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THE FROBENIUS MORPHISM ON HOMOGENEOUS SPACES, I

ALEXANDER SAMOKHIN

Abstract. In this paper, we continue the study of cohomology groups of the first term of p–

filtration on the sheaf of differential operators with divided powers in positive characteristic.

Higher cohomology vanishing for these should lead to localization theorems for the category of

D–modules with vanishing p–curvature. We prove such a cohomology vanishing for the Hilbert

scheme Hilb2(P2) in odd characteristic, and for the flag variety of exceptional group of type G2

for p = 7. This also allows to construct a tilting bundle on the flag variety G2/B. We emphasize

the relation to the problem of cohomology vanishing of line bundles on flag varieties. Finally, we

discuss further applications of the key proposition from [22], and give a geometric proof of it, based

on deformation to the normal cone.

1. Introduction

This paper continues the study of the cohomology groups of sheaves of differential operators on

flag varieties in positive characteristic that we begun in a series of papers [23] – [25].

Recall briefly the setting. Fix an algebraically closed field k of characteristic p > 0. Consider

a simply connected semisimple algebraic group G over k, and let Gn be the n–the Frobenius

kernel. Our main interest is in understanding the vector bundle Fn∗OG/B on the flag variety G/B,

where Fn : G/B → G/B is the (n–iteration of) Frobenius morphism. The bundle in question is

homogeneous, and one would like to understand its GnB–structure (this question goes back to

H.H. Andersen’s paper [3] from 1979). However, such a description seems to be missing so far in

general.

A related question is about the GnB–structure of associated endomorphism bundle End(Fn∗OG/B).

For groups of type A2 and B2 (and n = 1 in the latter case) this structure was described in [13] and

[6], respectively. One of the reasons why these questions are sensible is the following: End(Fn∗OG/B)

are related to the sheaf of differential operators with divided powers DG/B. Specifically, recall that

DG/B =
⋃
n End(Fn∗OG/B). Higher cohomology vanishing for sheaves of differential operators is

essential for localization type theorems, of which the Beilinson–Bernstein localization [8] is the

prototype. It is known that, unlike the characteristic zero case, in positive characteristic local-

ization does not hold in general [19]. However, one could hope for a weaker, but still interesting

statement. Namely, consider the sheaf D(1)
G/B = End(F∗OG/B) (the first term of the p–filtration on

DG/B on G/B). The category of sheaves of modules over D(1)
G/B is precisely that of DG/B–modules

with vanishing p–curvature, which is equivalent to the category of coherent sheaves via Cartier

equivalence. The question is then whether localization theorem holds for the category D(1)
G/B–mod.

In this guise this problem has first appeared in [14]. Independently, at around the same time

we started to be interested in constructing specific equivalences for derived categories of coherent
1
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sheaves on homogeneous spaces (e.g., flag varieties) using the Frobenius morphism. Localization

statement, when formulated in these terms, is equivalent to that the bundle Fn∗OG/B is tilting, and

in [25] we conjectured that it was the case when p is greater than the Coxeter number of G. Our

previous partial results towards this statement can be found in [23] – [25]. The present paper aims

to provide more evidence.

Throughout the paper we emphasize the relation between the higher cohomology vanishing of

D(1)
G/B and cohomology vanishing of line bundles on G/B. A long–standing difficult problem is

to find uniform patterns of cohomology vanishing of line bundles and to describe the module

structure on cohomology groups. The first part is known only for groups of rank ≤ 2 by the works

of H.H.Andersen from the early 80’s (while several gaps in the exceptional case G2 have been filled

in a very recent paper [7]). As for the second part, the only non–trivial case when the complete

answer is known is that of A2 and due to S. Donkin [11].

The present work has definitely a technical flavour, and should be considered more as a report on

the work in progress. Most of the results stated here are still in their preliminary form. Major part

is devoted to calculation of cohomology groups Hi(G/B, End(Fn∗OG/B)), where G is of type G2.

Using the same considerations as in [24] in the case of B2, one shows Hi(G/B, End(Fn∗OG/B)) = 0

for i > 1. The real difficulty happens while attempting to prove the vanishing of H1, and so far

we are able to provide an argument valid only for p ≤ 7. It would have had very little interest,

if any, had it not been for the case p = 7, which is the first sensible prime for G2 if one keeps

in mind applications to localization theorems. Namely, the Coxeter number h of G2 being 6, the

vanishing result for p = 7 allows to construct a derived equivalence (see Subsection 4.5). Our hope

that the vanishing holds for p > 7 is also supported by a remark from Humphreys’ treatise on

modular representations [15, Chapter 18]: ”In line with Lusztig’s Conjecture, the representation

theory of G2 shows considerable uniformity when p ≥ 6”. In a subsequent paper [26], we discuss

the vanishing of the first cohomology group H1(G/B, End(Fn∗OG/B)) for generic primes.

Acknowledgements. An early version of this paper has been written during the author’s visit to

the Max Plank Institute in Bonn in the winter of 2011. Throughout his work over the project (which

includes work in progress [26]), the author benefited greatly from the support of the SFB/TRR

45 ”Periods, moduli, and the arithmetic of algebraic varieties” at the University of Mainz. It is a

pleasure to thank the MPI and the University of Mainz for its wonderful hospitality. We would

also like to thank H.H.Andersen for the many useful conversations during the special term in 2011

on Representation Theory at the HIM, Bonn.

Notation. Throughout we fix an algebraically closed field k of characteristic p > 0. Let G be a

semisimple algebraic group over k. Let T be a maximal torus of G, and T ⊂ B a Borel subgroup

containing it. Denote X(T) the weight lattice, R – the root lattice and S ⊂ R the set of simple

roots. The Weyl group W = N(T)/T acts on X(T) via the dot–action: if w ∈ W, and λ ∈ X(T),

then w · λ = w(λ+ ρ)− ρ. For a simple root α ∈ S denote Pα the minimal parabolic subgroup of

G. For a weight λ ∈ X(T) denote Lλ the corresponding line bundle on G/B.
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2. Recollections

2.1. Differential operators. Let X be a smooth algebraic variety over k, and DX the sheaf of

differential operators on X. Recall (e.g., [25, Section 1.3.]) that there exists a filtration D(pn)
X on

DX such that

(2.1) D(pn)
X = EndOpnX (OX),

and

(2.2) DX =
⋃
n≥1

EndOpnX (OX).

The filtration above has the name of p–filtration. By definition of the Frobenius morphism one

has Hi(X, EndOpX (OX)) = Hi(X ′, End(F∗OX)).

2.2. A short exact sequence. Assume given a smooth variety S and a locally free sheaf E of

rank 2 on S. Let X = PS(E) be the projective bundle over S and π : X → S the projection.

Denote Oπ(−1) the relative invertible sheaf. One has π∗Oπ(1) = E∗.
The statement below is proven in [23, Lemma 2.4].

Lemma 2.1. For any n ≥ 1 there is a short exact sequence of vector bundles on X:

(2.3) 0→ π∗Fn∗OS → Fn∗OX → π∗(Fn∗ (D
pn−2E ⊗ det E)⊗ det E∗)⊗Oπ(−1)→ 0.

Here DkE = (SkE∗)∗ is the k-th divided power of E.

The above sequence is typically applied to P1–fibrations of G/B associated to simple roots;

associated to a simple root α ∈ S are a minimal parabolic subgroup Pα and a P1–bundle G/B→
G/Pα.

Remark 2.1. M. Kaneda informed us [17] that for fibrations G/B → G/Pα sequence (2.3) is

induced from a short exact sequence of GnB–modules.

2.3. Cohomology of line bundles on G/B. We collect here several results on cohomology

groups of line bundles on G/B that are due to H.H.Andersen.

2.3.1. First cohomology group of a line bundle. Let α be a simple root, and denote sα a corre-

sponding reflection in W. One has sα · χ = sα(χ)−α. Thre is a complete description [2, Theorem

3.6] of (non)–vanishing of the first cohomology group of a line bundle Lλ.

Theorem 2.1. H1(G/B,Lχ) 6= 0 if and only if there exist a simple root α such that one of the

following conditions is satisfied:

• −p ≤ 〈χ, α∨〉 ≤ −2 and sα · χ = sα(χ)− α is dominant.

• 〈χ, α∨〉 = −apn − 1 for some a, n ∈ N with a < p and sα(χ)− α is dominant.

• −(a+ 1)pn ≤ 〈χ, α∨〉 ≤ −apn− 2 for some a, n ∈ N with a < p and χ+ apnα is dominant.

