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Moduli of Hyper-Kahlerian Algebraic Manifolds 

Andrey N. Todorov 

Introduction 

It is a well known fact that if X is a compact complex 

simply connected Kahler manifold with c 1 (X) = 0, then 

x = nXj x fly i 

where a) for each and if is a 

non-zero holomorphic two form on Xj ,and- at each point 

XEX j tP j is a non-degenerate, Le. if tPjl U = E«(j)j)a~ 

then det( <(j)j) as} E r (U,On). Such manifold we will call Hyper

Klihlerian. 

and 

b) for each i 

dim HO(Yi,on, = 1 

ana 

and 

0 ;- ~d';m y n di.m. HO,y.;,rlP) = 0, .... p ... a: i= ... 

° n H (Yi,G) is spanned by a holomorphic 

n-form which has no-zeroes and no-poles. 

This fact is due to Calabi and Bogomolov. See [3]. An 

elegant proof based on Yau's solution of Calabi conjecture was 

given by M.L. Michelson. See [16]. 

The purpose of this article is to study the moduli space 

of the so called marked algebraic Hyper-Kahlerian manifolds. 

Definition. A tripple {X,"('1""'Yb iL} will be called a 
2 

marked algebraic Hyper-Kahlerian manifold if X is a Hyper-
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Kahlerian manifold, Y1' ••• 'Yb 
2 

is a basis of 

and L is the imaginary part as a class of cohomol.O<JY of 

Hodge metric on X. 

In t4is article we prove that the moduli space of 

marked algebraic Hyper-Kihlerain manifolds exists. This is 

proved in § 2. More over we have an universal family of 

marked algebraic Hyper-Kahlerain manifolds 

The construction of the moduli space follows Burns and 

Rapoport. See [ 1. 

We have the so called period map: 

where 

p{t) 2 = ( ••• ,f w(2,O), ••• ) E.IP(H (X,S) .0:) 
Yi 

where w
t

(2,O) is the unique up to a constant holomorphic 

two-form on Xt = .• -1(t). From Bogomolov's result, that there 

are no oDstructions to deformations and local Torelli theorem 

we get th~t the irreducible component M is a 
• (L;y1'· .. ·'yb ) 

non-singular manifold and dim M = b -! I where 
a: (L'Y1' •• "Yb) 2 

b 2 = dim ~2(X,a:). 2 

From Griffith'. theory of Variations of Hodge structure we 
get that 
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P:M( ) ~ SOO(2,b2-3)/SO(2)x SO(b2-3)C-> F (H2(XI~» 
LiY 1 ""'Yb 

2 

is a local isomorphism. 

In § 3 we prove Theorem 3. The period map 

'p:M --+ 
(LiY 1""'Yb ) 

2 

is an embedding. 

Theorem 3 is a positive answer to the so called Torelli 

problem, and is in some aspects a generalization of the 

theorem of Piatezki-Shapiro and Shafarevich about the 

K-3 surfaces. See [20]. 

In order to prove Theorem 3 we need to compactify partially 

the family X ~ M to a family 
L (L;Y1""'Yb.) 

XL ~ M(L' ) by addingZsingular Hyper-Kahlerian 
'Y 1 '···'Yb 

algebraic manifold tor which L is a very ample line bundle. 

Next we prove that M is a Hausdorf space and 
(L'Y 1 '···'Yb) 

.. 2 
P can be extended to a proper etale map 

p:M 
(L;Y1'··· 'Yb ) 

2 

But SOO(2,b2-3)/SO(2) xSO(b2-3) is a Siegel domain of 

IV type so SOO(2,b2-3)/SO(2) xSO(b2-3) is a simply connected 

manifold. From this fact and since p is a proper and 

eta1e map we get that p is a one-to-one surjective map. 

So we have proved both injectivity and surjectivity for 

algebraic Hyper-Kahlerian manifolds. 
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So the main step of the proof of Theorem 3 is the 

partial compactif1cation and this partial compactification 

is based on the following theorem 

Theorem 1. Suppose w*:X* -. D* is a family of non-singular 

Hyper-Kahlerian manifolds such that: 

a) w*:X* ~ D has a trivial mon~romy on H2 (Xt ,Z) 

b) X * ~ lPN x D* 

... ~ 
D* 

Then there exists a family w:x ~ 0 such that all its 

fibres are non-singular Hyper-Klihlerian manifolds and 

X* ~ X 
... ... 
D* ~ D 

This theorem is proved in § 1 and the proof 1s based 

on the existence of Calabi-Yau metric, i.e. Ricci flat 

metrices on Hyper-Klihlerain manifolds. The existence of 

such Metrics follows from the Yau's solution of Calabi's 

conjecture see [1~1. More precisely the main point of the_ 

proof of Theorem 1 is based on the isometric deformations, which 

is an application of the existence of Ricci-flat metric. 

Theorem 1 gives an affirmative answer to a problem posed by 

Griffiths. He called th.is problem "the filling in problem". 

See [II ].[111 for counterexamples in case of surfaces of 

general type. ~heorem 1 is a generalization of some results 

of Kulikov ([IS]). See also [/9]. Our proof is entirely 

different form that of Kulikov's since in my opinion the 

method of Kulikov works only for X3 surface •• 
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The first examples of Hyper-Kahlerain manifolds of 

dim ~ 4 were constructed by Fujiki [/1]. These examples 

were generalized by Beauville and Miyaoka. See [1]. 

It is not very difficult to prove by the method used 

in the proof of Theorem ,1 the'. surjectivity of the'period map 

for all Hyper-Kahlerain manifold. This will be done in 

another paper. 

Recently O. Debarre constructed using the so called 

elementary transformations ·introduced by Mukai in 

[11J two bimeromorphic but not biholomorphic 

non algebraic Kahlerian manioflds. So the best we can hope 

in case of Hyper-Kahlerian non-algebraic manifolds is that 

the Global Torelli theorem is true for bimeromorphic Hyper

Kahlerian maniof6lds, i.e. if X and XI have the same 

periods, i.e. isometric Hodge structe on H2 (X,Z) and 

H2 (X',Z), then X and XI are bimeramarphic. 

Part of this work was done during my stay in lAS in 

Princeton and was supported by a NSF grant. It was finished 

in Max-Planck-Institut in Bonn. The author expresses his 

gratitude to both Institutes for the hospitality and 

excellent conditions for work. 
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§o. SOME DEFINITIONS AND NOTATIONS 

DEFINITION 0.1. Let X be a Kahler compact manifold such that: 

a) n
1

(x} = 0, i.e. X is a simply connected manifold 

b) dimcrX = 2n 

c) dim~HO(X,02) = 1 and let 0 ~ wx (2,0) E HO(X,02) , then 

wx(2,O) is a non-degenerate holomorphic two form on X, 

which means that for each point x EX , there exists an open 
1 2n neighborhood U of x and local coordinates z , ••• ,z 

such that: 

and is a holomorphic function in U without zeroes 

and poles, Le. 

If a manifold X is a Kahler one and fulfills al, b) and 

c) then we will called it Hyper-Klhlerian manif9ld. 

Examples of such manifolds are constructed in [/2] and 

[ 1 ]. 

Some notations: 

wX(k,O) will be a holomorphic k-form on X 

Wx (0 Ik \ = Wx (k-;of , i. e. the autiholomorphic k -forms on X 

o - will be the unit disk, i.e. 0 .. {t E: u:I It I < 1} 

0* =: O,{O} 

If 'If: X -> D is a family of manifolds, then Xs II ,,-1 (s) • 
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If g is a Riemannian metric on X by V we will denote 

the Levi-Chevita connection on T*X I where TX is the 

tangent bundle on X and T*X is the cotangent bundle. 

By T*X 0 (l! , we will denote the complexified cotangent bundle. 

V induces a covariant derivative on APT*X for any P E Z , 

this covariant derivative we will denote again by V 

r(X,APT*) will be the global sections of the bundle 

APT* 

If lP E r (X, Am (T*X 0 a:) ) I then locally: 

A --B-

lP = X lP n ,dz P 1\ dz q 
p+q=m Ap' g 

where A = (a
1 

I ••• , a
p

) Bq = (S1 , ···,Sq) are multiindexes 
P 

A a 1 a S B S 1 2n dz P = d z " 1\ • •• I\d z P I 
dZ Y = d z q 1\ • • • I\d z q z , •• .,. z are 

local wordinates. 

If tp E r (X, APT*X) and dtp = 0 , then by {lP] we will denote 

the class of cohomology that tp defines in HP(X,R). 

§ 1 • PROOF OF THEOREM 1. 

