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Abstract.

Let f be a Lipschitzian function. For y > 0 the point x is called a
Y-critical point of f, if the distance between the generalized gradient

of (x) and O is at most Y. The values of f at y-critical points form the
set of y-critical values of f, For functions f, representable as

f (x) =max h (x, t), where £ (x, t) is sufficiently smooth in both
variablest,: we give the upper bound for the "size" of the set of Yy-critical
values of f in terms of Yy and the uniform bounds of derivatives of h.

In particular, for Y= 0 we obtain the extension of the Morse-Sard theorem

to the class of maximum functions.



1. Introduction

The Morse-Sard theorem (see e. g. [6]), which asserts, that the set of
critical values of a sufficiently smooth mapping has measure zero, is an
important tool in smooth analysis. It is widely used in study of critical
points of smooth functions and, in particular, in smooth optimization.
Also in many questions of a nonsmooth analysis and optimization it is

important to have the similar techniques.

However, some essential problems arise in attempts to extend the Morse-
Sard theorem to the nonsmooth case. First of all, the differentiability
assumptions in this theorem are sharp, and hence, it is simply false for
the classes of nonsmooth functions, usually considered in optimization
(except of the case where the dimensions of the source and the image
coincide, see [4],mposition 1.2.). E. g. for any n > 2 one can easily
construct a Lipschitzian {and even Cn-1)-function of n variables, whose
critical values cover the whole interval (see [9]). Thus, the best one
can hope is to find a subclass of the class of Lipschitzian functions,
which is sufficiently big to contain nonsmooth functions, important in
applications, and, on the other hand, which is small enough to allow the

extension of the Morse-Sard theorem.

In this paper we consider one such a subclass, consisting of the functioms,
representable as maximd (minimad) of smooth families. The intensive study of this
class was started recently (see [5], [7] , [11] , [12])..The results obtained
show, from one side, that this class is appropriate in many questions of

nonsmooth analysis and optimization; from the other side, reach techniques



from smooth analysis can be used in its investigation.

Our main result is a general theorem about the "size" of the set of critical
(and "almost-critical") values of functions, representable as maximad of smooth
families. This theorem gives, in particular, the conditions, under which critical
values have measure zero (in terms of smoothness of underlying families, but

not of maximd functions themselves).

In fact, our result is much stronger than the usual Morse-Sard theorem (even
in a smooth case). The main advantage is that we consider not only exactly
critical, but also "almost critical" points and values; this makes the results
"stable" with respect to inaccuracy of initial data and computations. Another
important point is that, instead of the Lebesgue measure, we use the metric

entropy, which turns to be much more effective in applications (see sections

2 and 4 below for a detailed discussion of these questions).

The possibility to extend the Morse-Sard theorem gives an additional evidence
for the importance of the class of maxima functions. of smooth families. It
turns out that also the Morse theory (including the existence, density and
stability of Morse functions, normal forms for critical points and, of course,
the usual topological conclusions) can be extended to maximum functions. We

hope to publish these results seperately.

The author would like to thank J.-B. Hirriart-Urruty for providing re-
ferences [ 3] and [ 4] and the Max-Planck-Institute fiir Mathematik, where

this paper was written, for kind hospitality.



2. Definitions and statement of main results

The critical point of a differentiable function is a point, where the
gradient is zero. Now let f: D + R, where D is a bounded domain in
K%, be a Lipschitzian function, i. e. | £ (x) - £ (y)| < K || x=y ]

for some K and any x,y€ D.

Definition 2.1, (See [1]). The generalized gradient 3f (x) of f at x € D

is the convex hull in R" of all the v € R® of the form
v = lim grad f (xi),
xi > X

vhere x; € D converge to x and f is differentiable at x, for each 1i.

(Note that f, as a Lipschitzian function, is differentiable almost

everywhere in D).

Definition 2.2, The point x € D is calledacritical point of £, if 3f (x)

contains zero. The values of f at critical points are called critical values.

