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NON ABELIAN EXTENSIONS AND HOMOTOPIES
HANS-JOACHIM BAUES

The motivation for this paper is the classical problem of topology to find simple
algebraic models of homotopy categories of spaces. For example Kan [12] uses
free simplicial groups as such models. Curtis [7] showed that simplicial groups of
nilpotency degree m suffice to model the homotopy category of simply connected
n-dimensional CW-spaces with n <14 {log,(m+ 1)}. Here {a} is the least integer
> a. Is a further simplification possible? We restrict to the homotopy category
CW(n,n + k) as a test case where CW(n,n + k) consists of CW-complexes with
cells only in dimension n and n + k. Using theorem (5.8) we show that an algebraic
model of the category CW(2,4) can be given only in terms of groups of nilpotency
degree 2 while Curtis needs nilpotency degree 4 in this case; see (5.11).

A CW-complex K in CW(n,n+k) is the mapping cone of a map, m =n+k—1,

a:M(A,m) - M(X,n)

where A, X are free abelian groups and M(X,m) is the Moore space of X. The
homotopy type of I is determined by the homomorphism

a: A - IEHX)

induced by a. Here the homotopy group

L4 (X) = magr M(X, ) (1)

is computable via the Hilton-Milnor theorem in terms of homotopy groups of
spheres. For free abelian groups A, X, B,Y we consider homotopy commutative
diagrams together with homotopies H, m =n +k — 1,

M(B,m) —~— M(A,m)
Bl N J'a . (2)
M(Y,n) —— M(X,n)

The main result of this paper describes algebraic models of such diagrams. They
are used to represent morphisms in the category CW(n,n + k). The homotopy

classes of £, 7, @, b are determined by the induced homomorphisms &,7,a,b in the
commutative diagram

Typeset by ApS-TEX



B —'£> A

3 g 3

LN (Y) —— (X))
7
Two homotopies H, H' : ﬁ5 ~ &£ differ by a map o : M(B,m+1) - M(X,n)
which represents a homomorphism

o € Hom(B,TE(X)).

Hence homotopies in (2) yield a connection between the functors I'5~! and T¥. We
describe this connection algebraically by a ‘non-abelian extension’

0= THX) = M(G) 9 N(G) = TE 1 (X) = 0 (4)

-

where G is a free group with G®® = X. Here 6! is a functor which carries a free
group to a crossed module; this functor can be described by use of the differential
in the Moore chain complex of a simplicial group G(X,n) representing the loop
space QM (X,n). Using 6f we are able to construct ‘algebraic homotopies’ which
represent homotopies H in (2); see §4 and §5. This aim leads us to the algebraic
concepts in §1, §2, §3 where we introduce abelian groups and homomorphisms

Ext5 (A, B,cr) — Pexti: (A, B,cr) = H*(yr(A, K), Hom(—, B)) (5)

which are binatural for X -modules A, B. Here ¢r is an additive subcategory of
the category of crossed modules. The group Ext?, Pext? are generalizations of
the classical functor Ezt?, and H? is the cohomology of a category. The natural
transformation (5) yields as a special case a transformation of Jibladze-Pirashvili

(3.11 [11)).



§ 1 Linear extensions of categories and the cohomology of categories

An extension of a group G by a G-module A is a short exact sequence of groups

(1.1) 0A—E—>G->0
i p

where 1 is compatible with the action of G. Two such extensions F and E’ are
equivalent if there is an isomorphism € : E 2 E’ of groups with p'e = p and e1 = ¢'.
It is well known that the equivalence classes of extensions are classified by the
cohomology H?(G, A).

We now describe linear extensions of a small category C by a “natural system” D.
The equivalence classes of such extensions are equally classified by the cohomology
H2(C,D). A natural system D on a category C is the appropriate generalization
of a G-module. o

(1.2) Definition. Let C be a category. The category of factorizations in C, denoted
by FC, is given as follows. Objects are morphisms f,g,... in C and morphisms
f — g are pairs (a, 8) for which

A —Z 5 A

IT Ig

B« B

commutes in C. Here af is factorization of g. Composition is defined by (&', 8')(e, 8) =

(o', BB'). We clearly have (a,8) = (@,1)(1,8) = (1,6)(e,1). A natural system
(of abelian groups) on C is a functor D : FC — Ab. The functor D carries the
object f to Dy = D(f) and carries the morphism (o, ) : f — g to the induced
homomorphism

D(Cl’,ﬁ) = CY*IB' : Df - Dafﬂ =D
Here we set D(a, 1) = a,, D(1,8) = 8*.

We have a canonical forgetful functor 7 : FC — C° x C so that each bifunctor

D : ¢ x C — Ab yields a natural system 1 D, as well denoted by D. Such a

bifunctor is also called a C -bimodule. In this case Dy = D(B, A) depends only on

the objects A, B for all f € C(B,A). Two functors F, G : Ab — Ab yield the Ab

-bimodule o T o
Hom(F,G) : Ab"® x Ab —+ Ab

which carries (A, B) to the group of homomorphisms Hom(FA,GB). If F is the
identity functor we write Hom(—, G).

For a group G and a G-module A the corresponding natural system D on the
group G, considered as a category, is given by D, = A for ¢ € G and g.a = g a for
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a € A, g*a = a. If we restrict the following notion of a “linear extension” to the
case ' = G and D = A we obtain the notion of a group extension above.

(1.3) Definition. Let D be a natural system on C. We say that

DHQ

I Q

is a linear extension of the category C by D if (a), (b) and (c) hold.