Some bits of Demazure’s proof of the Bott theorem in characteristic zero are still valid in positive

characteristic [2, Corollary 3.2]:
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Theorem 2.2. Let χ be a weight. If either 〈χ, α∨〉 ≥ −p or 〈χ, α∨〉 = −apn− 1 for some a, n ∈ N

and a < p then

(2.4) Hi(G/B,Lχ) = Hi−1(G/B,Lsα·χ).

Further, Theorem 2.3 of [3] states:

Theorem 2.3. If χ is a weight such that for a simple root α one has 0 ≤ 〈χ+ ρ, α∨〉 ≤ p then

(2.5) Hi(G/B,Lχ) = Hi+1(G/B,Lsα·χ).

3. Hilbert scheme of two points on P2

Let V be a vector space over k of dimension n. In this section we assume the characteristic of k

to be odd. Denote Gr2,n the grassmannian of 2–dimensional subspaces in V and F1,2,n the variety

of partial flags of type (1, 2) in V. Consider the fibered square:

F1,2,n ×Gr2,n F1,2,n

π

xx

π

&&
F1,2,n

p

''

F1,2,n

p

xx
Gr2,n

Denote Xn the fibered product F1,2,n ×Gr2,n F1,2,n. The projection Xn → Pn × Pn presents Xn

as the blow-up of Pn × Pn along the diagonal ∆ ⊂ Pn × Pn. The group Z/2Z acts on Xn, and the

quotient variety is identified with the Hilbert scheme of two points on Pn.

Consider the case n = 3. The flag variety F1,2,3 is isomorphic to SL3/B.

Theorem 3.1. One has Hi(X3, End(F∗OX3)) = 0 for i > 0.

Proof. The proof essentially follows the argument in the proof of [24, Theorem 2], and we therefore

skip several details that can be found in loc.cit..

Denote U2 the rank two tautological bundle on Gr2,3 = (P2)∨ (in fact, U2 is isomorphic to Ω1(1)).

Let Lω1 ,Lω2 be the line bundles on SL3/B corresponding to the fundamental weights ω1, ω2. The

projection p is then isomorphic to projectivization of U2, the relative tautological bundle being

L−ω1 . Similarly, the projection π is isomorphic to projectivization of the bundle p∗U2.

Denote S the flag variety SL3/B. The short exact sequence from Lemma 2.1 with respect to

the projection π looks as follows:

(3.1) 0→ π∗F∗OS → F∗OX3 → π∗(F∗(S
p−2p∗U2 ⊗ L−ω2)⊗ Lω2)⊗Oπ(−1)→ 0;
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one has π∗Oπ(1) = p∗U∗2 . Recall the resolution of the diagonal for S [18, Proposition 4.17]:

0→ L−ω1 � L−ω1−2ω2 ⊕ L−ω2 � L−2ω1−ω2 → Ψ1,1 � L−ω1−ω2 →(3.2)

→ Ψ1,0 � L−ω1 ⊕Ψ0,1 � L−ω2 → OS×S → O∆ → 0.

Here Ψi,j are vector bundles (terms of the dual exceptional collection). Arguing as in the proof

of Theorem 2 of [24], we see that it is sufficient to show that the vanishing of Ext–groups:

(3.3) ExtiS(Fn∗ (S
p−2p∗U2 ⊗ L−ω2)⊗ Lω2 ,F∗S

pp∗U∗2 ) = 0

for i > 0. Recall that the canonical sheaf ωS is isomorphic to L−2(ω1+ω2). By [24, Corollary 1],

the above group is isomorphic to

(3.4) Hi(S × S, (F× F∗)(i∗O∆)⊗ (Spp∗U∗2 � (Sp−2p∗U∗2 ⊗ L(2p−2)ω1+(2p−4)ω2
))).

The sheaves Ψ1,0,Ψ0,1,Ψ1,1 have right resolutions consisting of direct sums of line bundles

Lω1 ,Lω2 ,Lω1+ω2 , respectively. Explicitly, tensoring resolution (3.2) with Lω1 ,Lω2 ,Lω1+ω2 respec-

tively, and pushing it down onto the first component, one obtains:

(3.5) 0→ Ψ1,0 → H0(Lω1)⊗OX3 → Lω1 → 0,

(3.6) 0→ Ψ0,1 → H0(Lω2)⊗OX3 → Lω2 → 0,

(3.7) 0→ Ψ1,1 → Ψ1,0 ⊗H0(Lω2)⊕Ψ0,1 ⊗H0(Lω1)→ H0(Lω1+ω2)⊗OX3 → Lω1+ω2 → 0.

Arguing as in [24, Lemma 5], we see that it is sufficient to show:

(i) Hi(S × S, Spp∗U∗2 � (Sp−2p∗U∗2 ⊗ L(2p−2)ω1+(2p−4)ω2
)) = 0 for i > 0;

(ii) Hi(S×S, (F∗(Ψ1,0⊕Ψ0,1)⊗Spp∗U∗2 )�(Sp−2p∗U∗2⊗L(2p−2)ω1+(2p−4)ω2
⊗(L−pω1⊕L−pω2)) = 0

for i > 1;

(iii) Hi(S×S, , (F∗Ψ1,1⊗Spp∗U∗2 )� (Sp−2p∗U∗2 ⊗L(2p−2)ω1+(2p−4)ω2
⊗L−p(ω1+ω2))) = 0 for i > 2;

(iv) Hi(S×S, (L−pω1 ⊗ Spp∗U∗2 )� ((Sp−2p∗U∗2 ⊗L(2p−2)ω1+(2p−4)ω2
⊗L−p(ω1+2ω2)) = 0 for i > 3;

(v) Hi(S × S, (L−pω2 ⊗ Spp∗U∗2 ) � ((Sp−2p∗U∗2 ⊗L(2p−2)ω1+(2p−4)ω2
⊗L−p(2ω1+ω2

) = 0 for i > 3.

Using resolutions (3.6), (3.5), and (3.7), and the Kempf vanishing theorem, one immediately

obtains (i)–(iii).

As for (iv) and (v) we see, using the Künneth formula, that it is sufficient to show:

(1) Hi(S,L−pω1 ⊗ Spp∗U∗2 ) = 0 for i 6= 2, and Hi(S, Sp−2p∗U∗2 ⊗ L(p−2)ω1−4ω2
) = 0 for i 6= 1;

(2) Hi(S,L−pω2 ⊗ Spp∗U∗2 ) = 0 and Hi(S,Sp−2p∗U∗2 ⊗ L(p−4)ω2−2ω1
) = 0 for i 6= 1.

Indeed, consider the first group in (1). Tensor the short exact sequence

(3.8) 0→ F∗p∗U∗2 → Spp∗U∗2 → Sp−2p∗U∗2 ⊗ Lω2 → 0

with L−pω1 . Further, there is a short exact sequence:

(3.9) 0→ L−pω1 → F∗p∗U2 → Lp(ω1−ω2) → 0.
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Taking the dual of it, and tensoring the dual sequence with L−pω1 , one gets:

(3.10) 0→ Lp(ω2−2ω1) → F∗p∗U∗2 ⊗ L−pω1 → OS → 0.

The top cohomology groups of both Lp(ω2−2ω1) and OS vanish (the first group vanishes by the

Kempf vanishing). Hence, H3(S,F∗p∗U∗2 ⊗ L−pω1) = 0.

On the other hand, the Euler sequence on (P2)∨ gives:

(3.11) 0→ L−ω2 → V∗ ⊗OS → U∗2 → 0.

Pulling it back to S and taking its p-th symmetric power, we get:

(3.12) 0→ L−ω2 ⊗ Sp−1V∗ → SpV∗ ⊗OS → Spp∗U∗2 → 0.

Tensoring it with L−pω1 , we see that the line bundle L−ω2−pω1 is acyclic, while L−pω1 has non–

vanishing cohomology group only in the degree 2 (since L−pω1 is pulled back from P2). Thus,

Hi(S,L−pω1 ⊗ Spp∗U∗2 ) = 0 for i 6= 2.

We restrict ourselves to the case p > 3 (for p = 3 the cohomology vanishing of some the groups

below is different, but it does not affect the statements). Considering the (p − 2)–th symmetric

power of the Euler sequence, and tensoring it with L(p−2)ω1−4ω2
, we see that the cohomology groups

of Sp−2p∗U∗2 ⊗ L(p−2)ω1−4ω2
are squeezed in between the cohomology groups of L(p−2)ω1−4ω2

and

L(p−2)ω1−5ω2
. The cohomology groups of both line bundles vanish except H1. Hence the statement

of (1).