This definition agrees with the usual one for differentiable functions and
it is rather natural also in a general case. E. g. if x € D is regular
(i. e. non-critical) for a Lipschitzian function £, then in some new Lip-
schitzian coordinate system (y1, cees yn) near x , £ can be written as

f (y1’ ceey yn) = C +y1o

However, in numerically-oriented applications this notion is not very
convenient. Indeed, if the accuracy of intial data and computations is

finite, we can never say if the grad f (x) is exactly zero (3f (x) exactly



contains zero). Namely for the Morse-Sard theorem this difficulty is
crucial: both the statement and the conclusion of this theorem are meaningless
in the framework of approximate computations.

This justifies the following definition:

Definition 2.3. For Y > O the point x € D is called a y-critical point

of a Lipschitzian function f : D + R, if the distance between 3f (x) and
0 is at most Y . The set of y-critical points of f is denoted by ¥ (f,Y)

and the set of y-critical values f (Z(f,Y )) © R is denoted by A(f,y ).

For Y =0 the y-critical points and values coincide with the usual ones. But
if the accuracy of our computations is h >0, we are forced to work with

Y-critical points and values, with y > h > 0,

Our main theorem gives the upper bound for the '"size" of the set A (f,Y);
Before we specify the notion of "size", we should mention an additiomal
disadvantage of the usual Morse-Sard theorem, which makes difficult its
"effective" applications: the usage of the Lebesgue (or the Hausforff)
measure. Indeed, the fact that the Lebesgue measure of the set A is small,

does not allow to find effectively the points out of this set.
Fortunately, the usage of another geometric invariant, much more "effective"
than the Lebesgue measure, is not only desirable, but also very natural in

questions, concerning the geometry of critical values (see [10]).

Definition 2.4. For a bounded A c R and for any € > O define M (€, A) as

the minimal number of intervals of length €, covering A. H (g, A) = log, M (e, A)



is called the e-entropy of the set A (See [2], [8]).

We give some properties and applications of the e€-entropy (concerning mostly
the "effective” finding of points out of the set with small entropy) in section
4. Here we consider only two examples: for A = [0, 1], M (g, A) ~ /e, and

for A = {1, %, cees %, ees}y, M (e, A) - 1//2. In general, if for some

A c [0, 1] we obtain M (g, A) « é, we can conclude not only that A is

"small"but also that it is "sparce' in [0, 1].

Now we define the class of nonsmooth functions we work with. These are the
functions representable as f (x) = max h (x, t), where h depend smoothly
on x and t. To simplify the notations and to obtain explicit constants we

assume below, that the domain of definition of f is the closed unit ball

8" in Rn, and the domain of the parameter t is the closed unit ball 8" in
R".

Definition 2.5 For m, m, k = 1, 2, ... and C >0 let Ss o (C) denote
]

the set of functions f, defined on the unit ball 8" < R" and representable as

f (x) =max h(x, t) , x € B"
t € "

where h : B® x B® + R is a k times continuoudly differentiable function

and the uniform norm of the k - th derivative of h does not exceed C. Let

¢ U & ©.

e

One can easily show, that S§ o coincides with the set of functions on B®,
?
representable as £ (x) = max h (x, t), where ™ is any compact m—dimensional
t €T
manifold and h : B® x T+ R a Ck-smooth function.



Clearly, all the functions in S:i n 2Te Lipschitzian.

Now we can formulate the main result of this paper:

Theorem 2.6 There exist constants Ao’ A1, B, depending only on n, m
and k, with the following properties:

k

Let for some C > 0, f € Su o (C), and let for some Yy > 0,

s
A (£, ¥Y) be the set of y-critical values of f.

Then for any € > 0,

M (e, A (£, Y) < N N-1
- k k

BC 1 BC
Ao (—E‘ + A1 Y'(E) (_E—) » € < BC,

wvhere N = (m + 2)(n + 1) - 2.

We give some consequences and applications of theorem 2.6 in section 4
below. Now, to clarify the structure of the inequalities, consider only
the special case Y = 0. Then the second term in the bounds for M(e, A (£,0)).
disappears, and for small € we obtain

M (e, A (£,0) < K (-;-) g, where the constant K

depends on n, m, k and C.