(a) E and C have the same objects and p is a full functor which is the identity
on objects.

(b) For each f : A — B in C the abelian group Dy acts transitively and
effectively on the subset p~!(f) of morphisms in E. We write fo+a for the
action of a« € Dy on fo € p~!(f).

(c) The action satisfies the linear distributivity law:

(fo+a)(go+B) = fogo + foB + g7 .

Two linear extensions E and E are equivalent if there is an isomorphism of cate-

gories € : E = E' with p'e=p and with €(fo+ @) = €(fo) +a for fo € Mor(E), o €
Dy, The extension E is split if there is a functor s : C — E with ps = 1. We

obtain the canonical sght linear extension

(d) DSCxD

I

as follows. Objects in € x D are the same as in { and morphisms X — Y in O x D
are pairs (f,a) where f : X = Y € C and o € D(f). The composition law is given
by

() (f,a)(g,8) = (fg, /B + g )

Clearly the projection C x D — C carries (f, @) to f and the action D+ is given by
(fra)+a' = (f,a+a') for o’ € D(f). A splitting functor s yields the equivalence
of linear extensions

4 e:C‘ngg

given by e(f, @) = s(f)+a. We also consider the following maps between linear extensions

vl
+

|le5
-

(1.4) ld

-
~-
11~

— |
™

S
+




Here € and ¢ are functors with p'e = pp and d : Dy — D! os is a natural transfor-
mation compatible with the action +, that is

(fo + a) = €(fo) + d(a)

for o € Dy. Let C be a small category and let M(C, D) be the set of equivalence
classes of linear extensions of C by D. Then there is a canonical bijection

(1.5) ¥ : M(C,D) = H*(C, D)

which maps the split extension to the zero element, see IV §6 in Baues [2]. Here
H"(C, D) denotes the cohomology of C with coefﬁments in D which is defined
below. We obtain a representing cocycle A, of the cohomology class {E}=4v(E) €
H?*(C, D) as follows. Let t be a “splitting” function for p which associates with
each morphism f : A — B in C a morphism fp = ¢(f) in E with pfo = f. Then ¢
yields a cocycle A, by the formula -

(1.6) t(gf) = 19t (f) + Adlg, f)
with A¢(g, f) € D(g9f). The cohomology class {E} = {A} is trivial if and only if

L is a split extension.

(1.7) Definition. Let C be a small category and let N,(C) be the set of sequences
(A1,---,20) of n composable morphisms in € (which are the n-simplices of the
nerve of C). Forn =0 let No(C) = Ob(C) be the set of objects in €. The cochain
group F" = F*((C, D) is the abelian group of all functions

(1) c: Ny(C) = ( U Dg) =D

geMor(©)

with ¢(A1,... ,An) € Dyjo...0n,. Addition in F™ is given by adding pointwise in the
abelian groups D,. The coboundary 9 : F*~! — F" is defined by the formula

(Oc)(A1,... ,An) = (/\1) c(Azy ., An)

() +Z (M, 5 Mgty s An)

=1

+(=1)"(Aa)"e(M,y ..o, An—t)

For n = 1 we have (0c)(\) = Ayc(A) — M e(B) for A: A = B € Ni(C). One can
check that dc € F™ for ¢ € F*~! and that 99 = 0. Hence the cohomology groups

(3) H™(C, D) = H"(F*(C, D), )
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are defined, n > 0. These groups are discussed in Baues [2]. By change of the
universe cohomology groups H"(C, D) can also be defined if € is not a small
category. A functor ¢ : C g C induces the homomorphism

(4) ¢*: H*(C,D) - H"(C',¢* D)

where ¢*D is the natural system given by (¢*D); = Dy(y). On cochains the map
¢* is given by the formula

(8" F)As- - A0) = F(@AL, ., 0AL)

where (X,...,\,) € No(C'). A natural transformation 7 : D — D’ between
natural systems induces a homomorphism

7.: H"(C,D) = H"(C, D)

by (e f)(A1,. -, An) =7af(A1,... ,Ap) where 7y : Dy = Dy with A= Ajo0...0,
1s given by the transformation r.



§ 2 Extensions of K-modules

We introduce various generalizations of the classical group of 2-fold extensions
Ezt?. For this we need the following notations; see also [3]. Let Gr be the category
of groups and N be a group. An N-group (or an action of N on a group M) is a
homomorphism % from N to the group of automorphismsof M. Forz € M, « € N
we denote the action by * = h(a™')(z). The action is trivial if z* = z for all z, .
For a homomorphism « : G — N in Gr an o -crossed homomorphism g : G — M
is a function ¢ satisfying o

(2.1) g(z - y) = g(z)*W - g(y)

for z,y € G. For example given homomorphisms g,h : G — M the function
—g+ h: G — M defined by

(=g +h)(z) = g(z)™" - h(z)

for z € G is a g-crossed homomorphism where we use the action of M on M by
inner automorphism. We define for functions r,s : G — M the sum r + s by

(2.2) | (r +8)(z) = r(2) - s(a)

where the right hand side is the product in M. A crossed module & : M — N is
a homomorphism in Gr together with an action of N on M such that for z,y €
M, a € N we have

e =y lay.
A morphism @ — ' between crossed modules is a commutative diagram in Gr

M —f 5 M

ST

N L, N

where g is f-equivariant, that is ¢(z®) = (gz)/(®). This is a weak equivalence if
(f,¢) induces isomorphisms m2 () = m;(d') for 1 = 1,2 where m(0) = cokernel (9)
and m2(8) = kernel(9). For a crossed module @ the group m2(3) is abelian and
central in M and m () acts on m(8) by z{*} = 2% for z € m(9), {a} € m(8).
Let cross be the category of crossed modules and let abeross be the full subcategory
of all crossed modules 8 for which () is abelian and acts trivially on m2(9).

