep,B'P,Cl·)

and an inclusion 'lj; : Cl' C cr' of additive subcategories induces a hOl110morphisn1

(6) 7J;* : Extg(A,B,cr) --+ Exth:(A,B,cr')

where ep* {S} = {Jep} anel 7J;* {S} = {7J;J}.

In the next definition we generalize the concept of functors S : ]( --+ Cl' used in
the defini tion of extensions above.

(2.6) Definition. A pseudo functor

(0, B) : ]( --+ er'

carries each object ..-Y" in ]( to a crosseel module Sx = J : M(X) --+ N(X) E cr and
carries each lnorphism a :Y --+ )( in ]( to a cOlnnlutative diagranl -

9



(1)

M(Y)

1a.

M(X)

ö ) N(Y~)

1UI

d ) N(X)

which is a morphisln (a*, a~) : Sy --+ Sx in er. Here M is a functor in X E !( which
induced a*; hut N is not a functor. The induced maps a~ satisfy for a composition
ab : Z --+ Y --+ X E !( the fonnula

(2) aub~ = (abh + oxfJ(a, b)pz

where pz N (Z) --+ tr] S(Z) is the quotient map and where B(a, b) : tr] (Sz) --+
M(X) is an (ab)~ -crossed homonl0rphism and a central Illap satisfying the 2­
cocycle condition 8(B) = 0, see (1.7). That is, for abc: Hf --+ Z --+ )/~ --+ )C E !( we
have the equation

(3) 0= a*B(b,c) - B(ab,c) +B(a,bc) - fJ(a,b)c*

where a* = Nl(a) is induced by lvI and where c. : 7f1 (OlV) --+ 7f] (0z) is induced by
c~.

A natural transformation (1n, n, 'P) : (S, B) --+ (S', B') between pseudo functors
carries each object )( to amorphisIll (rnx, nx) : ox --+ 8:y ,

Nl(X)
ö

) N(X)

(4) 1ms Ins
11/1'(.."\)

ö'
> N'(X)

in er. Here m is a natural transformation lvI --+ lvI' between functors; hut n satisfies
for each a : Y --+ X E !( the equation

(5)

where rp(a) : 7ft (Sy) --+ lvI'(X) is an a~ny -crossed homomoprhisln anel a central
Inap satisfying the l-cocycle condition 8rp = 0, see (1.7). That is, for ab : Z --+
Y --+ X E !( we have the equation

(6)

where a* = lV1 (a) anel where b* : 7ft (S z) --+ 1f1 (S4) is induced by b~. Moreover 'P and
B, B' satisfy the following compatibility relation
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(7) o= 8'(a, b)(nz). + (L.<.p(b) + tp(a)b. - mx8(a, b)

where (nz). = 1Tl(nz), a. = M'(a), b. = 1Tl(b~). Clearly pseudo functors with
8 = 0 anel natural transformations with tp = 0 are the same as functors and natural
transformations between functors respectively.

(2.7) Definition. Let A, B be ]( -modules. vVe ca11 an exact sequence (2.5) (1) a
pseudo extension in er if J is given by a pseudofunctor (0,8) : ]( --+ er. Equivalences
between such pseudo extensions are elefined by natural transfonnatioons between
pseuelo functors as in (2.5) (2). Let

(1) PextJ«(A, B, er)

be the set of equivalence classes of pseudo extensions. Induced lnaps f·, 9. for
these sets are defined as in (2.5) anel one obtains the Euer SUln of pseuelo extensions
similarly as in (2.5) (4). Ivioreover functors tp, 7/; induce <.p., 'I/J. as in (2.5) (5), (6).
There is a natural transfonl1ation

(2) 4>: ExtJ«(A, B, Cl') --+ PextJ«(A, B, er)

which carries {o} to {öl.

(2.8) Proposition. Via the Baer sum tbe sets ExtJ«(A, B, er) and Pext7\·(A, B, er)
8Te abelian groups. Via induced !11apS f· ,g. they yield functors -

(AbK)OP X Abbh --+ Ab

whic11 are additive in the second variable B. Moreover tp., 7/;., 4> are natural trans­
formations in Ab.