Consider the statements of (2). From the projection formula we see that Hi(S,L−pω2⊗Spp∗U∗2 ) =

Hi(S,Lp(ω1−ω2)). By Theorem 2.2 we conclude that Hi(S,Lp(ω1−ω2)) = Hi−1(S,Lp(ω1−ω2)+(p−1)α2
) =

0 for i 6= 1, the weight p(ω1 − ω2) + (p− 1)α2 being dominant.

Finally, that the group H3(S,Sp−2p∗U∗2 ⊗ L(p−4)ω2−2ω1
) vanishes can once again be seen from

sequence (3.12), the groups Hi(S,L(p−4)ω2−2ω1
) being non–trivial only for i 6= 1. �

Corollary 3.1. Hi((P2)[2], End(F∗O((P2)[2]) = 0 for i > 0.

Remark 3.1. We expect the bundle F∗O(P2)[2] to be a generator in the derived category of coherent

sheaves on (P2)[2]; in other words, the bundle F∗O(P2)[2] should be tilting, and an equivalence of

derived categories holds (cf. Section 6 of [25]). The proof will be given in [26].

4. The flag variety of G2

4.1. Geometric preliminaries. Let G be a group of type G2. Its root system has two simple

roots α and β, the root β being the long root. Associated to the simple roots are two minimal

parabolic subgroups Pα and Pβ. The homogeneous space G/Pβ is isomorphic to the 5-dimensional

quadric Q5 and G/Pα is a five-dimensional variety X, a subvariety of the grassmannian Gr2,W.

Here W is the smallest irreducible (for odd p) representation of G2 of dimension 7 that gives rise

to an embedding G2 ↪→ SO2,7. Denote q and π the two projections of G/B onto Q5 and X. The

line bundles Lωα and Lωβ on G/B are isomorphic to q∗OQ5(1) and π∗OX(1), respectively. The
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canonical line bundle ωG/B is isomorphic to L−2ρ = L−2(ωα+ωβ). Both projections π and q are

P1–bundles over G/B associated to rank two vector bundles π∗Lωα and q∗Lωβ , respectively. The

latter bundle of rank 2 on Q5 is also known as the Cayley bundle (cf. [21]) that we denote K. There

is a short exact sequence:

(4.1) 0→ K → TP(W)(−2)⊗OQ5 → S→ 0,

where S is the spinor bundle on Q5. One has det K = L−3ωα . The relative Euler sequence for

the projection q looks as follows:

(4.2) 0→ L−ωβ → q∗K → Lβ → 0.

From Lemma 2.1 one obtains:

(4.3) 0→ q∗F∗OQ5 → F∗OG/B → q∗(F∗(S
p−2K ⊗ L−3ωα)⊗ L3ωα)⊗ L−ωβ → 0.

4.2. Clifford algebra of TQ5(−1). Recall some facts from [18]. If E is an orthogonal vector bundle

over a base variety Y then one defines a sheaf of graded algebras A(E) = ⊕Ai(E) over Y ; here

Ai(E) is a vector bundle isomorphic to ⊕k≥0 ∧i−2k (E). There is a short exact sequence of vector

bundles over Qn [18, Proposition 4.2]:

(4.4) 0→ Ai−1(TQn(−1))⊗OQn(−1)→ Ψi → Ai(TQn(−1))→ 0.

One defines the Clifford algebra Cl(E) of E to be A(E)/(h− 1)A(E) (where h is a free generator

of degree two in the graded Clifford algebra). The Clifford algebra of TQn(−1) is a sheaf of matrix

algebras End(S+⊕S−) for even-dimensional quadrics and the sum of two sheaves of matrix algebras

End(S) ⊕ End(S) for odd-dimensional quadrics. Here S is the spinor bundle. There is the short

exact sequence for S:

(4.5) 0→ S→ U⊗OQn → S∗ → 0,

the vector space U being the spinor representation.

4.3. Left dual exceptional collection on a quadric. By [18, Proposition 4.11], the set of ex-

ceptional bundles S(−n),Ψn−1, . . . ,Ψ1,OQn on an odd-dimensional quadric Qn is a full exceptional

collection. One has Ψi = S⊕2
n+1

2 for i ≥ n. There are short exact sequences connecting the bundles

Ψi than can be obtained from the resolution of the diagonal:

(4.6) 0→ Ωi
P(W)(i)⊗OQn → Ψi → Ψi−2 → 0.

In particular, one has:

(4.7) 0→ TP(W)(−2)⊗OQn → S⊕2
n+1

2 → Ψn−2 → 0,

and

(4.8) 0→ OQn(−1)→ S⊕2
n+1

2 → Ψn−1 → 0.

The goal of this section is prove the following statement:
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Theorem 4.1. Let p ≤ 7. Then

(4.9) Hi(G/B, End(F∗OG/B)) = 0

for i > 0.

Remark 4.1. The unfortunate restriction on characteristic of k that we are forced to impose at the

moment is explained by non–standard cohomology vanishing in type G2. Specifically, in the course

of the proof one has to deal with cohomology groups of a particular line bundle (see Proposition 4.3

below); according to Andersen and Kaneda’s recent rectification of Andersen’s old results in [4] on

cohomology vanishing patterns in type G2 (see [7]) this line bundle acquires an extra non–vanishing

cohomology group for p ≥ 11. There is sufficient evidence that the non–vanishing of this group does

not prevent nevertheless the sought–for higher cohomology vanishing of Hi(G/B, End(F∗OG/B))

for p ≥ 11. We relegate the further study to a subsequent paper [26].

4.4. Computations. The goal of this section is to provide necessary statements for Theorem 4.1.

The non–vanishing cohomology group for p ≥ 11 appears in Proposition 4.3. It results eventually

in a non–trivial differential in the spectral sequence computing the group from Lemma 4.1 (for

p = 7 the group in question vanishes, and the spectral sequence immediately collapses, thus giving

the statement from Theorem 4.1).

Since the essence of the argument is again the same as in [24, Theorem 2], we immediately skip to

non–trivial part of the proof, just reminding that the higher cohomology vanishing of End(F∗OQ5)

for odd primes follows from either [20] or [25], and from [1] for p = 2.

Lemma 4.1. Exti(q∗(F∗(S
p−2K ⊗ L−3ωα)⊗ L3ωα)⊗ L−ωβ ,F∗OG/B) = 0 for i > 0.

Proof. We have to show that Hi(Q5,F
∗F∗S

pK∗ ⊗ Sp−2K∗ ⊗ L(2p−2)ωα) = 0 for i > 0. One has an

isomorphism

Hi(Q5,F
∗F∗S

pK∗ ⊗ Sp−2K∗ ⊗ L(2p−2)ωα) =(4.10)

Hi(Q5 × Q5, (F× F∗)(i∗O∆)⊗ SpK∗ � (Sp−2K∗ ⊗ L(2p−2)ωα)).

Recall the resolution of the diagonal for Q5:

(4.11) 0→ S � (S⊗ L−4ωα)→ Ψ4 � L−4ωα → · · · → Ψ1 � L−ωα → OQ3 �OQ3 → i∗O∆ → 0,

Denote C• the complex, whose terms are Cj = F∗Ψ−j � F∗L−jωα for j = −4, . . . ,−1, 0 and

C−5 = F∗S � F∗(S ⊗ L−4ωα). Tensor C• with the bundle SpK∗ � (Sp−2K∗ ⊗ L(2p−2)ωα). Then the

complex C• ⊗ (Sp
nU∗2 � Sp

n−2U∗2 (2pn − 2)) computes the cohomology group in the right hand side

of (4.10).

As in [24, Lemma 5], it will be sufficient to ensure that Hi(Q3×Q3,C
j⊗(Sp

nU∗2 �Sp
n−2U∗2 (2pn−

2))) = 0 for i > −j. The proof of Lemma 4.1 is broken up into a series of propositions below.

�

Proposition 4.1. Hi(Q5, S
p−2K∗ ⊗ L−2ωα) = 0 for i 6= 1.

Proof. One has Hi(Q5, S
p−2K∗ ⊗ L−2ωα) = Hi(G/B,Lpωβ ⊗ ωG/B). Therefore, by Serre duality

this group is isomorphic to H6−i(G/B,L−pωβ ). This group is zero unless i 6= 1. Note also that
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χ = pωβ − 2ρ = sα · (p− 3)ωβ. Finally, one obtains:

Hi(Q5,S
p−2K∗ ⊗ L−2ωα) = ∇(p−3)ωβ .

�

Proposition 4.2. Hi(Q5,F
∗Ψ2 ⊗ SpK∗) = 0 for i > 1.