(2.4) Definition. Let 8 € abcross and let f : m; — m1(9) and g : 72(8) — 72 be
homomorphisms in Ab. Then we define f*(9), g.(9) € abcross by the following
commutative diagram




7 (f*0) —— M > N S

il L |7 \f

(1) 73(0) —— M —2y N y ™ (0)
s |s I i

mo—— M N —— 1 (9.)

Here (g,7) is a central push out diagram, that is M’ = maM/ ~ where (z +
g{a),y) ~ (z,a+y) for € mg, a € m2(0), y € M. The action of N on M’ is given
by (z,y)* = (z,y*). Moreover (f, f) is a pull back diagram in Gr and the action
of (o, 8) € N' on M is defined by y(™® = y* o € N, § € 7. Using the product
of groups one gets for 9, &' € abcross the object @ x &' € abeross,

12(9) x m(8') ——— M x M 22 NxN' —— 11(8) x 1 ()
| i
i i

m2(8 % 8') m(0 x ')

with the action of (, ) € NxN'on (z,y) € MxM' given by (z,y)(®F) = (z,yP).
We say that a subcategory cr C abcross is additive if for 9,0" € ¢r and maps f, g
as above f*0 — 0 — 9,0 € ¢r and 9 x &' € ¢r. These are the operations used for
the definition of the ‘Baer-sum’ in (2.5) below.

We now describe examples of additive subcategories in abcross. A central map
0 : M — N is a homomorphism from an abelian group M to the center of a group N.
This is the same as a crossed module for which the action of N on M is trivial. Let
cent be the category of central maps & for which 7, (9) is abelian. This is a full and
additive subcategory of abcross. Moreover let Pair(Ab) be the category of pairs
in Ab; objects are homomorphisms in Ab. This is a full and additive subcategory
of cent. Further examples of additive_subcategories in abeross are given by the
categories rquad and squad in (2.10) below.

Let K be a category. A K -module A is a functor A : I — Ab. Morphisms between
K -modules are natural transformations. Let A=blé be the category of I{ -modules.

(2.5) Definition. Let A,B be I -modules and let ¢r be an additive subcategory
of abcross. We consider extensions ¢ in ¢r which are natural exact sequences of
groups

§(X)

(1) 0— B(X) - M(X) =X N(X) = A(X) 20



where § : If — cr is a functor, X € K. Here we have A(X) = md(X) and
B(X) = md(X). An equivalence relation for such extensions is generated by the
relation that § ~ @' if there is a diagram

0 — B(X) —— M(X) —— NX) —— AX) — 0

(2) |l l"‘ n il
0 — B(X) —— M'(X) —2 N'/(X) —— A(X) —— 0

which is natural in X € I where (m,n): 4 — ¢’ is a natural transformation in ¢r.
Let

(3) Exti (A, B,cr)

be the set of equivalence classes of such extensions (in general this is only a set
i a suitable universe, compare the remark at the end of I11.§ 5 of Mac Lane [13]).
Morphisms f : A" =+ A, g : B — B’ between K -modules induce functions f*, g.
on (3) with f*{8} = {F*6}, g.{6} = {g«6} where we apply (2.4) (1). We define the
sum of equivalence classes {6} + {8’} = {é + ¢’} by the Baer sum

(4) §+68 =(Vp)A4(8 x )

where Yp: B®B — Band Ay : A = AP A are the folding map and the diagonal
respectively, 7 p{bo, b1) = bo+b1, Aa(a) = (a,a). For the definition of §+ &' we use
- the additive structure of ¢r in (2.4). A functor ¢ : € — K induces a homomorphism

(5) ¢ : Exty (A, B,cr) = Extg(Ap, By, cr)

and an inclusion v : ¢r C er’ of additive subcategories induces a homomorphism

(6) et Extg (A, B,cr) — Extg(A,B,g')

where ¢*{8} = {ép} and ¥.{8} = {¢é}.

In the next definition we generalize the concept of functors § : I — ¢r used in
the definition of extensions above.

(2.6) Definition. A pseudo functor

(6,0) : K = cr

carries each object X in i to a crossed module éx = & : M(X) — N(X) € ¢cr and
carries each morphism ¢ : ¥ = X in & to a commutative diagram

9



M) —— N(Y)

(1) lﬂ- la!

M(X) —— N(X)
which is a morphism (a.,q4) : dy — dx in cr. Here M is a functor in X € i which
induced a.; but N is not a functor. The induced maps ay satisfy for a composition
ab:Z —-Y — X € Il the formula

(2) agby = (ab)y + 6x8(a,b)pz

where pz : N(Z) — md(Z) is the quotient map and where 8(a,d) : m(éz) —
M(X) is an (ab)y -crossed homomorphism and a central map satisfying the 2-
cocycle condition 9(8) = 0, see (1.7). That is, for abc : W - Z - Y - X € K we
have the equation -

(3) 0 = a,8(b,c) - 6(ab,c) + 8{a,bc) — 8(a,b)c.
where a, = M(a) is induced by M and where ¢, : 1 (6w ) = m(dz) is induced by
cy.