(2.9) Examples. The category AbK is an abelian category so that Ext2 (A, B) lS

defined. It is clear that

ExtJ«(A, B, Pair (Ab)) = Ext2 (A, B)

Let! be the trivial category consisting of one object anel one Inorphisll1. Then

Extl(A, B, abcross ) = H 3 (A, B)

where the right hand siele is the cohonl0logy of the abelian group A with coeffi­
cients in the abelian group B. For this compare for example [10]. More genera11y
ExtJ«(A, B, abcross ) is a special case of a cohomology consiclered for example in

[14], [15].

We also sha11 use the following eXaInples of additive subcategories of abcross;
compare [3].
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(2.10) De6ni tion. \Ve define fai thful functors

(1) osquad C rquad ------t abcross

as follows. An object (w,8) E rquad is called a reduced quadratic nl0dulej this is

a crossed module 8 : L -t M together with a 'quadratic rnap' w : 1I1ab 0 lv/ab -t L
such that the following properties are satisfied. Tripie conlnlutators in lV/ are trivial
and the quotient map lvf ---* lv/ab to the abelianization lvfab of M is denoted by
X l---+ {x}. The 11lap w is a hornornorphisrn in Gr with

(2)

aX = a· w( {8a} 0 {x})

8w({x} 0 {V}) = x-lV-lXV

w({8a} 0 {x} + {x} 0 {oa}) =°
w ({8a} 0 {8b}) = a-1 b-1 ab

for x, y E Al, a, bEL. \Ve say that (w,8) is stahle if in addition

(3) w({x} 0 {u} + {V} 0 {x}) = 0,

then (w,o) is an object in ~. A rnorphisrn (l,rn,): (w,o) -t (w',8') in rquad

01' squad is a rnorphism (l, m) :°-t 0' between crossed rllodules compatible with

w,w', that is, lw = w'(rn ab 0 rn,ab). We obtain the additive structure of r'quad and

squad by f*(w,o) = (w,f*o), 9*(w,0) = (gw,9.0) where (9,1) : 0 -t g.o is the map

in (2.4) (1). Moreover (w,o) X (w', 0')) = (w,°X 0') where

is the composition of the obvious quotient map p and the prodllct w X w'. The
functor °in (1) which carries (w,o) to °is clearly cornpatible with the additive
structures.
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§3 Categories associated to extensions of !{ -nl0dules

\Ve show that there is a natural transformation mapping the extension groups
in §2 to the cohomology of a certain category.

A group G has nilpotency degree n if all (n + 1) -fold iterated conullutators in G
are trivial. Let Nil be the full subcategory of Gr consisting of groups of nilpotency
degree 2. Given a free abelian group A we obtain quotient nlaps

(3.1)

Here GA is a free group with abelianization A and EA is the quotient group
GA/r3 GA where r 3 GA is the subgroup of tripie commutators in GA. Let ab c Ab
be the full subcategory of free abelian g1'oups A and let nil C lVil and g1' C Gr be

the full subcategories of groups E A and GA 1'espectively with A E ab-.Then the
quotient luaps (3.1) yield the fuU functors

(3.2)

which car1'Y GA to EA and E A to A.

(3.3) Definition. Let !( be a catego1'Y and let r be a !( -module. We define the
functors

(1) gr(r, !() --+ nil(r, !() --+ ab(r, !()

as folIows. The objects in each of these categories are tripie ()(, A, a) with X E
!(, A E ab and a E H om(A, r(X)). 1'Io1'phislllS are pairs

(2) (~ , 1]) : (B, Y, b) --+ (A, X, a)

where 1] : Y --+ X E ]( and where ~ is a nl0rphislll GB --+ GA E g1', or E B --+ E A E

nil 01' B --+ A E ab 1'espectively such that the diagram

A e.) B

(3)

r(x) ) r(y)
.".

commutes. The functo1's in (1) are the identity on objects alld on lllorphisms they
are defined by the functo1's in (3.2).
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Now let Cl' be an additive subcategory of abcross . vVe say that C1' is of Ab -~,
resp. of Nil -~, if for all 0 : M -t N E Cl' we have N E Ab res~ N E Plil. For
example cent, rquad anel Bquad are of Nil -type. - -

(9.4) Definition. Let r and A be ]( -modules and consider the following eliagram
with (A, X, a) E ab(r, ]().