Theorem 1. Let n* : x* --> 0* be a family of non-singular 

Hyper-Kahlerian manifolds such that: 

a) n*: x* --> 0* has a trivial monodromy on H
2

(X
t

,Z) , i.e. 

if 

T = 
b) 

T : H2 (X
t

,Z) -> 

id • 
x* C-> pN~ 0* 

~/ 
0* 

is the monodromy operator, then 
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Then there exists a family "It' : X -> D such that: 

a) n- 1 (0) is a non-singular Hyper-X&hler1an manifold 

(algebraic one) 

b) 

§1.1. Marked, polarized Hyper-Kahlerian manifolds and 

their Hodge structures of weight two 

DEFINITION 1.1.1. The tripple (X;Y1" •• 'Yb ;L) we will 
2 

call a marked, polarized Hyper-Kahlerain manifold if X is 

a Hyper-KHhlerian manifold; Yl , ••• , y. 
P2 

is a basis of 

H2 (X,Z) and L is the cohomology class of the imaginary 

part of a KHhler metric on X, i.e. L = [ga~] • 

Remark. Notice that two marked polarized Hyper-KHhlerian 

manifolds (Xi'Y
1
,'."Y ;L) Ie (YiIl

1
, ••• ,1l iLl) are isomorphic 

P2 P2 
iff there exists a bihomomorphic map .q> : X ~> Y such that 

b} * 1 * 2 2 q> (L ) = L;~ : H (Y,Z) --> H )X,S) 

DEFINITION 1.1.2. Suppose that n: X --> S is a family 

of non-singular Hyper-KShlerian manifolds and suppose that 

the monodromy operator T inQuced by the action of "It'l(S) 

on H2 (Xt ,Z) is the identity operator. Now it is clear that 
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if we fix a basis Y1""'Yb 
2 

of 

the monodromy operator is the trivial one we get that for 

every s E S Y 1" • ',Y.b will be a basis in H2 (Xs ,Z) • Now 
2 

we can define the period map: 

p s -> P (H
2 

(X, a:) ) 

in the following manner: 

peS) = ( •••• ,fw s (2.0), •••• ) 
Yi 

Now we want to see where the image of S lie in 

P(H
2 (X,a:» . So for that reason we will define a scalar 

product in H2 (X,a:) , where X is a marked polarized Hyper

Kahlerian manifold. 

DEFINITION 1.1.3. 2 The scalar product in ·H (X,R) <,> is 

defined as follows: 

n-2 = f w1 " w2 " L , where 
x 

and L is the polarization class. 

PROPOSITION 1.1.3.4. The scalar product <, > has signature 

(3,b2-3) ,where b2 = di~H2(X,R) 
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Proof: Note that 
<L,L> == f. l:P :: vol (X) > 0 , where vol (Xl is the volume 

of X. with respect to the metric (gua)' where [gaS] = L. 

Next we will prove the following relations: 

(1.1.4.) 

(1.1.5.) 

(1.1.6) 

<Wx(2,O)/~(2,O»= 0 

<w,x. (2,0) , ~ (2,0) > > 0 

<w (2,0) ,L> := 0 

* 
Notice that (1.1.4) and (1.1.6) follow from the definition of 

<,> • In order to prove (1.1.5) we need the following lemma: 

Lemma. If n is a primitive form of type' (p,q), then 

(p+q) (E+q+1 ) 
:= (/=T)p-q (-1) 2 2n-p-q -

*n (2n-p-q)1 L n 

where * is the Hodge star operator. (For the proof see [~]) 

From this lemma it follows that: 

<w (2,0),w (2,0) := J w (2,0)" *w (2,0) = II w (2,0)11 2>0 
x· X. X X X X 

So (1.1.5.) is proved. 

Let Ul (2,0) := Re Ul (2,0) + i 1m w (2,0), then from (1.1.4.) 
X X· x-

and (1.1.5.) it follows that: <Re ~(2,O),Re ~(210». <1m ~.(2,O), 

1m "k.(2,O»:= ~II ~(2,0)1I2>O and <Re ~(2,O),zm ~.(2,O»=o.sowesee 

tha t L,Re ~ (2,0), 1m ~ (2,0) are three orthonormal vectors in 
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such that: 

So we see that <,> has at least signature (3,b2-3). Now 

since a2 (X, R) = lR Re Wx (2,0) + :R lm Wx (2,0) + JR L + a 1,1 (X,::R) 0 

where H
,

,1(X,JR)o = {WEH
,

,1(X,JR) I <w,L>=O}, i.e. H1,1(X,JR)O 

are the primitive (1.1) classes in H2 (X,JR), we get that 

<,> has signature (3,b2-3). Indeed from the lemma used above 

it follows that if wE H" l (X,JR) 0 then <w,w> < O. It is easy 

to see that <w
X

(2,O),w> = 0 if WEH
"

'(X,JR)O. 

Q.E.D. 

The scalar product (1.1.3) defines a nonsingular quadrics 

o in F(H2 (X,re» in the following way: 

(1.1.7.) o d~f {u E F (H2 (X,(l!» I <u,u>=O} 

Let 0 be 

def 
(1.1.8. ) n = {uEO I <u,u»0 } 

o is an open subset in Q. Let 

(1.1.9.) n(L) = {u€ n\ <u,L> = O} 

From (1.1.4.), (1.1.5.) and (1.1.6.) and Griffith's 

theory [ ) we obtain that if X + S is a family of marked 
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polarized Hyper-«lihlerian manifolds, then p (S)c n (L) , 

where p .is the period map. 

Definition 1.1.10. n(L) we will call the period domain 

of the polarized Hodge structure of weight two on Hyper

K4hlerian manifolds. 
RemaJ:"k 1.1.11. a) If L E H2 (X,S), then <,> is defined 

over Z. 

b) It is not difficult to see that: 

§ 1.2. Calabi-Yau metrics and isometric deformations of 

Hyper-K4hlerian mani~olds. 

Definition 1.2.1. A KAhler metric (gaS) on a Hyper-K4hlerian 

manifold will be called Calabi-Yau metric if 

The existence of Calabi-Yau metric follows from the 

deep work of Yau [221. Notice that in the polariza~ion class of 

L , there exists a unique Calabi-Yau metric gaB such that 

Let us fix the Calabi-Yau metric gal in L. This metric 

induces covariant differeneiation on A2
(T*' X. ~). We will 

denote it by V. 

Lemma 1.2.2. V Wx(2,O) '!I' 'I Wx(O,2):: 0 
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Proof: The following formula is proved in [I¥]: 

Let ~ be a form of type (p,q) 

A 13 
Ip = 1/p!q! E ~ - dz P "dz q A ,B 

P q 

A = (a 1 ' ••• , ap ) ; B = (13 1 "" ,l3q ) 

(1.1.2.1.) (alp) (A B) 
p' q 

S , ... ,13) 
k+1 q 

q 

= -

- I L ~L ~(Ap,a1, ••• ,13k_1,T,13k+1, ••• ,13q) 
k=1 L 

where a is the Laplace-Beltrami operator, RaI3'YO is the 

curvature tensor, R- is the Ricci tensor and (gaa) = (g_ ,1. 
~v ~o 

In our case R- _ 0 
J,lv 

two-form, so we obtain: 

and 

(1.2.2.2.) a W
X

(O,2) = - 2 
f3 a 

wx (O,2) is an anti-holomorphic 

Say V () w ( 0 , 2) :: 0 
a .., X 

On the other hand it is easy to see: 

= means, 
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that <W1 ,W2> == Ix w1 A* w2 (* 

So we obtain that 

is the Hodge star operator.) 

I Ilvacax (0,2) ,,2 ::: 0 .. VSwx(0,2) - 0 • 

8 

Corollary 1.2.3. 

then 

Q.E.D. 

(1.2.4) From the definition of a K!hler metric, it follows 

that 

Re w-x(2,O), 1m wx(2,0) 

sional subsapce Ex(L) in 

and 1m (gas) define a three dimen

r(X,A 2T*X). Notice that Ex(L) 

consists of two forms parallel with the respect to the connection 

induced by the Calabi-'Yau metric (gaS). Since Re wx (2,O) , 

1m wx(2,O) are harmonic forms, we may consider Ex(L) as 

a subspace in H2 (X,E). We may suppose that <Rewx(2,0), 

Re wx(2 ,0) > ::: <1m w~(2 ,0), 1m Wx (2,0) > = <1m 9 a8',1m 9aa>::: 1-

On the other hand <Re ~_(2,0), 1m u' (2,0» = <Re w (2,0), 
A X X 

1m (qaa) > I: <1m w'x (2,0),Im (gal) > :: o. So Re wx (2,0), 1m wX(~'O) 

and 1m (gal' is an orthonormal base in Ex(L) C r(X,A2T*) 

with respect to the scalar product induced by g~J in A2T*. 

Notice that this scalar product is the same as <,> defined 

by (1.1.3). 
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Let -y = a Re ux (2,0) + b 1m UX.(2,0) + c 1m (gaS)' 

where a,b,c E:Eo and a 2 
+ b2 

+ c 2 = 1. Since -y E Ex (L) I 

then 

(*) 'i/-y - 0 

Locally -y can be written in the following way 

If L 
T,V 

metric on X 

~ dxjJ. 1\ dxv 
-Y=l.y].lV 

is the Riemannian Ricci flat 

defined by the Calabi-Yau metric (ga6) on 

then we will define J(y) in the following manner 

1.2.6. J(-y} E r (X,T* ® T), where 

Clearly V'(J(-y>>'::O. 

Lemma 1.2.7. a) J(y) defines a new integrable complex 

structure on X 

X, 

b) y is an imaginary part of a Calabi-Yau metric with 

respect to the new complex struture J(y). The Calabi-Yau 

metric defined by -y and J(-y) is equivalent·as a Riemannian 

metric to the Calabi-Yau metric ga8 I that we started with. 

Proof: Since 'i/J(y) :: 0 if we prove that in one point x E X 

J(y) D J(y) = - id, then J(y) will define an almost complex 

structure globally on X. Then we will need to show that this 

complex struture is an integrable one. 

