MODULI OF HYPER-KÄHLERIAN

ALGEBRAIC MANIFOLDS

Andrey N. Todorov

Max-Planck-Instiut

fur Mathematik

P.O.Box 373

Sofia
1090 Bulgaria

Andrey N. Todorov

Introduction

It is a well known fact that if X is a compact complex simply connected Kähler manifold with $c_{1}(X)=0$, then

$$
x=\pi x_{j} \times \pi y_{i}
$$

where a) for each $j \operatorname{dim~H}\left(X_{j}, \Omega^{2}\right)=1$ and if φ_{j} is a non-zero holomorphic two form on X_{j}, and at each point $x \in X_{j} \varphi_{j}$ is a non-degenerate, i.e. if $\varphi_{j \mid U}=\Sigma\left(\varphi_{j}\right)_{\alpha \beta} \quad d z{ }_{\wedge}^{\alpha} d z \cdot \beta$ then $\operatorname{det}\left(\left(\varphi_{j}\right)_{\alpha \beta}\right) \in \Gamma\left(U, 0_{U}^{*}\right)$. Such manifold we will call HyperKahlerian.
b) for each i and $0<p<\operatorname{dim}_{\mathbb{C}} y_{i}=n \operatorname{dim} H^{0}\left(y_{i}, \Omega^{p}\right)=0$ and $\operatorname{dim~} H^{0}\left(y_{1}, \Omega^{n}\right)=1$ and $H^{0}\left(y_{i}, \Omega^{n}\right)$ is spanned by a holomorphic n -form which has no-zeroes and no-poles.

This fact is due to Calabi and Bogomolov. See [3]. An elegant proof based on Yau's solution of Calabi conjecture was given by M.L. Michelson. See [16].

The purpose of this article is to study the moduli space of the so called marked algebraic Hyper-Kählerian manifolds.

Definition. A tripple $\left(x, \gamma_{1}, \ldots, \gamma_{b_{2}} ; L\right)$ will be called a marked algebraic Hyper-Kahlerian manifold if X is a Hyper-

Kählerian manifold, $\gamma_{1}, \ldots, \gamma_{b_{2}}$ is a basis of $H_{2}(X, z)$ and L is the imaginary part as a class of cohomology of Hodge metric on X.

In this article we prove that the moduli space of marked algebraic Hyper-Kăhlerain manifolds exists. This is proved in § 2. More over we have an universal family of marked algebraic Hyper-Kăhlerain manifolds

$$
x_{L} \xrightarrow{\pi} M_{\left(L ; \gamma_{1}, \ldots, \gamma_{b}\right)}
$$

The construction of the moduli space follows Burns and Rapoport. See [].

We have the so called period map:

$$
p: M_{\left(L ; r_{1}, \ldots, r_{b 2}\right)} \rightarrow P\left(H^{2}(x, z) \oplus \mathbb{C}\right)
$$

where

$$
p(t)=\left(\ldots, \int_{\gamma_{i}} w(2,0), \ldots\right) \in \mathbb{P}\left(H^{2}(x, z) \bullet \mathbb{L}\right)
$$

where $\omega_{t}(2,0)$ is the unique up to a constant holomorphic two-form on $X_{t}=\pi^{-1}(t)$. From Bogomolov's result, that there are no oostructions to deformations and local Torelli theorem we get that the irreducible component ${ }^{M}\left(L ; \gamma_{1}, \ldots, r_{b_{p}}\right)$ is a non-singular manifold and $\operatorname{dim}_{c^{M}}\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)=b_{2}-2$, where $b_{2}=\operatorname{dim} H^{2}(X, c)$.

From Griffith's theory of Variations of Hodge structure we get that
$\mathrm{p}: \mathrm{M}_{\left(\mathrm{L} ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right) \rightarrow \mathrm{SO}_{0}\left(2, \mathrm{~b}_{2}-3\right) / \mathrm{SO}(2) \times \operatorname{SO}\left(\mathrm{b}_{2}-3\right) \subset \mathbb{P}\left(\mathrm{H}^{2}(\mathrm{X}, \mathbb{C})\right)}$
is a local isomorphism.

In § 3 we prove Theorem 3. The period map
$\mathrm{p}: \mathrm{M}_{\left(\mathrm{L} ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)} \rightarrow \mathrm{SO}_{\mathrm{g}}\left(2, \mathrm{~b}_{2}-3\right) / \mathrm{SO}(2) \times \operatorname{SO}\left(\mathrm{b}_{2}-3\right)$
is an embedding.

Theorem 3 is a positive answer to the so called Torelli problem, and is in some aspects a generalization of the theorem of Piatezki-Shapiro and Shafarevich about the K-3 surfaces. See [20].

In order to prove Theorem 3 we need to compactify partially the family $X_{L} \rightarrow M_{\left(L ; \gamma_{\eta}, \ldots, \gamma_{b}\right)}$ to a family $\left.\bar{X}_{L} \rightarrow \bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b}\right)}\right)$ by adding ${ }^{\mathbf{z}}$ singular Hyper-Kählerian algebraic manifold Zor which L is a very ample line bundle. Next we prove that $\bar{M}_{\left(L, \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$ is a Hausdorf space and p can be extended to a proper étale map

$$
p: M\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right) \rightarrow \operatorname{sq}\left(2, b_{2}-3\right) / S O(2) \times S O\left(b_{2}-3\right)
$$

But $S O_{0}\left(2, b_{2}-3\right) / S O(2) \times S O\left(b_{2}-3\right)$ is a siegel domain of IV type so $\mathrm{SO}_{0}\left(2, \mathrm{~b}_{2}-3\right) / \mathrm{SO}(2) \times \mathrm{SO}\left(\mathrm{b}_{2}-3\right)$ is a simply connected manifold. From this fact and since \bar{p} is a proper and Etale map we get that \bar{p} is a one-to-one surjective map. So we have proved both injectivity and surjectivity for algebraic Hyper-Kählerian manifolds.

So the main step of the proof of Theorem 3 is the partial compactification and this partial compactification is based on the following theorem

Theorem 1. Suppose $\pi^{*}: X^{*} \rightarrow D^{*}$ is a family of non-singular Hyper-Kahlerian manifolds such that:
a) $\pi *: X^{*} \rightarrow D$ has a trivial monodromy on $H_{2}\left(X_{t}, z\right)$

Then there exists a family $\pi: \chi \rightarrow D$ such that all its fibres are non-singular Hyper-Kahlerian manifolds and

This theorem is proved in $\$ 1$ and the proof 1 is based on the existence of Calabi-Yau metric, i.e. Ricci flat metrices on Hyper-Kahlerain manifolds. The existence of such metrics follows from the Yau's solution of Calabi's conjecture see [22]. More precisely the main point of the proof of Theorem 1 is based on the isometric deformations, which is an application of the existence of Ricci-flat metric. Theorem 1 gives an affirmative answer to a problem posed by Griffiths. He called this problem "the filling in problem". See [||]×[18] for counterexamples in case of surfaces of general type. 'Theorem 1 is a generalization of some results of Kulikov ([15]). See also [19]. Our proof is entirely different form that of Kulikov's since in my opinion the method of Kulikov works only for $k 3$ surfaces.

The first examples of Hyper-Kählerain manifolds of dim ≥ 4 were constructed by Fujiki [12]. These examples were generalized by Beauville and Miyaoka. See [1].

It is not very difficult to prove by the method used in the proof of Theorem 1 the' surjectivity of the period map for all Hyper-Kählerain manifold. This will be done in another paper.

Recently 0 . Debarre constructed using the so called elementary transformations introduced by Mukai in [17] two bimeromorphic but not biholomorphic non algebraic Kählerian manioflds. So the best we can hope in case of Hyper-Kählerian non-algebraic manifolds is that the Global Torelli theorem is true for bimeromorphic HyperKählerian maniofolds, i.e. if X and X ' have the same periods, i.e. isometric Hodge structe on $H^{2}(X, Z)$ and $H^{2}\left(X^{\prime}, z\right)$, then X and X^{\prime} are bimeromorphic.

Part of this work was done during my stay in IAS in Princeton and was supported by a NSF grant. It was finished in Max-Planck-Institut in Bonn. The author expresses his gratitude to both Institutes for the hospitality and excellent conditions for work.

SO. SOME DEFINITIONS AND NOTATIONS

DEFINITION 0.1 . Let X be a Mahler compact manifold such that: a) $\pi_{1}(X)=0$, i.e. X is a simply connected manifold
b) $\quad \operatorname{dim}_{\mathbb{c}^{x}}=2 n$
c) $\operatorname{dim}_{\mathbb{C}^{H^{\circ}}}\left(\mathrm{X}, \Omega^{2}\right)=1$ and let $0 \neq \omega_{\mathrm{X}}(2,0) \in H^{\circ}\left(\mathrm{X}, \Omega^{2}\right)$, then $\omega_{\mathrm{X}}(2,0)$ is a non-degenerate holomorphic two form on X, which means that for each point $x \in X$, there exists an open neighborhood u of x and local coordinates $z^{1}, \ldots, z^{2 n}$ such that:

$$
\left.\omega_{X}(2,0)\right|_{U}=\Sigma \omega_{\alpha \beta} \partial^{2} \wedge d \cdot z^{\beta}
$$

and get $\omega_{\alpha \beta}$ is a holomorphic function in U without zeroes and poles, ie. $\operatorname{det}\left(\omega_{\alpha \beta}\right) \in \Gamma\left(U, 0_{U}^{*}\right)$.

If a manifold X is a Mahler one and fulfills a), b) and c) then we will called it Hyper-Kuhlerian manifold.

Examples of such manifolds are constructed in [/2] and [1].

Some notations:
$W_{X}(k, 0)$ will be a holomorphic k-form on X
$W_{X}(0, k)=\bar{w}_{X}(k, \sigma)$, 1.e. the autiholomorphick-forms on X $D-w i l l$ be the unit disk, ie. $D=\{t \in \mathbb{C}| | t \mid<1\}$
$D^{*}=D \backslash\{0\}$.
If $\pi: X \longrightarrow D$ is a family of manifolds, then $X_{s}=\pi^{-1}(s)$.

If g is a Riemannian metric on X by ∇ we will denote the Levi-Chevita connection on T*X, where TX is the tangent bundle on X and $T * X$ is the cotangent bundle. By $T^{*} X \otimes \mathbb{C}$, we will denote the complexified cotangent bundle. ∇ induces a covariant derivative on $\Lambda^{P_{T}}{ }^{*}$ for any $p \in \mathbf{z}$, this covariant derivative we will denote again by ∇ $\Gamma\left(X, \Lambda^{p_{T}}\right)^{*}$ will be the global sections of the bundle $\Lambda^{P_{T}}$ *

If $\varphi \in \Gamma\left(X, \Lambda^{m}\left(T^{*} X \otimes \mathbb{C}\right)\right)$, then locally:

$$
\varphi=\sum_{p+q=m} \varphi_{A}, B_{q}, d z^{A}{ }^{A} \wedge \overline{\overline{B z}^{B_{q}}}
$$

where $A_{p}=\left(\alpha_{1}, \ldots, \alpha_{p}\right) \quad B_{q}=\left(\beta_{1}, \ldots, \beta_{q}\right)$ are multindexes
 local wordinates.

If $\varphi \in \Gamma\left(X, \Lambda^{P_{T}}{ }^{*} X\right)$ and $d \varphi=0$, then by $[\varphi]$ we will denote the class of cohomology that φ defines in $H^{p}(X, R)$.
§1. PROOF OF THEOREM 1.

Theorem 1. Let $\pi^{*}: X^{*} \longrightarrow D^{*}$ be a family of non-singular Hyper-Kählerian manifolds such that:
a) $\pi^{*}: X^{*} \longrightarrow D^{*}$ has a trivial monodromy on $H_{2}\left(X_{t}, z\right)$, i.e. if $T: H_{2}\left(X_{t}, Z\right) \rightarrow H_{2}\left(X_{t}, Z\right)$ is the monodromy operator, then $T=i d$.
b)

Then there exists a family $\pi: X \longrightarrow D$ such that:
a) $\pi^{-1}(0)$ is a non-singular Hyper-kahlerian manifold (algebraic one)
b)

§1.1. Marked, polarized Hyper-Kählerian manifolds and their Hodge structures of weight two

DEFINITION 1.1.1. The tripple $\left(x ; \gamma_{1}, \ldots, \gamma_{b_{2}} ; L\right)$ we will call a marked, polarized Hyper-Kăhlerain manifold if X is a Hyper-Kählerian manifold; $\quad \gamma_{1}, \ldots, \gamma_{p_{2}}$ is a basis of $H_{2}(X, z)$ and L is the cohomology class of the imaginary part of a Kahler metric on X, i.e. $L=\left[g_{\alpha \bar{B}}\right]$.

Remark. Notice that two marked polarized Hyper-Kahlerian manifolds $\left(X ; \gamma_{1}, \ldots, \gamma_{p_{2}} ; L\right) \&\left(Y ; \mu_{1}, \ldots, \mu_{p_{2}} ; L^{1}\right)$ are isomorphic iff there exists a bihomomorphic map $\varphi: X \xrightarrow{\sim} Y$ such that
a) $\varphi_{*}\left(\gamma_{i}\right)=\mu_{i} ; \varphi_{*}: H_{2}(X, Z) \longrightarrow H_{2}(Y, I)$
b) $\left.\left.\varphi^{*}\left(L^{1}\right)=L ; \varphi^{*}: H^{2}(Y, Z) \longrightarrow H^{2}\right) X, Z\right)$

DEFINITION 1.1.2. Suppose that $\pi: X \rightarrow S$ is a family of non-singular Hyper-Kahlerian manifolds and suppose that the monodromy operator T induced by the action of $\pi_{1}(S)$ on $H_{2}\left(X_{t}, z\right)$ is the identity operator. Now it is clear that
if we fix a basis $\gamma_{1}, \ldots, \gamma_{b_{2}}$ of $H_{2}\left(X_{t}, z\right)$, then since the monodromy operator is the trivial one we get that for every $s \in S \quad \gamma_{1}, \ldots, \gamma_{b}$ will be a basis in $H_{2}\left(X_{s}, z\right)$. Now we can define the period map:

$$
p: s \rightarrow P\left(H^{2}(X, \mathbb{L})\right)
$$

in the following manner:

$$
p(s)=\left(\ldots, \int_{\gamma_{i}} \omega_{s}(2.0), \ldots .\right)
$$

Now we want to see where the image of S lie in $P\left(H^{2}(X, \mathbb{L})\right)$. So for that reason we will define a scalar product in $H^{2}(X, \mathbb{C})$, where X is a marked polarized HyperKählerian manifold.

DEFINITION 1.1.3. The scalar product in $\cdot H^{2}(X, \mathbb{R})<,>$ is defined as follows:

$$
\left\langle w_{1}, w_{2}\right\rangle=\int_{x} w_{1} \wedge w_{2} \wedge L^{n-2} \text {, where } w_{1}, w_{2} \in H^{2}(X, R)
$$

and L is the polarization class.

PROPOSITION 1.1.3.4. The scalar product $<$, $>$ has signature $\left(3, b_{2}-3\right)$, where $b_{2}=\operatorname{dim}_{R} H^{2}(X, R)$

Proof: Note that

$$
\langle L, L\rangle=\int f^{n}=\operatorname{vol}(X)>0, \text { where vol }(X) \text { is the volume }
$$ of X. with respect to the metric $\left(g_{a \bar{B}}\right)$, where $\left[g_{\alpha \bar{\beta}}\right]=$ L. Next we will prove the following relations:

(1.1.4.) $\left.\quad<\omega_{X}(2,0), \omega_{X}(2,0)\right\rangle=0$
$<\omega_{x}(2,0), \overline{\omega_{x}}(2,0) \gg 0$
(1.1.6)

$$
\left\langle\omega_{X}(2,0), L\right\rangle=0
$$

Notice that (1.1.4) and (1.1.6) follow from the definition of \langle,$\rangle . In order to prove (1.1.5) we need the following lemma:$

Lemma. If η is a primitive form of type (p, q), then

$$
*_{n}=\frac{(\sqrt{-1})^{p-q}}{(2 n-p-q)!}(-1)^{\frac{(p+q)(p+q+1)}{2}} x^{2 n-p-q} \bar{n}
$$

where * is the Hodge star operator. (For the proof see [81) From this lemma it follows that:

$$
\left\langle\omega_{X}(2,0), \overline{\omega_{X}(2,0)}=\int_{X} \omega_{X}(2,0) \wedge * \omega_{X}(2,0)=\left\|\omega_{X}(2,0)\right\|^{2}>0\right.
$$

So (1.1.5.) is proved.