1f, in addition, we assume that the smoothness k is greater than N , we
obtain that the number of intervals of length € , covering A (f, 0), grows
slowler than 1/(-: as € 0. Hence the measure of A (f, 0) is zero, and we obtain

the following:

Corollary 2.7 (The Morse-Sard theorem for maximum functions)

LethStmwithk>(m+2) (n+1) -2,



Then the set of critical values A (f, 0)ef § has the Lebesgue measure

Zero.

Proof of theorem 2.6.

We reduce the study of the y-critical values of £ (x) = max h (x, t) to the
t
study of y-critical values of some auxiliary smooth function.

Let A" be the standard n-dimensional simplex A" = { (Ao, ceesy An), 22> 0,

A+ sout X =1},
[] n

Consider the function

¢ : B XxB"x ...xB%x A" 5 R,
!
n+ 1

defined as follows:
n
¢ (x, Er seen By Yos cees yn) = z Yih (x, ti).
i=o0
(Since £ € Sﬁ n (C), we fix some representation of f as
14

f (x) =max h (x, t)
t € B®

withh : B x B® * Rk times continuouslydifferentiable and with the uni-

form norm of the k~th derivative of h not exceeding C).

Clearly, ¢ is k times continuously differentiable and the uniform norm of the

k~-th derivative of ¢ does not exceed those of h, and hence, is at most €.

Lemma 3.1, For any Y > 0 each Y-critical value of f is alsoay-critical

value of ¢ (or of the restriction of ¢ on the boundary of B" x B® x ...x B® x A").

Proof. First of all, we need a precise description of the generalized gradient

of a maximum function. Let X, € B". Denote by T (xo) the closed set in Bm,



consisting of those t € Bm, for which

h (Xo, t) = £ (xo) = max . h (xo, t)
t€EB

Lemma 3.2 ([1] , theorem 2.1). The generalized gradient Jf (xo) coincides

with the convex hull of all the vectors grad_ h (xo, t), t €T (xo).

Now let X, € B” be a Y-critical point of f. By definition 2.3, we can find
the vector v, € of (xo) with || VOH < Y. By lemma 3.2, v, belongs to the
convex hull of all the vectors of the form gradx h (xo, t), t €T (xo),
and by the Caratheo.-dory theorem, Yo belongs in fact to the convex hull

of at most n + 1 such vectors.

Hence, we can find the points ?o s sees -t—n €T (xo) and the nonnegative

numbers A s eeey X. XA+ et A= 1, such that
o n o n

n
v, - }i:'o)\i gradx h (xo, ti)

. e = - - = - n m m
Consider the point z = (xo, Eys eees E, )\o, oy An) €EU=B xB X ...xB x!{
Assume in addition, that tihe points ts i=o0, ...,n, belong to the interior

of the ball B™.

Lemma 3.3,
1. ¢ (2) = ¢ (x)

2. z is a y-critical point of ¢

Proof. By definition of T (xo), for any t € T (xo), h (xo. t) = f (xo).

n n
hence, ¢(z) = I )«i ho(x, ?i) =f (x) I Ay = £ (x).
i=o ° j=o °



Furthermore, we have the following identities for the first derivatives

of ¢ at z:

1.d. ¢ (z) =0, i=0, ..., n
i
2. dA $ (z) =0
3. gr:adx 9 (z) =V,
Indeed, at each .Ei""l =0, ..., n, the function h (xo, t) attains its maximal

m . . - . . \
value on B and since, by assumptions, t; is an inner point of Bm,

dh (x, t;) =0, i =0, ..., n. In turn, dti ¢ () =%, d.h (x, ;) = 0.
The identity d)‘tb (z) = 0 follows immediately from the fact that h (xo, fi) =
f'(xo), i=0, +v., n.

b —

n
Finally, grad < ¢ (z) = ¢ )‘i grad h (xo,. ti) = v, by the choice of Ai’ t;-

.

i=o
Thus grad ¢ (z) = grad_ ¢ (z) = V_ and hence |lgrad ¢ ()|]| = ||v°|| <y o,

and z is a y-critical point of ¢ . Lemma 3.3 is proved.

If some of the points ?i belong to the boundary of Bm, we obtain in the same
way that z is a Y-critical point of the restriction of ¢ on the boundary of
U.

Since by construction £ (xo) = ¢ (z), lemma 3.1 follows.