Tensoring resolution (4.11) with p∗2L−3ωα and taking its pushforward onto the first component,

one obtains a left resolution of Ψ2:

(4.12) 0→ S⊗H0(Q5, S
∗ ⊗ Lωα)∗ → Ψ4 ⊗H0(Q5,Lω2α)∗ → Ψ3 ⊗H0(Q5,Lωα)∗ → Ψ2 → 0.

Tensor it with SpK∗. Propositions 4.4, 4.6, and 4.7 below show that all the terms of the resolution

have vanishing cohomology groups Hi for i > 1, hence the statement.

Proposition 4.3. Hi(Q5,S
p−2K∗ ⊗ L−(p+2)ωα) = 0 for i 6= 2 if p = 7 and i 6= 2, 3 for p ≥ 11.

Proof. One has isomorphisms

Hi(Q5, S
p−2K∗ ⊗ L−(p+2)ωα) = Hi(G/B,Lp(ωβ−ωα) ⊗ ωG/B) = H6−i(G/B,L−p(α+β))∗.

The weight p(α+β)−2ρ lies in the H2–chamber, and would classically have only non–vanishing

H2. However, according to Figure 12 from [7], this weight exhibits non–standard vanishing for

p ≥ 11 (the corresponding alcove is labeled by 3).

Let us track down this non–standard vanishing behaviour via more direct arguments. First, that

the group H1 vanishes follows from Andersen’s criterion: 〈χ, α∨〉 = −p − 2 and 〈χ, β∨〉 = p − 2.

Only the last condition can be fulfilled for a = n = 1, but the weight χ+ pα is not dominant since

〈χ, β∨〉 = −2.

There is a short exact sequence:

(4.13) 0→ L−pωα → π∗F∗UX → L−p(α+β) → 0.

Clearly, Hi(G/B,L−pωα) = 0 for i 6= 5. One has Hi(X,F∗UX) = H5−i(X,F∗U∗X ⊗ L−3ωβ )∗, by

Serre duality. Taking the dual of the above sequence and tensoring it with L−3ωβ , we get:

(4.14) 0→ Lp(α+β)−3ωβ → π∗(F∗U∗X ⊗ L−3ωβ )→ Lpωα−3ωβ → 0.

Let χ1 = p(α + β) − 3ωβ and χ2 = pωα − 3ωβ. One has 〈χ1, α
∨〉 = −p and 〈χ2, β

∨〉 = −3.

Therefore, sα ·χ1 = (p− 2)ωα− 2ωβ. Further, 〈sα ·χ1, β
∨〉 = −2 > −p, and sβ · sα ·χ1 = (p− 5)ωα.

By Theorem 2.2 one has a chain of isomorphisms:

(4.15) Hi(G/B,Lχ1) = Hi−1(G/B,Lsα·χ1) = Hi−2(G/B,Lsβ ·sα·χ1) = 0

for i 6= 2 by the Kempf vanishing, the latter weight in this chain being dominant. Similarly,

sβ · χ2 = (p− 6)ωα + ωβ, therefore

(4.16) Hi(G/B,Lχ2) = Hi−1(G/B,Lsβ ·χ2) = 0

for i 6= 1 by the same reason as above. Hence one gets the exact sequence:

(4.17) 0→ H1(X,F∗U∗X ⊗ L−3ωβ )→ ∇(p−6)ωα+ωβ
c→ ∇(p−5)ωα → H2(X,F∗U∗X ⊗ L−3ωβ )→ 0.
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By Serre duality this implies Hi(X,F∗UX) = 0 for i 6= 3, 4. If H3(X,F∗UX) = 0 then remembering

the arguments at the beginning, we obtain Hi(G/B,L−pωα+pωβ−2ρ) = 0 for i 6= 2. We have a

homomorphism between two Weyl modules:

(4.18) ∇(p−6)ωα+ωβ
c→ ∇(p−5)ωα

For p = 7 the map c is surjective, thus H3(X,F∗UX) = 0.

�

Proposition 4.4. Hi(Q5,F
∗Ψ3 ⊗ SpK∗) = 0 for i > 1.

Proof. From Section 4.3 we have the short exact sequence:

(4.19) 0→ TP(W)(−2)⊗OQ5 → S⊗ U→ Ψ3 → 0.

Using Proposition 4.2, we see that the statement will follow from Hi(Q5,F
∗TP(W)(−2)⊗SpK∗) = 0

for i > 2 (recall that OQ5(−1) = L−ωα). One has a short exact sequence

(4.20) 0→ TQ5(−2)→ TP(W) ⊗OQ5(−2)→ OQ5 → 0,

and the restriction of the Euler sequence on P6 to Q5 tensored with OQ5(−1):

(4.21) 0→ OQ5(−2)→W ⊗OQ5(−1)→ TP(W) ⊗OQ5(−2)→ 0.

The long exact cohomology sequence gives:

· · · → F∗W ⊗Hi(Q5, S
pK∗ ⊗ L−pωα)→ Hi(Q5,F

∗TP(W)(−2)⊗ SpK∗)→(4.22)

→ Hi+1(Q5, S
pK∗ ⊗ L−2pωα)→ . . . .

Firstly, Hi(Q5, S
pK∗ ⊗ L−pωα) = Hi(G/B,Lp(ωβ−ωα)). Further, p(ωβ − ωα) = p(α + β). One

has 〈p(α + β), α∨〉 = −p and sα · (p(α + β)) = pωα − α ∈ X+. By Theorem 2.2 we get

Hi(G/B,Lp(ωβ−ωα)) = 0 for i 6= 1.

Hence, the vanishing of Hi(Q5,F
∗(TP(W) ⊗OQ5(−2))⊗ SpK∗)) = 0 for i > 2 will follow from the

vanishing Hi(G/B,Lp(ωβ−2ωα)) for i > 3. To this end, consider a short exact sequence (the relative

Euler sequence with respect to projection π):

(4.23) 0→ L−ωα → π∗UX → Lωα−ωβ → 0.

Applying F∗ to it, we see that it is sufficient to show H4(G/B, π∗F∗U∗X ⊗ L−pωα) = 0. Indeed,

let χ = p(ωβ − 2ωα). By Serre duality

(4.24) Hi(G/B,Lχ) = H6−i(G/B,L−χ−2ρ)
∗.

One has 〈−χ − 2ρ, β∨〉 = −p − 2 and 〈−χ − 2ρ + pβ, α∨〉 = −p − 2. By Theorem 2.1

H1(G/B,L−χ−2ρ) = 0.



THE FROBENIUS MORPHISM ON HOMOGENEOUS SPACES, I 11

Applying R•π∗ to π∗F∗U∗X⊗L−pωα , and using an isomorphism R•π∗L−pωα = Sp−2UX⊗L−ωβ [−1],

we get:

H4(G/B, π∗F∗U∗X ⊗ L−pωα) = H3(X,F∗U∗X ⊗ Sp−2UX ⊗ L−ωβ ) =(4.25)

= H3(X,F∗UX ⊗ Sp−2U∗X ⊗ Lωβ ),

the last isomorphism coming from det UX = L−ωβ . Applying the Serre duality on X, we get:

(4.26) H3(X,F∗UX ⊗ Sp−2U∗X ⊗ Lωβ ) = H2(X,F∗U∗X ⊗ Sp−2UX ⊗ L−4ωβ )∗

the sheaf ωX being isomorphic to L−3ωβ . Remembering that Sp−2UX⊗L−4ωβ = R1π∗L−pωα−3ωβ ,

and using again the Leray spectral sequence, we get:

(4.27) H2(X,F∗U∗X ⊗ Sp−2UX ⊗ L−4ωβ ) = H3(G/B, π∗F∗U∗X ⊗ L−pωα−3ωβ ).

Consider the sequence

(4.28) 0→ L(p−3)ωβ−2pωα → π∗F∗U∗X ⊗ L−pωα−3ωβ → L−3ωβ → 0.

One has Hi(G/B,L−3ωβ ) = Hi(X,ωX) = 0 for i 6= 5. At the left end we have the weight

χ = −2pωα + (p− 3)ωβ with 〈χ, β∨〉 = p− 3. So, sβ · χ = χ− (p− 2)β. By Theorem 2.3 one has:

(4.29) H3(G/B,L(p−3)ωβ−2pωα) = H4(G/B,Lsβ ·χ).