Let $\omega_{X}(2,0)=\operatorname{Re} \omega_{X}(2,0)+i \operatorname{Im}{\underset{X}{x}}(2,0)$, then from (1.1.4.) and (1.1.5.) it follows that: <Re $w_{X}(2,0)$, Re $\left.\psi_{X}(2,0)\right\rangle=\left\langle\operatorname{Im} w_{X}(2,0)\right.$, $\left.\operatorname{Im} \omega_{X}(2,0)\right\rangle=\frac{1}{2}\left\|w_{X}(2,0)\right\|^{2}>0$ and $\left\langle\operatorname{Re} \omega_{X}(2,0), \operatorname{Im} \omega_{X}(2,0)\right\rangle=0$. So we see that $L, \operatorname{Re} w_{X}(2,0)$, Im $w_{X}(2,0)$ are three orthonormal vectors in
$H^{2}(X, \mathbb{R})$ such that:

$$
\langle L, L\rangle>0,\left\langle\operatorname{Re} \omega_{X}(2,0), \operatorname{Re} \omega_{X}(2,0)\right\rangle=\left\langle\operatorname{Im} \omega_{X}(2,0), \operatorname{Im} \omega_{X}(2,0) \gg 0\right.
$$

So we see that $<,>$ has at least signature $\left(3, b_{2}-3\right)$. Now since $H^{2}(X, \mathbb{R})=\mathbb{R} \operatorname{Re} \omega_{X}(2,0)+\mathbb{R} \operatorname{Im} \omega_{X}(2,0)+\mathbb{R} I+H^{1,1}(X, \mathbb{R})_{0}$ where $H^{1,1}(X, \mathbb{R})_{0}=\left\{\omega \in H^{1,1}(X, \mathbb{R}) \mid\langle\omega, L\rangle=0\right\}$, i.e. $H^{1,1}(X, \mathbb{R})_{0}$ are the primitive (1.1) classes in $H^{2}(X, \mathbb{R})$, we get that <,> has signature $\left(3, b_{2}-3\right)$. Indeed from the lemma used above it follows that if $\omega \in H^{1,1}(x, \mathbb{R})_{0}$ then $\langle\omega, \omega\rangle<0$. It is easy to see that $\left\langle\omega_{X}(2,0), \omega\right\rangle=0$ if $\omega \in H^{1,1}(X, \mathbb{R})_{0}$.
Q.E.D.

The scalar product (1.1.3) defines a nonsingular quadrics Q in $P\left(H^{2}(X, \mathbb{C})\right)$ in the following way:
(1.1.7.) $\quad Q \stackrel{\text { def }}{\underline{E}}\left\{u \in \mathbf{P}\left(H^{2}(X, \mathbb{C})\right)|<u, u\rangle=0\right\}$

Let Ω be
(1.1.8.)

$$
\Omega \stackrel{\operatorname{de} \tilde{\mathrm{I}}}{=}\{u \in Q \mid\langle u, \bar{u} \gg 0\}
$$

Ω is an open subset in Q. Let

$$
\begin{equation*}
\Omega(L)=\{u \in \Omega|<u, L\rangle=0\} \tag{1.1.9.}
\end{equation*}
$$

From (1.1.4.), (1.1.5.) and (1.1.6.) and Griffith's theory [] we obtain that if $X \rightarrow S$ is a family of marked
polaxized Hyper-Kahlerian manifolds, then $p(S) \subset \Omega(L)$, where p.is the period map.

Definition 1.1 .10 . $\Omega(\mathrm{L})$ we will call the period domain of the polarized Hodge structure of weight two on HyperKählerian manifolds.
Remark 1.1.11. a) If $L \in H^{2}(X, Z)$, then $<,>$ is defined over 2.
b) It is not difficult to see that:

$$
\Omega(L) \equiv \operatorname{SO}_{0}\left(2, \mathrm{~b}_{3}-3\right) / \mathrm{U}(1) \times \mathrm{SO}_{2}\left(\mathrm{~b}_{2}^{-3)}\right.
$$

§ 1.2. Calabi-Yau metrics and isometric deformations of Hyper-Kählerian manifolds.

Definition 1.2.1. A Kahler metric $\left(g_{\alpha \bar{\beta}}\right)$ on a Hyper-Kählerian manifold will be called Calabi-Yau metric if

$$
\operatorname{Ricci}\left(g_{\alpha \bar{\beta}}\right)=\text { する } \log \operatorname{det}\left(g_{\alpha \bar{\beta}}\right) \equiv 0
$$

The existence of Calabi-Yau metric follows from the deep work of Yau [22]. Notice that in the polarization class of L, there exists a unique Calabi-Yau metric $g_{a \bar{\beta}}$ such that

$$
\left[g_{\alpha \bar{\beta}}\right] \equiv L
$$

Let us fix the Calabi-Yau metric $\quad g_{\alpha \bar{B}}$ in L. This metric induces covariant differenciation on $\Lambda^{2}(T * x \bullet a)$. We will denote it by ∇.

Lemma 1.2.2. $\nabla \omega_{X}(2,0)=\nabla \omega_{X}(0,2) \equiv 0$

Proof: The following formula is proved in [14]:
Let φ be a form of type (p, q)

$$
\varphi=1 / p!q!\quad \sum \varphi_{A_{p}}, \bar{B}_{q} d z^{A_{p}} \wedge \overline{\mathrm{~B}}^{\bar{B}} q
$$

$A=\left(\alpha_{1}, \ldots, \alpha_{p}\right) ; B=\left(\beta_{1}, \ldots, \beta_{q}\right)$
(1.1.2.1.) $\quad(\square \varphi)\left(A_{p}, \bar{B}_{q}\right)=-\sum_{\alpha, \beta} g^{\bar{\beta} \alpha_{\nabla_{\alpha}} \bar{\nabla}_{\beta}{ }^{\varphi}\left(A_{p}, \bar{B}_{q}\right)+}$

$$
\begin{aligned}
& \left.\bar{\beta}_{k+1}, \ldots, \bar{\beta}_{q}\right) \\
& -\sum_{k=1}^{q} \sum_{\tau} R_{\bar{\beta}^{\tau}} \bar{\tau}^{\prime} \varphi\left(A_{p}, \bar{\beta}_{1}, \ldots, \bar{\beta}_{k-1}, \bar{\tau}_{\tau}, \bar{\beta}_{k+1}, \ldots, \bar{\beta}_{q}\right)
\end{aligned}
$$

where \quad is the Laplace-Beltrami operator, $R_{\bar{\alpha} \beta^{\prime}} \bar{\gamma} \sigma$ is the curvature tensor, $R_{\bar{\mu} \nu}$ is the Riccio tensor and $\left(g^{\bar{B} \alpha}\right)=\left(g_{\mu \sigma}\right)^{1}$.

$$
\text { In our case } R_{\mu \nu} \equiv 0 \text { and } \omega_{x}(0,2) \text { is an anti-holomorphic }
$$ two-form, so we obtain:

(1.2.2.2.) $\quad \square \omega_{X}(0,2)=-\sum_{\beta} \quad \beta \alpha_{\alpha} \nabla_{\beta} \omega_{X}(0,2) \equiv 0$

On the other hand it is easy to see:

$$
\begin{aligned}
0 & \left.=\int_{x} \sum_{i, j} \sum_{\beta, \alpha} g^{\bar{\beta} \alpha^{\prime}} \nabla_{\alpha} \bar{\nabla}_{\beta} \omega_{X}(0,2)\right)_{i j} \overline{\left(\omega_{X}(0,2)\right)^{i j}} \operatorname{det}\left(g_{\alpha, \beta}\right) 1 / n!= \\
& =\sum_{\beta}\left\langle\bar{\nabla}_{\beta} \omega_{X}(0,2), \bar{\nabla}_{\beta} \omega_{X}(0,2)\right\rangle, \text { where here }\left\langle\omega_{1}, \omega_{2}\right\rangle \text { means, }
\end{aligned}
$$

that $\left\langle\omega_{1}, \omega_{2}\right\rangle=\int_{x} \omega_{1} \wedge * \omega_{2}$ (* is the Hodge star operator.) So we obtain that

$$
\sum_{\beta}\left\|\bar{\nabla}_{B}\right\|_{X}(0,2) \|^{2}=0 \neq \bar{\nabla}_{B^{\omega}}(0,2) \equiv 0 .
$$

Q.E.D.

Corollary 1.2.3. If $\omega_{X}(2,0)=\operatorname{Re} \omega_{X}(2,0)+i \operatorname{Im} \omega_{X}(2,0)$, then

$$
\nabla \operatorname{Re} \omega_{X}(2,0) \equiv \nabla \operatorname{Im} \omega_{X}(2,0) \equiv 0
$$

(1.2.4) From the definition of a Kahler metric, it follows that

$$
\nabla\left(i \sum_{\alpha \bar{B}} d z^{\alpha} \wedge d \bar{z}^{B}\right)=\nabla\left(\operatorname{Im} g_{\alpha \bar{B}}\right) \equiv 0
$$

Re $\omega_{X}(2,0)$. $\operatorname{Im} \omega_{X}(2,0)$ and $\operatorname{Im}\left(g_{\alpha \sigma}\right)$ define a three dimensional subsapce $E_{X}(L)$ in $\Gamma\left(X, \Lambda^{2} T^{*} X\right)$. Notice that $E_{X}(L)$ consists of two forms parallel with the respect to the connection induced by the Calabi-Yau metric $\left(g_{\alpha \bar{\beta}}\right)$. Since Re $\omega_{X}(2,0)$, Im $\omega_{X}(2,0)$ are harmonic forms, we may consider $E_{X}(L)$ as a subspace in $H^{2}(X, R)$. We may suppose that $<R e \omega_{X}(2,0)$, $\left.\operatorname{Re} \omega_{x}(2,0)\right\rangle=\left\langle\operatorname{Im} \omega_{X}(2,0), \operatorname{Im} \omega_{X}(2,0)\right\rangle=\left\langle\operatorname{Im} g_{\alpha \vec{B}}, \operatorname{Im} g_{\alpha \bar{B}}\right\rangle=1$. On the other hand $\left\langle\operatorname{Re} \omega_{X}(2,0), \operatorname{Im} v_{X}(2,0)\right\rangle=\left\langle\operatorname{Re} \omega_{X}(2,0)\right.$, $\left.\operatorname{Im}\left(g_{a \bar{B}}\right)\right\rangle=\left\langle\operatorname{Im} \omega_{X}(2,0)\right.$, $\left.\operatorname{Im}\left(g_{\alpha \bar{B}}\right)\right\rangle=0$. So $\operatorname{Re} \omega_{X}(2,0)$, $\operatorname{Im} \omega_{X}(2,0)$ and $\operatorname{Im}\left(g_{\alpha \bar{\beta}}\right)$ is an orthonormal base in $E_{X}(L) \subset \Gamma\left(X, \Lambda^{2} T^{*}\right)$ with respect to the scalar product induced by $g_{a \bar{\beta}}$ in $\Lambda^{2} T^{*}$. Notice that this scalar product is the same as $<,>$ defined by (1.1.3).

Let $\gamma=a \operatorname{Re} \omega_{X}(2,0)+b \operatorname{Im} \omega_{X}(2,0)+c \operatorname{Im}\left(g_{\alpha \bar{B}}\right)$, where $a, b, c \in \mathbb{R}$ and $a^{2}+b^{2}+c^{2}=1$. Since $\gamma \in E_{x}(L)$, then
(*)

$$
\nabla \gamma \equiv 0
$$

Locally γ can be written in the following way

$$
\gamma=\sum \gamma_{\mu \nu} d x^{\mu} \wedge d x^{v}
$$

If $\sum_{\tau, \nu} g_{\tau \nu} d x^{\tau} \otimes d x^{\nu}$ is the Riemannian Ricci flat metric on X defined by the Calabi-Yau metric $\left(g_{\alpha \bar{\beta}}\right)$ on X, then we will define $J(\gamma)$ in the following manner 1.2.6. $J(\gamma) \in \Gamma(X, T * \otimes T)$, where $J(\gamma)_{\beta}^{\alpha} \operatorname{def}^{f} \sum_{\tau} g^{\alpha \tau} \gamma_{\tau \beta}$ Clearly $\quad \nabla(J(\gamma)) \equiv 0$.

Lemma 1.2.7. a) $J(\gamma)$ defines a new integrable complex structure on X
b) γ is an imaginary part of a Calabi-Yau metric with respect to the new complex struture $J(\gamma)$. The Calabi-Yau metric defined by γ and $J(\gamma)$ is equivalent as a Riemannian metric to the Calabi-Yau metric $g_{\alpha \bar{B}}$, that we started with. Proof: Since $\nabla \mathcal{J}(\gamma) \equiv 0$ if we prove that in one point $x \in X$ $J(\gamma) \circ J(\gamma)=-i d$, then $J(\gamma)$ will define an almost complex structure globally on X. Then we will need to show that this complex struture is an integrable one.

So first we will prove that at one point $x \in X$ $J(\gamma) \cdot J(\gamma)=-i d$. First since $\omega_{X}(2,0)$ is a parallel with
respect to the connection induced by Calabi-Yau metric, it follows that the holonomy group of the Calabi-Yau metric is $\mathrm{Sp}(\mathrm{n})$. This means that globally we can find $j \in \Gamma\left(X, T^{*} \bullet T\right)$ such that $\nabla j=0$ and we have at each point x

$$
\mathrm{T}^{*}{ }_{x, x}^{1,0}=\boldsymbol{H}^{n}={e^{n}}^{n}+{c^{n}}^{n}
$$

This splitting is global. On the other hand the Calabi-Yau metric on $T_{X}^{*}{ }^{1,0}=X^{n}=\mathbb{R}^{n}+\mathbb{R}^{n_{i}}+\mathbb{R}^{n_{j}}+\mathbb{R}^{n_{k}} \quad$ is induced by the standart scalar product on H^{n}, so from here it follows that we can find an orthonormal quaternionic base in

$$
T_{x, X}^{1,0}=a^{n}+a^{n} j
$$

$h_{1}^{1}=e_{1}^{1}+e^{1+n} j, h^{2}=e^{2+n_{j}}, \ldots . h^{n}=e^{n}+e^{2 n} j$. Then the imaginary part of Calabi-Yau metric can be written in the following way:

$$
\begin{equation*}
\left.\operatorname{Im}\left(g_{\alpha \bar{\beta}}\right)\right|_{T \times, 1,0}=i \sum_{i=1}^{2 n} e^{i} \wedge e^{i} \tag{*}
\end{equation*}
$$

(**) and $\left.\omega_{x}(2,0)\right|_{T^{*}{ }_{x, 0}, 0^{\prime}=e^{1} \wedge e^{1+n}+e^{2} \wedge e^{2+n}+\ldots+e^{u} \wedge e^{2 n}=}$

$$
\sum_{i=1}^{n} e^{i} \wedge e^{i+n}
$$

Let us denote by I the original complex structure on X. Notice that $J\left(I m g_{a \bar{B}}\right)=I$. (See how we defined from Y $I(\gamma))$. Let us denote by $J=J\left(\operatorname{Re} \omega_{X}(2,0)\right)$ and by $K=J\left(\operatorname{Im} \omega_{X}(2,0)\right)$. From (*) and (**) we see immediately that:
(***)

$$
I^{2}=J^{2}=K^{2}=-i d, \quad I J+J I=I K+K I=J K+K J=0
$$

So remember that $\gamma=a \operatorname{Re} \omega_{X}(2,0)+\operatorname{bIm} \omega_{X}(2,0)+c I m\left(g_{\alpha \bar{B}}\right)$, so

$$
I(\gamma)=a J+b K+c I, a^{2}+b^{2}+c^{2}=1
$$

So from (***) we get

$$
I(\gamma) \circ I(\gamma)=a^{2} J \circ J+b^{2} K \circ K+c^{2} I \circ I=-\left(a^{2}+b^{2}+c^{2}\right) i d=-1 a
$$

So we have proved that $I(\gamma)$ defines an almost complex structure on X. Next we must prove that the almost complex structure $J(\gamma)$ is integrable. The proof is based on the following fact:

Andreotti-Weil remark

Let ω be a n-complex valued form in a neighborhood U of a point $x \in X$, where X is a n-dimensional real manifold. Let ω satisfies:
a) $P(\omega)=0$, where P are the Plücker relation. This means that at each point $x \in X \quad{ }^{\omega} \mid x \in X^{x}=\zeta^{1} \wedge \ldots \wedge \zeta^{n}, \zeta^{i} \in T_{x, X}^{*} \otimes \mathbb{C}$, so ω defines a subspace $T_{x}^{1,0} \subset T_{X, X}^{*} \otimes \mathbb{C}$ at each point $x \in V$
b) $w \wedge \bar{w}=f\left(x_{1}, \ldots, x_{2 n}\right) d x^{1} \wedge \ldots \wedge d x^{2 n}$, where $f\left(x_{1}, \ldots, x_{-2 n}\right)>0$ in U. This means that $T_{X}^{1,0}+\bar{T}^{1,0}=T_{X, X}^{*} \otimes a$ in U.
c) $d w=0$

Notice that a) and b) means that w defines an almost complex struture in U. The condition c) means that this complex struture is integrable.