(1)

o ----+) A(X)

A

lä
_---+) A1(X) (6,8» N(X)

A

----+) r(.:\) ---+> 0

where the bottom row is a pseuclo extension in cr. We set

(2)

if C1' is of Ab- type

if C1' is of lVii-type

otherwise

Hence we can choose a hornomorphism ä such that the diagram cornmutes. Using
these data we define a linear extension of categories

(3)
{

ab(r, ]()

Hom(-,A) ,:t:. T(o,8) ---.. nil(r,I~)
gr(r, l\.)

if C1' is of Ab- type

if C1' is of lVil-type

otherwise

as folIows. The natural system H om.( -, A) is the bifunctor which carries the pair
ofobjeets ((B,Y,b), (A,.:\,a)) to the abelian group H01n(B,A(.:\)); induced maps
for this bifunetor are defined by (3.2) in the obvious way.

The ob j eets in T (0, ()) al'e thc same as ab(r, ](). A rllorphislll

(3) (~, 1], H) : (B, Y, b) -t (A, X, a)

in T( 0, B) is given by a lllorphisrn (~, 1]) in gr(r, ](), nil(r, K), and ab(r, ]() respec­

tively anel by a function

H : fJ -t 1I1(X)

which is a (1]ä b) -erossed homonlorphisrn. Here iJ is given by B as in (2). I\1oreover
H satisfies

(4)

14



in N(X). The composition of Inorphisms in T(o, 8) is defined by

(~ , 1J, H) (( ,1/,H') = (~(, 1J1]' , H * H') : (Z, C, c) --+ (yP, B, b) --+ (X, A, a) with

(5) H * H' = 8(1], 1]')C +1].H' +He

The proj ection functor p is the identity on ob j ects and carries (~, 1], H) to (~, 1] ).
, Finally the action of er E H om.(B, A()()) is given by

(~,1],H) +0' = (~,1],H +0')

with (H + a)(e) = H(e)' (ixapB(e)) E !vI(..Y) where PB : iJ --+ B is the quotient
Inap and ix : A(X) c M(X) is the illclusion.

(3.5) Proposition. Tbe linear extension for tbe categolY T(0,8) above is well
denned and one obtains lvell defined binatura,11101nolllorpl1isms as in tbe following
comlnutative diagraJn

Pext7((f, A, er) If» H 2 (g1·(r, I<), H on1( -, A))

1" I
Pext}(f,A,er) If>l) H2 (nil(r,!(),H01n(-,A))

111 I
Pextl.;(f,A,er) 1f>2) H 2 (ab(r,I(),Hon1(-,A))

Here 4>1 is denned if e1' is of ATil -type aJld 4>2 is denned if er is of Ab -type.

The hOlllomorphislns carry the equivalence dass of the extension (0, B) to the
equivalence dass of the linear extension T(o, 8); see (1.5). The right hand side of
the diagralll is induced by the functors in (3.3) (1). The cohomology groups in the
diagram are also additive functors in A E A~.