Now we apply to the function ¢ theorem t.1 [10], which gives an upper bound
for the g~entropy of the y~critical values of differentiable functions. It is
sufficient to consider only the y-critical values of ¢ on the interior of U, the
Y-critical values of the restriction of ¢ on 3U can be treated exactly in the

same way, and satisfy even better restrictionms.
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The following form of theorem 1.1 [10], which follows immediately from

the original general one, is appropriate in our situation:

Theorem 3.4, Let ¥ : Bg + R be a k times continuously differentiable

function, defined on the ball B¥ of radius r in RN. Denote by R, (¥) the number

R, (¥) = sup || d ve| - &5 .
z€B)

Let for Y > 0, A(Y, Y) be the set of y-critical values of ¥. Then for any

€ >0

A +A YD, e>r (¥
M(E’A(\Y’Y))ﬁ{o ! € —Rk ‘

N N-1
zo[ w]f +Ev® [Ml]'k— , € <R(Y),
€

€
where the constants Z;,'K depend only on N and k.

1
We want to apply this theorem to our function ¢. First of all, the domain of

¢ is contained in the ball of radius K, in R?{ where N = (m + 2) (n + 1) - 2 and

1

K1 depends only on n and m. By the standard extension results, ¢ can be ex-

tended to the k-smooth function ¢ on this ball Bg , with the uniform norm of
1

the k~th derivative, not exceeding KZC (where Kz also depends only on n and m).

For the constant Rk @) we therefore obtain:

Rk )] £ K2 c KT = BC, where B = K2 K? . Theorem 3.4 now gives:
M(c, A, Y)) < M(e, 4B, V) <

- _ K v

AO+A1Y(-€1); E&BC,

i{
_ X -1

. K
RE ke A EF | fcec
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Combaining these estimates with the similar ones for the y-critical values

of ¢ on the boundary of U, and using lemma 3.1, we complete the proof of

theorem 2.6.

4. Some consequences

In section 2 we used theorem 2.6 in a special case y= 0 to derive the Morse-
Sard theorem for maximum functions. In general, we can play with the values
of parameters Yy and £ in theorem 2.6 in order to obtain the required information

about the set of almost critical values.

First of all, to simplify computations, we always assume below that € < BC,

and hence we can use only the second inequality of theorem 2.6.

Corollary 4.1. For any f € SE o (€), Y >0 and € < BC,
]

N N-1
M A, <c, DF + v
’ ’ e 2 €
where the constants C1 and 02 depend only on n, m, k andC .
We also assume below, that k > N. Then the first term in the inequality of
corollary 4.1 grows slowler than~é as € + 0, The degree of-é in the second
N-1

term is 1 + - > 1, but it contains the factor y. Hence, taking Y positive,

but sufficiently small, we still can obtain nontrivial bounds for M (g, A(f, Y)).

Let us obtain in this way the upper bound for the Lebesgue measure m of A (f, Y).

‘ -1
Corollary 4.2. For any f € St n (C) and vy < (BC)1 K
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k-N
m(d (£, V) < CyyRL,

where C3 depends only on n, m, k, C.

Proof. Substitute in expression of corollary 4.1.
€ = Yléfi . We obtain:

=3

(A V))< e-M(, (£, V) <

k N k N-1
'EL- N =1 1, = (1 +5-), =
< y k=L [C1(Y)k1k +Czy(-Y-)k1 k’]

_k-N k~N
(C1+C2)Ym = CB-Ym

Since we assume k > N, the degree of y in the inequality of corollary 4.2
is positive. Hence, taking y sufficiently small, we obtain an arbitrarily
small upper bound for m ( A(f, y)). In particular, for ¥ = 0, we obtain

once more the Morse—Sard theorem.