So first we will prove that at one point x € X 

J(y) 0 J(y) = -ide First since wX<2,0) is a parallel with 
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respect to the connection induced by Calabi-Yau metric, it 

follows that the holonomy group of the Calahi-Yau metric is 

* Sp(n). This means that globally we can find j ( r (X,T • T) 

such that Vj lit 0 and we have at each point x 

This splitting is global. On the other hand the Calabi-Yau 

metric on T* 1 ,0 == Jln = :nn + :nni + mnj + :nnk is induced by x,X 
the standart scalar product on »f I so from here it follows 

that we can find an orthonormal quaternionic base in 

h1 = 1 l+nj h2 2+nj hn n 2n h th 1 e, + ~ , = e , ••• , = e + e j. T en e 

imaginary part of Calabi-Yau metric can be written in the 

following way: 

(*) 
2n 

1m (g "Q) I , 0 lit i I e
i 

" 11 i 
Op T*" i=1 x,x 

(**) and 1 l+n 2 2+n u 2n 
Wx (2 , 0) I T* 1 , 0 .: e" e + e "e + ••• + e "e == 

x,X 

Let us denote by I the original complex structure on 

X. Notice that J(Im 9
0
1). I. (See how we defined from y 

I(y». Let us denote by J. J(Re WX(2 , O» and by 

K· J(Dm wx(2,O». Prom (*) and (**) we see t.mediately that: 
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(***) I2 = J2 = K2 = -id, IJ + JI = IK + KI = JK + KJ = 0 

So remember that y = a Re wX(2,O) + bIm wx(2,O) + cI m(gae)' 

so 

I(y) = aJ + bK + cI , 

So from (***) we get 

So we have proved that I(y) defines an almost complex 

structure on X. Next we must prove that the almost complex 

structure J(y) is integrable. The proof is based on the 

following fact: 

Andreotti-Weil remark 

Let w be a n-complex valued form in a neighborhood 

U of a point x E X, where X is a n -dimensional real mani-

fold. Let w satisfies: 

a) P(w} = 0 , where P are the Plucker relation. This means 

that at each poirit x EX W\x EX = 1;1 A ••• A f I 1;,i E T~,x " 0:, 

so w defines a subspace T1 ,Oc T* ,,0: at each point xEV x x,X 
- 1 2n b) WAW = f(x 1 , ••• ,x2n) dx A •• .Adx , where f(x

1
, ••• ,x2J> 0 

in U. This means that T"O + ;1,0 = T* X "a: in U. x x, 

c) dw = 0 

Notice that a) and b) means that w defines an almost complex 

struture in U. The condition c) means that this complex struture 

is integrable. 
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So in order to use Andreotti-Weil remark we need to 

construct the form w, that satisfies a},b) and c). So 

first we will constructa globally ciefined form wJ (y) (2,0) 

of type (2,0) with respect ot Jey) and then we will prove 

that: 

WJ(y) (2n,0) = wJ(y) (2,0) 1\ ••• 1\ J(y) (2,0) 

V 
n-times 

fulfills the conditions of Andreotti-Weil's remark. 

Let (a,I3,y) be an orthonormal base of E (L) c r (X,A2 T*X) x 
with respect to the scalar product induced by Calabi-Yau metric 

in r(X,A2T*X). We suppose that (a,I3,y) define the same 

orientation on Ex(L) as (Re ux (2,0),~ Wx (2,0) I Im(ga~))· 

(1.2.7.1) 
def 

wJ(y) (2,0) = a + 113 

Proposition (1.2.7.2.) WJ(y) (2,0) ;: a+ il3 is a form of 

type· (2,0) with respect to the almost complex structure on 

X defined by J(y). 

Proof: Since both wJ(y) (2,0) and J(y) are paraller with 

respect to the connection V induced by Calabi-Yau metric 

(qaJ) , we need to check that wJ(y) (2,0) is a form of type 

(2,0) at one pOint x with respect to J(y). We will define 

an action of Sp(l) on T*X. Remember that the holonomy qroup 
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of the Calabi-Yau metric (gaS) was Sp(n), so we 

can introduce on T* x,X a quaternionie structure, i.e. 

(li is the quaternionic field) 

(gaS) is induced in E~ 

scalar product, i.e. let 

by the standart quaternionic 

is a quaternionic orthonormal basis in 
n E , then the restric-

tion of Calabi-Yau's metric on T* is obtained from the x,X 

following quaternlonic product in run. Let u = i I h Ui 

and v= 
n i 
L h Vi 

i=1 

<u,v> 

i=1 
, where , then 

= I u.v .• 
~ ~ 

Now we can identify Sp (1) = {It € E I AA = 1} • Then 

Sp (1 ) acts on En in the following way: 

Let A € Sp (1) and let 

where Sp ( 1) = fA e 1I I II A I 2 = 1} 

Clearly Sp (1) c: Sp (n); 1. e. this action of Sp (1 ) preser-

ves the quaternionic scalar p~oduct <U,v> =. Eu.u. 
~ ~ 

The following remark is an easy exercise. 

Remark 1. Sp (1) induces an action on A2T* and 
x,X 

c: r(X,A2T*X) is invariant under this induced action of Sp(1}. 

More over Sp(1) induces the standart SO(3) action on Ex(L) 

with respect to the Euclidean metric on Ex(L) induced by the 

orthonormal basis (Re wx (2,O) ,Im wx (2,O), Im(9a6»' From Remark 1 
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it follows 1uunediately that thete exists A E Sp (1) c: Sp (n) 

such that: 

(**) 

So A(w x(2,0» = wJ{y) (2,0). 

on the other hand from the definition of J (y) we see 

immediately that 

(***) J(y) = AIAt (A means a matrix and AAt = E 

since A E Sp (1) c Sp (n) c: SO (4n) ) 

So from (**) and (***) we get that wJ(y) (2,0) is a form of 

type (2,0) with respect to the almost complex structure J(y). 

This is so since if A2,0 is the subspace of (2,D) vectors 

in A2(T~,X ~~) with respect to I and if J(y) = AIAt , 

then A(A2 ,0) is the (2,0) subspace of A2 (T* .~) with x,X 
respect to J(y) = AlAt. 

Q.E.D. 

Now we need to show that 

WJ(y) (2n,O) = wJ(y) (2,0) A ••• A WJ(y) (2,0) 

V 
n-times 

fulfills the conditions a),b) and c) of Andreotti-Weil remark. 

Condition a} is fulfilled since wJ(y) (2n,O) is a (2n,O) type 

of form with respect to the almost complex structure operator 

J (y) acting on X and dim. X = 4n 
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b) It is easy to see that W J (y) (2n, 0) 1\ wJ (y) (2n,O) = vol (go.]) 

at each point x € X. 

c) From the definition of wJ(y) (2,0) it follows that 

dw J (y) (2 I 0 ) - 0 

So dw J (y) (2n, 0) == O. 

Q.E.D. 

Proof of (1.7.3.b): If y= IYllVdxllAdXV ,then y 

in the following way: Let 

defines a 

scalar product in T* x,X 
and y = IVSdXS , then <u,v> 

Y 

So if we prove that for each 

<J(y),u,u> > 0 
y 

u€ T* we have: x,X 

then we will have that y is an imaginary part of a Kahler 

metric on X with respect to J(y) since dy = o. So we 

may suppose that at x € X (go.i3) = 00.13 ' then: 

<J(y)u,u>y = Lyllo.uo.YllS = rUo.(-Yo.ll)YllSU~ = 

= t U ( - 0 ) u = \ u0.
2 

> 0 L. 0. aS 8 l, 

The last calculation show that Y is an imaginary part of 

a Kahler metric on X with respect to the complex structure 

J(y) and this new Kahler metric is equivalent as Riemann 
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metric to the Calabi-Yau metric we started with. 

Q.E.D. 

Remark 1.2.8. Lemma 1.2.8 shows that every oriented two 

plane E c: Ex (L) c: r (X, A 2T*X) defines a new complex structure 

on X. So we obtain a family X ~ s2 , where 

S2 = {y € E (L) I <y ,y> = 1} • Every point t E s2 defines an x 
oriented two plane E t c: Ex (L) in the following manner: 

Et = {Re wt (2,O),Im wt (2,O)} • Notice the conjugate complex 

structure on Xt defines the same Et c: Ex (L) but with 

different orientation, since wt (2,O) is the holomorphic two-

form with respect to the conjugate complex str-ucture and 

wt (2,O) • Re wt (2,O) - ilm w
t

(2,O). 

Se~. also [1]. 

§ 1.3. Hilbert scheme of Hyper-KAhlerian manifolds 

Let X be a projective Hyper-Klhlerian manifold embedded 
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in pN. Fubbini-Schtudy metric on ~ in a natural 

way defines a class of pol'arization L. on X. Let us 
---' 

deno~e by HilbX/pN I the component of the Hilbert scheme 
-..; 

that contains X. Let HilbX/pN be a subscheme of Hilb.x/]1IN 

such that Hilb~pN parametrizes .all non-singular Hyper-
..., "..--' 

K§.hlerian manifolds in the family x:-tHilbX/Jl?N. Grothendieck 

proved in SGA, that Hilbx/pN is a quasi-projective algebraic 

space. 

Definition 1.3.1. 
def 2 

r L ::; {yE Aut H (X,7L) I <y(u) ,y(u» ::; 

T <u,u>,y(L) ::; L}. Now we can define the period map 

p:HilbX/pN -+ Q(L)/rL • From the general Baily-Borel compacti

fication theory, it follows that Q(L) /rL is a quasi-projective 

manifold. 

Lemma 1.3.2. There exists an open Zariski set Hilb'x/pN C 

C HilbyJPN such that p (Hilb' X/JPN) d~fw is an open Zariski 

subset in O(L)/rL and every point of W corresponds to the 

algebraic Hyper-Kahlerian manifold. 