A natural transformation (m,n,¢) : (6,8) — (6,8') between pseudo functors
carries each object X' to a morphism (my,nyx): dx — d'y,

MX) —— N(X)

(4) lmx lﬂx
M(X) —2 N'(X)

in ¢r. Here m is a natural transformation M — M’ between functors; but n satisfies
foreach a: Y — X € K the equation

(5) nxay = agny + Syp(a)py

where p(a) : m(dy) = M'(X) is an ayny -crossed homomoprhism and a central
map satisfying the l-cocycle condition 9p = 0, see (1.7). That is, for ab : Z —
Y = X € K we have the equation

(6) p(ab) = a,p(b) + p(a)b.

where a. = M(a) and where b, : m(6;) — m1(d4) is induced by by. Moreover ¢ and
8,8 satisfy the following compatibility relation

10



(7 0= 6'(a,b)(nz). + aup(b) + (a)bs — mxb(a,b)

where (nz). = m(nz), ax = M'(a), by = m(by). Clearly pseudo functors with
# = 0 and natural transformations with ¢ = 0 are the same as functors and natural
transformations between functors respectively.

(2.7) Definition. Let A, B be I -modules. We call an exact sequence (2.5) (1) a
pseudo extension in ¢r if § is given by a pseudo functor (4, 8) : I — cr. Equivalences
between such pseudo extensions are defined by natural transformatioons between
pseudo functors as in (2.5) (2). Let

(1) Pext (4, B, cr)

be the set of equivalence classes of pseudo extensions. Induced maps f*, g. for
these sets are defined as in (2.5) and one obtains the Baer sum of pseudo extensions
similarly as in (2.5) (4). Moreover functors ¢, ¥ induce ¢*, ¥, as in (2.5} (5), (6).
There is a natural transformation

(2) ¢ : Bxt}(A, B,cr) - Pextf;i(A, B,cr)

which carries {6} to {6}.

(2.8) Proposition. Via the Baer sum the sets Ext}.(A, B, ¢r) and Pext?.(A, B, cr)
are abelian groups. Via induced maps f*, g. they vield functors -

(ADE)P x AbE — Ab
which are additive in the second variable B. Moreover ¢*, ¥., ¢ are natural trans-
formations in Ab.

(2.9) Ezamples. The category A:blz‘ is an abelian category so that Ext?(A, B) is
defined. It is clear that

Ext}(A, B, Pair(Ab)) = Ext*(A, B)

Let 1 be the trivial category consisting of one object and one morphism. Then

Ext}(4, B, gbcross) = H*(A, B)

where the right hand side is the cohomology of the abelian group A with coeffi-
cients in the abelian group B. For this compare for example [10]. More generally
Ezt% (A, B,abcross) is a special case of a cohomology considered for example in

(14}, [15).
We also shall use the following examples of additive subcategories of abcross;

compare [3].
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(2.10) Definition. We define faithful functors

(1) squad C rquad %, abcross

as follows. An object (w,d) € rquad is called a reduced quadratic module; this is

a crossed module & : L = M together with a ‘quadratic map’ w: M @ M 5 L
such that the following properties are satisfied. Triple commutators in M are trivial
and the quotient map M —» M® to the abelianization M*®® of M is denoted by
z +— {z}. The map w is a homomorphism in Gr with

a® =a-w({fa} ® {z})

@ Sw({z} ® {y}) = =7y ay
w({éa} @ {a} + {z} ® {da}) =0
w({da} ® {6b}) = a b ab

for z,y € M, a,b € L. We say that (w,d) is stable if in addition

(3) w({z} @ {u} +{y} ® {z}) =0,

then (w,$) is an object in squad. A morphism (I,m) : (w,d) = (@',§') in rquad

or squad is a morphism ({,m) : § — ¢’ between crossed modules compatible with

w,w', that is, lw = w’(m“b ® m“?). We obtain the additive structure of rquad and
squad by f*(w,8) = (w, f*8), g{w,8) = (Gw, g«b) where (§,1) : § = g.6 is the map
in (2.4) (1). Moreover (w,4) x (w',8")) = (@,8 x §') where

w: (M X ®@ X S ® X QM'®™ o L x
(4) (ﬂf M’)ﬂb (A{[ ﬁJI)ab r ﬂ/.[ab Mab A/ffa.b A_[fab LxI'
is the composition of the obvious quotient map p and the product w x w’. The

functor 4 in (1) which carries (w,é) to d is clearly compatible with the additive
structures.
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§ 3 Categories associated to extensions of A -modules

We show that there is a natural transformation mapping the extension groups
in §2 to the cohomology of a certain category.

A group G has nilpotency degree n if all (n 4- 1) -fold iterated commutators in G
are trivial. Let Nul be the full subcategory of Gr consisting of groups of nilpotency
degree 2. Given a free abelian group A we obtain quotient maps

(3.1) Ga—»Eq—» A

Here G4 is a free group with abelianization A and E4 is the quotient group
G 4 /T3G 4 where I'3G 4 is the subgroup of triple commutators in G4. Let ab C Ab
be the full subcategory of free abelian groups A and let nil C Nil and gr C 1 Gr be
the full subcategories of groups E4 and G, respectively with A € ab. Then the
quotient maps (3.1) yield the full functors o

(3.2)

I's
L
3
o
d

[

which carry G4 to E4 and E4 to A.
(8.8) Definstion. Let K be a category and let [' be a K -module. We define the

functors

(1) gr(T, K) = nil(T', K) — ab(T', K)

as follows. The objects in each of these categories are triple (X, A4, «) with X €
K, A€gband a € Hom(A,[(X)). Morphisms are pairs

where 77: Y = X € I and where £ is a morphism Gp — G4 € gr,or Ep =+ E4 €

nil or B — A € gb respectively such that the diagram

A%B

(3) o s

I'X) —— I'(Y)

e

commutes. The functors in (1) are the identity on objects and on morphisms they
are defined by the functors in (3.2).
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Now let ¢r be an additive subcategory of abcross. We say that crisof Ab-t

resp. of Nil -type, if forall § : M = N € ¢r we have N € Abresp. N € Nzl For
example cent, 'rquad and squad are of Nil -type.