Proof of (S.5). \Ve obtain for the morphisln (~, 1], H) the following diagram

o

o

iJ B
/

H,'" Ib Ib
A(Y) A1(Y) .N(Y) ) r(1/~)

1~- ~-l ~ ~ 1111 111
-a..:

) A(X) ) M(X) ) N(X) ) r( ..\'")

lä la
A A
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with Jx H = -ä~ + bl]~; see (3.4) (4). If fI is given with Jx fI = -ä~ + bl]~ then
the exactness of the rows shows that there is a unique honl0morphislll a with fI =
H + a. Now (3.4) (5) shows that this action of a satisfies thc linear distributivity
law. Moreover the 2-cocycle condition for () shows that the conlposition (3.4) (5) is
associative, here we use also the assumption that e is central. Now given a natural
transformation

(rn, n, cp) : (J,B) -t (J',B')

we obtain an induced equivalence of linear extensions

(1) (lH,n,cp)* : T(J,B) --+ T(J',B')

which is the identity on objects and which carries (~, 1], H) to (~, 1], Hr,p) with

(2)

"""
Here we choose the Eft ~ nxa for a and b = ny b for b. Vle point out that

different choices of lifts a for a yield equivalent categories. In fact, let 2:, a be both
lifts of a as in (3.4) (1). Since A has a freeness property there exists a crossed

homomorphism Ha : A -t lvI(X) with Jx Ha = -ä +~. The equivalence then
carries (~, '], H) to (~, 1], H) with

(3)

This carnpletes the praaf that the functions in (3.5) are weIl defined. The additivity
in A at both sides shows that the functions are hOlllornorphislllS. Naturality is also
easy to check.

q.e.d.
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§ 4 Extension for spherical 1110dules and hOlTIotopies

For a pointed topological space ...Y let HnX and 1fnX be the n-th hOlllOlogy group
and homotopy group of J\. respectively. For a free abelian group A we choose a oue
point union of l-spheres

such that H1lvJA = A and 7f1AIA = GA. The (n - 1) -fold suspension of AtJA ,

(4.1) lvI(A, n) = r;n-l MA = Vsn,
Z

"')

is a 'Moore space' of A. Let [X, 1'~] be the set of hOlllOtOpy classes of basepoint
preserving Inaps X --+ y~ j this is the set of 11l0rphisluS in the hOlllotopy category
Top· / ~. The homology functor H n yields all identification, n ;::: 2,

(1) H onl(A, B) = [A1(A, n), AtJ(B, n)]

so that we get a fuU and faithful functor ab --+ Top· / ~ which carries A to AtJ(A, n).
Moreover we have by use of 1fn, n 2:: 2, --

(2) H om(A,1fn X) = [M(A, n), ){]

(4.2) Definition. For n 2:: 2 alld k 2:: 0 let

be the functor which carries the free abelian group A to the homotopy group
1Tn+kM(A, n). We caU r~ a spherical ab -luodule. For k = 0 we clearly have

r~(A) = A.

(4. S) Remark. The spherical ab -IllOdules can be clescribed algehraically only in
terms of homotopy groups of spheres 1fm sn und primary operations; compare [8].
For example in the stable range k < n - 1 we get r~(A) = A 01fn+k(SH). In the
luetastable range k < 2n - 2 we have r~(A) = A 01fn+k{sn}. Here the right hand
side is the quadratic tensor product in [4] anel 1fn +k{sn} is the quaclratic Z -nl0dule

{s n} ( sn H s2n-l P sn)1fn+k = 1Tn +k ---+ 7f n +k ---+ 71'"n+k

given by the Hopf invariant H and the luap P induced by the vVhitehead product
[in, in] : S2n-l --+ sn. As a special case we obtain

2 1 2
71'"3 {S } = (Z ---+ Z ---+ Z)
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so that r ~ (A) = A 0 7r3 { 52} is \i\'bi tehead's quadratic func tor. Nloreover r~ (A) =
A 0 Z/2 for 11, 2: 3. Further examples are described in Table 2 of [4].

(4.4) Notation. Given an ab -nlodule r (like for cXaInple r = r~) we obtain the
nil -module and the gr -module

(1)

where both compositions are also denoted by r. There are canonical functors

(2)

with categories defined as in (3.3). An object (A, X, r) in ab(r, ab) is given by
free abelian groups X, A and a hOlnolllorphism a : A --+ r(X). This yields the
corresponding objects (A, Ex, a) ancl (A, Gx, a) which we also clenote by (A, X, a)
so that the func tors in (2) are the identi ty on objects. On morphisms (~, 7J) the
functors in (2) RJ:e given by thc functors gr --+ nil and nil --+ ab rcspectively.