Proof: From the famous Hironaka's"resolution of singularityll 
A 

theorem it follows that we can compactify Hilbx/lPN c: Hilb xtIPN 

in such a way that: 

A 

1) Hilbx/lPN is a projective manifold obtained from projective 

manifold by successive blows up on non-singular submanifolds. 

A 
2) HilbX/ PN ....... Hilbx/pN ::; 0 is a divisor with normal crossings 

Borel proved in [5] that the period map: 
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p : HilbX/pN -+ 0 (L) Ir L 

can be prolonged to a map: 

1\ 1\ 

P : HilbX/pN -;.. g (L) Ir L 

where O(L)/rL is the Baily-Borel campactification of 

O(L)/rLo From Baily-Borel theory it follows that O(L)/rL 

is a Zariski open set in O(L)/rL , and 

projective algebraic variety. 

P~oposition 1.3.2.1. 

a surjective map. 

'!'he map is 

Proof: First we will recallso.e facts about local deformation 

theory of Hyper-KHhlerian manifolds due to B09omolov: The 

Kuranishi space of any Hyper-Kahlerian manifold is a non-

singular manifold of dimension 

For trivial reasons the local Torelli theorem is true 

for the period map defined in § 1.1. Beauville proved in 

[~1 that p(U) lies in the open set of the quadric Q defined 

by (1.1.7.) and (1.1.8.). So we ~ suppose that U is an 

open set in O. Let U
L 

be defined as follows a. point t E U
L 
iff L 

is a class of type (1.1) in the Byper-Kihlerian manifold 

that corresponds to the point t. SO UL z: U n HL ' where 

is the ~yperplane in P(B2 fX,«») defined by: 

HL = {u € P (a2 (X, CI:) ) I <u , L> = O} • 

So dim~uL = h111 -1 • dtm Q(L)/rL • On the other band we 

have a family lL. Now Lt € H 1 11 (Xt I.) is a fix class so 
L 
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from here we obtain a line bundle L on XL" Now suppose 

that L1x = Lt is a very ample line bundle, i.e. if 
t 0 

~O""'~N € H (Xt,Lt ) and (~O/""~N) is a basis of 
o H (Xt,Lt ), then ~O""'~N define an embedding 

By continuity argument we will get (that may be after shrink-

From the universal properties of Hilb.X/ JPN it follows that 

UL c: Hilb'X/:n?N ' so from here we get that 

1\ 1\ 

dim!l! p (Hflbx /JPN) :::: dim!l!TITLr /r L . 

1\ 

Now since p is a projective morphism and so p is proper 
1\ 1\ 

we get that p (Hilhx/pN) :::: 'ITTLf Ir L 

1\ 

Now since the map : p 
1\ 

surjective map, then p(D) 

a proper analytic subset in 

Q.E.D. 

1\ 

: HilbX/JI?N ~ r;l (L) IL is a proper 
1\ 1\ 

:::: p (Hilb~{:/JPN 'Hilb~/JPN) :::: V is 

G(L)/rL• Let 

v¥vo"(lv n (·a(L)/rl'W(L}/r» and let" W·= G(L)/rr.,' v. Clearly ~'l 

is a Zarisld open subset in G (L)/r L • Now let 

I def 1\-1 'II h HilbX/JPN - HilbXi'JPN ..... (EilbX/:u:-w. (1 p (V) ) then we w~ ave 

P (Hilb' x/pN) :::: W 
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So Bilb'X/pN is what we need. 

Q.E.D. 

It was proved byBogomolov that HilbVlPN is a 

non-singular manifold. [It 1 

§ 1.4. Proof of theorem 1 

Since the monodromy operator: 

is the identity operator, from theorem 9.5. in [I~l it follows 

that the period map: 

p*:D* ~ neLl ~ Q(L)/fL 

can be prolonged to a map 

't 
p:D ~ n(L) ~ n(L)/fL 

Let p(O} ::: Xo€n(L)/r
L 

(OED). Prom § 1.2. we know that 
A 1\ 

there exists a proper map p:Bilbx/lPN ~ Q(L)/fL I where 
A 

O(L)/rL is the Baily-Borel compactification and Bilbx/pN 

is obtained from the component of the Hilbert scheme Hilbx/pN 

that. cont.ains X by successive blows up along non-singu-
--' -

iar submanifolds contained in Bilbx/pN -,..HilbVJPN. (HilbX/lPN 

is a non-singular manifold~. So from HiroQaka theorem it follows 

that we can find in this way Htlb'X/plt such t.hat I 

A 
a) HilbVJPN"" Bilbs/pN is a divisor with normal crossings 

A A 
b) There exist.s a family X -Jo. Hilbx/p' and it ia defined 
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in the following way, let be 

the natural map obtained by blowing down, then 
A A - ~ is n* X -+ Hilbx/lPN, where X+ HilbX/lPN is the universal family. 

For each t E P (D*) clearly p-1 (t) consist of the 

orbit of Xt. under the natural action of PGL(N) on 
1. 

Hilb
X

/ IPN I where Xti 
X-* 

corresponds to the Hyper-Kahlerian 

manifold xt ~ ~ and t. are all points in 
A i D* 1. 

D* such 

that p (ti ) = t E p (D*) c 0 (L) Ir L • Suppose that 

and D1 is a disk in p (IJk) c O(L) such that D1 (the closure of 

contains i.e. 

there exists a plane 

Xo E D1• From H1Ib~/PN ~ pJ.!. ..... 

]?2 C]?J.!. such that it intersects the 

orbits of the Hyper-Kahlerian manifolds corresponding to. the 

points in D1 in Hilb~/lI?N under the action of PGL(N) 

transversally and p2 intersects Hilb
X

/ p N c ]pll transver-
-1 

sally in a point go € n (xo) • It is a standart fact that 

such exists. Let now 
2 A 

Dc p n Hilbx/]?N , where go E D and 

D{1ot D* C Hilbx/pN • From the ,way we define D .. it follows 

that 

So from now on instead of the family 

A N A 
X ~ P x Hilb.x/pN 

"" ~ It. 
Hilbx/pN 
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we will consider the family obtained from w:x· .. D by 

the pull back of the natural map D -+ D induced from the 

map: O(L) -+O(L)/fL• We will denote this new family again 

by n:x + D. So we will suppose from now on that the 

family 'IT:X" D has the following properties: 

1) x* ~ 0* has trivial mondormy and it is a family 

of marked non-singular Hyper-K&h1erian manifolds with a po1ari-

zatzion class L 

3) p:D ~ n (L) ,i.e. p is an embedding. 

From now on instead of the map p : Hi1bX/:JPN -+- 0 (L) /f L 
-.....,.; 

we will consider the map P:Hilb~/pN -4- 0 (L) , where 
--" 
Hi1bk/pN is the universal convering of . Hi1b*/JPN • Since 

---' 
'IT 1 (Hilbx/pN ) = 0 then if we mark one fibre in the universal 

family 

(For definition of Hi1bx/IPN see 1.3.2.) 

then all the fibres will be marked and so the map 

~ 

p: Hi1b~/pN -+ 0 (L) 

is correctly defined. 

Let 't:O (L) -+ n (L) Ir L be the natural map and , 

V = O(L)/fL' p(Hilbx/pN) then T-'(V) will be an union 

of countable irreducible analytic cloaed subspaces Vi' 
1 • O,1, ••• ,n, ••• in neL) 'I •• I 1.3). "ow •• 
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may suppose that p D (0) E T -1 (V) I where PD was the map 
$* 

obtain from the period map: PD*:t ~ ° (L). Notice that 
D* 

if PD(O) ¢ 'T-
1 (V), then theorem 1 follows immediately. 

Let ~ 0 (0) E VO' where Vo is one of the components of 

T-
1 (V). Let uO be an open polycilinder in O(L) such that 

uO intersects T- 1 {V) only on Vo and uO ::> 0*. Let 

U = UO,(UO n V
O
)' So from the definition of U we get 

that 

D* c U , di~U = dimreO(L) 

Lemma 1.4.1. There exists a family Xu -+ U of marked 

polarized Hyper-Kahlerian manifolds over U (defined as 
x* C-+ X.u above) and + +. U is defined as above. 
D* ~ U 

Proof:1.4.1. Follows immediately from the existence of universal 

family X'
L 
~ ML of marked polarized algebraic Hyper-Kahlerian 

manifolds and the fact that p:~ ~ Q(L) is an etale map, 

1. e. p is a local isomorphism. The existence of XL -+ ML 

is proved in § 2. From these two facts and the construction 

X ~ D* it follows that -** c.....;... X·L 
6* C-r ~ L 

Now let be a covering of U by polycilinders and 

suppose that Ui n 0** ~ is a di~k in D*. ·It is easy to see 

that such a covering exists (may be after we shrink' U). Now 

from the fact that p:~ ~ fl(L) is a local isomorphism 

and p(~) = O(L}'T-1 (V) (this is proved in § 2) we obtain 

families of marked polarized Hyper-Kahlerian manifolds: 
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Ui • Now clearly we can glue together these families 

D* and along ~ U i n Uj . So we will obtain the family 

Q.E.D. 