So in order to use Andreotti-Weil remark we need to construct the form w, that satisfies a), b) and c). So first we will constructaglobally ciefined form ${ }^{\omega_{J}}(\gamma)(2,0)$ of type $(2,0)$ with respect ot $J(\gamma)$ and then we will prove that:

$$
{ }^{\omega_{J(\gamma)}(2 n, 0)}=\underbrace{\omega_{J i m e s}}_{\underbrace{}_{J(\gamma)}(2,0) \wedge \ldots \wedge{ }_{J(\gamma)}(2,0)}
$$

fulfills the conditions of Andreotti-Weil's remark.

Constructions of ${ }^{\omega} J(\gamma) \xlongequal{(2.0)}$.

Let (α, β, γ) be an orthonormal base of $E_{X}(L) \subset \Gamma\left(X, \Lambda^{2} T * X\right)$ with respect to the scalar product induced by Calabi-Yau metric in $r\left(X, \Lambda^{2} T^{*} X\right)$. We suppose that (α, β, γ) define the same orientation on $E_{X}(L)$ as $\left(\operatorname{Re} u_{X}(2,0), \operatorname{Im} \omega_{X}(2,0), \operatorname{Im}\left(g_{\alpha \bar{\beta}}\right)\right)$.

$$
\begin{equation*}
\omega_{J(\gamma)}(2,0) \stackrel{\operatorname{def}}{=} \alpha+i \beta \tag{1.2.7.1}
\end{equation*}
$$

Proposition (1.2.7.2.) $\quad \omega_{J(\gamma)}(2,0)=\alpha+i \beta \quad$ is a form of type (2,0) with respect to the almost complex structure on x defined by $J(\gamma)$.

Proof: Since both $\omega_{J}(\gamma)(2,0)$ and $J(\gamma)$ are paraller with respect to the connection ∇ induced by Calabi-Yau metric $\left(g_{a \bar{B}}\right)$, we need to check that $\omega_{J(\gamma)}(2,0)$ is a form of type $(2,0)$ at one point x with respect to $J(\gamma)$. We will define an action of $\operatorname{Sp}(1)$ on $T * X$. Remember that the holonomy group
of the Calabi-Yau metric $\left(g_{\alpha \bar{\beta}}\right)$ was $\operatorname{Sp}(n)$, so we can introduce on $T_{X, X}^{*}$ a quaternionie structure, i.e.

$$
\mathrm{T}_{\mathrm{X}, \mathrm{X}}^{*}=\mathbb{a}+\mathbb{C}^{\mathrm{n}}=\mathbf{H}^{\mathrm{n}} \quad(\mathbf{H} \quad \text { is the quaternionic field })
$$

($g_{\alpha \bar{\beta}}$) is induced in H^{n} by the standart quaternionic scalar product, i.e. let $h^{1}=e^{1}+e^{n+1} j, \ldots, h^{n}=e^{n}+e^{2 n} j$ is a quaternionic orthonormal basis in \mathbf{H}^{n}, then the restriction of Calabi-Yau's metric on $T_{X, X}^{*}$ is obtained from the following quaternionic product in \mathbb{H}^{n}. Let $u=\sum_{i=1} h^{i} u_{i}$ and $v=\sum_{i=1}^{n} h^{i} v_{i}$, where $v_{i} \in \mathbf{H}$, then

$$
\langle u, v\rangle=\sum u_{i} \bar{v}_{i}
$$

Now we can identify $\operatorname{Sp}(1)=\{A \in \mathbf{H} \mid M \bar{A}=1\}$. Then $\mathrm{Sp}(1)$ acts on \mathbf{H}^{n} in the following way:

Let $A \in S p(1)$ and let $u=\sum h^{i} u_{i}$, then

$$
A u=\left\{h^{i} u_{i} A, \text { where } \operatorname{Sp}(1)=\left\{A \in H \mid\|A\|^{2}=1\right\}\right.
$$

Clearly $\operatorname{Sp}(1) \subset S p(n)$; i.e. this action of $S p(1)$ preserves the quaternionic scalar product $\langle u, v\rangle=. \sum u_{i} \bar{u}_{i}$.

The following remark is an easy exercise.

Remark 1. $\operatorname{Sp}(1)$ induces an action on $\Lambda^{2} T_{X, X}^{*}$ and $E_{X}(L) \subset$ $\subset \Gamma\left(X, \Lambda^{2} T * X\right)$ is invariant under this induced action of $S p(1)$. More over $\operatorname{Sp}(1)$ induces the standart $S O(3)$ action on $E_{x}(L)$ with respect to the Euclidean metric on $E_{X}(L)$ induced by the orthonormal basis $\left(\operatorname{Re} \omega_{x}(2,0), \operatorname{Im} \omega_{x}(2,0), \operatorname{Im}\left(g_{\alpha \bar{\beta}}\right)\right)$. From Remark 1
it follows immediately that there exists $A \in S p(1) \subset S p(n)$ such that:

$$
\begin{equation*}
A\left(\operatorname{Re} \omega_{x}(2,0)=\alpha, A\left(\operatorname{Im} \omega_{x}(2,0)\right)=B, A\left(\operatorname{Im}\left(g_{\alpha \bar{B}}\right)\right)=\gamma\right. \tag{**}
\end{equation*}
$$

So

$$
A\left(\omega_{x}(2,0)\right)=\omega_{J(\gamma)}(2,0)
$$

On the other hand from the definition of $J(\gamma)$ we see immediately that

$$
\begin{aligned}
(* * *) \quad J(\gamma)=A I A^{t} \quad & \left(A \text { means a matrix and } A A^{t}=E\right. \\
& \text { since } A \in \operatorname{Sp}(1) \subset \operatorname{Sp}(n) \subset S O(4 n))
\end{aligned}
$$

So from (**) and (***) we get that $\omega_{J(\gamma)}(2,0)$ is a form of type $(2,0)$ with respect to the almost complex structure $J(\gamma)$. This is so since if $\Lambda^{2,0}$ is the subspace of $(2,0)$ vectors in $\Lambda^{2}\left(T_{X, X}^{*}\right.$ © $)$ with respect to I and if $J(\gamma)=A I A^{t}$, then $A\left(\Lambda^{2,0}\right)$ is the $(2,0)$ subspace of $\Lambda^{2}\left(T_{X}^{*}, X \in \mathbb{C}\right)$ with respect to $J(\gamma)=A I A^{t}$.
Q.E.D.

Now we need to show that

$$
\omega_{J(\gamma)}(2 n, 0)=\underbrace{\omega_{J \text {-times }}}_{V_{J(\gamma)}(2,0) \wedge \ldots \wedge \omega_{J(\gamma)}(2,0)}
$$

fulfills the conditions a), b) and c) of Andreotti-Weil remark. Condition al is fulfilled since $\omega_{J(\gamma)}(2 n, 0)$ is a $(2 n, 0)$ type of form with respect to the almost complex structure operator $J(Y)$ acting on X and $\operatorname{dim}_{R} X=4 n$
b) It is easy to see that $\omega_{J(\gamma)}(2 n, 0) \wedge \overline{\omega_{J(\gamma)}}{ }^{(2 n, 0)}=\operatorname{vol}\left(g_{\alpha \bar{\beta}}\right)$ at each point $x \in X$.
c) From the definition of $\omega_{J(\gamma)}(2,0)$ it follows that

$$
\mathrm{d} \omega_{J}(\gamma)(2,0) \equiv 0
$$

So $\quad d \omega_{J(\gamma)}(2 n, 0) \equiv 0$.
Q.E.D.

Proof of (1.7.3.b): If $\gamma=\int \gamma_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$, then γ defines a scalar product in $\mathbb{T}_{x, X}^{*}$ in the following way: Let $u=\sum u_{\alpha} d x^{\alpha}$ and $y=\sum v_{\beta} d x^{\beta}$, then $\langle u, v\rangle_{\gamma}=\sum u_{\alpha} \gamma_{\alpha \beta} u_{\beta}$

So if we prove that for each $u \in T_{x, X}^{*}$ we have: $\left.\langle J(\gamma), u, u\rangle_{\gamma}\right\rangle 0$
then we will have that γ is an imaginary part of a Kähler metric on X with respect to $J(\gamma)$ since $d \gamma=0$. So we may suppose that at $x \in X\left(g_{\alpha \bar{\beta}}\right)=\delta_{\alpha \bar{\beta}}$, then:

$$
J(\gamma)_{\beta}^{\alpha}=\gamma_{\alpha \beta}, \gamma_{\alpha \beta}=-\gamma_{\beta \alpha} \text { and } \gamma_{\alpha \beta} \gamma_{\beta \mu}=-\delta_{\alpha \mu}
$$

Now if $u=\sum u_{\alpha} d x^{\alpha}$, then

$$
\begin{aligned}
& \left\langle J(\gamma) u_{r} u\right\rangle_{\gamma}=\sum \gamma_{\mu \alpha} u_{\alpha} \gamma_{\mu \beta}=\sum u_{\alpha}\left(-\gamma_{\alpha \mu}\right) \gamma_{\mu \beta} u_{\beta}= \\
& =\sum u_{\alpha}\left(-\delta_{\alpha \beta}\right) u_{\beta}=\sum u_{\alpha}^{2}>0
\end{aligned}
$$

The last calculation show that γ is an imaginary part of a Kahler metric on X with respect to the complex structure $J(\gamma)$ and this new Kahler metric is equivalent as Riemann
metric to the Calabi-Yau metric we started with.
Q.E.D.

Remark 1.2.8. Lemma 1.2 .8 shows that every oriented two plane $E \subset E_{X}(L) \subset \Gamma\left(X, \Lambda^{2} T * X\right)$ defines a new complex structure on X. So we obtain a family $x \rightarrow s^{2}$, where $s^{2}=\left\{\gamma \in E_{X}(L) \mid\langle\gamma, \gamma\rangle=1\right\}$. Every point $t \in S^{2}$ defines an oriented two plane $E_{t} \subset E_{x}(L)$ in the following manner: $E_{t}=\left\{\operatorname{Re} \omega_{t}(2,0)\right.$, In $\left.\omega_{t}(2,0)\right\}$. Notice the conjugate complex structure on X_{t} defines the same $E_{t} \subset E_{x}(L)$ but with different orientation, since $\overline{\omega_{t}}(2,0)$ is the holomorphic twoform with respect to the conjugate complex structure and

$$
\overline{\omega_{t}}(2,0)=\operatorname{Re} \omega_{t}(2,0)-1 \operatorname{Im} \omega_{t}(2,0)
$$

See also [7].

§ 1.3. Hilbert scheme of Hyper-Kahlerian manifolds

Let X be a projective Hyper-Kahlerian manifold embedded
in $\mathbf{P}^{\mathbf{N}}$. Fubbini-Schtudy metric on $\mathbf{P}^{\mathbf{N}}$ in a natural way defines a class of polarization L. on X. Let us denote by $\widetilde{H i l b}_{X / \mathbb{P}} N$, the component of the Hilbert scheme that contains X. Let $H i l b X / \mathbf{P}^{N}$ be a subscheme of $\widetilde{H i l b} \cdot X / \mathbb{P}^{N}$ such that $\mathrm{Hilb}_{\mathrm{X} / \mathrm{p}^{N}}$ parametrizes all non-singular HyperKählerian manifolds in the family $\tilde{\chi}^{\rightarrow}+\overparen{H i l b}_{\mathrm{X} / \mathbb{P}^{N}}$. Grothendieck proved in SGA, that $H i l b_{X / \mathbb{P}^{N}}$ is a quasi-projective algebraic space.

Definition 1.3.1. $\quad \Gamma_{L} \stackrel{\text { def }}{=}\left\{\gamma \in\right.$ Aut $H^{2}(X, Z) \mid\langle\gamma(u), \gamma(u)\rangle=$ $\mp\langle u, u\rangle, \gamma(L)=L\}$. Now we can define the period map $p: H i l b_{X / P^{N}} \rightarrow \Omega(L) / \Gamma_{L}$. From the general Baily-Borel compactification theory, it follows that $\Omega(L) / \Gamma_{L}$ is a quasi-projective manifold.

Lemma 1.3.2. There exists an open Zariski set $H^{\prime} b^{\prime} X / \mathbb{P}^{N} \subset$
 subset in $\Omega(L) / r_{L}$ and every point of W corresponds to the algebraic Hyper-Kählerian manifold.

Proof: From the famous Hironaka's "resolution of singularity" theorem it follows that we can compactify $\operatorname{Hilb}_{X / \mathbb{P}^{N} \subset \hat{H i l b}}^{X / P^{N}}$ in such a way that:

1) $\operatorname{Hilb}_{X / \mathbb{P}^{N}}$ is a projective manifold obtained from projective manifold by successive blows up on non-singular submanifolds.
2) $\hat{H i l b}_{X / P N} \backslash \operatorname{Hilb}_{X / \mathbf{p}^{N}}=\mathrm{D}$ is a divisor with normal crossings Borel proved in [5] that the period map:

$$
\mathbf{p}: \mathrm{Hilb}_{\mathbf{X} / \mathbf{P}^{N}} \rightarrow \Omega(L) / \Gamma_{L}
$$

can be prolonged to a map:

$$
\hat{p}: \hat{\mathrm{Hilb}}_{\mathrm{X} / \mathrm{P}^{N}} \rightarrow \overline{\Omega(\mathrm{~L}) / \mathrm{I}_{\mathrm{L}}}
$$

where $\overline{\Omega(L) / \Gamma_{L}}$ is the Baily-Borel compactification of $\Omega(L) / \Gamma_{L}$. From Baily-Borel theory it follows that $\Omega(L) / \Gamma_{L}$ is a Zariski open set in $\overline{\Omega(L) / \Gamma_{L}}$, and $\overline{\Omega(L) / \Gamma_{L}}$ is a projective algebraic variety.

Proposition 1.3.2.1. The map $\hat{p}: \hat{H i l b}_{X / P N} \rightarrow \hat{\Omega(L) / \Gamma_{L}}$ is a surjective map.

Proof: First we will recall some facts about local deformation theory of Hyper-Kählerian manifolds due to Bogomolov: The Kuranishi space of any Hyper-Kahlexian manifold is a nonsingular manifold of dimension $h^{1,1}=\operatorname{dim}_{a^{H}}\left(^{1}\right)$. See [4].