We now consider homotopies bctween certain lnaps. Let I C lR be the unit
interval and let I..-Y = I x ..-Y/ I x * be the cylinder of a pointed CVv-colnplex X.
We have the indusion and projection

X V X (iOli~) IX ~ X

where it(x) = {t,x} and pr{t,x} = x for t E I, x E ..-Y. Here (io,iI) is a cofibration
in Top. A homotopy between pointed lnaps I, 9 : X --+ Y is a lnap H : I X --+ Y

with H io = 1 anel H i 1 = g. A track H : J ~ 9 is a hOlnotopy dass relative X V X
of such homotopies. Let

(4.5) T(/, g) = [IX, y](!,g)

be the set of tracks f ~ g. If X = ~X' is a suspension we have a canonical
isomorphism of abelian groups

(1) af : T(/, I) ~ [~X, y~]

We use erf for the definition of the transi tive anel effective action

(2) {
T(/'9) x [~X,y] --±..t T(J,g)

H + 0: = H + ag (0:) = af(a) + H

18



Here the right hand side is defined by addition of homotopies. The properties of
this action are described in VI.3.13 of [3] and in [1].

(4. 6) De(inition. Let k '2: 1, 11. 2' 2. Vle associate with spherical 11l0dules r~-1, r ~

a linear extension of categories H(n, n + k) which we call a track extension:

(1)

The objects in H (11, n + k) are the same as in ab(r~-l, ab) and the functor p is the
identity on objects. A 1110rphism

(2) (~,17, H) : (B, yP, b) -+ (A, X, a)

in H(n,n + k) is obtained by a morphism (e1]) in gr(r~-l,gr) and the functor
- -

p carries (~, 1], H) to (~, 17)' Here H is a track as in diagraIl1 (4) below. For each
object (X, A, a) we choose a lnap

(3) Zr : lvI (A, n-t) -+ lvI (X, 11)

representing the homotopy class a with rn = 11. +k -1. COll1pare (4.1) (2). :Nloreover
we choose a diagram in Top*

A1(B, n~)
~m-l te

A1(A,1n))

(4) bl H lä==:}

lvIp'P, n) ) lvf(X, 11.)
~n-li11

where t~ : lvIE -+ lvfA, t17; My -+ 1\1x are 111aps which induce ~ = ?Tl t~ anel 1] =
?Tl t1]; for this recall that GA = 71'"1 M A . The diagram is hOlllotOpy COllullutative since
1]*b = a~* so that there exists a track H. Thc action of 0' E H orn(B, r~X) in (1)
is defined by

(5) (~ , 17, H) + 0' = (~, 17, H + 0')

where H + a is given by (4.5) (2). Finally COll1position of n10rphism as in (2) is
obtained by pasting the tracks in the following diagram.

nO
A1(C,1n)

Ue') • M(B,m)
(te) •

M(A, rn)) )

(6) cl H' 1 Il 1==> ==:}

A1(Z, n) M(Y,n) ) M(X,n)
(t1]).

-!JO
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Here the canonical tracks (] are suspensions of the unique tracks (t~)(te) ~ t(~e)

and (try) (i7J') ~ t (1717'). Gne readily checks that H (11., 11.+k) is a weIl defined category
and that (1) is a weIl defined linear extension.

The next result yields an algebraic description of the topological track extension
H(n, 11. + k).

(4.7) Theoreill. Let 11. 2:: 2, k 2:: 1. Tl1en tl1ere exists an extension

(*) {<5~} E Ext~r (r~-l ,r~, abcrass )

of spherical modules sud1 that the linear extensions

H(n, 11. + k) r-.J T(S~)

are equivalent. Moreover we Inay replace abcrass in (*) by rquad for 11. + k"= 3 and

by squad for 11. + k > 3.