Now for every point t E U we consider the isometric 
-1 deformation of Xt = 'II" U (t) with respect to the Calabi-

Yau metric corresponding to the polarization class L. Let 

us denote this family of isometric deformations by: 

Now let us consider all isometric deformations with 

respect to Ca1abi-Yau metrics (gaa(t» corresponding in 

Xt for every t E U to the fixed polarization class L. So 

we will get a new family and we will denote it by: 

co 
Since as C -family the family of isometric deformations is 

C
W 

-diffeomorphic to P ~ (L). x X for each t E U, we see 

that the family: 

is a marked family and so the period map: 

p:lP{U) -.,.. {2 

is a well defined map. For the definition of g see 1.1.8. 
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Lemma 1.4.2. a) p:P(U) ~ n is an embedding, i.e. 

P(U) c:...., n. 

Proof: The proof of lemma 1.4.2. is base on the following 

two propositions: 

1.4.3. There exists one to one map ~ between the point 

of n and all two dimensional oriented vector subspaces 

ECH
2 (X,:R) such that <,> (defined by 1.1.3.) when restric-

ted to E is positive, i.e. <u,u» 0 for u E E.( The map I.(> 

is constructed in the following way; let x EQ CP(H
2 (X,~) 0 <1:), 

then x defines a line tx C H2 (X,Z) ~ <1:, let be a non 

zero vector in tx and let ~ = Re ux + iIm ux then 

~(x) = Ex ' where Ex is the two plane in H2 (X,n) spanned 

(Re ~,lm wx) and the orientation is defined by {Re ~,Im ~} ) 

Remark: From the definition of n it follows that if x E Q I 

then 

<x,x> = 0 <X,X» 0 

So from here we get that x '*' x and so if wEt I then 
X x 

Re Wx '*' 0 and 1m ~ '*' 0 I so ~ is correctly defined. Indeed 

from <~,wX> = 0 & <wX'w~»O ws get that <Re wx,Re wx>= 

= <1m wx,Im wx> > 0 and <Re wx,Im wx> = 0 and so 

is strictly positive. 

For the proof of 1.4.3. see [21]. 
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X 
Corollary 1.4.3.1. The period map p: t~g 

defined in the following manner 

p(t) = {Re wt (2,O),Im wt (2,O)} = -1 E
t 

= q> (p(t) 

can be 

1.4.4. Proposition. Let E be a three dimensional subspace 

on which <., > is strictly positive, then P (E GJ It) 0 Q will 

be a non-singular curve of degree two and moreover 

P (E. <l)OQ = peE e It) 00, where Q={U€P(H
2(X,:R}.a:)I<u,u> FO} 

and n = {uE Q I <u,u»O} • For the proof of 1.4.4. see [2,1] or [23] 

Remark a) from now on P(E. It) n n = P (E GJ el) 0 Q d~f p1 (E) • 

If E = Ex (L) we will denote by P:UI) = P (E GJ It) n 0 = 

= P (Ex (L) • a:) n Q = P (E Qt <1:) n n • 

b) Let X ~ p! (L) be the isometric deformation of Xt 

with respect to the Calabi-Yau metric defined by L. We need 

to compute the image of the isometric deformation under the 

period map. From the definition of the isometric deformation 

we have the following facts: 

a) 
2 

Et(L) = {Re wt (2,O),Im wt (2,O),Im gantt)} c r (~,A T*) 

b) Et (L) is spanned by harmonic forms and so Et (L) c: H2 ex , :R) 

c) Notice that 

We know that there is one to one map between the oriented 

two planes in Et(L) and the complex structures in the 

family of isometric deformation ¥ -.. p ~ (L) • So from here 

and remark 1.4.3. it follows that there is one to one map ~ 

between the oriented two planes in Et (L) C a2 (X,:I\) and the points of 
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P (Et (L) • a:) n Q = P (Et (L) 0 0:) n 0 = P ~ (L) cO. The fact that 

p(P(U» lies on n follows from the fact that for each 

t E U the scalar product < I > as in 1. 1 • 3. on 

2 * Et (L) c r (Xt I TX coinside with the scalar product defined 
t 

by the Calabi-Yau metric on r(X,A2T*Xt ) , since 

(See [ ] • ) 

n-2 *w = WAL and so 

onUhe other hand * is defined by the Riemannian metrics 

coming from Calabi-Yau metric and so since all the complex 

structures are compatible with this fixed Riemannian metric 

we get that p (P (U» c O. 

Now from loc.al Torelli theorem and the fact that 

p:U ~ neLl and the definition of isometric deformation 

we get immediately that: 

p:P (U) ~ 0 • 

Proof of 1.4.2. b): This follows immediately from local 

Torelli and the definition of isometric deform~tion. 

Q.E.D. 

The main lemma First we need some remarks. 

Let p(O) = xEO(L),(OED). Since xEO(L), from 1.4.3. 

it follows that x corresponds to a two dimensional subspace 

Ex c: H2 (X,Z) such that <, > I Ex > O. From x E 0 (L)~ <Ex ,L> = 0 

and since <L,L» 0 it follows that the 3-dim space Ex(L) C 

H2(X,~) spanned by Ex & L has the following property: 
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From 1.4.4. we obtain that (P(E (L). It) n n = p1 (L) 
xx 

is a complex projective non-singular curve of degree two 

in ]I? (Ex (L) /It 0:). 

1.4.6. Main Lemma. Let x:* ->- D* is the family with the 
-* 
~ 

properties that 1) D*~ O(L) and 2) X* -+ D* has a trivial 

monodromy, let p:D ~ G(L) be the' extended period map 

(this extensio;p. exists by Griffith:' s theorem (s'ee [/:,])) , tet 

p (O) = Xo Hl (L); .then ·there exists a point Zo € U such that 

where 
x* c::.....;,.. X 

is defined as a1 p.2.4.,(1.4.1r:~ tU 
D* ~ U ~ n(L) 

where is a family of polarized marked Hyper-K!hlerian 

manifolds and dimaP = di~n(L). 

Proof: The proof consists of two steps: 

Step 1): If 1 
and xo. go • xO' then we will prove that go E P x (L) 

0 
p1 (w) en there exists a plane quadric such that: 

go 

a} p1 (w) n u. II b) p1 (w ) = p1 (w) I remember that 
go go go 

-n cF(H2 (X,Z) • 0:), so the conjugation operator 

well defined operator. 

u -+ u is a 

The plane quadric P 
1 

(1.11) is defined in the followin9 way: 
90 

Let E 
go 

be the two dimensional plane that corresponds to go 

given by 1.4.3. Let 2 wEE ,(X,lR) such that <..,,11» > 0 
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and <w,E >::: 0 
go 

subspace in H2 (X,E) 

and let E (w) 
go 

spanned by 

p 1 (w) d~f P (E (w) Qt lC} n fl. 
go go 

be the three dimensional 

E and w ,then 
go 

Step 2. Let JP 1 (w) n u ::: zOU zo ' then we will prove that 
1 go 

II? x (L) n JP ~ (L) * {6 I here again JJ.?~ (L) ::: lP (E (L) 0 <I!) n Q. 
o 0 '0 Z 0 

Proof of Step 1: First we will need some definitions. Let 

go € ~ (L) and go ¢ fl (L). From 1.4.3. follows that to 
o 

go there corresponds an oriented two dimensional plane 

E c: a2 
(X, JR) on which we have: 

go 

Let 

Clearly 

(1,b2 -

dim 1 , 1 (E) ::: b - 2 and 
go 2 

3) on H 1 , 1 (E) • Let 
go 

<,> has signature 

def 
V (JR.) = {u € H1 , 1 (JR) I <u,u» O} 

go go 

Clearly since <,> on H1 ,1(El 
go 

has a 

then V go (E) will be an open cone in 

VgO (:R) = V+ U V Let 
go go 

signature 

H1 ,1(JR.) 
go 

(1 , b 2 - 3) I 

and 

E (w) ~ {three dim supspace in H2 (x,m)f 
go 

spanned by and 
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E (ill) 
go 

d~f {union 

it follows that 

of all pl (u) in 
go 

where u€V 
go 

(lR. ) }, then K%(JR) is a real analytic 

in n. This follows from the definition of KgJlR) 

interpretation of n as Grassmannian. 

n I 
subspaoe 

and the 

1.4.6.2. Let: v (0:) d~f {u € H 1 ,1 CR.) ill 0: I <u,u» O}, 
go go 

(dimll'V (0:) = 
\L. go 

dim n) K (0:) = {the union of all p1 (u) = 
0: go go 

= P (E » n Q in ~, where E (u) is a three dimensional 
go 

0:, spanned by 
go 

subspace in H2 (X, lR) aD E and u € V (O:)}. 
go go 

Since <, > I Eg (v:) > 0 (if u € V go (0:», it follows that 

l? (E (v» n QO= P (E (v» n n is a projective plane 
go go 

curve of degree 2. 

1:4.6.3. Proposition. K (0:) n n(L) contains an open set 
go 

WcO(L~·. such that ucw in neLl. (U is defined on p. 24). 