For trivial reasons the local Torelli theorem is true for the period map defined in § 1.1. Beauville proved in [1] that $p(U)$ lies in the open set of the quadric Q defined by (1.1.7.) and (1.1.8.). So we may suppose that U is an open set in Q. Let U_{L} be defined as follows a point $t \in U_{L}$ jiff L is a class of type (1.1) in the Hyper-Kahlerian manifold X_{t} that corresponds to the point t. So $U_{L}=U \cap H_{L}$, where H_{L} is the hyperplane in $P\left(H^{2}(X, \mathbb{C})\right)$ defined by:

$$
\mathrm{B}_{\mathrm{L}}=\left\{u \in \mathbb{P}\left(\mathrm{H}^{2}(\mathrm{X}, \mathrm{C})\right) \mid\langle u, L\rangle=0\right\}
$$

So $\operatorname{dim}_{c_{L}} U_{L^{1,1}}-1=\operatorname{dim} \Omega(L) / \Gamma_{L}$. On the other hand we have a family ${\underset{U}{L}}_{X_{L}}$. Now $L_{t} \in H^{1,1}\left(X_{t}, Z\right)$ is a fix class so
from here we obtain a line bundle L on X_{L}. Now suppose that $L_{\mid X_{t}}=L_{t}$ is a very ample line bundle, i.e. if $\varphi_{0}, \ldots, \varphi_{N} \in H^{0}\left(X_{t}, L_{t}\right)$ and $\left(\varphi_{0}, \ldots, \varphi_{N}\right)$ is a basis of $H^{0}\left(X_{t}, L_{t}\right)$, then $\varphi_{0}, \ldots, \varphi_{N}$ define an embedding

$$
x_{t} \hookrightarrow \mathbf{p}^{N}
$$

By continuity argument we will get (that may be after shrinking U_{L}):

From the universal properties of $H i l b \cdot \mathrm{X} / \mathbb{P N}$ it follows that $\mathrm{U}_{\mathrm{L}} \subset \mathrm{Hilb}_{\cdot \mathrm{X} / \mathbb{P}^{N}}$, so from here we get that

$$
\operatorname{dim}_{\mathbb{C}} \hat{p}\left(\hat{\operatorname{Hi}}^{\hat{1}} b_{\mathrm{X} / \mathbb{P}^{N}}\right)=\operatorname{dim}_{\mathbb{Q}} \overline{\Omega(L)} / \Gamma_{L} .
$$

Now since \hat{p} is a projective morphism and so \hat{p} is proper we get that $\hat{p}\left(H i l b_{X / p^{N}}\right)=\overline{\Omega(L)} / \Gamma_{L}$
Q.E.D.

Now since the map $: \hat{p}: \hat{H i l b} b_{X} / p N \rightarrow \overline{\Omega(L)} / L$ is a proper surjective map, then $P(D)=p\left(H i l b_{X / \mathbb{P N}} \backslash H i l b_{X / \mathbb{P}}{ }^{N}\right)=\bar{V}$ is a proper analytic subset in $\overline{\Omega(L)} / T_{L}$. Let
$\mathrm{V} \mp \overline{\mathrm{V}} \cap(\overline{\mathrm{V}} \cap(\overline{\Omega(L)} / \Gamma) \backslash(\Omega(\mathrm{L}) / \mathrm{F}))$ and let. $W=\Omega(\mathrm{L}) / \Gamma_{\mathrm{L}} \backslash \mathrm{V}$. Clearly W is a Zariski open subset in $\Omega(L) / \Gamma_{L}$. Now let

$$
p\left(H_{i l l} b^{\prime} X / \mathbf{P}^{N}\right)=W
$$

So $H^{\prime 1 b^{\prime}} \mathrm{X} / \mathrm{P}^{\mathrm{N}}$ is what we need.
Q.E.D.

It was proved by Bogomolov that $H_{i l b} x / P^{N}$ is a non-singular manifold. [4]

§ 1.4. Proof of theorem 1

Since the monodromy operator:

$$
T: H^{2}\left(X_{t}, z\right) \rightarrow H^{2}\left(X_{t}, z\right)
$$

is the identity operator, from theorem 9.5. in [13] it follows that the period map:

$$
\mathrm{P}^{*}: \mathrm{D}^{*} \rightarrow \Omega(\mathrm{~L}) \xrightarrow{\tau} \Omega(\mathrm{L}) / \mathrm{r}_{\mathrm{L}}
$$

can be prolonged to a map

$$
\mathrm{p}: \mathrm{D} \rightarrow \Omega(\mathrm{~L}) \xrightarrow{\tau} \Omega(\mathrm{L}) / \Gamma_{L}
$$

Let $p(0)=x_{0} \in \Omega(L) / \Gamma_{L_{0}}(0 \in D)$. From $§ 1.2$. we know that there exists a proper map $\hat{p}: H \hat{i} 1 b_{X / I p^{N}} \rightarrow \overline{\Omega(L) / \Gamma}{ }_{L}$, where $\overline{\Omega(L) / \Gamma_{L}}$ is the Baily-Borel compactification and $\hat{H i l b} X / P^{N}$ is obtained from the component of the Hilbert scheme Hill x / p^{N} that contains x by successive blows up along non-singular submanifolds contained in $\widetilde{H i l b}_{x / \mathbb{P}^{N}}>. \mathrm{Hilb}_{\mathrm{X} / \mathrm{P}^{N}} \cdot\left(\mathrm{Hilb}_{\mathrm{X} / \mathbb{P}^{N}}\right.$ is a non-singular manifold. So from Hironaka theorem it follows that we can find in this way Herl $_{x / 3 \mathrm{pl}}$ such that:
a) $\mathrm{Hilb}_{X / \not P^{N}} \mathrm{Hilb}_{\mathrm{X} / \mathrm{PN}}$ is a divisor with normal crossings
b) There exists a family $\hat{X} \rightarrow \mathrm{Hin}_{\mathrm{X}}^{\mathrm{X} / \mathrm{pN}}$ and it is defined
in the following way, let $\hat{\pi}: H \hat{i} l b_{X / \mathbb{P}}{ }^{N} \rightarrow H i l b_{X / \mathbb{P}}$ be the natural map obtained by blowing down, then $\hat{X} \rightarrow H \hat{i} 1 b_{X / \mathbb{P}}{ }^{N}$ is $\hat{\pi}^{*} \tilde{X} \rightarrow \operatorname{Hin}_{X / \mathbb{P}^{N}}$, where $\tilde{\chi}^{\chi}+\hat{H i l b}_{X / \mathbb{P}^{N}}$ is the universal family. For each $t \in p\left(D^{*}\right)$ clearly $p^{-1}(t)$ consist of the orbit of $x_{t_{i}}$ under the natural action of $\mathrm{FGL}(N)$ on Hilb $_{X_{k} / I P N}$, where $\dot{x}_{t_{i}}$ corresponds to the Hyper-Kählerian manifold $X_{t_{i}} \hookrightarrow{\underset{D}{*}}_{*}^{x^{*}}$ and t_{i} are all points in D^{*} such that $p\left(t_{i}\right)=t \in p\left(D^{*}\right) \subset \Omega(L) / \Gamma_{L}$. Suppose that

$$
\hat{\operatorname{Hill}_{\hat{X} / \mathbb{P}} \mathrm{N}} \quad \hookrightarrow \quad \mathbf{P}^{\mu}
$$

and D_{1} is a disk in $p\left(D^{*}\right) \subset \Omega(L)$ such that $\overline{D_{1}}$ (the closure of
 there exists a plane $\mathbf{p}^{2} \subset \mathbf{p}^{\mu}$ such that it intersects the orbits of the Hyper-Kählerian manifolds corresponding to. the points in D_{1} in $H_{i l b}{ }_{X / \mathbb{P}^{N}}$ under the action of $P G L(N)$ transversally and \mathbf{P}^{2} intersects $\operatorname{Hilb}_{X / \mathbb{P}^{N}} \subset \mathbb{P}^{\mu}$ transversally in a point $g_{0} \in \Pi^{-1}\left(x_{0}\right)$. It is a standart fact that such \mathbf{P}^{2} exists. Let now $D \subset \mathbf{P}^{2} \cap \hat{H i l b} X_{X / P^{N}}$, where $g_{0} \in D$ and ${ }^{D}\left(\theta_{0}\right)^{D^{*} \subset H i l b_{x / P^{N}}}$. From the way we define D. it follows that

$$
\mathrm{p}: \mathrm{D} \hookrightarrow \Omega(\mathrm{~L}) / \Gamma_{\mathrm{L}}
$$

So from now on instead of the family
we will consider the family obtained from $\pi: X \rightarrow D$ by the pull back of the natural map $D+D$ induced from the map $: \Omega(L)+\Omega(L) / \Gamma_{L}$. We will denote this new family again by $\pi: x \rightarrow D$. So we will suppose from now on that the family $\pi: X \rightarrow D$ has the following properties:

1) $X^{*} \xrightarrow{\pi^{*}} D^{*}$ has trivial mondormy and it is a family of marked non-singular Hyper-Kählerian manifolds with a polarizatzion class L
2) $\dot{x}^{*} \hookrightarrow x \rightarrow \mathbf{p}^{N_{x D D}}$

3) $p: D \hookrightarrow \Omega(L)$, i.e. p is an embedding.

From now on instead of the map $p: H i l b_{X}^{\prime} / \mathbb{P}^{N} \rightarrow \Omega(L) / r_{L}$ we will consider the map $p: \widehat{H i l b}{ }_{X / p} \rightarrow \Omega(L)$, where $\widetilde{H i l b} \dot{X}_{\mathbf{X}} / \mathbf{P}^{N}$ is the universal convening of Hill $\frac{1}{x} / \mathbb{P}^{N}$. Since $\pi_{1}\left(\widetilde{\mathrm{Hilb}}_{\mathrm{X} / \mathrm{TPN}^{N}}\right)=0$ then if we mark one fibre in the universal family

$$
x \rightarrow \tilde{H i l b}_{X / p^{N}} \quad \text { (For definition of } H i l b_{X}^{\prime} / \mathrm{PN} \text { see 1.3.2.) }
$$

then all the fibres will be marked and so the map

$$
\mathrm{p}:{\widetilde{\mathrm{H} I I b_{X}}}_{\prime} \mathcal{P}^{N} \rightarrow \Omega(\mathrm{~L})
$$

is correctly defined.

Let $\tau: \Omega(L) \rightarrow \cap(L) / \Gamma_{L}$ be the natural map and, $V=\Omega(L) / \Gamma_{L} \backslash\left(H i l b_{X / \mathbb{P}^{N}}\right)$ then $\tau^{-1}(V)$ will be an union of countable irreducible analytic closed subspaces V_{i} " $1.0,1, \ldots, n, \ldots$ in $n(L)$ (see 1..... Now wo
may suppose that $p_{D}(0) \in \tau^{-1}(V)$, where p_{D} was the map obtain from the period map: $P_{D^{*}}: \begin{aligned} & X^{*} \\ & D^{*}\end{aligned}, \rightarrow \Omega(L)$. Notice that if $P_{D}(0) \& \tau^{-1}(V)$, then theorem 1 follows immediately. Let $\mathrm{P}_{\mathrm{D}}(0) \in \mathrm{V}_{0}$, where V_{0} is one of the components of $\tau^{-1}(\mathrm{~V})$. Let U^{0} be an open polycilinder in $\Omega(\mathrm{L})$ such that U^{0} intersects $\tau^{-1}(V)$ only on V_{0} and $U^{0} \supset D^{*}$. Let $U=U^{0}\left(U^{0} \cap V_{0}\right)$. So from the definition of u we get that

$$
\mathrm{D}^{*} \subset \mathrm{U}, \operatorname{dim}_{\mathbb{C}} \mathrm{U}=\operatorname{dim}_{\mathbb{C}} \Omega(\mathrm{L})
$$

Lemma 1.4.1. There exists a family $\chi_{U} \rightarrow U$ of marked polarized Hyper-Kählerian manifolds over U (defined as

Proof: 1.4.1. Follows immediately from the existence of universal family $X_{L} \rightarrow M_{L}$ of marked polarized algebraic Hyper-Kählerian manifolds and the fact that $p: M_{L} \rightarrow \Omega(L)$ is an etale map, i.e. p is a local isomorphism. The existence of $X_{L} \rightarrow M_{L}$ is proved in § 2. From these two facts and the construction

Now let $\left\{U_{i}\right\}$ be a covering of U by polycilinders and suppose that $U_{i} \cap D^{*} \neq \emptyset$ is a disk in D^{*}. It is easy to see that such a covering exists (may be after we shrink) U). Now from the fact that $B: M_{L} \rightarrow \Omega(L)$ is a local isomorphism and $p\left(M_{L}\right)=\Omega(L) \tau^{-1}(V) \quad$ (this is proved in $\left.\S 2\right)$ we obtain families of marked polarized Hyper-Kählerian manifolds:
$x_{i} \rightarrow U_{i}$. Now clearly we can glue together these families along D^{*} and ajong, $U_{i} \cap U_{j}$. So we will obtain the family $\mathrm{x}_{\mathrm{U}} \xrightarrow{\pi_{\mathrm{v}}} \mathrm{U}$.
Q.E.D.

Now for every point $t \in U$ we consider the isometric deformation of $X_{t}=\pi_{U}^{-1}(t)$ with respect to the CalabiYau metric corresponding to the polarization class L. Let us denote this family of isometric deformations by:

$$
\mathbb{P}\left(X_{t}\right) \rightarrow \mathbf{P}_{t}^{1}(L) a s^{2}
$$

Now let us consider all isometric deformations with respect to Calabi-Yau metrics $\left(g_{\alpha \bar{\beta}}(t)\right)$ corresponding in X_{t} for every $t \in U$ to the fixed polarization class L. So we will get a new family and we will denote it by:

$$
\mathbb{P}\left(x_{U}\right) \rightarrow \mathbb{P}(u)
$$

Since as C^{∞}-family the family of isometric deformations is c^{∞}-diffeomorphic to $\mathbf{P}_{t}^{1}(L) \times X$ for each $t \in U$, we see that the family:

$$
\mathbf{P}\left(x_{\mathrm{U}}\right) \rightarrow P(\mathrm{U})
$$

is a marked family and so the period map:

$$
\mathrm{p}: \mathbb{P}(\mathrm{U}) \rightarrow \Omega
$$

is a well defined map. For the definition of Ω see 1.1.8.

Lemma 1.4.2. a) $\mathrm{p}: \mathcal{P}(\mathrm{U}) \rightarrow \Omega$ is an embedding, i.e. $\mathbf{P}(\mathrm{U}) \quad \longrightarrow \Omega$.

$$
\text { b) } \quad \operatorname{dim}_{\mathbb{C}} \mathbf{P}(U)=\operatorname{dim}_{\mathbb{C}} \Omega
$$

Proof: The proof of lemma 1.4.2. is base on the following two propositions:
1.4.3. There exists one to one map φ between the point of Ω and all two dimensional oriented vector subspaces $\mathrm{E} \subset \mathrm{H}^{2}(\mathrm{X}, \mathrm{R})$ such that $<_{,>}>$(defined by 1.1 .3.) when restricted to E is positive, i.e. $\langle u, u \gg 0$ for $u \in E$. (The $\operatorname{map} \varphi$ is constructed in the following way; let $x \in \Omega \subset P\left(H^{2}(X, \mathbb{Z}) \otimes \mathbb{C}\right)$, then x defines a line $\ell_{X} \subset H^{2}(X, x) \mathbb{C}$, let ω_{X}. be a non zero vector in ℓ_{x} and let $\omega_{X:}=\operatorname{Re} \omega_{X}+i I m \omega_{X}$ then $\varphi(x)=E_{x}$, where E_{X} is the two plane in $H^{2}(X, R)$ spanned (Re $w_{x}, \operatorname{Im} u_{x}$) and the orientation is defined by $\left\{\operatorname{Re} w_{x}, \operatorname{Im} u_{X}\right\}$)

Remark: From the definition of Ω it follows that if $x \in \Omega$, then

$$
\langle x, x\rangle=0 \quad\langle x, \bar{x}\rangle\rangle 0
$$

So from here we get that $x \neq \bar{x}$ and so if $\omega_{X} \in \ell_{X}$, then $\operatorname{Re} \omega_{X} \neq 0$ and $\operatorname{Im} \omega_{X} \neq 0$, so φ is correctly defined. Indeed from $\left\langle\omega_{X}, \omega_{X}\right\rangle=0 \quad \& \quad\left\langle\omega_{X}, \bar{\omega}_{X}\right\rangle>0 \quad \omega=$ get that $\left\langle\operatorname{Re} \omega_{X}, \operatorname{Re} \omega_{X}\right\rangle=$ $=\left\langle\operatorname{Im} \omega_{X}: \operatorname{Im} \omega_{\dot{X}}\right\rangle>0$ and $\left\langle\operatorname{Re} \omega_{X}, \operatorname{Im} \omega_{X}\right\rangle=0$ and so $\langle\rangle \mid, E_{X}$ is strictly positive.