Further, 〈sβ · χ, α∨〉 = p − 6 and 〈sβ · χ, β∨〉 = −p + 1, so sβ · χ = (p − 6)ωα − (p − 1)ωβ. By

Serre duality one has:

(4.30) H4(G/B,Lsβ ·χ) = H2(G/B,L−sβ ·χ−2ρ)
∗,

and −sβ ·χ−2ρ = −(p−4)ωα+(p−3)ωβ. Its label at α∨ is equal to −p+4. Hence, by Theorem

2.2:

(4.31) H2(G/B,L−sβ ·χ−2ρ)
∗ = H1(G/B,Lsα·(−sβ ·χ−2ρ))

∗.

However, the weight sα · (−sβ · χ − 2ρ) = −(p − 4)ωα + (p − 3)ωβ + (p − 5)α ∈ X+(T) as its

labels at α∨ and β∨ are equal to (p − 6) and 2, respectively. Hence H1(G/B,Lsα·(−sβ ·χ−2ρ)) = 0

by the Kempf vanishing, and the statement follows. �

Proposition 4.5. Hi(Q5,S
p−2K∗ ⊗ L−(2p+2)ωα) = 0 for i 6= 4.

Proof. One has Hi(Q5,S
p−2K∗⊗L−(2p+2)ωα) = Hi(G/B,Lp(ωβ−2ωα)⊗ωG/B). By Serre duality one

has:

Hi(G/B, ,Lp(ωβ−2ωα) ⊗ ωG/B) = H6−i(G/B,Lp(2ωα−ωβ))
∗.

The weight in question is χ = 2pωα−pωβ. One checks that sα ·sβ ·χ = χ+(p−1)β+(p−4)α =

(p− 5)ωα + 2ωβ ∈ X+(T), and applying Theorem 2.2 twice one gets the statement.

�

Proposition 4.6. Hi(Q5,F
∗Ψ4 ⊗ SpK∗) = 0 for i > 1.
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Proof. Similar to Proposition 4.4, we have the short exact sequence:

(4.32) 0→ OQ5(−1)→ S⊗ U→ Ψ4 → 0.

Applying F∗ to it, tensoring with SpK∗ and using Proposition 4.2, we get the statement.

�

Proposition 4.7. Hi(Q5,F
∗S⊗ SpK∗) = 0 for i > 1.

Proof. From sequence 4.5 we see that the statement will follow from Hi(Q5,F
∗S∗ ⊗ SpK∗) = 0 for

i > 0. Tensor the sequence (4.1) with Lωα :

(4.33) 0→ K⊗Lωα → TP(W) ⊗ L−ωα → S∗ → 0.

Consider the Euler sequence restricted to Q5:

(4.34) 0→ L−ωα →W ⊗OQ5 → TP(W) ⊗ L−ωα → 0.

Taking the pullback of this sequence to G/B, applying F∗ to it and finally tensoring with Lωβ ,

we get:

(4.35) 0→ Lp(ωβ−ωα) → F∗W ⊗ Lpωβ → q∗F∗TP(W) ⊗ Lp(ωβ−ωα) → 0.

Two claims below finish the proof. �

Claim 4.1. Hi(G/B,Lp(ωβ−ωα)) = 0 for i 6= 1.

Proof. One has p(ωβ−ωα) = p(α+β), and sα·(p(α+β)) = pωα−α ∈ X+(T). Hence, sα·(pωα−α) =

p(α+ β) ∈ sα ·X+(T), and 〈p(α+ β), α∨〉 = −p. We are done by Theorem 2.2. �

Recall that K∗ = K⊗L3ωα . Let us show that Hi(Q5,F
∗(K⊗Lωα)⊗ SpK∗) = 0 for i > 1. Given

the previous isomorphism, these groups are isomorphic to Hi(Q5,F
∗(K∗⊗L−2ωα)⊗SpK∗). Consider

the short exact sequence:

(4.36) 0→ L3pωα → F∗K∗ ⊗ SpK∗ → S2pK∗ → 0.

Tensoring it with L−2pωα , we get:

(4.37) 0→ Lpωα → F∗(K∗ ⊗ L−2ωα)⊗ SpK∗ → S2pK∗ ⊗ L−2pωα → 0.

One has Hi(Q5,S
2pK∗ ⊗ L−2pωα) = Hi(G/B,L2p(ωβ−ωα)).

Claim 4.2. Hi(G/B,L2p(ωβ−ωα)) = 0 for i 6= 1.

Proof. Let χ = 2p(ωβ − ωα). Theorem 2.1 shows that H1(G/B,Lχ) 6= 0. Indeed, 〈χ, α∨〉 = −2p

and χ+pα is dominant. On the other hand, sα ·χ = χ+(2p−1)α = (2p−2)ωα+ωβ ∈ X+(T) and,

therefore, sα · (χ+ (2p− 1)α) = χ ∈ sα ·X+(T). By [7], the weight χ exhibits standard vanishing,

hence the cliam. �

Proposition 4.8. Hi(Q5,F
∗(S⊗ L−2ωα)⊗ Sp−2K∗ ⊗ L−2ωα) = 0 for i > 4.

Proof. We only need to show H5(Q5,F
∗S(−2)⊗ Sp−2K∗(−2)) = 0. Tensor the sequence (4.1) with

L−2ωα :

(4.38) 0→ K⊗L−2ωα → TP(W) ⊗ L−4ωα → S⊗ L−2ωα → 0.
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Applying F∗ and tensoring with Sp−2K∗(−2), we see that it is sufficient to prove

H5(Q5,F
∗(TP(W) ⊗ L−4ωα)⊗ Sp−2K∗ ⊗ L−2ωα) = 0.

Considering the Euler sequence tensored with L−4ωα and apply F∗ to it, we obtain:

(4.39) 0→ L−4pωα → F∗W ⊗ L−3pωα → F∗(TP(W) ⊗ L−4ωα)→ 0.

Consequently, it is sufficient to show

H5(Q5,L−3pωα ⊗ Sp−2K∗L−2ωα) = H5(G/B,Lp(ωβ−3ωα) ⊗ ωG/B).

By Serre duality we have:

H5(G/B,Lp(ωβ−3ωα) ⊗ ωG/B) = H1(G/B,Lp(3ωα−ωα))
∗.

The corresponding weight is 3pωα − pωβ. Using Theorem 2.1, we get:

〈3pωα − pωβ, β∨〉 = −p.

Hence H1 would not vanish if the weight sβ · (3pωα − pωβ) = 3pωα − β was dominant. This is

not the case as its label at β∨ is equal to negative 2. This proves the claim.

�

At this stage we have a non-vanishing H5(Q5 × Q5, (F
∗Ψ4 ⊗ SpK∗) � Sp−2K∗ ⊗ (L−(2p+2)ωα)).

Proposition 4.9. The map c

H1(Q5,F
∗S⊗ SpK∗)⊗H4(Q5,F

∗S(−2)⊗ Sp−2K∗ ⊗ L−2ωα)→(4.40)

→ H1(Q5,F
∗Ψ4 ⊗ SpK∗)⊗H4(Q5, S

p−2K∗ ⊗ L−(2p+2)ωα)

is surjective.

Proof. First, Proposition 4.6 implies that the map

(4.41) H1(Q5,F
∗S⊗ U⊗ SpK∗)→ H1(Q5,F

∗Ψ4 ⊗ SpK∗)

is surjective. Further, the map c is the composition

H1(Q5,F
∗S⊗ SpK∗)⊗H4(Q5,F

∗S(−2)⊗ L(p−2)ωβ−2ωα)→(4.42)

→ H1(Q5,F
∗S⊗ SpK∗)⊗H4(Q5,U⊗ Sp−2K∗ ⊗ L−(2p+2)ωα) '(4.43)

' H1(Q5,F
∗S⊗ U⊗ SpK∗)⊗H4(Q5, S

p−2K∗ ⊗ L−(2p+2)ωα)→(4.44)

→ H1(Q5,F
∗Ψ4 ⊗ SpK∗)⊗H4(Q5,S

p−2K∗ ⊗ L−(2p+2)ωα).

One has therefore to show that the map

(4.45) H4(Q5,F
∗S(−2)⊗ L(p−2)ωβ−2ωα)→ H4(Q5,U⊗ Sp−2K∗ ⊗ L−(2p+2)ωα)

is surjective.

Tensoring the sequence (4.5) with L−2ωα , applying F∗ and finally tensoring with Sp−2K∗⊗L−2ωα ,

we see that this map is the one on H4 from the associated cohomology sequence:

· · · → H4(Q5,F
∗S(−2)⊗ L(p−2)ωβ−2ωα)→ H4(Q5,U⊗ Sp−2K∗ ⊗ L−(2p+2)ωα)→(4.46)

→ H4(Q5,F
∗S(−1)⊗ L(p−2)ωβ−2ωα)→ . . . .
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To prove surjectivity of the map (4.45) it is sufficient to show H4(Q5,F
∗S(−1)⊗L(p−2)ωβ−2ωα) =

0. The Koszul complex associated to (4.1) gives:

(4.47) · · · → S∗ ⊗ Sp−3(Ω1
P(W)(2))⊗ L−2ωα → Sp−2(Ω1

P(W)(2))⊗ L−2ωα → Sp−2K∗ ⊗ L−2ωα → 0.