Proof: HL wi 11 be t.he hyperplane in JiI (11 2 (X, m.) e O:} 

defined in the following manner: 

HL = {U€ l? (H
2

(X,:R) aD 0:) I <u/L> = o} 

Clearly HL n n = n (L). On the other hand since dimCCKgo (I) a: 

= dimo:H2(X,0:) - 2 = b 2 - 2 = dima:n = dima:H1,1{X,0:) we get 

immediately that dim",K (0:) = dimo:n. If v (Va (n~', th.en 
"" go -0 
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in 

and since HL n p 
1 

(v)a Zo :f (I (remember that HL is a hyper-
go 

plane in p (H2 (X ,lR) ,,«:) and ]I? 
1 (v) is a curve of degree 

go 
two on the plane p2 = P (E (v) 

go 
" «:) c: lP ( H2 (X,JR) " 0:)), so 

we have that HL n lP 
1 (v):f)/). 
go 

Now let t E P 1 (v) n HL ' from the fact that ]? 
1 (v) = P 1 (v) go _ go go 

= neLl (since LEH2(X,R»'"'I>t~tEPl (v) nHL(t:ft). So we get 
go 

, then IF 1 (v) intersects geL} transver-that if v E Vg (E) 
·0 

sally, since deg P 1 (V) = 2 
go 

go 
and 

and ZO:f -;Zo' Kgo (:R) intersects 

HL n ~10 (v) = g (L) 0 Fd
o 

("Il.) = zOu Zo 
g(L) transversally and since 

transversality is an open condition, dima:Kg{~) = dim g and 

Kg (R) c: 1<g (0:) sb we can find an open subset. W c: g (L) such that 
o 1 . 0 

z.OE P . (.'1)0 geL) c: {]c:Wc:K (0:)0 g(L). 
go go 

Q.E.D 

1.4.5.4. def Grass (3,b2 ;JR) = {all oriented 3-dimensional sub-

spaces EC:H
2

(X,JR) on which < >IE> a} • 

1.4.6.5. Grass (3,b2iO:) = {all oriented 3-dimensional sub

spaces E c: H2 (X, JR) ,,0: such that if u E E, then <u, u> > O}. 

1.4.6.6. Let T(E) = E , if 

1.4.6.7. Let M = {all plane projective quadrics 

acts on 

p 1 (u) , that 
g 

are contained in n}. It is obvious that there exists an one-to-

one map between M and Grass (3,b2 ,a:). 



-3e-

Suppose that 1.4.6. is not true, this means that 

(1.4.6.10.) K (E) n n (L) C Vo 
go 

Remember that Vo is a proper complex analytic closed 

subspace in O(L), (For the definition of Vo see p. 24 ), 

Le. dim<tVo < dim<tO(L}. Let 

It is a standart fact that P(Vo) is a proper closed 

complex analytic subset in Grass (3,b2;~)' (Use theory of 

elimination and F(VO) = {all three dimensional subspaces 

E in H2 (X, E) QI) ~, such that E n Z ... fI, where Z is the cone 

over Vo C P (H2 (X ,I) QI) ~} in H2 (X,a:». The same arguments show 

that 

I E ·is spanned by 

and v , 

is a real analytic proper subspace in M:; Grass (3 ,b2 ;~) • 

Indeed P (V (lR» = {E E H2 (X,:R) <It ~) IE = E and E contains 
go 

the fixed two dimensional subspace E }. 
go 

finition it is clear that 

subspace in Grass (3,b2;~)' 

Clearly that 

P(V (JR.» is 
go 

So from this de-

a proper real analytic 

(1 .4.6 .• 11 ) a) J?(V
go 

(:R» == P (V
go 

(a:)) T , where 

P (V (1:» == {E c: u2 (X,':) I dim ... B· l, 
90 .. 
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& E::::>E } 
go 

b) From the definition of it follows 

that lI? (V (.1:) ) is a complex analytic proper subspace in 
go 

Grass (3,b2i~) I since 

subspaces in H2 (X,lR ) 

lI?(V (~» ={ all three dimensional 
go 

0~) IE:>E }. 
go 

Now we will show that (1.4.6.11) contradicts (1.4.6.10). 

From the definition of P(Vo} we get that F(VO) is a proper 

complex analytic subspace in 

follows that we have: 

F(V (~». From (1.4.6.10.) it 
go 

P(V (~» '[ = JP(V (E) c: JP(V
O

) c: F(V (G:) 
go go go 

Since P(Vo) is a complex analytic subspace (proper one) in 

a complex analytic space F(V (G:» c: Grass (3,b2i~) we get 
go 

that localy P{Vo) is defined by 

1 N 
= fK (Z , ••• , Z ) = 0 

where' fl,.,.,fN are complex analytic function in Grass (3,b2 iG:). 

From P (V (JR» c: P (Vo) c: lP (Vg (tt» and since 
go 0 

we obtain that 

1 N 1 N f 1 (Re Z ,..., Re Z ) = ••• = f K (Re Z ,..., Re Z ) - 0 
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on lP(V (a:», so f1 = f2 = :: fN:: 0 
go 

But tb.is is a contradiction since lP (V
O

) 

space in p (V (Cl» 
go 

Step 1 is proved. 

Proof of Step 2. 

, i.e. 

on p(V (a:». 
90 

is a proper sub-

Q.E.D. 

From step 1 ... 3 v € V
go 

(lR) such that 

]p1 (v) n n(L)c: U (where U is defined on p.24) 
go 

Indeed we have proved, that K (lR) n g (L) is a real analytic 
go 

subspace and Ky (m) n n (L) not contained in vo' Since 

K (IR) n n (L) € g.O c: uO open polycilinder in g (L) ) 
go 

we get that 

K (lR) n U ; " , where U was uo ..... vo (see p. 24). So let 
go 

Let E d~f {four dimensional subspace in H2 (X,lR) spanned 

by E (L) xo 
contained in 

and v}. Since E c: E 
go 

E. From the facts that 

it follows that Ez 

° 
is 

a} <, > IE (L) > 0 , <, > lEU .. ) > ° and b) E'I (L) n Ex (L) = 
Zo Xo "0 0 

= E c: E it follows that to 

i) dima:Et = 2 
o 

E (L) and 
Xo 

ii) < > IE> O. 
to 

since dima:Ex (L) • E (L)· 3 and o zo 
EZ (L) are contained in E; dima: E • 4 

o 



-41-

Now from 1.4.3. it follows that Et corresponds to 
o 

same point to E O. From the fact that there is one-

to-one correspondence between the points of JP 1 (L) 
Xo 

and the oriented two planes in E (L) 
xo 

Et corresponds to a point . to E ]p1 (L). 
o Xo 

we get that 

Q.E.D. 

1.4.7. Lemma. Let X.* -;... 0* be a family of marked 

polarized Hyper-Kahlerian manifolds and this family 

fulfills the conditions 1),2) and 3) on p. 23, then 
00 

a) x* as C manifold is diffeomorphic to 

• X x D , where X is a Hyper-Kahlerian manifold 

b) if x* ~ X x 0, then lim wt (2,0) = wO(2,0) exists 
t+O 

and WO(2,O) is a complex non-degenerate form on X. 

Proof: 

acts on 

First we see that since <'>IE (L) > 0, then SO(3) 
Xo 

Ex (L). From 1.4.6. it follows that there exists 
o 

~ € U o (as on p. 24) such that Ez (L) n E (L) = Et ' where o Xo I) 

dim E
t 

° pl (L) 
o 

= 2,'or which is equivalent by 1.4 ... 3., to the ,fact that 

A E SO (3) such that A{E ) =Et Xo 0 

Next for each t E 0* we will define on Xt a new complex 

structure x! in the following way: 

Let Et(L) = {Re wt (2,O),Im I.Il t (2,O),Im (gai(t))}c r(X,A 2T*), 

where 9ai(t) was the Calabi-Yau metric that corresponds to L. 

From § 1.2. we know that {Re I.Ilt (2,O),Im wt (2,O),Im(gai(t»} 

1. an orthonormal bal. of Et(L). So an action of SO(3) is 

defined on Et(L). From § 1.2. we know that 
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defines a new complex structure on Xt which we will 

denote by ~, where 

So we get a new family: 

D* A 

From the definition of X* ~ D* it follows that we have 

lP ~ ) U 

+ 
D$. ~ lP (uJ 

(For definition of 

see p. 

Now since lP(U) cO, IP~(L) cP(U) (for each t € D*, since 

D*c U) and since lP 1 (L) n IE 1 = 
zo x,O 

to' where Zo € U, we get 

(*) 

Where wt (2,0) corresponds to some complex structure on 
o 

Zt ' isometric to Calabi-Yau metric on Zo corresponding to 
o 

L. (Here Zo is the marked polarized Hyper-Klhlerian mani-

fold corresponding to the point Zo€U c: g (L) ). So we proved that 

the family 
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can be embedded in a family ~ x ~ DA ' where all the 

fibres are non-singular hypeF-KShlerian manifolds. So 

f -.. DA as COO manifold is diffeomorphic to D x X,X 

a Hyper-KShlerian manifold. From here we obtain,that 

X* liil D* x X 

since C 
OG 

family as X* ~ D*. 

This follows from the definition of isometric deformation. 

Q.E.D. 

Proof of 1.4.7. b): From 1.4.6. 

1 a point to E II? x (L) such that 

it follows that there exists 
_ 1 . 1 

to - II? x (L) n II? z (L) where 
'0 

zOE U,and so Z 0 
o 0 

is the image under the period map of a 

marked Hyper-KShlerian manifold Zo with a polarized class L. 
Xu 

(Remember that we have the following: a family t ~is map by 

p:U ~ O(L) dim~U = dim~O(L». Let 

SL = {tE II?~ (L) I Et contains L ,Et is the oriented 
o 

two plane that corresponds to t according to 1.4.3.}. 