Here T (<5~) is defined as in (3.4) with B = O. Hence for N +k > 3 the coholnology
class {H (11.,11. + k)} of the track extension is in the image of

where we use the homolnorphislllS in (3.5).

(4- g) Remark. For a free abelian group A wi th basis Z let GAbe thc free group
with basis Z and let G(A,n) be the free simplicial group generated by the set Z
in degree n. Then GA = G(A, n)n and each homonl0rphislll e:GB --+ GA induces
a homomorphism of simplicial groups G(B, n) --t G(A, 11.). One has a natural
homotopy equivalence

1G(A, 11.) I~ !1lvI(A, 11.)

where the left hand side is the realization of the simplicial group. Let N = N G(A, 11.)
be the Moore chain complex of G(A, n) given by

{

lVm = nkerneldi
i<m

(Gm. : Nm --+ Nm - d = restriction of d:n

Then Gm induces the extension J~ = (om)*,

o ----+) JrmG(A, n)

I1

r~(A)

----+) cokernelom +l

20
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where n + k = m + 1. Here J~ has the natural structure of a crossed module so
that we obtain this way an element

{J~} E Ext~r (r~-] ,r~, abcross )

In fact this dass coincides with {o~} in theorem (4.7); compare [5]. In the proof
below we construct 8~ by using the 2-type of an iterated loop space.

Praaf of (4.7). Let CW be the category of CW-colnplexes X with X O = * and of
cellular maps. The crossed chain complex p(..Y) is given by the bounclary lnaps

... --+ 1r3 ( ..y 3
, X 2

) ~ 7f2(x2, Xl) ~ 71'"1 (Xl)

We obtain a functor

(1)

which carries ..Y to the crossed nl0dule

.-\( ..\'") : 7f2 ( ..y 2
, ..y I )/image d3 --+ 1rd..y l )

given by the boundary d2 , so that there is a natural quotient lnap p(..Y) --+ .-\(X);
see III. §2 in [3]. Here .-\( ..Y) represents the 2-type of X with 71'"] /\(X) = 7f] X and
1r2A(X) = 1r2X, We clefine the functor

(2) {

D~ : 91' --+ cw
Dk(GA ) =! snm -]2jn-] BGA I

Here BGA is the classifying space of GA and nm - 1 En-l denotes the iterated loop
space of an iterated suspension, 1n = n + k - 1. Moreover SX is the singular set
of simplices ~ n --+ ..Y which carry the O-skeleton of ~ n to the basepoint in X and
I sx 1 is the realization. Then the composition of Dk and ,,\ yielcl a functor (n 2:: 2)

(3) 0;; = /\DJ: : gr --+ abcross

which is an extension of spherical modules since 1rJ DJ:(GA ) = 7fm 2jn-l BGA =
r~-l(A) is abelian and acts triviallyon 1r2Dr(GA) = 7fm+]En- 1 BGA = r~(A).

We choose for each object (A, X, a) a cellular lnap a~ and a track Ha as in the
following diagraIn where fl(X)o is the path component of * in the loop space n(X).

AifB
t~

MA

bl R la==>

b# ====> nm - I M(Y~, n)o
(tl1). nm

-
1 A1( ..Y, n)o -<= a#)

H b Ha

~r ~ r~
D~(Gy)

'1.
D~(Gx )

'.
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Here ä, fI 1 bare adjoints of a, H, b in (4.6) (4). Moreover 0 denotes thc canonical
track induced by the unique track in the diagram

AtJy t",
> AtJx

(5) ~I ==> 1==
B(Gy ) ) B(Gx)

",.