(8.4) Definition. Let T' and A be K -modules and consider the following diagram
with (4, X, a) € ab(T, K).

8 "

§
0 — AX) — M(X) 22 N(X) — T(X) —— 0
where the bottom row is a pseudo extension in cr. We set
A if ¢cr isof Ab-type

(2) A={ E4 if cr is of Nil-type

G4 otherwise

Hence we can choose a homomorphism @ such that the diagram commutes. Using
these data we define a linear extension of categories

ab(T, I} if cr is of Ab-type
(3) Hom(—, A) 5 T(5,6) —» nl(T, K) if ¢r s of Nil-type
gr(T, K} otherwise

as follows. The natural system Hom(—,A) is the bifunctor which carries the pair
of objects ((B,Y,b), (A, X,a)) to the abelian group Hom(B, A(X)); induced maps
for this bifunctor are defined by (3.2) in the obvious way.

The objects in T(6,6) are the same as gb(I', ). A morphism

(3) (&mn, H): (B,Y,b) = (A, X, a)

in T(4, 8) is given by a morphism (¢, %) in gr(T', K), nid(T', K), and ab(T’, I{) respec-
tively and by a function o

H:B - M(X)

which is a (i b) -crossed homomorphism. Here B is given by B as in (2). Moreover
H satisfies

(4) SxH(e) = —sb+ac
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in N(X). The composition of morphisms in (4, §) is defined by

(é,m, H)(E ,n',H') = (&¢',om',H « H') : (Z,C,c) = (Y, B,b) > (X, A4,a) with

(5) HxH' =6(nn)e+nH +HE

The projection functor p is the identity on objects and carries (§,n, H) to (§,n).
~ Finally the action of &« € Hom(B,A(X)) is given by

&nH)+a=(nH+a)

with (H + a)(e) = H(e) - (ixapp(e)) € M(X) where pp : B — B is the quotient
map and ix : A(X) C M(X) is the inclusion.

(3.5) Proposition. The linear extension for the category I(4,6) above is well
defined and one obtains well defined binatural homomorphisms as in the following
commutative diagram

Pea:ti(I‘,A,g) ;'5) Hz( 7‘(F,£),H0m(—,/\))

L

Pezt?(T, A, ¢r) —#, H(nil(T, K), Hom(—, A))

[ f
Peatl (T, A,er) —2— H(ab(T, K), Hom(-,A))

IS

3

I

Here ¢, is defined if cr is of N1l -type and ¢, is defined if ¢cr is of Ab -type.

The homomorphisms carry the equivalence class of the extension (4,6) to the
equivalence class of the linear extension T(4,6); see (1.5). The right hand side of
the diagram is induced by the functors in (3.3) (1). The cohomology groups in the

diagram are also additive functors in A € A:bé-
Proof of (8.5). We obtain for the morphism (£, 7, H) the following diagram

B —— B
7
H b lb

0 —— A(Y) —— M(Y) — N(Y) —— I(¥) —— 0

’
J‘ﬂo nnl ’ m ln-
b ~

0 — AX) — M(X) —— NX) — I'(X) —— 0

¥
R

Ex



with §x H = —a& + bny; see (3.4) (4). If H is given with xH = —af + bns then
the exactness of the rows shows that there is a unique homomorphism o with H =
H + a. Now (3.4) (5) shows that this action of « satisfies the linear distributivity
law. Moreover the 2-cocycle condition for 6 shows that the composition (3.4) (5) is
associative, here we use also the assumption that 8 is central. Now given a natural
transformation

(m,n,p):(6,0) = (8,6

we obtain an induced equivalence of linear extensions

(1) (myn,p)e 1 T(6,8) = ;(6',9')

which is the identity on objects and which carries (€,n, H) to (&1, H,) with

(2) Hy=p(nb+mxH

Here we choose the lift & = nya for a and b = ny b for b, We point out that

different choices of lifts @ for a yield equivalent categories. In fact, let g, @ be both
lifts of a as in (3.4) (1). Since A has a freeness property there exists a crossed

homomorphism H, : A - M(X) with §xH, = —a + a. The equivalence then
carries (£,n, H) to (,n, H) with

(3) H=—n,Hy+ H + H,L.
This completes the proof that the functions in (3.5} are well defined. The additivity

in A at both sides shows that the functions are homomorphisms. Naturality is also
easy to check.

g.e.d.
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§ 4 Extension for spherical modules and homotopies

For a pointed topological space X let H, X and m, X be the n-th homology group
and homotopy group of X respectively. For a free abelian group A we choose a one
point union of 1-spheres

Ms=\/§
Z
such that HyM4 = A and myM4 = G4. The (n — 1) -fold suspension of M4,
(4.1) M(A,n)=3""'Ms=\/ 5",
z
is a ‘Moore space’ of A. Let [X,Y] be the set of homotopy classes of basepoint

preserving maps X — Y'; this is the set of morphisms in the homotopy category
Top*/ ~. The homology functor H,, yields an identification, n > 2,

(1) Hom(A, B) = [M(A,n), M(B,n)]

so that we get a full and faithful functor ab — Top™/ =~ which carries A to M(4,n).
Moreover we have by use of 7, n > 2, T

(2) Hom(A,m,X)=[M(4,n), X]
(4.2) Definition. Forn > 2 and k£ > 0 let
% ab "5 Topt s w2 Ab
be the functor which carries the free abelian group A to the homotopy group

TattM(A,n). We call T a spherical ab -module. For £ = 0 we clearly have
ro(A4) = A.