Clearly as cOG manifold SL ~ {t E a: II t I = 1} • On the other 

1 2 -hand from lPx ' (L) n II? z (L) = to u to'" to E SL. From the 
o 0 

arguments in 1.4.6. it follows that there exists an open 

set v; t. to to in 
o 

t E II?~ (L) n t W 1 (L) o . _ ··t 
Now let t o,t1 and 

SL such that for every t EW,t 
o 

where Zt E U. (U is defined on' p. 24) 

t2 are three points in ~ (L) such that: x J 
and t1 E ~ From the way we defined \it it foll.C?ws that 

t., are
o 

respectively in lPz' (L) I ll? ~ (t) and and 
'" 0 "'0 
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Xu 
1 

P t (L) , where 
2 

ZO' Z1 ' Z2 € ~ (See p. 24 ). From here and 

from the definition of isometric deformation it follows 

that t o,t1 ,t2 corresponds to the marked Hyper-Klhlerian 

are in the isometric 

families with respect to the Calabi-Yau's metries on 

that corresponds to L. It is clear that we can 

choose t o,t1 and 

wt (2,0) ,wt (2,0) 

1 t2 in Wt C SL C lP x (L) such that ° ·0 

o 1 
and wt (2,0) are three linearly inde-

2 
pendent classes of cohomology in 8 2 (X,JR) • ct. Since 50(3) 

acts on EX (L) (Remember 
o 

<,>I E (L) > 0) so there exist 
X 

= Et ~ BEX = Et and C·.Ex :: Et • A,B and C such that AEx 
o 

Now we can define as in the 
o 0 1 0 2 

proof of 1.4.7. a) the new 

families lTA: X*A -.... 

X .*A:r:..> 
Since we have ~ 

01 C"...> 

0 * * ~ .. B A' lTB:" 

lP (X *) X .*B 
f U, ~ 
]I? (U) 0; 

0*8 and 

p (X:l.J) 
f and 
lP (U) 

are in lP (U) c n c lP (H 2 (X ,ct) ) we get that: 

and 

lim[w~(2,O}] = 
t+O 

C 
IT*·v* ~ 0* COK C· 

Y.!'C ~ p ()(;* ) 
f .. U 

D~ ~ lP(U) 

[W
t 

(2,0)] 
1 

So from here we obtain that on the level of C
m 

f6rmd we 

h A B ave: lim wt (2,0) = Wz (2,0), lim wt (2,0) = Wz (2,0) and 
C t+O ° t~ 1 

lim wt (2,0) = Wz (2,0). Since wt (2,0) • Wz ' wt (2,0) • 
t-7'O 1 0 ° 1 
= Wz (2,0)' and wt (2,0) = Wz (2,0) are three linearly 

1 2 2 
independent forma in Et (L) • e c: r (X,A2 ('l'*X)en we CjJet that 

o 
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are linearly 

independent in each Et (L) • 0: c: r (X,A2 (T*X • 0:) t E D*. 

So from here we have: 

lim Wx (2,0) 
t+O t 

+c 

= a Wz (2,0) + b Wz (2,0) + cWz (2,0) = wx (2,0) exists 
012 

as Ct» form and d Wx (2,0) :: O. 
o 

A wt (2,O) :::: det wt (2,0) A det. wt (O,2), 

and det wt (2,0) A de t wt (0,2) :::: 
o 0 

:::: det Wz (2,0) A det Wz (2.0) 
o 0 

and so TO is obtained from 

1 im de t wt (2 , 0) A de t wt ( 0 , 2 ) 
t+O 

1 (this is so because to E lP z (L) 
o 

Zo by isometric deformation). So 

:::: det Wz (2,0) A det 'Wz (2,0) 
o 0 

:::: K vol (gai(Zo» > O. This proves that Wx (2,0) is a 
o 

de t Wx (2, 0) :::: Wx ( 2 I 0 ) A • • • A Wx ( 2 , 0 ) 
o 0 0 

non-degenerate form since 

l----....-----,I~ ______ ----J 

n-times 

Q.E.D. 

In order to finish the proof of theorem 1 we need to 

check'that det Wx (2,0) fulfills a),b) and c) of Andreotti
o 

Weil remark. Clearly d(det Wx (2,0» :::: 0 and 
o 

det Wx (2,0) A det wx (2,o) > 0 so b) and c) are fulfilled. 

" 
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Let P be the Plucker relation. Clearly we have 

P (de t wt (2,0» :: 0 so lim P(det w
t

(2,O)) :: O. 
t+O 

So Theorem 1 is proved. 

Q.E.D. 

§ II. Construction of the moduli space of marked polarized 

Algebraic Hyper-Kahlerian manifolds 

2.1. The construction is based on the following 

2.1.1. Lemma. Let g be a holomorphic automorphism of X, 

and suppose that 2 2 g* = id, where g*:H (X,S) ~ H (X,Z), then 

g induces the identity map on the Kuranishi space of X, i.e. 

on 

X 

t 

o 

C-...>- X 

t 

€ U 

Proof: For the proof see [ 1. 

2.1.2. The construction of the moduli space. 

Q.E.D. 

Let x ~ X be the Kuranishi family of the marked 
+:.0 i-
U , 0 

Algebraic polarized Hyper-KAhlerian manifold 

where Y1""'Yb . 1 •• fixed b •• i. in 
2 

fixed cla'i of cohomology in B2 (X,I) corr •• ponding to the 
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to the imaginary part of a Hodge metric on X. From local 

Torelli theorem it follows that we may consider the following: 

x c X'U 
+ + 
o E U ~ 1I? (H2 (X,:) 0 CC) 

where p:U ~ F(H2 (X,:) 0 CC) is the period map, so 

from § 1.1. we may consider U as an open set in n 

this is just lemma 1.4.2.} 

Let HL = {x E lP {H2 (X,X) o CC!<x,L>} . So from the 

arguments in 1.2. we get that if we restrict the Kuranishi 
X:U XL e:...:;... )( 

family b to the family 
'" + , where UL = un HL and 
uLe:...:;... U 

Ucilc JP (H2 (X,X) o CC) , we will get the local universal family 

of all Hyper-Kahlerian ma.nifold for which L corresponds to 

an imaginary part of a Hodge metric on Xt ' for every t E U
L

• 

From 2.1.1. it follows that we can glue all families {~L} by 

identifying "isomorphic marked algebraic Hyper-Kahlerian
L 

mani-

folds with fixed polarized class L. In such a way we will get 

an universal family ~L 
M 

(LiY1'···'Yb2) 
(since if ~:X + X 

is a biholomorphic map and ~*(L) = L ,then ~ must be an 

isometry with respect to Yau metric and so for generic X 

tp* == id on H2 (X, z) • See [6] & [ 1.1.]) 

oi' marked polarized ayper-Kahlerian manifolds with the 

following properties: 
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a) M( is a non-singular complex manifold of 
L;Yl'···'Yb ) 

2 
dimension h1 ,1_1 , 

b) L 

restricted to each fibre Xt of 

a very ample divisor Dt . 

corresponds to 

From b) it follows that p(M in alL) 
(L;Y1'··· 'Yb) 

2 
equal to a(L)'T- 1 (V) , where T:O(L) -. a(L)/rL (rL 

is exactly 

and V 1 

are defined in 1:2.). 

r L = {<p€Aut H2 (X,Z)I <p(L) = Land <u,v> = <cp(u),cp(v»} 

v = p (D), where 

§3. Torelli Problem for Hype~-Kahlerian Algebraic Manifolds. 

Theorem 3. Let n :x ~ M be the universal 
L L (L;Yl'."'Yb) 

family of marked Hyper-Kahlerian manifolas with fixed polariza-

tion class 

M 

L coming from the embedding: 

(LiY 1'·'· 'Yb ) 
2 

then there exists a universal partial compactification 
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~L:XL ~ M(L ) of the universal family of 
;Y1'···' Yb :a 

marked polarized Hyper-Kahlerian manifoldsdefinds 

up to an isomorphism such that: 

a) XL c ilo X"L c:...;.. JPN M(L; 1 ' • •• , b2 
) 

+ + 
M(L; ) ~ M(L; b2) 1 ' ••• , b2 

1 ' ••• , 

and every fibre of 1f:~L-" M is birationally 
(LiY '.'.'Yb ) 

isomorphic to a non-singular Hype~-Kahlerfan manifold. 

b} the period map p:M ~ n(L) can be prolonged 
(LiY1'···'Yb ) 

to a holomorphic isomorphism: 2 

tv -;,.. n (L) 

Remark p:M ) is defined up to a component. 
(LiY1 '···'Yb 

2 

Proof: First we will construct the partial compactification of 

In the proof of theorem 1 we used the fact that 

o (L) 'P (M ) = V = (L;Y 1,···,yb ) 
2 

VOU V, U ••• U VK 
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is a countable union of analytic subsets. Now let D be 

a disc in n(L) and D* = D*'{O}, i.e. D intersects V 

in one point. From the arguments on p. 22 and 23 it follows 

that over D* we have a family of marked algebraic Hyper

KShlerian manifolds with polirization class L: 

x* ---+- 0* , 

and this family has the properties stated on p. 23. Now we 

can apply Theorem 1 to X* ---+- 0* and we will get a family 

n: x ~ D, where all the fibres are non-singular Hyper-Klhlerian 

manifolds. So from here it follows the existence of a family 

of non-singular Hyper-Klhlerian marked manifolds 

such that 

a) 

b) the period map 

is a surjective map and 'tale map. 

3.1.1. Lemma. There exists meromorphic map 



such that: 

a) 
..., 

the restriction of ~ 

gives the embedding 

b) for each 

defines a holomorphic mal2.. 
<Pt:Xt ~ Xt 
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on M 
(L;Y1'" "Yb ) 

2 

the map 

where X
t 

is the closure of the fibre X
t 

in IPN under 

the map 
..., 
<Pt is a birational map. 