Let H be the track obtained by pasting the tracks in (4), that is

(6)

Then i! induces a track pi! : p(1h bö) ~ p( a~ t~) in the category of crossed chain
complexes and the quotient l11ap q : p(D~X) -t "\(D~~\") yields thc track qpH
in the category of crossed l11odules. Here qpH corresponds to a (1h bö)* -crossed

homomorphislll H (see III.2.6 in [3]) and the equivalence H(n,n + k) -t T(o~)
::::::

carries (~, 7], H) to (C 7], H). This cOl11pletes the proof of (4.7). Using (3.4) in [3]
we see that o~ is equivalent to an extension in rquad for n + k = 3 anel in sq1.lad

for n + k > 3.

q.e.d.
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§ 5 The extension for the spherical 1110d ules r~, r~

For each free abelian group A we have the exact sequence of groups

(5.1)

Here rA is the subgroup of 0 2 A = A 0 A generated by thc elenlent a 0 a, a E A.
The nlap p : E A -t A is the abelianization in (3.1) and a~ is the commutator
homomorphisnl which carries a 0 b to x-I y-l xy where x, y E EA are elCluents with
px = a, PY = b. One readily checks that a~ is a central map and that (5.1) is exact.
Let 02 A be the quotient of 0 2 A by the relations a0b+b0a r'V O. Then one obtains
by (5.1) the induced exact sequence, n '2: 3,

(5.2)

with a~ = a*a~ where a : rA -t A ® Z/2 carries a 0 a to a 0 1. V\Te point out that
(w, a~) E rquad where w is the identity of 0 2 A and that (w', aA) E squad where w'

is the quotient map 0 2 A -t 02 A.

For the spherical nil -luodules r~, r~l we have r~(A) = A and r~(A) = r(A)
and r~(A) = A (9 Z/2 for n 2:: 3 so that a~ in (5.1), (5.2) is an extension of nil
-nlodules in cent, 01' in 7'q1.lad for 71. = 2 and in sq1.lad for 71. > 2. -

-- --
(5.3) Theoreln. Let 71. '2: 2. Then there is an equivaJence of linear extensions

H(n, 71. + 1) r'V T( a~)

Here the right hand side is the pull back ofT(a~) via gr -t nil. Moreover the pull

back of the dass {a;J via gr -t nil yields {0;1} in (4.7).

The theorem shows that the complicated crossed extension {o~} in (4.7) can be
replaced by the simple central extension {a~} above. The theoreIu is proved in VI.
§4 of [3]. Now recall that E A is a quotient of GA = 1rl CAt{fd.
(5.4) Corollary. Let a, b : A1B -t M A be maps which ineluce tJ1C sanlC hOlnomor­
pllism 1rl(a)* = 1rl(b)* : EB -t E A . Then there is a callollical track (71. 2:: 2)

satisfying Oa,b + Ob,c = Oa,c, d* Oa,b = Oda,db allel e*Oa,b = One,be for maps d :
A1A -t A1D, e : ME -t A1B, c: A1B -t A1A.

Proof. Let Oa,b = 0 be givell by the lllorphislu

M(B,n)
En-1a

M(A,n))

11 0 11===:::}

AtJ(B, n) ) A1(A, n)
En-1b
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in H(n, n + 1) which via the equivalence in (5.3) corresponds to the lllorphism

(~,~,O) in T(a~) where ~ = 7rl(a). = 7rl(b). : E A --+ Eß.

q.e.d.
\Ve now replace the canonical tracks CJ in (4.6) (6) by the canonical tracks defined

in (5.4). This leads to the following definition.

(5.5) Definition. Let k 2:: 1, n 2:: 2. vVe associate with the spherical modules
r ~-1, r ~ a linear extension of categories T (n, n+k) which we call the nil -track extension:

(1) Ho1n(-, r~) ~ T(n, n + k) ~ nil(r~-l, nil)

The objects of T(n, n + k) are the salue as in ab(r~-l,ab) and the functor p is the
iclentity on objects. A lllorphism --

(2) (C 7], H) : (B, Y, b) --+ (A, --,Y, a)

in T( n, n + k) is obtained by a lllorphislu (~, 1]) in nil(r~-l,nil) anel the functor
p carries (~, 1], H) to (~, 1]). Let t~ : lvIß --+ lvIA , t1] : lvIl' --+ Mx be n1aps which
illduce ~ = 7rl(t~). : E ß --+ E A anel 1] = 7rl(t1]). : Ey --+ Ex. Then H in (2) is
a track as in (4.6) (4) and composition of 11lorphisillS in (2) is definecl as in (4.6)
(6) where we replace 0 by the canonical tracks in (5.4). Then (5.4) shows that
T(n, n + k) is a well defined category. The action of H0111.( -, r~) is clefinecl as in
(4.6) (5).