Further, the (p− 2)-th symmetric power of the Euler sequence gives:

(4.48) 0→ Sp−3W ⊗ L−(p−1)ωα → Sp−2W ⊗ L−(p−2)ωα → Sp−2(TP(W)(−2))→ 0.

The rest of the proof is broken up into two claims.

Claim 4.3. One has H4(Q5, S
p−2(Ω1

P(W)(2))⊗ L−2ωα ⊗ F∗S(−1)) = 0.

Proof. By Serre duality one obtains:

(4.49) H4(Q5, S
p−2(Ω1

P(W)(2))⊗L−2ωα⊗F∗S(−1)) = H1(Q5,S
p−2(TP(W)(−2))⊗F∗S∗(1)⊗L−3ωα)∗

From the sequence (4.48) it is sufficient to show injectivity of the map from the long exact coho-

mology sequence :

(4.50) · · · → H2(Q5,S
p−3W∗ ⊗ F∗S∗ ⊗ L−2ωα)→ H2(Q5, S

p−2W∗ ⊗ F∗S∗ ⊗ L−ωα)→ . . . .

A small notational disclaimer. To prove injectivity of the above map, we are going to consider a

general hyperplane section of Q5, which is a smooth quadric Q4 of dimension four, In the previous

notation we wrote Lωα identifying it with OQ5(1) to emphasize the fact that all the cohomology

computations are eventually done on the flag variety G/B. Since the computation below appeals

only to the quadric Q5 and its hyperplane section, and involves restrictions of the line bundle

OQ5(1) to Q4, in what follows we return to conventional notation OQ5(1) (hence, assuming that

for a vector bundle E on Q5 the twist E(1) is E ⊗ OQ5(1)).

Denote i : Q4 ↪→ Q5 the embedding, and consider the short exact sequence:

(4.51) 0→ OQ5(−2)→ OQ5(−1)→ i∗OQ4(−1)→ 0,

Tensor this sequence with F∗S∗. Let us first show injectivity of the map on H2 of the above

sequence. This is equivalent to H1(Q5,F
∗S∗ ⊗ i∗OQ4(−1)) = H1(Q4, i

∗F∗S∗ ⊗ OQ4(−1)). The

restriction of the spinor bundle on Q5 to Q4 splits into direct sum of the spinor bundles on Q4:

i∗S∗ = U∗2 ⊕ V/U2 (see [20]). By loc.cit., the bundle F∗OQ4(−1) on Q4 decomposes as follows:

(4.52) F∗OQ4(−1) = OQ4(−1)⊕p1 ⊕OQ4(−2)⊕p2 ⊕ U2(−2)⊕s1 ⊕ (V/U2)∗(−2)⊕s2 ⊕OQ4(−3)⊕p3 ,

where pi are certain polynomials depending only on p. One has Hk(Q4,U∗2 ⊗ OQ4(−i)) =

Hi(Q4, (V/U2)⊗OQ4(−i)) = 0 for all k and i = −1,−2,−3. Therefore one needs to check that the

first cohomology group of

(4.53) U2 ⊗ U2(−1), U2 ⊗ (V/U2)∗(−1), (V/U2)⊗ U2(−2), (V/U2)⊗ (V/U2)∗(−2)

is zero. Using the sequence on Q4

(4.54) 0→ U2 → V ⊗OQ4 → V/U2 → 0,

and its dual

(4.55) 0→ (V/U2)∗ → V∗ ⊗OQ4 → U∗2 → 0,

we get:
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• H•(Q4,U2 ⊗ U2(−1)) = 0 (since H•(Q4,S
2U2(−1)) = 0).

• H•(Q4,U2 ⊗ (V/U2)∗(−1)) = 0 (since H•(Q4,S
2U2) = 0).

• H•(Q4, (V/U2)⊗ U2(−2)) = 0 (since H•(Q4,S
2U2(−2)) = 0).

• Hi(Q4, (V/U2) ⊗ (V/U2)∗(−2)) = 0 for i 6= 2 (the only non-zero cohomology group being

isomorphic to H1(Q4, TQ4(−2)) = k).

�

Claim 4.4. H5(Q5,S
∗ ⊗ Sp−3(Ω1

P(W)(2))⊗OQ5(−2)⊗ F∗S(−1)) = 0.

Proof. By Serre duality we have:

H5(Q5,S
∗ ⊗ Sp−3(Ω1

P(W)(2))⊗OQ5(−2)⊗ F∗S(−1)) =(4.56)

= H0(Q5, S⊗ Sp−3(TP(W)(−2))⊗OQ5(−3)⊗ F∗S∗(1))∗.

Take the (4.48) for (p− 3):

(4.57) 0→ Sp−4W ⊗OQ5(−p+ 2)→ Sp−3W ⊗OQ5(−p+ 3)→ Sp−3(TP(W)(−2))→ 0.

Let us show that H0(Q5,F
∗S∗ ⊗ S) = H1(Q5,F

∗S∗ ⊗ S(−1)) = 0. Tesnoring the sequence (4.5)

with OQ5(−1) and then tensoring it with F∗S∗(1), we get

(4.58) 0→ F∗S∗ ⊗ S(−1)→ U⊗ F∗S∗ ⊗OQ5(−1)→ F∗S∗ ⊗ S→ 0.

Using the decomposition for F∗OQ5(−1) one checks that Hi(Q5,F
∗S∗⊗OQ5(−1)) = 0 for i = 0, 1.

It is sufficient therefore to prove that H0(Q5,F
∗S∗⊗S) = 0. By Proposition 5.2 of [20] the Frobenius

pushforward F∗S contains a unique twist S(−t) of S and the number t must be strictly positive.

Further, line bundles in the decomposition of F∗OQ5(−1) are also negative since S does not have

global sections. This shows H0(Q5,F
∗S∗ ⊗ S) = 0, hence the statement. �

�

4.5. Derived equivalence. Let G be an arbitrary semisimple algebraic group over k. Recall [25,

Lemma 14], that if p is greater than the Coxeter number of G, then the bundle F∗OG/B is tilting.

Since the Coxeter number of G2 is equal to 6, we obtain that F∗OG2/B is tilting bundle on the

flag variety G2/B for p = 7. It can be lifted formally to characteristic zero, since deformation

theory for almost exceptional objects is trivial (see [9]), and the property of being a generator in

a triangulated category is open in families.

5. Homogeneous spaces of SL4

This section is supposed to further illustrate the relation between non–standard vanishing of

cohomology groups of line bundles on flag varieties and higher cohomology vanishing of the endo-

morphism bundle End(F∗OG/B). We chose a particular example of a homogeneous spaces of the

group SL4 – the variety of partial flags F1,2,4. One easily obtains the vanishing of Hi(End(F∗OF1,2,4))

for i > 1 as shown below (in fact, similar statement holds as well for the full flag variety SL4/B).

However, because of non–standard vanishing behaviour (see Remark 5.1 below) the spectral se-

quence related to the cohomology Hi(End(F∗OF1,2,4)) becomes non–trivial, and vanishing of the
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first cohomology group H1(End(F∗OF1,2,4)) requires more work. We discuss approaches to proving

the vanishing of H1(End(F∗OG2/B)) in a subsequent paper [26].

5.1. The partial flag variety F1,2,4. Let G be a semisimple algebraic group of type A3. Denote

ω1, ω2, ω3 the fundamental weights, and let α1, α2, α3 be the simple roots. For each simple root αi
let Pα̂i ⊃ B denote the corresponding minimal parabolic subgroup. Homogeneous spaces G/Pα̂i

can then be identified with varieties of partial flags 0 ⊂ V1 ⊂ Vi−1 ⊂ Vi+1 ⊂ V.

Denote X the partial flag variety F1,2,4 = G/Pα̂3 . It is a P1–bundle, the projectivization of rank

2 vector bundle U2 over Gr2,4; denote q the corresponding projection. On the other hand, F1,2,4 is

a P2–bundle over P3; denote π this projection.

The pullback q∗U2 to X is an extension of two line bundles:

(5.1) 0→ L−ω1 → q∗U2 → Lω1−ω2 → 0.