For the proof of 1.4.3. see [21].
 defined in the following manner $p(t)=\left\{\operatorname{Re} \omega_{t}(2,0), \operatorname{Im} \omega_{t}(2,0)\right\}=E_{t}=\varphi^{-1}(p(t))$
1.4.4. Proposition. Let E be a three dimensional subspace on which <, > is strictly positive, then $P(E \in \mathbb{E}) \cap Q$ will be a non-singular curve of degree two and moreover $P(E \propto \mathbb{C}) \cap Q=P(E \otimes \mathbb{C}) \cap \Omega$, where $Q=\left\{u \in \mathbf{P}\left(H^{2}(X, R) \mathbb{C}\right) \mid\langle u, u\rangle=0\right\}$ and $\Omega=\{u \in Q \mid<u, \bar{u} \gg 0\}$. For the proof of 1.4.4. see [21] or [23]
 If $E=E_{X}(L)$ we will denote by $P_{x}^{1}(L)=P(E \mathbb{C}) \cap Q=$ $=\mathbf{P}\left(E_{X}(L) \bullet \mathbb{C}\right) \cap Q=\mathbf{P}(E \in \mathbb{C}) \cap \Omega$.
b) Let $\quad X \rightarrow \mathbf{P}_{t}^{1}(L)$ be the isometric deformation of X_{t} with respect to the Calabi-Yau metric defined by L. We need to compute the image of the isometric deformation under the period map. From the definition of the isometric deformation we have the following facts:
a) $\quad E_{t}(L)=\left\{\operatorname{Re} \omega_{t}(2,0), \operatorname{Im} \omega_{t}(2,0), \operatorname{Im} g_{\alpha \bar{B}}(t)\right\} \subset \Gamma\left(X, \Lambda^{2} T^{*}\right)$
b) $E_{t}(L)$ is spanned by harmonic forms and so $E_{t}(L) \subset H^{2}(X, R)$
c) Notice that $\langle\rangle,\left|E_{t}(L)\right\rangle 0$

We know that there is one to one map between the oriented two planes in $E_{t}(L)$ and the complex structures in the family of isometric deformation $\quad x \rightarrow \boldsymbol{p}_{t}^{1}(L)$. So from here and remark 1.4.3. It follows that there is one to one map φ between the oriented two planes in $g_{t}(L) \subset H^{2}(X, R)$ and the points of
$\mathbf{P}\left(E_{t}(L) \otimes \mathbb{C}\right) \cap Q=\mathbf{P}\left(E_{t}(L) \otimes \mathbb{C}\right) \cap \Omega=\mathbf{P}_{t}^{1}(L) \subset \Omega$. The fact that $p(\mathbf{P}(\mathrm{U}))$ lies on Ω follows from the fact that for each $t \in U$ the scalar product $<,>$ as in 1.1.3. on $E_{t}(L) \subset \Gamma\left(X_{t},{ }^{2} T_{X_{t}}^{*}\right)$ coinside with the scalar product defined by the Calabi-Yau metric on $\Gamma\left(X, \Lambda^{2} T * X_{t}\right)$, since

$$
*_{\omega}=\omega \wedge L^{n-2} \quad \text { and so } \quad\left\langle\omega_{1}, \omega_{2}\right\rangle=\int_{x} \omega_{1} \wedge * \omega_{2}
$$

(See [].)
Onthe other hand * is defined by the Riemannian metrics coming from Calabi-Yau metric and so since all the complex structures are compatible with this fixed Riemannian metric we get that $p(\mathbb{P}(U)) \subset \Omega$.

Now from local Torelli theorem and the fact that $\mathrm{p}: \mathrm{U} \Leftrightarrow \Omega(L)$ and the definition of isometric deformation we get immediately that:

$$
\mathrm{p}: \mathbf{P}(\mathrm{U}) \Leftrightarrow \Omega .
$$

Proof of 1.4.2. b): This follows immediately from local Torelli and the definition of isometric deformation.
Q.E.D.

The main lemma First we need some remarks.

Let $p(0)=x \in \Omega(L),(0 \in D)$. Since $x \in \Omega(L)$, from 1.4.3. it follows that x corresponds to a two dimensional subspace $E_{X} \subset H^{2}(X, T)$ such that $\left.\langle,\rangle_{\left.\right|_{X}}\right\rangle 0$. From $x \in \Omega(L) \Rightarrow\left\langle E_{X}, L\right\rangle=0$ and since $<L, L \gg 0$ it follows that the 3-dim space $E_{X}(L) \subset$ $H^{2}(X, \mathbb{R})$ spanned by $E_{X} \& L$ has the following property:

$$
\langle,\rangle\left|E_{x}(L)\right\rangle 0
$$

From 1.4.4. we obtain that $\left(P\left(E_{x}(L) Q E\right) \cap \Omega=P_{x}^{1}(L)\right.$ is a complex projective non-singular curve of degree two in $\mathbb{P}\left(E_{x}(L) \mathbb{C}\right)$.
1.4.6. Main Lemma, Let $x^{*} \rightarrow D^{*}$ is the family with the
 monodromy, let $p: D \rightarrow \Omega(L)$ be the extended period map (this extension exists by Griffith's theorem (see [13])], fet $\rho(0)=x_{0} \in \Omega(L)$; then there exists a point $z_{0} \in U$ such that

$$
\mathbf{P}_{x_{0}}^{1}(L) \cap \mathbf{P}_{z_{0}}^{1}(L) \neq \varnothing
$$

 manifolds and $\operatorname{dim}_{\mathbb{C}} \mathrm{U}=\operatorname{dim}_{\mathbb{C}} \Omega(L)$.

Proof: The proof consists of two steps: Step 1): If $g_{0} \in \boldsymbol{P}_{X_{0}}^{1}(L)$ and $x_{0} \neq g_{0} \neq \bar{x}_{0}$, then we will prove that there exists a plane quadric $\mathbf{P}_{9_{0}^{1}}^{1}(\omega) \subset \Omega$ such that:
a) $\quad P_{g_{0}}^{1}(\omega) \cap \quad U \neq \emptyset$
b) $\boldsymbol{P}_{g_{0}}^{1}(\omega)=\overline{\mathbf{P}_{g_{0}}^{1}(\omega)}$, remember that
$\Omega \subset \mathbb{P}\left(H^{2}(X, Z) \otimes \mathbb{Z}\right)$, so the conjugation operator $u \rightarrow \vec{u}$ is a well defined operator.

The plane quadric $\mathbf{p}_{g_{0}}^{1}(4)$ is defined in the following way:
Let ${ }^{E^{\prime}} g_{0}$ be the two dimensional plane that corresponds to g_{0} given by 1.4.3. Let $\omega \in H^{2}(X, I R)$ such that $\langle\omega, \omega\rangle>0$
and $\left\langle\omega, E_{g_{0}}\right\rangle=0$ and let $E_{g_{0}}(\omega)$ be the three dimensional subspace in $H^{2}(X, R)$ spanned by $E_{g_{0}}$ and ω, then $\mathbf{P}_{g_{0}^{1}}^{1}(\omega)$ def $\underset{\left(E_{g_{0}}(\omega) \otimes \mathbb{C}\right) \cap \Omega .}{ }$

Step 2. Let $\mathbb{P}_{g_{0}}^{1}(\omega) \cap \mathrm{U}=\mathrm{z}_{0} \cup \bar{z}_{0}$, then we will prove that $\mathbb{P}_{X_{0}}^{1}(L) \cap \mathbb{P}_{Z_{0}}^{1}(L) \neq \emptyset$, here again $\mathbb{P}_{Z_{0}}^{1}(L)=\mathbb{P}\left(E_{z_{0}}(L) \otimes \mathbb{C}\right) \cap \Omega$.

Proof of Step 1: First we will need some definitions. Let $g_{0} \in{\underset{X}{X_{0}}}_{1}^{(L)}$ and $g_{0} \notin \Omega(L)$. From 1.4.3. follows that to g_{0} there corresponds an oriented two dimensional plane $E_{g_{0}} \subset H^{2}(X, \mathbb{R})$ on which we have:

$$
\left\langle,>\left.\right|_{E_{g_{0}}}>0\right.
$$

Let

$$
H_{g_{0}}^{1,1}(\mathbb{R}) \quad \operatorname{def}\left\{u \in H^{2}(X, \mathbb{R})\left|<u, E_{g_{0}}\right\rangle=0\right\}
$$

Clearly $\operatorname{dim}_{g_{0}}^{1,1}(\mathbf{R})=b_{2}-2$ and \langle,$\rangle has signature$ $\left(1, b_{2}-3\right)$ on $H_{g_{0}}^{1,1}(\mathbb{R})$. Let

$$
v_{g_{0}}(\mathbb{R}) \stackrel{\text { def }}{=}\left\{u \in H_{g_{0}}^{1,1}(\mathbb{R}) \quad \mid<u, u \gg 0\right\}
$$

Clearly since \langle,$\rangle on H_{g_{0}}^{1,1}(R)$ has a signature $\left(1, b_{2}-3\right)$, then $\mathrm{V}_{\mathrm{g}_{0}}(\mathbb{R})$ will be an open cone in $\mathrm{H}_{\mathrm{g}_{0}}^{1,1}(\mathbb{R})$ and $v_{g_{0}}(\mathrm{R})=\mathrm{V}_{\mathrm{g}_{0}}^{+} \cup \mathrm{V}_{\mathrm{g}_{0}}^{-}$. Let

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{g}_{0}}(\omega) \stackrel{\text { def }}{=}\left\{\text { three dim supspace in } \mathrm{H}^{2}(\mathrm{X}, \mathrm{IR}) \mid\right. \\
& \text { spanned by } \left.\mathrm{E}_{\mathrm{g}_{0}} \text { and } \omega \in \mathrm{V}_{\mathrm{g}_{0}}(\mathrm{IR})\right\}
\end{aligned}
$$

From the definition of $E_{g_{0}}(\omega)$ it follows that

$$
\left.\rangle| E_{g_{0}}(\omega)\right|^{>0}
$$

1.4.6.1. Let $K_{g_{0}}(\mathbb{R})$ def \{union of all $\mathbb{P}_{\mathbf{g}_{0}}^{1}(u)$ in Ω | where $\left.u \in V_{g_{0}}(\mathbb{I R})\right\}$, then $K_{g_{0}}(\mathbb{R})$ is a real analytic subspace in Ω. This follows from the definition of $K_{g_{0}}(\mathbb{R})$ and the interpretation of Ω as Grassmannian.
1.4.6.2. Let: $V_{g_{0}}(\mathbb{X}) \quad \operatorname{def}\left\{u \in H_{g_{0}}^{1,1}(\mathbb{R}) \quad \mathbb{a}|\langle u, \bar{u}\rangle\rangle 0\right\}$, $\left(\operatorname{dim}_{\mathbb{C}} v_{g_{0}}(\mathbb{C})=\operatorname{dim}_{\mathbb{C}} \Omega\right) \quad K_{g_{0}}(\mathbb{C})=$ \{the union of all $\quad \mathbf{P}_{g_{0}}^{1}(u)=$ $=P\left(E_{g_{0}}\right) \cap \cap$ in Ω, where $E_{g_{0}}(\mathrm{u})$ is a three dimensional subspace in $H^{2}(X, \mathbb{R}) \oplus \mathbb{C}$, spanned by $E_{g_{0}}$ and $\left.u \in V_{g_{0}}(\mathbb{I})\right\}$. Since $\left\langle,>{ }^{\prime} E_{g_{0}}(v)>0\right.$ (if $u \in V_{g_{0}}(\mathbb{I})$), it follows that $P\left(E_{g_{0}}(v)\right) \cap Q^{0}=P\left(E_{g_{0}}(v)\right) \cap \Omega$. is a projective plane curve of degree 2.
1.4.6.3. Proposition. $K_{g_{0}}(\mathbb{L}) \cap \Omega(L)$ contains an open set $W \subset \Omega(L)$. such that $U \subset W$ in $\Omega(L)$. (U is defined on $p .24$).

Proof: H_{L} will be the hyperplane in $I P\left(H^{2}(X, I R) \in a\right)$ defined in the following manner:

$$
H_{L}=\left\{u \in \mathbf{P}\left(H^{2}(X, R) \odot \mathbb{C}\right) \mid\langle u, L\rangle=0\right\}
$$

Clearly $H_{L} \cap \Omega=\Omega(L)$. On the other hand since $\operatorname{dim}_{C_{0}} \mathrm{~K}_{0}(\mathbb{C})=$ $=\operatorname{dim}_{\mathbb{C}} H^{2}(X, \mathbb{C})-2=b_{2}-2=\operatorname{dim}_{a} \Omega=\operatorname{dim}_{C^{H}} H^{1,1}(X, \mathbb{C})$ we get

$$
\overline{\mathbf{P}_{g_{0}}^{1}(v)}=\mathbf{P}_{g_{0}}^{1}(v) \text { in } \mathbf{P}\left(H^{2}(x, \mathbb{R})\right.
$$

and since $H_{L} \cap \mathbb{P}_{g_{0}}^{1}(V) \ni z_{0} \neq \varnothing$ (remember that H_{L} is a hyperplane in $P\left(H^{2}(X, \mathbb{R}) \otimes \mathbb{X}\right)$ and $\mathbb{P}_{g_{0}}^{1}(v)$ is a curve of degree two on the plane $\left.\mathbf{P}^{2}=\mathbb{P}\left(E_{g_{0}}(v) \otimes \mathbb{U}\right) \subset \mathbb{P}\left(H^{2}(X, \mathbb{R}) \otimes \mathbb{C}\right)\right)$, so we have that $\left.H_{L} \cap \mathbb{P}_{g_{0}}^{1}(v) \neq \varnothing\right)$.

Now let $t \in \mathbf{P}_{g_{0}}^{1}(v) \cap H_{L}$, from the fact that $\overline{\mathbb{P}_{g_{0}}^{1}(v)}=\mathbf{P}_{g_{0}}^{1}(v)$ $\overline{\Omega(L)}=\Omega(L) \quad$ (since $L \in H^{2}(X, R) \mu t u \bar{t} \in \mathbf{P}_{g_{0}}^{1}(v) \cap H_{L}(t \neq \bar{E})$. So we get that if $v \in V_{g_{0}}(\mathbb{R})$, then $\mathbb{P}_{g_{0}}^{1}(v)$ intersects $\Omega(L)$ transversally, since deg $\mathbb{P}_{g_{0}}^{1}(v)=2$ and $H_{L} \cap \mathbb{P}_{g_{0}}^{1}(v)=\Omega(L) \cap \mathbb{P}_{g_{0}}^{1}(V)=z_{0} U \bar{z}_{0}$ and $z_{0} \neq \overline{' z}_{0} . K_{g_{0}}(R) \quad$ intersects $\Omega(L) \quad$ transversally and since transversality is an open condition, $\operatorname{dim}_{\mathbb{C}^{K}}(\mathbb{C})=\operatorname{dim} \Omega$ and $K_{g_{0}}(\mathbb{R}) \subset K_{g_{0}}(\mathbb{C})$ so we can find an open subset $W \subset \Omega(L)$ such that ${ }_{z_{0} \in \mathbf{P}_{g_{0}}^{1}(\mathrm{~V}) \cap \Omega(L) \subset E \subset W \subset K_{g_{0}}(\mathbb{I}) \cap \Omega(L) .}$
Q.E.D
1.4.5.4. Grass $\left(3, b_{2} ; \mathbb{R}\right)$ def $\{a l l$ oriented 3 -dimensional subspaces $E \subset H^{2}(X, \mathbb{R})$ on which $\left\langle>_{E}>0\right\}$.
1.4.6.5. Grass $\left(3, b_{2} ; \mathbb{C}\right)=\{$ all oriented 3 -dimensional subspaces $E \subset H^{2}(X, \mathbb{R}) \otimes \mathbb{c}$ such that if $u \in E$, then $\left.\langle u, \bar{u}\rangle>0\right\}$.
1.4.6.6. Let $\tau(E)=\bar{E}$, if $E \subset H^{2}(X, \mathbb{R})$. Clearly τ acts on Grass $\left(3, b_{2} ; \mathbb{C}\right)$ and $\operatorname{Grass}\left(3, b_{2} ; \mathbb{C}\right)^{T}=\operatorname{Grass}\left(3, b_{2} ; R\right)$.
1.4.6.7. Let $M=$ \{all plane projective quadrics $\mathbf{P}_{g}^{1}(u)$, that are contained in $\Omega\}$. It is obvious that there exists an one-toone map between M and Grass $\left(3, b_{2} ; d\right)$.