(4.3) Remark. The spherical gb -modules can be described algebraically only in
terms of homotopy groups of spheres m,,, S and primary operations; compare [8].
For example in the stable range k < n — 1 we get TX(4) = A @ mn4x(S™). In the
metastable range k < 2n — 2 we have I'5(4) = A ® 7k {S™}. Here the right hand
side is the quadratic tensor product in [4] and 7,4 {S™} is the quadratic Z -module

H _ r
Tark{S") = (fr,,HS" My pr S 2y 7r,,+k5")

given by the Hopf invariant H and the map P induced by the Whitehead product
[tnyin] 1 S2"71 — S™. As a special case we obtain

m{S*}=(Z 525 7)

17



so that T3(A) = A ® m3{S5?} is Whitehead’s quadratic functor. Moreover I'} (A4) =
A®Z/2 for n > 3. Further examples are described in Table 2 of [4].

(4.4) Notation. Given an ab -module T' (like for example I' = T'%) we obtain the
nil -module and the gr -module

(1)
where both compositions are also denoted by I'. There are canonical functors

(2) gr(T,gr) = nil(T, pil) — ab(T, ab)

with categories defined as in (3.3). An object (4, X,T) in ab(T,ab) is given by
free abelian groups X, A and a homomorphism a : A — T'(X). This yields the
corresponding objects (4, Ex,a) and (A, Gx,a) which we also denote by (4, X, a)
so that the functors in (2) are the identity on objects. On morphisms (£,7) the
functors in (2) are given by the functors gr — nil and nil — ab respectively.

We now consider homotopies between certain maps. Let [ C R be the unit
interval and let IX = I x X/I x * be the cylinder of a pointed CW-complex X.
We have the inclusion and projection

xvx &y e x
where i,(z) = {t,z} and pr{t,z} =z fort € I, € X. Here (ig,1) is a cofibration
in Top. A homotopy between pointed maps f,g: X' - YV isamap H:IX =Y

with Hig = f and H1i; = ¢g. A track H : f ~ g is a homotopy class relative X VX
of such homotopies. Let

(4.5) T(f,9) = IX,Y]/?

be the set of tracks f ~ ¢g. If X = X' is a suspension we have a canonical
isomorphism of abelian groups

(1) op: T(f, f) = [EX,Y]

We use oy for the definition of the transitive and effective action

) { T(f,9) x [EX,Y] £ T(f,9)

H+4a=H+o4a)=0f(a)+ H

18



Here the right hand side is defined by addition of homotopies. The properties of
this action are described in VI.3.13 of [3] and in [1].

(4.6) Definition. Let k > 1, n > 2. We associate with spherical modules Ff;"l, l"f:;
a linear extension of categories H(n,n + k) which we call a track extension:

(1) Hom(—,Ff;) s H(n,n + k) > QT(Fk-lsgr)

The objects in H(n,n + k) are the same as in gb(T'h ™!, ab) and the functor p is the
identity on objects. A morphism

(2) (&,n,H): (B,Y,b) = (4,X,qa)

in H(n,n -+ k) is obtained by a morphism (£,7) in ﬂ(I‘ﬁ_l,ﬁ) and the functor
p carries (€,m, H) to (§,n). Here H is a track as in aagram (_4) below. For each
object (X, A,a) we choose a map

(3) a:M(A,m) - M(X,n)

representing the homotopy class @ with m = n+k—~1. Compare (4.1) (2). Moreover
we choose a diagram in Top”

M(B,m) 2% M(A,m)

(4) al A, l&
M({Y,n) —— M(X,n)

Lr-lty

where t£ : Mp — Mg, tn; My — My are maps which induce £ = 7t and n =
mytn; for this recall that G4 = 71 M 4. The diagram is homotopy commutative since
neb = af. so that there exists a track H. The action of &« € Hom(B,T'¥ X) in (1)
is defined by

(5) &mH)+o=(nH+a
where H + a is given by (4.5) (2). Finally composition of morphism as in (2) is

obtained by pasting the tracks in the following diagram.

t(EE") .
1 O
(t€').

M(C,m) —= M(B,m) M(A,m)

(6) 3 2 o, |

ﬂfI(Z,n) —““-')—) M(Y,n) —-(-—)ﬁ* M(X,H)
(tn')s in).

S Yo,
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Here the canonical tracks O are suspensions of the unique tracks (¢€)(¢¢') ~ t(£€')
and (tn)(tn') = t(nn'). One readily checks that H(n,n4+k) is a well defined category
and that (1) is a well defined linear extension.

The next result yields an algebraic description of the topological track extension
H(n,n + k).

(4.7) Theorem. Let n > 2, k > 1. Then there exists an extension
(*) {651 e Erctz_r(f‘ﬁ“,l"ﬁ,abcross)

of spherical modules such that the linear extensions

H(n,n+ k)~ L(5;)

are equivalent. Moreover we may replace abcross in (*) by rquad forn+ k=3 and
by squad for n + k > 3.