Consider the short exact sequence:

(5.2) 0→ q∗Fn∗OQ4 → Fn∗OX → q∗(Fn∗ (D
pn−2U2 ⊗ L−ω2)⊗ Lω2)⊗ L−ω1 → 0.

As in [24], one has Exti(Fn∗OQ4 ,F
n
∗OQ4) = 0 for i > 0 and n ≥ 1.

Proposition 5.1.

Exti(q∗(Fn∗ (D
pn−2U2 ⊗ L−ω2)⊗ Lω2)⊗ L−ω1 ,F

n
∗OX) = 0(5.3)

for i > 0 and n ≥ 1.

There is the universal short exact sequence:

(5.4) 0→ U2 → V ⊗OGr2,4 → (U⊥2 )∗ → 0.

Recall the resolution of the sheaf i∗O∆ (see [16]):

(5.5) 0→ L−2ω2 �L−2ω2 → ∧3(U2�U⊥2 )→ ∧2(U2�U⊥2 )→ U2�U⊥2 → OGr2,4×Gr2,4 → i∗O∆ → 0.

There is an isomorphism ∧3(U2 � U⊥2 ) = (U∗2 � (V/U2))⊗ (L−2ω2 � L−2ω2), the bundle U2 � U⊥2
being of rank four and its determinant being isomorphic to L−2ω2 � L−2ω2 . Taking into account

isomorphisms U2 = U∗2 ⊗ L−ω2 and U⊥2 = V/U2 ⊗ L−ω2 , we obtain:

∧3(U2 � U⊥2 ) = (U2 ⊗ L−ω2) � (U⊥2 ⊗ L−ω2).

Further, by the Cauchy formula, one obtains, for odd p:

∧2(U2 � U⊥2 ) = L−ω2 � S2U⊥2 ⊕ S2U2 � L−ω2 .

For p = 2 there is a non–split filtration on ∧2(U2 � U⊥2 ) with graded factors isomorphic to

L−ω2 � S2U⊥2 and S2U2 � L−ω2 .

As in the proof of Lemma 3 of [24] we have:

Exti(q∗(Fn∗ (D
pn−2U2 ⊗ L−ω2)⊗ Lω2)⊗ L−ω1 ,F

n
∗OX) =(5.6)

Hi(Gr2,4,F
∗F∗S

pnU∗2 ⊗ Sp
n−2U∗2 ⊗ L(3pn−3)ω2

).
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Claim 5.1. Let E and L be a vector bundle of arbitrary rank and a line bundle, respectively, on a

smooth variety X. Then there is an isomorphism:

(5.7) F∗F∗S
pE ⊗ Lp = F∗F∗S

p(E ⊗ L).

Proof. By the projection formula one obtains:

(5.8) F∗F∗S
pE ⊗ Lp = F∗(F∗S

pE ⊗ L) = F∗(F∗(S
pE ⊗ Lp)) = F∗F∗S

p(E ⊗ L).

�

In particular, we obtain:

(5.9) F∗F∗OX ⊗ Lp = F∗(F∗OX ⊗ L) = F∗(F∗F
∗L) = F∗F∗Lp.

Therefore, the cohomology groups from (5.6) are isomorphic to:

(5.10) Hi(Gr2,4,F
∗F∗(S

pn(U∗2 ⊗ Lω2))⊗ Sp
n−2U∗2 ⊗ L(2pn−3)ω2

)

Applying Lemma (?) we obtain:

Hi(Gr2,4,F
∗F∗(S

pn(U∗2 ⊗ Lω2))⊗ Sp
n−2U∗2 ⊗ L(2pn−3)ω2

) =(5.11)

= Hi(Gr2,4 ×Gr2,4, (F
n × Fn)∗(i∗O∆)⊗ (Sp

n
((U∗2 ⊗ Lω2))) � (Sp

n−2U∗2 ⊗ L(2pn−3)ω2
)).

Apply Fn∗ × Fn∗ to the resolution (5.5). Denote C• the complex with the following terms:

Cj = ∧j(F× F)∗(U2 � U⊥2 ) for j = −4, . . . , 0. Then the complex

(5.12) C• ⊗ Sp
n
(U∗2 ⊗ Lω2) � (Sp

n−2U∗2 ⊗ L(2pn−3)ω2
)

computes the cohomology group in the right hand side of (5.6).

Claim 5.2. Hi(Gr2,4 ×Gr2,4,S
pn(U∗2 ⊗ Lω2) � (Sp

n−2U∗2 ⊗ L(2pn−3)ω2
)) = 0 for i > 0.

Proof. Immediate. �

Claim 5.3. Hi(Gr2,4 ×Gr2,4,C
1 ⊗ Sp

n
(U∗2 ⊗ Lω2) � (Sp

n−2U∗2 ⊗ L(2pn−3)ω2
)) = 0 for i > 1.

Proof. The statement will follow from:

• Hi(Gr2,4,F
∗U2 ⊗ Sp

n
(U∗2 ⊗ Lω2)) = 0 for i > 0;

• Hi(Gr2,4,F
∗U⊥2 ⊗ (Sp

n−2U∗2 ⊗ L(2pn−3)ω2
)) = 0 for i > 1.

Indeed, the first group is isomorphic to Hi(Gr2,4,F
∗U∗2 ⊗ Sp

nU∗2 ) since U∗2 = U2 ⊗ Lω2 . We

conclude as in [24, Propostion 7].

Further, taking into account an isomorphism V/U2 = U⊥2 ⊗ Lω2 , we obtain:

(5.13) Hi(Gr2,4,F
∗U⊥2 ⊗ (Sp

n−2U∗2 ⊗ L(2pn−3)ω2
)) = Hi(Gr2,4,F

∗(V/U2)⊗ Sp
n−2U∗2 ⊗ L(pn−3)ω2

).

There is a short exact sequence:

(5.14) 0→ Lω2−ω3 → q∗(V/U2)→ Lω3 → 0.

Applying F∗ to it, and tensoring with L(p−2)ω1+(p−3)ω2
, we see that the cohomology groups in

question are comprised in between those of line bundles L(p−2)ω1+(2p−3)ω2−pω3
and L(p−2)ω1+(p−3)ω2+pω3

,

hence the statement.
�
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Claim 5.4. Hi(Gr2,4 ×Gr2,4,C
2 ⊗ Sp

n
(U∗2 ⊗ Lω2) � (Sp

n−2U∗2 ⊗ L(2pn−3)ω2
)) = 0 for i > 2.

Proof. It is sufficient to show the following:

• Hi(Gr2,4,S
pU∗2 ) = 0 for i > 0;

• Hi(Gr2,4,F
∗S2U⊥2 ⊗ Sp

n−2U∗2 ⊗ L(2pn−3)ω2
) =0 for i > 2;

• Hi(Gr2,4,F
∗S2U2 ⊗ SpU∗2 ⊗ Lpω2) = 0 for i > 2;

• Hi(Gr2,4,S
pn−2U∗2 ⊗ L(pn−3)ω2

) = 0 for i > 0.

The first and the last one statements follow immediately. The second group is isomorphic to

Hi(Gr2,4,F
∗S2(V/U2) ⊗ Sp−2U∗2 ⊗ L−3ω2). Consider the second symmetric power of the universal

sequence:

(5.15) 0→ L−pω2 → F∗(U2 ⊗ V)→ F∗S2V ⊗OGr2,4 → F∗S2(V/U2)→ 0.

One first obtains Hi(Gr2,4, S
p−2U∗2 ⊗ L−3ω2) = 0 for i 6= 2. Indeed, by the projection formula

the latter group is isomorphic to Hi(G/B,L(pn−2)ω1−3ω2
) (recall that q∗Lkω1 = SkU∗2 for k ≥ 0).

Considering the weight λ = (pn−2)ω1−3ω2 we see that sα3 ·sα2 ·λ = (pn−4)ω1 is dominant, while

all the intermediate weights satisfy the conditions of Theorem 2.2. Hence, the only non–vanishing

cohomology group is H2(G/B,L(pn−2)ω1−3ω2
) = H0(G/B,L(pn−4)ω1

) = ∇(pn−4)ω1
. If n = 1 it is an

irreducible representation of SL4 and isomorphic to Sp−4V.

We could also argue as follows. Recall that ωX = L−2ω1−3ω2 . By Serre duality one has

(5.16)

Hi(X,L(pn−2)ω1−3ω2
) = H5−i(X,L−pnω1))∗ = H5−i(P3,OP3(−pn))∗ = Hi−2(P3,OP3(pn − 4)).