Suppose that 1.4.6. is not true, this means that
$(1.4 .6 .10.) \quad K_{g_{0}}(R) \cap \Omega(L) \subset V_{0}$
Remember that V_{0} is a proper complex analytic closed subspace in $\Omega(L)$, (For the definition of V_{0} see p. 24), i.e. $\operatorname{dim}_{\mathbb{C}} V_{0}<\operatorname{dim}_{\mathbb{G}} \Omega(L)$. Let

$$
P\left(v_{0}\right) \quad \operatorname{def}\left\{\mathbb{P}_{g_{0}}^{1}(u) \subset k_{g_{0}}(\mathbb{C}) \mid \mathbb{P}_{g_{0}}^{1}(u) n \ldots v_{0} \neq g\right\}
$$

It is a standart fact that $\mathbf{P}\left(\mathrm{V}_{0}\right)$ is a proper closed complex analytic subset in Grass $\left(3, b_{2} ; \mathbb{C}\right)$. (Use theory of elimination and $P\left(V_{0}\right)=\{$ all three dimensional subspaces E in $H^{2}(X, R) \otimes \mathbb{C}$, such that $E \cap Z \neq O$, where Z is the cone over $V_{0} \subset \mathbb{P}\left(H^{2}(X, T) \otimes \mathbb{C}\right\}$ in $\left.H^{2}(X, \mathbb{Q})\right)$. The same arguments show that

$$
P\left(V_{g_{0}}(\mathbb{R})\right) \text { def }\left\{E \subset H^{2}(X, R) \mid E \text { is spanned by } E_{g_{0}}\right.
$$

and v, where $\left.v \in V_{g_{0}}(R)\right\}$
is a real analytic proper subspace in $M \cong \operatorname{Grass}\left(3, b_{2} ; \mathbb{C}\right)$. Indeed $P\left(V_{g_{0}}(\mathbb{R})\right)=\left\{E \in H^{2}(X, R) \mathbb{C}\right) \mid E=\bar{E}$ and E contains the fixed two dimensional subspace $E_{g_{0}}$ \}. So from this de-
 subspace in Grass ($3, \mathrm{~b}_{2} ; \mathrm{a}$).

Clearly that
(1.4.6.11)

$$
\begin{aligned}
\text { a) } \quad P\left(V_{g_{0}}(R)\right) & =P\left(V_{g_{0}}(\mathbb{C})\right)^{T}, \text { where } \\
P\left(V_{g_{0}}(\mathbb{L})\right) & =\left\{E \subset H^{2}(X, \mathbb{C}) \mid d i m_{\mathbb{C}} E=3,\right.
\end{aligned}
$$

$$
\left.<,>\left.\right|_{E}>0 \quad \& \quad E \supset E_{g_{0}}\right\}
$$

b) From the definition of $\mathbb{P}\left(\mathrm{V}_{\mathrm{g}_{0}}\right.$ ($\left.\mathbb{C}\right)$) it follows that $\mathbb{P}\left(\mathrm{V}_{\mathrm{g}_{0}}(\mathbb{\Psi})\right)$ is a complex analytic proper subspace in Grass $\left(3, b_{2} ; \mathbb{C}\right)$, since $\mathbb{P}\left(V_{g_{0}}(\mathbb{C})\right)=\{$ all three dimensional subspaces in $\left.\left.H^{2}(X, \mathbb{R}) \mathbb{\mathbb { C }}\right) \mid \mathrm{E} \supset \mathrm{E}_{\mathrm{g}_{0}}\right\}$ 。

Now we will show that (1.4.6.11) contradicts (1.4.6.10). From the definition of $\mathbb{P}\left(\mathrm{V}_{0}\right)$ we get that $\mathbb{P}\left(\mathrm{V}_{0}\right)$ is a proper complex analytic subspace in $\mathbb{P}\left(\mathrm{V}_{\mathrm{g}_{0}}(\mathbb{C})\right)$. From (1.4.6.10.) it follows that we have:

$$
\boldsymbol{P}\left(\mathrm{V}_{\mathrm{g}_{0}}(\mathbb{C})\right)^{\tau}=\mathbb{P}\left(\mathrm { V } _ { \mathrm { g } _ { 0 } } (\mathbb { R }) \subset \mathbb { P } (\mathrm { V } _ { 0 }) \subset \mathbb { P } \left(\mathrm{V}_{\mathrm{g}_{0}}(\mathbb{C})\right.\right.
$$

Since $\mathbf{P}\left(\mathrm{V}_{0}\right)$ is a complex analytic subspace (proper one) in a complex analytic space $\mathbb{P}\left(V_{\mathrm{g}_{0}}\right.$ (C)) $\subset \operatorname{Grass}\left(3, \mathrm{~b}_{2} ; \mathbb{\mathbb { C }}\right)$ we get that locally $P\left(\mathrm{~V}_{0}\right)$ is defined by

$$
f_{1}\left(z^{1}, \ldots, z^{N}\right)=\ldots=f_{K}\left(z^{1}, \ldots, z^{N}\right)=0
$$

where f_{1}, \ldots, f_{N} are complex analytic function in Grass ($3, b_{2} ; \mathbb{d}$). From $\mathbb{P}\left(\mathrm{V}_{\mathrm{g}_{0}}(\mathbb{R})\right) \subset \mathbb{P}\left(\mathrm{V}_{0}\right) \subset \mathbb{P}\left(\mathrm{V}_{\mathrm{g}_{0}}(\mathbb{E})\right)$ and since

$$
\mathbb{P}\left(\mathrm{V}_{\mathrm{g}_{0}}(\mathbb{R})\right)=\mathbb{P}\left(\mathrm{V}_{g_{0}}(\mathbb{X})\right)^{\tau}
$$

we obtain that

$$
f_{1}\left(\operatorname{Re} z^{1}, \ldots, \operatorname{Re} z^{N}\right)=\ldots=f_{K}\left(\operatorname{Re} z^{1}, \ldots, \operatorname{Re} z^{N}\right) \equiv 0
$$

on $\mathbb{P}\left(V_{g_{0}}(\mathbb{C})\right)$, so $f_{1}=f_{2}=\ldots=f_{N} \equiv 0$ on $P\left(V_{g_{0}}(\mathbb{C})\right)$. But this is a contradiction since $\mathbb{P}\left(V_{0}\right)$ is a proper subspace in $P\left(V_{g_{0}}(\mathbb{C})\right)$, i.e. $\operatorname{dim}_{c} P\left(V_{0}\right)<\operatorname{dim}_{c} P\left(V_{g_{0}}(\mathbb{C})\right)$. So Step 1 is proved.
Q.E.D.

Proof of Step 2.

$$
\begin{aligned}
& \text { From step } 1 \Rightarrow \exists v \in V_{g_{0}}(\mathbb{R}) \text { such that } \\
& { }_{\left.\mathbb{P}_{0}^{1}(v) \cap \Omega(L) \subset U \quad \text { (where } U \text { is defined on } p .24\right)}
\end{aligned}
$$

Indeed we have proved, that $K_{g_{0}}(\mathbb{I}) \cap \Omega(L)$ is a real analytic subspace and $K_{Y}(\mathbb{R}) \cap \Omega(L)$ not contained in V_{0}. Since $K_{g_{0}}(\operatorname{IR}) \cap \Omega(L) \in g_{0} \subset U^{0}$ open polycilinder in $\left.\Omega(L)\right)$ we get that $K_{g_{0}}(\operatorname{IR}) \cap U \neq \emptyset$, where U was $U^{0} \backslash V_{0}$ (see p. 24). So let

$$
\mathbb{P}_{g_{0}}^{1}(v) \cap \Omega(L)=z_{0} \cup \overline{z_{0}}, z_{0} \neq \overline{z_{0}} \quad \text { and } \quad z_{0} \in U
$$

Let E def $\left\{\right.$ four dimensional subspace in $H^{2}(X, \mathbb{R})$ spanned by $E_{x_{0}}(L)$ and v \}. Since $E_{g_{0}} \subset E$ it follows that $E_{z_{0}}$ is contained in E. From the facts that
a) $\left.{ }^{\langle,}\right\rangle{ }^{\prime} E_{Z_{0}}$
$(L)>0,\langle\rangle \mid, E_{x_{0}}(L)>0$ and
b) $E_{L_{0}}$
(L) $\cap E_{x_{0}}(L)=$
$=E_{t_{0}} \subset E$ it follows that
i) $\quad \operatorname{dim}_{a^{E}} t_{0}=2$ since $\operatorname{dim}_{C^{\prime}} E_{x_{0}}(L)=E_{z_{0}}(L)=3$ and

$$
E_{x_{0}}(L) \text { and } E_{z_{0}}(L) \text { are contained in } E ; d i m_{\mathbb{C}} E=4
$$

ii) $<>{ }^{\mid E_{t_{0}}}<0$.

Now from 1.4.3. it follows that $E_{t_{0}}$ corresponds to same point $t_{0} \in \Omega$. From the fact that there is one-to-one correspondence between the points of $\mathbb{P}_{X_{0}}^{1}(L)$ and the oriented two planes in $E_{x_{0}}(L)$ we get that $E_{t_{0}}$ corresponds to a point $t_{0} \in \operatorname{IP}_{X_{0}}^{1}(L)$.
Q.E.D.
1.4.7. Lemma. Let $X^{*} \rightarrow D^{*}$ be a family of marked polarized Hyper-Kählerian manifolds and this family fulfills the conditions 1),2) and 3) on p. 23, then
a) x^{*} as c^{∞} manifold is diffeomorphic to
$X \times D^{*}$, where X is a Hyper-Kählerian manifold
b) if $\dot{x}^{*} \longrightarrow x \times D$, then $\lim _{t \rightarrow 0} \omega_{t}(2,0)=\omega_{0}(2,0)$ exists and $\omega_{0}(2,0)$ is a complex non-degenerate form on X.

Proof: First we see that since $<,>\mid E_{X_{0}}\left(I_{i}\right)>0$, then $\mathrm{SO}(3)$ acts on $E_{X_{0}}(L)$. From 1.4.6. it follows that there exists $z_{0} \in U$ (as on p. 24) such that $E_{z_{0}}(L) \cap E_{x_{0}}(L)=E_{t_{n}}$, where $\operatorname{dim} E_{t_{0}}=2$, or which is equivalent by 1.4 .3. , to the fact that $\mathbf{P}_{t_{0}}^{1}(L) \cap \mathbb{P}_{x_{0}}^{1}=t_{0} \cup \overline{t_{0}}$. Now let $A \in \operatorname{sc}(3)$ such that $A\left(E_{x_{0}}\right)=E_{t_{0}}$. Next for each $t \in D^{*}$ we will define on X_{t} a new complex structure X_{t}^{A} in the following way:
Let $E_{t}(L)=\left\{\operatorname{Re} \omega_{t}(2,0), \operatorname{Im} \omega_{t}(2,0), \operatorname{Im}\left(g_{\alpha \beta}(t)\right)\right\} \subset \Gamma\left(X, \Lambda^{2} T^{*}\right)$, where $g_{\alpha \bar{\beta}}(t)$ was the Calabi-Yau metric that corresponds to L. From § 1.2. we know that $\left\{\operatorname{Re} \omega_{t}(2,0), \operatorname{Im} \omega_{t}(2,0), \operatorname{Im}\left(g_{\alpha} \bar{\beta}(t)\right)\right\}$ 1. an orthonormal bais of $E_{t}(L)$. So an action of $S O(3)$ is defined on $E_{t}(L)$. From $§ 1.2$. we know that

$$
A E_{t} d e f\left\{A \operatorname{Re} \omega_{t}(2,0), A \operatorname{AIm} \omega_{t}(2,0)\right\} \in \operatorname{So}(3)
$$

defines a new complex structure on X_{t} which we will denote by x_{t}^{A}, where

$$
\omega_{t}^{A}(2,0)=\operatorname{ARe} \omega_{t}(2,0)+\operatorname{iAIm} \omega_{t}(2,0)
$$

So we get a new family:

$$
x^{*^{A}} \rightarrow D_{A}^{*}
$$

From the definition of $x^{*} \rightarrow D^{*}$ it follows that we have

$$
\begin{array}{cc}
X^{* A} & \longrightarrow \\
+ & \mathbb{P}\left(X_{U}\right) \\
+ & \text { (For definition of } \mathbb{P}\left(x_{U}\right) \rightarrow \mathbb{P}(U) \\
\text { see } p .
\end{array}
$$

Now since $\mathbb{P}(U) \subset \Omega, \mathbb{P}_{t}^{1}(L) \subset \mathbb{P}(U)$ (for each $t \in D^{*}$, since $\left.D^{*} \subset U\right)$ and since $\mathbb{P}_{z_{0}}^{1}(L) \cap \mathbb{P}_{X_{0}}^{1}=t_{0}$, where $z_{0} \in U$, we get

$$
\begin{equation*}
\lim _{t \rightarrow 0} \omega_{t}^{A}(2,0)=\omega_{t_{0}}(2,0) \tag{*}
\end{equation*}
$$

Where $\omega_{t_{0}}(2,0)$ corresponds to some complex structure on $Z_{t_{0}}$, isometric to Calabi-Yau metric on Z_{0} corresponding to L. (Here z_{0} is the marked polarized Hyper-Kahlerian manifold corresponding to the point $\left.z_{0} \in U \subset \Omega(L)\right)$. So we proved that the family

$$
x^{\star \boldsymbol{A}} \rightarrow D_{A}^{\star}
$$

can be embedded in a family $\hat{X}^{A} \rightarrow D_{A}$, where all the fibres are non-singular hyper-Kählerian manifolds. So $X^{A} \rightarrow D_{A}$ as C^{∞} manifold is diffeomorphic to $D \times X, X$ a Hyper-Kahlerian manifold. From here we obtain, that

$$
x^{*} \cong D^{*} \times X
$$

since $x^{k^{A}} \rightarrow D_{A}^{*}$ is the same C^{∞} family as $\bar{X}^{*} \rightarrow D^{*}$. This follows from the definition of isometric deformation.
Q.E.D.