Here 2(61;) is defined as in (3.4) with 8 = 0. Hence for N +% > 3 the cohomology
class {H(n,n + k)} of the track extension is in the image of

Bat?, (D™, T%, squad) — H*(nil(T5™, gr), Hom(—,T%)) = H*(

r(Ch~", gr), Hom(—,T}))

15

where we use the homomorphisms in (3.5).

(4.9) Remark. For a free abelian group A with basis Z let G4 be the free group
with basis Z and let G(A4,n) be the free simplicial group generated by the set Z
in degree n. Then G4 = G(A,n), and each homomorphism £ : Gp — G4 induces
a homomorphism of simplicial groups G(B,n) — G(A,n). One has a natural
homotopy equivalence

| G(A,n) |~ QM(A,n)

where the left hand side is the realization of the simplicial group. Let N = NG(A,n)
be the Moore chain complex of G(A4,n) given by

{Nm = ﬂ kernel d;

t<m

(Om : Ny = Np_y) = restriction of dj,

Then 8y, induces the extension 68 = (O ).,

Tk
0 —— mmG(A,n) —— cokernel Oj 4y L} kerdn—1 — mm_1G(A,n) —— 0

I “},_
Tk (A) rh-'(4)

20



where n + k = m + 1. Here §* has the natural structure of a crossed module so
that we obtain this way an element

{gr,;} € Ea:tgr(l"ﬁ‘l Tk, abcross)

In fact this class coincides with {6%} in theorem (4.7); compare [5]. In the proof
below we construct 6 by using the 2-type of an iterated loop space.

Proof of (4.7). Let CW be the category of CW-complexes X with X° =« and of
cellular maps. The crossed chain complex p(XX) is given by the boundary maps

o (X XY S (X XY B (X

We obtain a functor

(1) A: CW — cross

which carries X to the crossed module

MX) s mo (X2, X" /imageds = m (X1)

given by the boundary ds, so that there is a natural quotient map p(X) = A(X);
see II1.§2 in [3]. Here A(X) represents the 2-type of X with m AM(X) = m X and
maA(X) = mp X. We define the functor

Dy :gr =+ CW
(2) n -_ m—1gwn—1
DE(G4) =1SQm "' BG4 |

Here BG 4 is the classifying space of G4 and Q™ 1 L"~! denotes the iterated loop
space of an iterated suspension, m = n + k — 1. Moreover SX is the singular set
of simplices A™ — X which carry the 0-skeleton of A™ to the basepoint in X and
| SX | is the realization. Then the composition of D} and A yield a functor (n > 2)

(3) 6y = AD} : gr — abeross

which is an extension of spherical modules since 7 D} (Ga) = 71, " 'BG4 =
Tk=1(4) is abelian and acts trivially on m,DF(G4) = mm415" 1 BG4 = Th(4).
We choose for each object (A4, X,a) a cellular map ay and a track H, as in the
following diagram where (X )g is the path component of * in the loop space Q(X).

43

Hy

Mp

b

~

# = Q"I M(Y,n)

-~

~

D (Gy)

1
e

(tn).
0o —

[
——J

Ne
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My

a

Q™ M(X,n)o = %y

~—

DE(Gx)



Here &, H,b are adjoints of &, H,b in (4.6) (4). Moreover O denotes the canonical
track induced by the unique track in the diagram

My —2 4 My

(5) :T = T:
B(Gy) E— B(G,\')

Ne

Let H be the track obtained by pasting the tracks in (4), that is

(6) H : 1. by = ay(t€)

Then H induces a track pH : p(neby) ~ plag t€) in the category of crossed chain
complexes and the quotient map g : p(D*X) — M D!X) yields the track gpH

in the category of crossed modules. Here gpH corresponds to a (7. by)x -crossed

homomorphism H (see II1.2.6 in [3]) and the equivalence H(n,n + k) — T(&5)

carries (€,m, H) to (ﬁ,n,f}). This completes the proof of (4.7). Using (3.4) in [3]
we see that 6% is equivalent to an extension in rquad for n 4+ k = 3 and in squad

forn4+ k> 3.

qg.e.d.
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§5 The extension for the spherical modules I'°, T'}

For each free abelian group A we have the exact sequence of groups

(5.1) 05TA5 @A 2 By As0

Here T'A is the subgroup of ®2A4 = A ® A generated by the element ¢ ® a, a € A.
The map p : E4 — A is the abelianization in (3.1) and 8} is the commutator
homomorphism which carries a ® b to 271y~ 'ay where z,y € E4 are clements with
pz = a, py = b. One readily checks that 9] is a central map and that (5.1) is exact.
Let ®%A be the quotient of @A by the relations a®b+b®@a ~ 0. Then one obtains
by (5.1) the induced exact sequence, n > 3,

i
(5.2) 03 ARZ/2— @A Es 5 A0

with 8% = 0,8} where 0 : TA -+ A® Z/2 carries a @ @ to a ® 1. We point out that
(w, ) € rquad where w is the identity of ®2A and that (w', ) € squad where w'

is the quotient map ®%4 — ®2A.

For the spherical nil -modules I}, T}, we have I')(4) = A and ['}(4) = T'(4)
and I'L(A) = A®Z/2 for n > 3 so that J}, in (5.1), (5.2) is an extension of nil
-modules in cent, or in rquad for n = 2 and in squad for n > 2.

(5.3) Theorem. Let n > 2. Then there is an equivalence of linear extensions

H(n,n+1) ~ I(0,)
Here the right hand side is the pull back of T(0) via gr — nil. Moreover the pull
back of the class {0)} via gr — nil yields {6} in (4.7).