(5.6) Corollary. Let n 2:: 2, k 2:: 1. There i8 811 equivalence of linear extensions

H(n,n + k) '"".J T(n,n + k)

wbere tl1e rigl1t hand siele i8 tbe pull back ofT(n, n+k) via tlle functor gr(r~-l ,91') --+

nil(r~-l, nil).

Proof. The equivalence carries (~, 7], H) to (~., 1]., H) where ~. : E B --+ E A , 1].

Ey --+ Ex are induced by ~ and 1] respectively anel where fJ is obtained by pasting
the tracks in the following diagran1 where ('] is given by (5.4).

NI(B,7n)
(te).

NI(A,1n))

bl 11 lü==>

NI(Y, n) ) lvI(X,12)
(t11) •

VO
q.e.d.
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Using (5.6) and (4.7) we see that we have for n + k > 3, n > 2 cOlnpatible
elements in the following graups with D = H om (-, r~ )

{T(n, n + k)} E H2(niZ(r~-1, nil), D)

1
H2 (niz(r~-l, gr), D)

1
{H(n,n+k)} E H2(gr(r~-1,gr),D)

Here the problem arises of constructing the 'comlllon refinCluent' of the elen1ents
{S~} and {T(n, n + k)}. In Baues [6] we consider in detail the case n = 2, k = 2

where r~(A) = r(A) and r~(A) = r(A) 0Z/2EBL(A, Ih. Using pseudo extensions
as in (2.7) we show:

(5.8) Theorem. There is aJ] extension

{ai} E Pext~il(r, r 0 Z/2, cent)

such that tlle linear extensions

T (2, 4) f"V T (i •a~ )
are equivalellt. Here i : r(A) 12) Z/2 c r~(A) is the illc1usion.

An explicit fonuula for a~ is given in [6].

Let n 2: 2, k 2: 1 anel let C vV(n, n + k) be the full hOlllOtOpy category consisting
of CvV-complexes ]{ with cells only in dimension n and n + k. VVe mayasstaue
that ]( is the mapping cone of a nlap a : M(A, n + k - 1) --+ A1()C, n) with
A = H n+k](, X = HnIl E ab. There is a linear extension of categories

(5.9)

where p carries I( to the object (A, X, a) with a induced by CL (this is a special case
of the extension PRIN(x) in V.3.12 and V.7.14 of [2]). The natural system D on
a morphislll (e, 1]) : (B, y~, b) --+ (A,)(, a) is defined by thc quotient

D(e, 17) = H O1n(B, r~~'[)/ I(b, 17, a)

where the subgroup I(b,17,a) can be COluputed as in V.7.17 of [2]; see also 5.12 [1].

(5.10) Theoreill. Tllere is a conllnutative diagraIn oE linear extensions:

Hom(-,r~)
+ T(n,n + k) 'Z(rk - 1 'Z)> H2 n , n2

li lA 1
D + ) ClV(n,11 + k) ) ab(r~-l , ab)
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Here A carries (e, 1], H) to the principal map C(e, 1], H) between Inapping cones;
see V. §2 in [2]. The functor /\ is a quotient functor.

(5.11) Corollary. There is a natura.l equivalence relation ~ Oll tlle category
T(n, n + k) so that

CW(n, n + k) = T(n, n + k)f ~

Hence an algebraic Inodel T(a~) rv T(n,n + k) as in §4, §5 will also lead to an
algebraic model for the hon10topy category G'W(n, n + k). In [6] we compute this
way explicitly CvV(2, 4) by use of ai in (5.8-).-
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