Proof: We know that: 

a) Ii ...... M is a countable union of 
(L;Y1'···'Yb) (LiY 1 ' ···'Yb \ 

closed analytic sdbsets 2 

b) x ~ IPNxM 
L (LiY1'."'Yb) 

+ /' 2 

M 
(L;Y1"" 'Yb ) 

2 
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So from a) & b) it follows that it is enough to prove the 

lemma for a family 0, where o ~ ii 
(LJY 1'·· .'Yb ) 

2 
D* ~ 0 ~ O(L), and D* ~ M Since 

(L7Y 1'···'Yb ). 

from the arguments on P.24 2it follows that the family 

n*:x* ~ D* has the following property: 

(*) there exists an embedding x* ~ X'1 ~ lP~D 
... + ~ 
0* ~ 0 

Now let {I.l>O (t) , ••• ,I.l>N (t)} (t € 0*) are the section of 

the line bundle L*, that gives the embedding 

From the fact that we have 

it follows that we can continue {I.l>O(t), ••• ,I.l>N(t)} to 

sections in ~-1 (0) = Xo ' where Xo is the zero fibre of 

the family of the non-singular Hyper-Kahlerian manifolds 

;~ . So from here we get that there exists a birational map 
D 

between 

x 
... 
D 

and 
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since if (~o(t)""'~N(t»tEO have fixed point then 

these fixed point are in Xo so the set of fixed points 

of the linear system (~O(t) ""'~N(t» can be at most a 

divisor in XO' and so has codimension ~ 2 in X. So from 
X 1 c-il>- IPN XD 

here we obtain that + ~ is a birational map. 
01 ~ 0 

Even more we will prove that there exists a holomorphic map 

-1 
'IT 1 (0) 

which ·is induced by the blrational isomorphism between Xo and «X6 

Proof: Let H be the closure of the very ample divisor H* 

that difines L* in X. Let L = O(H) and let 

we will prove that LO gives us 

I1?N 

Fist it is easy to see that on X1 ' Sing (X~) there 

exists a Kahler metric; this is the restriction of Fublini-

Study metric + dt Ill> dt on 1 X
1 

'A, A = Sing (X
O
). For each 

t E D* the restriction of the imaginary part of this Kahler 

metric gives the Chern class of L1X • Notice that codim 
t 

A ~ 2 in X 1 • Let {'rlpl be a covering of X such that 

where 

e ( ) ~ i -j L{( 1: g ij t .'QZ" dz = iaau 
e 

is a plurihsubharmonic function. From a theorem 
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about the continuation of plurisubharmonic functions proved 

in [9 1 it follows that we can continue ~e in We and 

we will have 

From this fact we get: 

For every effective analytic cycle C c: Xo dim C = k 

we have 

(*) 

(*) is equivalent to the following inequality 

( **) 

whetle H = H1X • (*,*) means that the 'linear system 
o 0 

gives a holomorphic map: 

This is Kleinman-Moishezon criterion [/q]. So this proves 

lemma 3.1.1. 

Q.E.D. 

Now we can define the family w:X L· ~ M 
(LiY1'···'Yb) 

in the following way: XL ~ M(Lo ) is the 6losure 
'Y1'···'Yb 

of the fibres of the image of the family 2 ~ ~ M(L. y) 
1, 'Yl'···' b 

2 
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in 

Lemma 3.1.2. Suppose that: 

a) ~f:xf ~ D* and ~i:Xi ~ D* are two isomorphic 

families of marked polarized Hyper-Kahlerian algebraic 

manifolds with trivial monodromy. 

b) Let ~1:X1 ~Dl and ~2:X2 -r D2 are obtained from 

~f:Xf ~ Df and ~i:xi ~ Di in the following way: 

where is defined on p. 49. 

Then the two families Xl ~ D1 and 

biholomorphically isomorphic 

Xi ~ xi 
Proof: Let ~: + + be a holomorphic isomorphism 

D* = D* 
between those two marked polarized families of algebraic 

Hyper-Kahler ian manifolds. From the definition of ~ it 

follows that: 

1) ~*(L2) = L1, where Li is the polarization class 

on wt:xt ~ 0* 

2) ~*:H2(X,Z) ~ H2 (X,Z) is the identity map. 
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X* ~ 
Since ... t k::'" 

D* 
Fubini-Study 

X* 
that <p: 1-' 

D* 

is the restriction of the 

metric on 
-+- Xi 

and from 1) and 2) we get 

1- is induced by a biholomorphic map 
= D* 

is given by the sections 
D* D* 

of the line bundle O(H) e D*I * , where H is the hyper-
Xl 

plane section. Let r,* be the graph of the map '* in 
N N Ii N 

(P x D*) x D* (p x D*) = P x P x D*. Since '1'* induces the 

identity map H.(pN ,Z), Bishop criterium and the fact that 

(IP N x D) x D (IFNx D) = IJ?Nx IPNx D is a K§.hler manifold we get 

that r,* can be prolonged to in 
N N 

IF x P x D • The 

arguments are exactly the same as Proposition 3.1. of [2~1. 

Since ,. is given by 0IJ?N(l) &0 00* and can be 
0* 

prolonged to r, in pNx JPNx ON we get that the sections of 

r(lPNxo*'OIPN (1) Gt O °
0
.) can be prolonged to meromorphic 

N D* 
sections of f(IP o,OlPN (1) eo 0D) can be prolonged to 

N D 
meromorphic section of f (lP Ie D,OlPN (1) 

sections can have poles along n- 1 (0) = 

N 
n:IPx D ~ D • 

.50 00) so this 

pit, where 

From here we get that if we multiply each section <Pi(t) by 

t
ni n i N 

then we Wil~ get a section t <Pi E r (lP x D,OlPN x 0D~D) 

abd even more t i<Pi ~ ° on n- 1 (0}. 

So from here directly lemma 3.1.2. follows, because we 

can prolong '* to an isomorphism 
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The end of the proof of Theorem 3. 

From 3.1.2. it follows that ~'X -7 M 
• L (LiY1""'Yb) 

is a unique family up to an isomorphism and so it induce~ a 

Hausdorf topology on M We know that the 
(L;Y1'···'Yb ). 

2 period map 

is a surjective map. From local Torelli theorem and the 

way we constructed XL ~ M( ) we get 
LiY1""'Yb 

that p is an etale map. Now if we prov~ that p is a 

proper map, since 

o (L) llO SOJ2,b
2 

- 3) ISO (2) x SO(b2 - 3) 

and so simply connected Theorem will follow. So we need 

to ch~ck that p is a proper map. So we need to use the 

valuative criterium of Grothendieck of a properness., [5bA], 

so we need to prove that if 

~ € n (L) 

and if ~:D ~ neLl is a holomorphic map from any disc 

such that: 

a) ~(O) = x 

b) the following diagramm is commutative 
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M 
P 

(*} ----+ n (L) 

,~\ •• 'Yb21 

I~ 
D* c:: > D 

then ,. can be prolonged to a map Y:D ~ 

such that the diagram is commutative: 

(**) 

If we prove this (which is exactly Grothendieck's criterion 

of properness) the map p:M ) --~ n{L) will 
(LiY1'···' Yb 

be an etale and proper. On the other ha~d we know that 

O(L) ;; SO(2,b2 - 3)/SO(2) SO(b2 - 3) 

is Siegel domain of IV type and so n(L) is a simply 

connected manifold. From this fact it follows that 

p:M ~ n(L) 
(LiY1'··· 'Yb ) 

2 

is a biholomorphic map. This will prove theorem 3. So 

we need to prove the valuative criterium of Grothend1eck, 

i. e. we showed that the map (1)* : D* -+ R ) 
(LiY1'···'Yb 

of the commutative diagram can be prolonged to a map 2 
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M ( • 
L'Y1'···'Yb) 

2 

":D -io- so that the diagramm (**) must 

be commutative one. See [ J. We must consider two cases: 

XL 
+ 

a) Let 

a family 

"*:D* ~ M ( ) • In 
L;Y 1 '···'Yb 

this case we have 

X* ~ D* of marked pofarized Hyper-Kahlerian mani-

folds. The condition that the map p:D* -7 geL) can be 

continued to the map p:D ~ geL) means that the monodromy of 

the family X* ~ D* is trivial. This follows from theorem 

9.5. proved by Griffiths in [/3]. Then Theorem 1 says that we 

can embeded f*~ f n in a family n:X ~ D, where all 
D*~ D 

fibres are non-singular Hyper-Kahlerian manifolds. Now lemma 

3.1.1. shows that Grothendieck's criterium is fulfilled. 

b) Let 

M 'M 
(L;Y1'···'Yb) (LiY 1 '····'Yb ) 

2 2 

is a union of closed 
X'* 
+ 

complex analytic subsets and the period map p:D ~ g (L) 

can be contipued to a map p:D ~ geL) it follows that we 

can find a disc D, such that 

1 ) D* c: M 
1 (L;Y1' ••• /Yb ) 

2 
2) p:Di --;.. geL) can be continued to a map p:D, ~ g (L) 

and p(O,)= p (0) , where 0 1 ED, and o E. D. 

3) D and D, are contained in U , where U = p-'(U), U 

is a polic/nder dim U = dim geL) 
a:: a:: 

such that p(D) € U. 

Then everything follows from a. 

Theorem 3 is proved. 
Q.E.D. 
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