The theorem shows that the complicated crossed extension {§}} in (4.7) can be

replaced by the simple central extension {8}} above. The theorem is proved in VI.
§4 of [3]. Now recall that E 4 is a quotient of G4 = 7 (Ma).

(5.4) Corollary. Let a,b: Mg — M4 be maps which induce the same homomor-
phism m1(a), = 71(b), : Eg — Ea. Then there is a canonical track (n > 2)
Oap: S g~ T 1

satisfying Oqp + Opc = Ouyey diOap = Oda,ap and €Oy p = Oqe,pe for maps d :
Masa—>Mp,e: Mg — Mp,c: Mg — My,

Proof. Let Oq 5 = O be given by the morphism

M(B,n) % M(4,n)

11 = ll
M(B,n) —— M(A,n)
Tn-1p

23



in H(n,n + 1) which via the equivalence in (5.3) corresponds to the morphism

(€,€,0) in I(8}) where & = mi(a), = m1(b). : Ea — Ep.

q.e.d.
We now replace the canonical tracks O in (4.6) (6) by the canonical tracks defined
in (5.4). This leads to the following definition.

(5.5) Definition. Let k& > 1,n > 2. We associate with the spherical modules
I'4=1 T# alinear extension of categories T(n,n+k) which we call the nil -track extension:

(1) Hom(—,T%) v T(n,n + k) 2 (T4, nil)

The objects of T(n,n + k) are the same as in gb(T'5~!, ab) and the functor p is the
identity on objects. A morphism

(2) (&;n,H): (B,Y,b) = (A, X, a)

in T(n,n + k) is obtained by a morphism (¢,7) in nil(T5~!, nil) and the functor
p carries (&,1,H) to (£,1). Let t€ : Mg — My, tn : My — My be maps which
induce { = m(té). : Ep - E4 and n = m(tn). : Ey = Ex. Then H in (2) is
a track as in (4.6) (4) and composition of morphisms in (2) is defined as in (4.6)
(6) where we replace O by the canonical tracks in (5.4). Then (5.4) shows that
T(n,n + k) is a well defined category. The action of Hom(—,T'%) is defined as in

(4.6) (5).
(5.6) Corollary. Let n > 2, k > 1. There is an equivalence of linear extensions

H(n,n+k)~T(n,n+k)

where the right hand side is the pull back of T(n,n--k) via the functor gr(Ty ™1, gr) —
il (T4, i)

Proof. The equivalence carries (£,7, H) to (€¢,7., H) where & 1 Ep = Ba, ns
Ey — Ex are induced by £ and n respectively and where H is obtained by pasting
the tracks in the following diagram where O is given by (5.4).

o

M(B,m) & M(4,m)

i -, |

M(Y,n) —(—} M(X,n)
15).

VO S,

(tE,) 4

q.e.d.



Using (5.6) and (4.7) we see that we have for n +- &k > 3, n > 2 compatible
elements in the following groups with D = Hom(—,T¥)

{Z(n,n +k)} € H*(nal(T7", nil), D)
{8} € E:z:tg,.(l"ﬁ“l,l"ﬁ,squad) — Hz(ﬂ_z'_é(l"ﬁ_l,ﬂ"),D)

l

{H(n,n+k)} € H*(gr(T;™, g7), D)

Here the problem arises of constructing the ‘common refinement’ of the elements
{85} and {Z(n,n + k)}. In Baues [6] we consider in detail the case n = 2, k = 2
where I'}(A) = T'(A) and T3(A) = T(A)®Z /2 L(A,1)s. Using pseudo extensions
as in (2.7) we show:

(5.8) Theorem. There is an extension

{03} € Peaty(T,T ® Z/2, cent)

such that the linear extensions

T(2,4) ~ T(0.0%)

are equivalent. Here i : ['(A) @ Z/2 C T'3(A) is the inclusion.

An explicit formula for 93 is given in [6].

Let n > 2, k > 1 and let CW(n,n + k) be the full homotopy category consisting
of CW-complexes K with cells only in dimension n and n -+ k. We may assume
that K is the mapping cone of a map a : M(A,n + k — 1) - M(X,n) with
A=H, K, X =H,K € g__b. There is a linear extension of categories

(5.9) D5 CW(n,n + k) 2» ab(T5™", ab)
where p carries I to the object (4, X, a) with a induced by & (this is a special case
of the extension PRIN(X) in V.3.12 and V.7.14 of [2]). The natural system D on
a morphism (£,7n) : (B,Y,b) = (4, X, a) is defined by the quotient

D(¢,m) = Hom(B, T3 X)/1(b,7,a)
where the subgroup I(b,n,a) can be computed as in V.7.17 of [2]; see also 5.12 [1].

(5.10) Theorem. There is a commutative diagram of linear extensions:

Hom(—,T%) _* Tn,n+k) —— ?I.if(rﬁ_l,gl)

b b l

D —F 4 CW(n,n+k) —— ab(TE™", ab)
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Here A carries (€,n, H) to the principal map C(€,7, H) between mapping cones;
see V. §2 in [2]. The functor A is a quotient functor.

(5.11) Corollary. There is a natural equivalence'relatfon ~ on the category
T(n,n + k) so that

CW(n,n+k)=Tnn+k)/ ~

Hence an algebraic model T(9%) ~ T(n,n + k) as in §4, §5 will also lead to an

algebraic model for the homotopy category CW(n,n + k). In [6] we compute this
way explicitly CW(2,4) by use of 8 in (5.8).
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