Proof of 1.4.7. b) : From 1.4.6. it follows that there exists a point $t_{0} \in \mathbb{P}_{x_{0}}^{1}(L)$ such that $t_{0}=\mathbb{P}_{x_{0}}^{1}(L) \cap \cdot \mathbb{P}_{z_{0}}^{1}(L)$ where $z_{0} \in U$, and so z_{0} is the image under the period map of a marked Hyper-Kählerian manifold Z_{0} with a polarized class L. (Remember that we have the following: a family ${\underset{U}{X}}_{X_{U}}$ is map by $\left.\mathrm{p}: \mathrm{U} \hookrightarrow \Omega(L) \operatorname{dim}_{\mathbb{C}} \mathrm{U}=\operatorname{dim}_{\mathbb{C}} \Omega(L)\right)$. Let
$S_{L}=\left\{t \in \mathbb{P}_{X_{0}}^{1}(L) \mid E_{t}\right.$ contains I, E_{t} is the oriented two plane that corresponds to t according to 1.4.3.\}. Clearly as c^{∞} manifold $S_{L} \cong\{t \in \mathbb{C}| | t \mid=1\}$. On the other hand from $\mathbb{P}_{X_{0}}^{1}(L) \cap \mathbb{P}_{Z_{0}}^{2}(L)=t_{0} \cup \bar{t}_{0} \Rightarrow t_{0} \in S_{L}$. From the arguments in 1.4.6. it follows that there exists an open set $W_{t_{0}}$ to t_{0} in s_{L} such that for every $t \in W_{t_{0}}$
 Now let t_{0}, t_{1} and t_{2} are three points in $P_{X_{0}}^{1}(L)$ such that: t_{0}, t_{1} and $t_{1} \in W_{t_{0}}$ From the way we defined $W_{t_{0}}$ it follows that t_{0}, t_{1} and t_{2} are respectively in $\mathbb{P}_{z_{0}}^{1}(L), \mathbb{P}_{z_{0}}^{Q_{1}}\left(L_{1}\right)$ and
$P_{z_{2}}^{1}(L)$, where $z_{0}, z_{1}, z_{2} \in \stackrel{t}{0}_{\chi_{U}}^{(S e e ~ p .24) . ~ F r o m ~ h e r e ~ a n d ~}$ from the definition of isometric deformation it follows that t_{0}, t_{1}, t_{2} corresponds to the marked Hyper-Kahlerian manifold T_{0}, T_{1}, T_{2} and T_{0}, T_{1}, T_{2} are in the isometric families with respect to the Calabi-Yau's metrics on Z_{0}, Z_{1}, Z_{2} that corresponds to L. It is clear that we can choose t_{0}, t_{1} and t_{2} in $w_{t_{0}} \subset S_{L} \subset I P{\underset{x}{0}}_{1}^{(L)}$ such that $\omega_{t_{0}}(2,0), \omega_{t_{1}}(2,0)$ and $\omega_{t_{2}}(2,0)$ are three linearly ingependent classes of cohomology in $H^{2}(X, I R)$ a. Since $\operatorname{so}(3)$ acts on $E_{X_{0}}(L)$ (Remember $\left\langle,>\left.\right|_{E_{X_{0}}}\left(I_{1}\right)>0\right.$) so there exist A, B and C such that $A E_{X_{0}}=E_{t_{0}}^{0} B_{X_{0}}=E_{t_{1}}$ and $C E_{X_{0}}=E_{t_{2}}$. Now we can define as in the proof of 1.4.7. a) the new families $\pi_{A}^{*}: x^{* A} \rightarrow D_{A}^{*}, \pi_{B}^{*}: \dot{\chi}^{B} \rightarrow D_{B}^{*}$ and $\pi_{C}^{*}: x^{*}{ }^{C} \rightarrow D_{C}^{*}$
 are $\ln \mathbb{P}(U) \subset \Omega \subset \mathbb{P}\left(H^{2}(X, C)\right)$ we get that:

$$
\begin{aligned}
& \lim _{t \rightarrow 0}\left[\omega_{t}^{A}(2,0)\right]=\left[\omega_{t_{0}}(2,0)\right], \lim _{t \rightarrow 0}\left[\omega_{t}^{B}(2,0)\right]=\left[\omega_{t_{1}}(2,0)\right] \\
& \text { and } \quad \lim _{t \rightarrow 0}\left[\omega_{t}^{C}(2,0)\right]=\left[\omega_{t_{2}}(2,0)\right]
\end{aligned}
$$

So from here we obtain that on the level of c^{∞} forms we have : $\quad \lim _{t \rightarrow 0} \omega_{t}^{A}(2,0)=\omega_{Z_{0}}(2,0), \lim _{t \rightarrow 0} \omega_{t}^{B}(2,0)=\omega_{Z_{1}}(2,0)$ and $\lim _{t \rightarrow 0} \omega_{t}^{c}(2,0)=\omega_{z_{1}}(2,0)$. Since $\omega_{t_{0}}(2,0)=\omega_{z_{0}}, \omega_{t_{1}}(2,0)=$ $=\omega_{Z_{1}}(2,0)$ and $\omega_{t_{2}}(2,0)=\omega_{z_{2}}(2,0)$ are three linearly independent forme in $E_{t_{0}}(L) \in \mathbb{C} \in \Gamma\left(X, A^{2}(T * X) \mathbb{C}\right)$ we get that

$$
\omega_{t}^{A}(2,0), \omega_{t}^{B}(2,0), \omega_{t}^{C}(2,0) \quad \text { are linearly }
$$

independent in each $E_{t}(L) \otimes \mathbb{C} \subset \Gamma\left(X, \Lambda^{2}(T * X \otimes \mathbb{C})\right) t \in D *$. So from here we have:

$$
\begin{aligned}
& \omega_{x_{t}}(2,0)=a \omega_{t}^{A}(2,0)+b \omega_{t}^{B}(2,0)+c \omega_{t}^{C}(2,0), a, b, c \in \mathbb{C} . \\
& \lim _{t \rightarrow 0} \omega_{x_{t}}(2,0)=a \lim _{t \rightarrow 0} \omega_{t}^{A}(2,0)+b \lim \omega_{t}^{B}(2,0)+e \operatorname{dim}_{t \rightarrow 0} \omega_{t}^{C}(2,0)= \\
& =a \omega_{z_{0}}(2,0)+b \omega_{z_{1}}(2,0)+c \omega_{z_{2}}(2,0)=\omega_{x}(2,0) \text { exists } \\
& \text { as } c^{\infty} \text { form and } d \omega_{x_{0}}(2,0) \equiv 0 .
\end{aligned}
$$

Since $\operatorname{det} \omega_{t}^{A}(2,0) \wedge \operatorname{det} \overline{\omega_{t}^{A}(2,0)}=\operatorname{det} \omega_{t}(2,0) \wedge \operatorname{det} \omega_{t}(0,2)$, $\lim _{t \rightarrow 0} \omega_{t}^{A}(2,0)=\omega_{t_{0}}(2,0)$ and $\operatorname{det} \omega_{t_{0}}(2,0) \wedge \operatorname{det} \omega_{t_{0}}(0,2)=$ $=\operatorname{det} \omega_{Z_{0}}(2,0) \wedge \operatorname{det} \overline{\omega_{Z_{0}}}{ }^{(2.0)} \quad$ (this is so because $t_{0} \in \mathbb{P}_{Z_{0}}^{1}$ (L) and so T_{0} is obtained from Z_{0} by isometric deformation). So $\lim _{t \rightarrow 0} \operatorname{det} \omega_{t}(2,0) \wedge \operatorname{det} \omega_{t}(0,2)=\operatorname{det} \omega_{Z_{0}}(2,0) \wedge \overline{\operatorname{det} \omega_{Z_{0}}(2,0)}$ $=K \operatorname{vol}\left(g_{\alpha \bar{\beta}}\left(Z_{0}\right)\right)>0$. This proves that $\omega_{X_{0}}(2,0)$ is a non-degenerate form since $\operatorname{det} \omega_{x_{0}}(2,0)=\underbrace{\omega_{x_{0}}(2,0) \wedge \ldots \wedge \omega_{x_{0}}(2,0)}_{n-t i m e s}$ Q.E.D.

In order to finish the proof of theorem 1 we need to check that det $\omega_{X_{0}}(2,0)$ fulfills a), b) and c) of AndreottiWeil remark. Clearly $d\left(\operatorname{det} \omega_{X_{0}}(2,0)\right)=0$ and $\operatorname{det} \omega_{X_{0}}(2,0) \wedge \operatorname{det} \omega_{X}(2,0)>0 \quad$ so $\left.b\right)$ and $\left.c\right)$ are fulfilled.

Let P be the Plucker relation. Clearly we have $P\left(\operatorname{det} \omega_{t}(2,0)\right) \equiv 0$ so $\quad \lim _{t \rightarrow 0} P\left(\operatorname{det} \omega_{t}(2,0)\right) \equiv 0$.
So Theorem 1 is proved.

> Q.E.D.
§ II. Construction of the moduli space of marked polarized Algebraic Hyper-Kahlerian manifolds
2.1. The construction is based on the following
2.1.1. Lemma. Let g be a holomorphic automorphism of X, and suppose that $g^{*}=i d$, where $g^{*}: H^{2}(X, x) \rightarrow H^{2}(X, Z)$, then g induces the identity map on the Kuranishi space of X, ie. on

Proof: For the proof see [].

> Q.E.D.
2.1.2. The construction of the moduli space.

Let $\begin{array}{lll}x_{0} & \longrightarrow & x \\ f_{0} \\ 0 & \ni & \text { be the Kuranishi family of the marked } \\ 0\end{array}$

Algebraic polarized Hyper-Kahlerian manifold $\left(X ; \gamma_{1}, \ldots, \gamma_{b_{2}} ; L\right)$, where $Y_{1} \ldots \ldots \gamma_{b_{2}}$ is fixed basis in $H_{2}(x, m)$ and L in a fixed class of cohomology in $H^{2}(X, z)$ corresponding to the
to the imaginary part of a Hodge metric on X. From local Torelli theorem it follows that we may consider the following:
where $\mathrm{p}: \mathrm{U} \rightarrow \operatorname{IP}\left(\mathrm{H}^{2}(\mathrm{X}, \mathrm{z}) \otimes \mathbb{C}\right)$ is the period map, so from § 1.1. we may consider U as an open set in Ω this is just lemma 1.4.2.)

Let $H_{L}=\left\{x \in \mathbb{P}\left(H^{2}(X, z) \otimes \mathbb{C} \mid<x, L>\right\}\right.$. So from the arguments in 1.2 . we get that if we restrict the Kuranishi
 $\mathrm{U} \subset \Omega \subset \mathrm{IP}\left(\mathrm{H}^{2}(\mathrm{X}, \mathrm{X}) \otimes \mathbb{C}\right)$, we will get the local universal family of all Hyper-Kählerian manifold for which L corresponds to an imaginary part of a Hodge metric on X_{t}, for every $t \in U_{L}$.
 identifying isomorphic marked algebraic Hyper-Kählerian manifolds with fixed polarized class L. In such a way we will get an universal family $\quad{ }^{\dagger}{ }_{M}\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)$ (since if $\varphi: X \rightarrow X$ is a biholomorphic map and $\varphi^{*}(L)=L$, then φ must be an isometry with respect to Yau metric and so for generic X $\varphi^{*}=1 d$ on $H^{2}(X, z)$. See $\left.[6] \&[11]\right)$ of maried polarized Hyper-Kählerian manifolds with the following properties:
a) ${ }^{M}\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)$ is a non-singular complex manifold of dimension $h^{1,1}{ }^{1}$,
b) $X_{L} \longrightarrow I^{N}{ }^{N} M\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)$. This is so since L

restricted to each fibre X_{t} of $\stackrel{X}{t}^{X_{L}}$, corresponds to a very ample divisor D_{t}.

$$
M\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)
$$

From b) it follows that $p\left(M\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)\right.$ in $\Omega(L)$ is exactly equal to $\Omega(L) \backslash \tau^{-1}(V)$, where $\tau: \Omega(L) \rightarrow \Omega(L) / \Gamma_{L}\left(\Gamma_{L}\right.$ and $v \quad i$ are defined in 1.2 .1 .

$$
\Gamma_{L}=\left\{\varphi \in \text { Rut } H^{2}(X, z) \mid \varphi(L)=L \quad \text { and }\langle u, v\rangle=\langle\varphi(u), \varphi(v)\rangle\right\}
$$

$V=p(D)$, where $D=\hat{H i l b_{X / I p^{N}} \backslash H i l b_{X / T P^{N}}^{\prime}}$.
§3. Torelli Problem for Hyper-Kahlerian Algebraic Manifolds.

Theorem 3. Let $\pi_{L}: X_{L} \rightarrow M_{\left(L ; \gamma_{1}, \ldots, \gamma_{b}\right)}$) be the universal family of marked Hyper-Kählerian manifolds with fixed polarization class L coming from the embedding:
then there exists a universal partial compactification
$\bar{\pi}_{L}: \bar{x}_{L} \rightarrow \bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b 2}\right)}$ of the universal family of marked polarized Hyper-Rählerian manifolds definds up to an isomorphism such that:
a)

$$
\begin{aligned}
& X_{L} \quad \bar{X}_{L} \quad \Leftrightarrow \quad \mathbb{P}^{N}{ }^{M}\left(L ; \quad \ldots, b_{2}\right)
\end{aligned}
$$

and every fibre of $\bar{\pi}: \bar{x}_{L^{\prime}} \bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$ is birationally isomorphic to a non-singular Hyper-Kählerlan manifold.
b) the period map $p: M_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right) \rightarrow \Omega(L) \text { can be prolonged }, ~}^{\text {b }}$ to a holomorphic isomorphism:

$$
\overline{\mathrm{p}}: \overline{\mathrm{M}}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)} \quad \sim \Omega(L)
$$

Remark $\overline{\mathrm{p}}: \overline{\mathrm{M}}\left(\mathrm{L} ; \gamma_{1}, \ldots, \gamma_{\mathrm{b}_{2}}\right)$ is defined up to a component.

Proof: First we will construct the partial compactification of

$$
\begin{aligned}
& { }^{\pi_{L} \cdot X_{L}} \rightarrow M_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)} \begin{array}{l}
\overline{X_{L}} \\
+ \\
\\
\end{array} \\
& \left.\bar{M}_{\left(L ; \gamma_{1}\right.}, \ldots, \gamma_{b_{2}}\right)
\end{aligned}
$$

In the proof of theorem 1 we used the fact that

$$
\Omega(L) \backslash p\left(M\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)\right)=v=V_{0} \cup v_{1} \cup \ldots \cup v_{K} \ldots
$$

is a countable union of analytic subsets. Now let D be a disc in $\Omega(L)$ and $D^{*}=D^{*} \backslash\{0\}$, i.e. D intersects V in one point. From the arguments on p. 22 and 23 it follows that over D^{*} we have a family of marked algebraic HyperKăhlerian manifolds with polirization class L :

$$
x^{\star} \rightarrow D^{*},
$$

and this family has the properties stated on p. 23. Now we can apply Theorem 1 to $X^{*} \rightarrow D^{*}$ and we will get a family $\pi: X \rightarrow D$, where all the fibres are non-singular Hyper-Kahlerian manifolds. So from here it follows the existence of a family of non-singular Hyper-Kăhlerian marked manifolds $\tilde{x}_{L} \rightarrow \bar{M}_{\left(L, \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$ such that

b) the period map

$$
p: \bar{M}_{\left(L / \gamma_{1} \ldots, \gamma_{p_{q}}\right)} \rightarrow \Omega(L)
$$

is a surjective map and étale map.
3.1.1. Lemma. There exists meromorphic map

$$
\begin{gathered}
\left.\tilde{\varphi}: \tilde{X}_{L} \rightarrow \text { IP }^{N} \times \bar{M}_{\left(L ; \gamma_{1}\right.}, \ldots, \gamma_{b_{2}}\right) \\
\stackrel{{ }_{M}^{M}}{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}
\end{gathered}
$$

such that:
a) the restriction of $\tilde{\varphi}$ on $X_{L} \rightarrow M_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$ gives the embedding
b) for each $t \in \bar{M}\left(L ; \ldots, b_{2}\right)^{\prime M}\left(L ; \ldots, b_{1}\right)$ the map $\tilde{\varphi}$ defines a holomorphic map

$$
\varphi_{t}: x_{t} \rightarrow \frac{x}{t}_{t}
$$

where \bar{x}_{t} is the closure of the fibre X_{t} in \mathbb{P}^{N} under the map $\quad \tilde{\varphi}_{t}$ and $\tilde{\varphi}_{t}$ is a birational map.

Proof: We know that:
a) $\left.\bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b}\right)}\right)^{M}\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)$ is a countable union of closed analytic subsets

${ }^{M}\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)$

So from a) \& b) it follows that it is enough to prove the lemma for a family $\pi: x \rightarrow D$, where $D C \bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$ and $D^{*} \hookrightarrow M_{\left(L ; \gamma_{1}, \ldots, \gamma_{b}\right)}$) Since $D^{*} \hookrightarrow D C \Omega(L)$, from the arguments on p. 24^{2} it follows that the family $\pi^{*}: \chi^{*} \rightarrow$ D^{*} has the following property:
(*) there exists an embedding

Now let $\left\{\varphi_{0}(t), \ldots, \varphi_{N}(t)\right\}\left(t \in D^{*}\right)$ are the section of the line bundle L^{*}, that gives the embedding ${\underset{D}{*}}_{\substack{*}}^{\longrightarrow} \mathbb{P}^{N} \times D^{*}$.