We mentioned already, that the information concerning the upper bounds for
the Lebesgue measure, is not "effective". But the upper bounds for the
e-entropy of the set allow to find points out of this set very effectively.
In fact, such points exist in any sufficiently dense regular net in R. We
prove first one simple geometric lemma, which clarify the properties of the

g-entropy.
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Lemma 4.3. Consider any reguiar 3e-net x; in R, X, =x + 3ie,
i=.., 1.0, 1, .... Denote by Ui the open 2e-interval, centered at

x; . Then any bounded set A < R intersects at most M (g, A) intervals

Ui'

Proof. Assume that A intersects intervals Ui s seey Ui . Fix for any
1 1
j=1, «o., L the point 2, € U, N A, Then | 2z, -2z. | >¢
J lj J1 32
for any j1 + j2, and hence

M (e, &) > M (e, {z, o0y 2D = 1

Combaining this lemma with corollarv 4.1, we can find, for any given inter-

val of the length L in R, such a small Yo > 0 that for any Y 5-Yo’ there

are points in our interval, not belonging to A (£, Y). Moreover, their whole
neighborhoods of a fixed size do not intersect A (£, Y), and these points

can be found in any sufficiently dense net. These last properties are especially
important in computations with finite accuracy. To present these properties

precisely, it is convenient to give the following definition:

Definition 4.4, For f as above and y > 0 any point ¢ € R ~ A4 (£, Y)

is called y-regular.

In other words, ¢ € R is a y-regular value of f, if at each point x € Bn,

with £ (x) = ¢, the distance between 3f (x) and O is at least Y.

Theorem 4.5. Let £ € Sk

. m (C), k > N, and let L > 0 be given. Denote
?

k-1 1 k
by Y, = Y, (C, L) the min [(L/6C)kN , 8c)' "X 1, and let e =y, KT .

Consider some regular e, -net x;, X; = X + Bieo, i=.,.=1,0,1, ... .
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Then in any interval V O R of lengthL there is at least one point xj of
our net, such that the whole eo-neighborhood of xj consists of Yo-regular

values of f£.

Proof. By corollary 4.1 we have
k N k N-1
Mg, A(f, ¥)) 2 € P kT k + € () k-1 k
o o

1. N .
= (C1 + Cz) (7 ) k-1 = C3 Q? ) k-1

o o

N

1
3 Y,
of points X:s i=,..=-1,0,1, ..., by lemma 4.3..

Hence, the set A (f,YO) intersects at most  C ) k-1 among the Eo-neighborhood

On the other hand, any interval V > R of length L contains at least

k
L L L 1 k-1 _points x., and since, by definition,
— -1 D e = = (_.) 1
3¢ 6€ 6 y
o o o
k-1 1 1 X 1.
Yo_ﬁ (L/6C3) k=N , we have % (?;) k-1 2_03 (7;) k-1

Theorem is proved.

Taking smaller Y, and €,» We can guarantee that an arbitrarily big part
of the points of our net in any interval of length L are Yo-regular values

of f, together with their eo-neighborhoods.

We conclude with some remarks:

1. Considering the asymptotic behavior of the c-entropy of critical values, as
€ +0, one can obtain, by theorem 2.6, the upper bound for the entropy dimension
of the set of critical values (which is, roughly, the highest degree of % in the

asymptotic expression for M (e, A (£, 0)). Compare [10] and [12].)
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2. The restrictions on the geometry of critical and almost-critical values,
given by theorem 2.6, form a set of necessary conditions for the represent-
ability of a given function as a maximum of a smooth family. Using these
conditions, and especially the upper bounds for the entropy dimension, one
can easily construct explicit examples of "nice" functions, not representable
as maximd of "too smooth" families. Compare [12], theorem 3.1. (where only

"smooth" critical points are considered).

3. The results of this paper can be extended in several directions. First

of all, we can consider functions, representable as differences of functions
from St’ o (such an extension is natural and important, see e. g. [5], [7]).
Secondly, some information on the geometry of critical values can be obtained
for minimax functions of smooth families. Finally, we can consider the mappings

into RY (instead of functions, i. e. mappings into R), whose coordinates

belong to Sk .
n, m

However, the proper setting of these results requires a deeper insight into
the structure of maximum functions, in particular, some additional information

on the behavior of these functions under usual arithmetic and analytic operatioms.

4. There is an important class of Lipschitzian functions, closely related to the
maxim@ of smooth families. It consists of functions, representable as the
difference of two convex ones (dc-functions; see e. g. [5], [7], [3]).

It turns out, that for dc-functions of one and two variables the Morse-Sard
theorem is still valid (see [3]). However, for d. c. functions of 3 and more

variables the critical values can cover the whole interval.
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