From the fact that we have

it follows that we can continue $\left\{\varphi_{0}(t), \ldots, \varphi_{N}(t)\right\}$ to sections in $\pi^{-1}(0)=X_{0}$, where X_{0} is the zero fibre of the family of the non-singular Hyper-Kahlerian manifolds \dot{X}_{D}. So from here we get that there exists a birational map between

since if $\left(\varphi_{0}(t), \ldots, \varphi_{N}(t)\right)_{t \in D}$ have fixed point then these fixed point are in X_{0} so the set of fixed points of the linear system $\left(\varphi_{0}(t), \ldots, \varphi_{N}(t)\right)$ can be at most a divisor in X_{0}, and so has codimension $\geqq 2$ in X. So from here we obtain that $\quad{ }_{D_{1}}^{1} \subset \rightarrow \mathbb{P}^{N} \times D$ is a birational map. Even more we will prove that there exists a holomorphic map

$$
\varphi_{0}: x_{0} \rightarrow x_{0}^{1} \hookrightarrow \mathbb{P}^{N} \quad x_{0}^{1}=\pi_{1}^{-1}(0)
$$

which is induced by the birational isomorphism between X_{0} and X_{0}^{1}

Proof: Let H be the closure of the very ample divisor $H *$ that difines L^{*} in X. Let $L=0(H)$ and let $L_{0}=L_{\mid X_{0}}$. we will prove that L_{0} gives us

$$
\varphi_{0}: x_{0} \rightarrow \mathrm{x}_{0}^{1} \longrightarrow \mathrm{P}^{\mathrm{N}}
$$

Fist it is easy to see that on $X_{1} \backslash \operatorname{Sing}\left(X_{0}^{1}\right)$ there exists a Kähler metric; this is the restriction of FubliniStudy metric $+d t \otimes d \bar{t}$ on $X_{1} \backslash A, A=\operatorname{sing}\left(X_{0}^{1}\right)$. For each $t \in D^{*}$ the restriction of the imaginary part of this Kähler metric gives the Chern class of $\left.L\right|_{X_{t}}$. Notice that codim $A \geq 2$ in X^{1}. Let $\left\{W_{p}\right\}$ be a covering of X such that

$$
i^{\prime}\left(\left(\Sigma g_{i j}^{e}-(t) \cdot d z^{j} \wedge d \bar{z}^{j}+d t \wedge d \bar{E} \| \mid\left(W_{e} \backslash\left(W_{e} \cap A\right)=i \partial \bar{\partial} u_{e}\right.\right.\right.
$$

where u_{e} is a plurihsubharmonic function. From a theorem
about the continuation of plurisubharmonic functions proved in [9] it follows that we can continue u_{e} in W_{e} and we will have

$$
\text { i } \partial \bar{\partial} u_{e} \geq 0
$$

From this fact we get:

For every effective analytic cycle $c \subset X_{0}$ dim $c=k$ we have
(*)

$$
\int_{c} c_{1}\left(L_{0}\right) \wedge \ldots \wedge c_{1}\left(L_{0}\right) \geq 0
$$

(*) is equivalent to the following inequality
(**) $<\mathrm{H}_{0}^{2 \mathrm{n}-\mathrm{k}}, \mathrm{c}>\geq 0$
where $H_{0}=\left.H\right|_{X_{0}}$. (*,*) means that the linear system $\left|\mathrm{H}_{0}\right|$ gives a holomorphic map:

$$
\varphi_{0}: X_{0} \rightarrow \mathrm{P}^{N}
$$

This is Kleinman-Moishezon criterion [14]. So this proves lemma 3.1.1.

> Q.E.D.

Now we can define the family $\pi i{\overline{X_{L}}}_{L} \rightarrow \bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$
 of the fibres of the image of the family ${ }^{2} \tilde{X}_{L} \rightarrow \bar{M}_{(L ;}$
in $\operatorname{sP}^{N_{X}} \bar{M}\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)$

Lemma 3.1.2. Suppose that:
a) $\pi_{1}^{*}: X_{1}^{*} \rightarrow D^{*}$ and $\pi_{2}^{*}: X_{2}^{*} \rightarrow D^{*}$ are two isomorphic families of marked polarized Hyper-Kählerian algebraic manifolds with trivial monodromy.
b) Let $\pi_{1}: x_{1} \rightarrow D_{1}$ and $\pi_{2}: x_{2} \rightarrow D_{2}$ are obtained from $\pi_{1}^{*}: x_{1}^{*} \rightarrow D_{1}^{*}$ and $\pi_{2}^{*}: x_{2}^{*} \rightarrow D_{2}^{*}$ in the following way:

$$
\begin{aligned}
& D_{i}^{*} \hookrightarrow D_{i} \longrightarrow \bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}
\end{aligned}
$$

where $\overline{X_{L}} \rightarrow \bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$ is defined on $p .49$.

Then the two families $X_{1} \rightarrow D_{1}$ and $X_{2} \rightarrow D_{2}$ are biholomorphically isomorphic

$$
x_{1}^{*} \rightarrow x_{2}^{*}
$$

Proof: Let $\varphi:{ }_{D^{*}}^{+}={ }^{t}{ }^{*}$ * be a holomorphic isomorphism between those two marked polarized families of algebraic Hyper-Kahlerian manifolds. From the definition of φ it follows that:

1) $\varphi^{*}\left(L_{2}\right)=L_{1}$, where L_{i} is the polarization class on $\pi_{i}^{*}: x_{i}^{*} \rightarrow D^{*}$
2) $\varphi^{*}: H^{2}(X, x) \rightarrow H^{2}(X, z) \quad$ is the identity map.

Since $\underset{t}{X^{*}} \underset{D^{*}}{\longrightarrow} \mathbf{P}^{N} \times D^{*}$ Fubini-Study metric on that $\varphi: \begin{aligned} & \chi_{1}^{*} \rightarrow \chi_{1}^{*} \\ & D_{2}^{*}=D^{*}\end{aligned} \quad$ is induced by a biholomorphic map
 plane section. Let $\Gamma_{\Psi *}$ be the graph of the map Ψ^{*} in $\left(\mathbb{P}^{N_{x D}} D^{*}\right) \times{ }_{D^{*}}\left(P^{N_{x D}}{ }^{*}\right)=P^{N_{\times}} \mathbb{P}^{N_{\times}}{ }_{D^{*}}$. Since $\Psi *$ induces the identity map $H_{*}\left(P^{N}, T\right)$, Bishop criterium and the fact that $\left(I^{N} \times D\right) \times{ }_{D}\left(I^{N} \times D\right)={I P^{N} \times I P^{N} \times D}^{N^{N}}$ is a Káhler manifold we get that $\Gamma_{\Psi *}$ can be prolonged to Γ_{Ψ} in $I^{N} \times P^{N} \times D$. The arguments are exactly the same as Proposition 3.1. of [23]. Since Ψ^{*} is given by $0_{\mathbb{I P}^{N}}(1){ }_{0_{D *}} 0_{D^{*}}$ and $\Gamma_{\Psi *}$ can be prolonged to Γ_{Ψ} in $\mathbb{P}^{N_{x}} \mathbb{P}^{N_{\times}} D^{N}$ we get that the sections of $\Gamma\left(\mathbb{P}^{N} \times D^{*}, 0_{I P} N(1){ }_{0} 0_{D^{*}} 0_{D *}\right)$ can be prolonged to meromorphic sections of $\Gamma\left(\mathbb{P}^{N}{ }^{N}, O_{I P N}(1){ }_{U_{D}} O_{D}\right)$ can be prolonged to meromorphic section of $\quad \Gamma\left(\mathbb{P}^{N} \times{ }_{D}, 0_{I P} N(1){ }_{O_{D}} 0_{D}\right)$ so this sections can have poles along $\pi^{-1}(0)=\mathbb{P}^{N}$, where

$$
\pi: \mathbb{P}^{N} \times \quad D \rightarrow D
$$

From here we get that if we multiply each section $\varphi_{i}(t)$ by $t^{n_{i}}$ then we will get a section $t^{n_{i}} \varphi_{i} \in \Gamma\left(I^{N} \times D, O_{I P} N \quad{ }_{0}{ }_{0}{ }_{D}{ }^{O_{D}}\right)$ abd even more $t^{n_{1}} \varphi_{i} \neq 0$ on $\pi^{-1}(0)$.

So from here directly lemma 3.1.2. follows, because we can prolong $\Psi *$ to an isomorphism

The end of the proof of Theorem 3.

From 3.1.2. it follows that $\bar{\pi}: \bar{x}_{L} \rightarrow \bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$ is a unique family up to an isomorphism and so it induces a Hausdorf topology on $\bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$. We know that the period map

$$
\overline{\left.\mathrm{p}: \overline{\mathrm{M}}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right.}\right) \longrightarrow \Omega(L), ~}
$$

is a surjective map. From local Torelli theorem and the way we constructed $\bar{X}_{L_{L}} \rightarrow \bar{M}_{\left(L_{i} ; \gamma_{1}, \ldots, \gamma_{b}\right)}$) we get that $\overline{\mathrm{p}}$ is an étale map. Now if we prove that $\overline{\mathrm{p}}$ is a proper map, since

$$
\Omega(L) \approx \operatorname{SO}\left(2, b_{2}-3\right) / S O(2) \times S O\left(b_{2}-3\right)
$$

and so simply connected Theorem will follow. So we need to check that \bar{p} is a proper map. So we need to use the valuative criterium of Grothendieck of a properness., [S6A], so we need to prove that if

$$
x \in \Omega(L)
$$

and if $\varphi: D \rightarrow \Omega(L) \quad$ is a holomorphic map from any disc such that:
a) $\varphi(0)=x$
b) the following diagramm is commutative
(*)

then Ψ. can be prolonged to a map $\psi: D \rightarrow \bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$ such that the diagram is commutative:
(**)

If we prove this (which is exactly Grothendeck's criterion of properness) the map $p: \bar{M}\left(L ; \gamma_{1}, \ldots, \gamma_{b}\right) \rightarrow \Omega(L)$ will be an etale and proper. On the other hafd we know that

$$
\Omega(L) \cong S O\left(2, b_{2}-3\right) / S O(2) \quad S O\left(b_{2}-3\right)
$$

is Siegel domain of $I V$ type and so $\Omega(L)$ is a simply connected manifold. From this fact it follows that

$$
\overline{\mathrm{p}}: \overline{\mathrm{M}}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)} \rightarrow \Omega(L)
$$

is a biholomorphic map. This will prove theorem 3. So we need to prove the valuative criterium of Grothendieck, i.e. we showed that the map $\varphi^{*}: D^{*} \rightarrow M_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$ of the commutative diagram can be prolonged to a map

$$
\Psi: D \rightarrow \bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}
$$

so that the diagramm (**) must be commutative one. See []. We must consider two cases:
a) Let $\Psi^{*}: D^{*} \rightarrow \stackrel{+}{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)}$. In this case we have a family $X^{*} \rightarrow D^{*}$ of marked polarized Hyper-Kählerian manifolds. The condition that the map $p: D^{*} \rightarrow \Omega(L)$ can be continued to the map $\mathrm{p}: \mathrm{D} \rightarrow \Omega(\mathrm{L})$ means that the monodromy of the family $X^{*} \rightarrow D^{*}$ is trivial. This follows from theorem 9.5. proved by Griffiths in [13]. Then Theorem 1 says that we
 fibres are non-singular Hyper-Kählerian manifolds. Now lemma 3.1.1. shows that Grothendieck's criterium is fulfilled.
b) Let $\left.\Psi^{*}\left(\Delta^{*}\right) \subset \bar{M}_{\left(L ; \gamma_{1}\right.}, \ldots, \gamma_{b_{2}}\right) \backslash{ }^{M}\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right)$. Since $\left.\bar{M}_{\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right.}\right)^{\prime M}\left(L ; \gamma_{1}, \ldots, \gamma_{b_{2}}\right) \quad$ is a union of $\underset{X^{*}}{ }$ closed complex analytic subsets and the period map $p: D \rightarrow \Omega(L)$ can be continued to a map $p: D \rightarrow \Omega(L)$ it follows that we can find a disc D_{1} such that

1) $\left.D_{1}^{*} \subset M_{\left(L ; \gamma_{1}\right.}, \ldots, \gamma_{b_{2}}\right)$
2) $p: D_{1}^{*} \rightarrow \Omega(L) \quad$ can be continued to a map $p: D_{1} \rightarrow \Omega(L)$ and $\mathrm{p}\left(0_{1}\right)=\mathrm{p}(0)$, where $0_{1} \in \mathrm{D}_{1}$ and $0 \in D$.
3) D and D_{1} are contained in U, where $U=p^{-1}(U), U$ is a policynder $\operatorname{dim}_{\mathbb{C}} U=\operatorname{dim}_{\mathbb{C}} \Omega(L)$ such that $p(D) \in U$. Then everything follows from a.

REFERENCES

1. A. Beauville "Variétés Kähleriennes dont la primiére class de Chern est nulle "J. of Diff. Geometry 18 (1983).
2. A. Beauville "some remarks of Kahler manifolds with $c_{1}=0^{\prime \prime}$. Progress in Mathematics vol. 39, Birkhäuser Inc.. ${ }_{1} 126$.
3. F. Bogomolov "On decomposition of Kahler manifolds with trivial canonical class" Math. USSR Sbornik $22(1974)$, 580-583.
4. F. Bogomolov "Kählerian varieties with trivial canonical class", Preprint, I.H.E.S. February 1981.
5. A. Borel, "Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem". I. of Diff. Geometry", (1972) 543-560.
6. D. Burns and M. Rapoport, "On the Torelli problem for Kählerian K3 surfaces", Ann. Sci. ENS 8(1975), 235-274.
7. E. Calabi "Métrique Kăhleriennes et fibres holomorphes" Ann. Sci. E.N.S. 12 (1979), 269-294.
8. S.S. Chern "Complex Manifolds" Chicago University, 1957.
9. S.S. Chern "Seminar on Partial Diff. Equations" Math. Sciences Research Institute Publ. vol. 2, Springer Verlag New York 1984.
10. O. Debarre, in preparation.
11. R. Friedman,"A degeneration family of qunitic surfaces with trivial monodromy" Duke Math. J. vol. 50, N1 (1983), 203-214.
12. A. Fujiki "On primitively symplectic compact Kähler V-manifolds" Progress in Math. vol. 39, Birkhäuser Boston 1963, 435-442.
13. Ph. A. Griffiths "Periods integrais on Algebraic Manifolds III". I.H.E.S. Publ. Math. vol. 38 (1970), 125-180.
14. K. Kodaira, J. Morrow, "Complex Manifolds" Holt, Rinehart and Winston Inc., New York 1971.
15. V.S. Kulikov, "Degenerations of K3 and Enriques surfaces", Math. USSR Izvestija 11(1977), 957-989.
16. M.L. Michelson "Chifford and spinor cohomology of Käler manifolds", Amer. J. of Math. 102 (1980), 1083-1196.
17. S. Mukai, "Symplectic structure of the moduli of sheaves on an abelian or K3 surface" Inv. Math. 71 (1984) 101-116.
18. D. Morrisson, personal communication.
19. U. Persson, H. Pinkham, "Degeneration of surfaces with trivial canonical bundle", Ann. of Math. 113(1981), 45-66.
20. I. Piateckii-Sapiro, I.R. Safarević, "A Torelli theorem for algebraic surfaces of type K3" Math. USSR Izvestija 5 (1971), 547-588.
21. A. Todorov, "Applications of the Kahler-Einstein-CalabiYau metric to moduli of K3 surfaces", Inv. Math. 61 (1980), 251-265.
22. S.T. Yau, "On the Ricci curvature of a compact Kähler manifold and the complex Monge-Amper-equation, $I^{\prime \prime}$, Comm. Pure and Applied Math. 31 (1978), 229-411.