Further, let us show that H4(Gr2,4,F
∗U2 ⊗ Sp−2U∗2 ⊗ L−3ω2) = 0. By Serre duality one has:

H4(Gr2,4,F
∗U2 ⊗ Sp−2U∗2 ⊗ L−3ω2) = H0(Gr2,4,F

∗U∗2 ⊗ Sp−2U2 ⊗ L−ω2). The bundle in question is

an extention of two line bundle corresponding to non–dominant weights, hence the statement.

Similarly, for the third group consider the second wedge power of the universal sequence:

(5.17) 0→ F∗S2U2 → F∗U2 ⊗ V→ F∗ ∧2 V ⊗O → Lpω2 → 0.

Tensoring it with SpU∗2 ⊗ Lpω2 we see that all the terms of this right resolution of F∗S2U2 have

vanishing higher cohomology, hence the statement. �

Claim 5.5. Hi(Gr2,4 ×Gr2,4,C
3 ⊗ Sp

n
(U∗2 ⊗ Lω2) � (Sp

n−2U∗2 ⊗ L(2pn−3)ω2
)) = 0 for i > 4.

Proof. This in turn will follow from:

• Hi(Gr2,4,F
∗U2 ⊗ SpU∗2 ) = 0 for i 6= 2;

• Hi(Gr2,4,F
∗U⊥2 ⊗ Sp

n−2U∗2 ⊗ L(pn−3)ω2
)) = 0 for i > 2.

Indeed, apllying F∗ to sequence (5.1) and tensoring it with Lpω1 we get:

(5.18) 0→ OX → q∗F∗U2 ⊗ Lpω1 → Lp(2ω1−ω2) → 0.

The cohomology groups of the bundle in the middle are precisely those of the bundle F∗U2 ⊗
SpU∗2 . One has H2(X,Lp(2ω1−ω2)) = H0(X,L(p+1)ω1+(p−3)ω3

). Hence, H2(Gr2,4,F
∗U2 ⊗ SpU∗2 ) =

∇(p+1)ω1+(p−3)ω3
.
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The interesting group here is H2(Gr2,4,F
∗U⊥2 ⊗ Sp

n−2U∗2 ⊗ L(pn−3)ω2
), which we will show to be

isomorphic to k (see Lemma 5.1 below). Observe first an isomorphism:

(5.19) F∗U⊥2 ⊗ Sp−2U∗2 ⊗ L(p−3)ω2
= F∗(V/U2)⊗ Sp−2U∗2 ⊗ L−3ω2).

By Serre duality one obtains:

(5.20) Hi(Gr2,4,F
∗U2 ⊗ Sp−2U∗2 ⊗ L−3ω2) = H4−i(Gr2,4,F

∗U∗2 ⊗ Sp−2U2 ⊗ L−ω2)∗.

The bundle F∗U∗2 ⊗ Sp−2U2 ⊗ L−ω2 is isomorphic to F∗U∗2 ⊗ Sp−2U∗2 ⊗ L−(p−1)ω2
. Tensoring the

short exact sequence

(5.21) 0→ Lp(ω2−ω1) → q∗F∗U∗2 → Lpω1 → 0

with L(p−2)ω1−(p−1)ω2
we see that the cohomology groups in question are those in the middle of

the above sequence. At the ends we get the following line bundles: L−2ω1+ω2 and L(2p−2)ω1−(p−1)ω2
.

The first bundle has non–vanishing H1 as 〈−2ω1 + ω2 + α1, α
∨
i 〉 = 0 for all i. On the other hand,

the only non–vanishing cohomology group of L(2p−2)ω1−(p−1)ω2
is

(5.22) H2(SL4/B,L(2p−2)ω1−(p−1)ω2
) = H0(SL4/B,Lpω1+(p−4)ω2

) = ∇pω1+(p−4)ω3
.

We finally obtain:

0→ H1(L−2ω1+ω2) = k → H3(Gr2,4,F
∗U2 ⊗ Sp−2U∗2 ⊗ L−3ω2)∗ → 0→ 0→(5.23)

→ H2(Gr2,4,F
∗U2 ⊗ Sp−2U∗2 ⊗ L−3ω2)∗ → ∇pω1+(p−4)ω3

→ 0.

�

Remark 5.1. The following calculation elucidates non–vanishing nature of H1(L−pα) for a non–

dominant simple root α. One has:

(5.24) Hi(Gr2,4,F
∗U2 ⊗ Sp−2U∗2 ⊗ L−3ω2) = Hi(X,F∗q∗U2 ⊗ Lpω1 ⊗ ωX).

By Serre duality on X:

(5.25) Hi(X,F∗q∗U2 ⊗ Lpω1 ⊗ ωX) = H5−i(X,F∗q∗U∗2 ⊗ L−pω1)∗.

From sequence (5.21) we obtain:

(5.26) 0→ Lp(ω2−2ω1) → q∗F∗U∗2 ⊗ L−pω1 → OX → 0.

We have ω2 − 2ω1 = −α1. This group has a standard non–vanishing cohomology group in

degree 3: H3(SL4/B,L−pα1) = ∇pω1+(p−4)ω3
. On the other hand, it always has non–vanishing first

cohomology group (see [11]), which is isomorphic to k. We thus obtain:

0→ H0(X,OX) ' H1(L−pα1)→ 0→ 0→ H2(L−pα1)→ H2(X,F∗q∗U∗2 ⊗ L−pω1)→ 0(5.27)

→ H3(SL4/B,L−pα1) = ∇pω1+(p−4)ω3
' H2(Gr2,4,F

∗U2 ⊗ Sp−2U∗2 ⊗ L−3ω2)→ 0.

The first coboundary map should be an isomorphism since otherwise we would have a non–

zero H4(Gr2,4,F
∗U2 ⊗ Sp−2U∗2 ⊗ L−3ω2)), which is actually trivial. The second cohomology group

H2(L−pα1) survives to compensate for the non–vanishing of H1(L−pα1), the Euler characteristic of

L−pα1 being preserved.
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Claim 5.6. Hi(Gr2,4 ×Gr2,4,C
4 ⊗ Sp

n
(U∗2 ⊗ Lω2) � (Sp

n−2U∗2 ⊗ L(2pn−3)ω2
)) = 0 for i > 4.

Proof. Let us show that

• Hi(Gr2,4,L−pω2 ⊗ SpU∗2 ) = 0 for i 6= 2;

• Hi(Gr2,4,S
p−2U∗2 ⊗ L−3ω2) = 0 for i 6= 2.

�

Lemma 5.1. H2(Gr2,4,F
∗(V/U2)⊗ Sp−2U∗2 ⊗ L−3ω2) = k.

Proof. We compute the group in question by two slightly different ways. First, by the projection

formula one obtains:

Hi(Gr2,4,F
∗(V/U2)⊗ Sp−2U∗2 ⊗ L−3ω2) = Hi(X, q∗(F∗(V/U2))⊗ L−3ω2 ⊗ L(p−2)ω1

).

Applying F∗ to it, and tensoring with L(p−2)ω1−3ω2
, we obtain:

(5.28) 0→ Lp(ω2−ω3)+(p−2)ω1−3ω2
→ q∗F∗(V/U2)⊗ L−3ω2 ⊗ L(p−2)ω1

→ Lpω3+(p−2)ω1−3ω2
→ 0.

One finds H1(SL4/B,Lpω3+(p−2)ω1−3ω2
) = ∇(p−4)ω+1+ω2+(p−2)ω3

. On the other hand, one finds

H2(SL4/B,Lp(ω2−ω3)+(p−2)ω1−3ω2
) = ∇(p−3)(ω1+ω3). Finally, the sought–for group fits into a short

exact sequence:

(5.29) ∇(p−4)ω1+ω2+(p−2)ω3
→ ∇(p−3)(ω1+ω3) → H2(Gr2,4,F

∗(V/U2)⊗ Sp−2U∗2 ⊗ L−3ω2)→

On the other hand, from the universal exact sequence we see that our group fits as well into a

short exact sequence:

∇pω1+(p−4)ω3
→ F∗V ⊗∇(p−4)ω1

→ H2(Gr2,4,F
∗(V/U2)⊗ Sp−2U∗2 ⊗ L−3ω2)→(5.30)

→ H3(Gr2,4,F
∗U2 ⊗ Sp−2U∗2 ⊗ L−3ω2) ' k → 0.

It follows that the group H2(Gr2,4,F
∗(V/U2)⊗ Sp−2U∗2 ⊗L−3ω2) fits into a short exact sequence,

the module ∇(p−4)ω1
being irreducible:

(5.31) 0→ ⊕∇(p−4)ω1
→ H2(Gr2,4,F

∗(V/U2)⊗ Sp−2U∗2 ⊗ L−3ω2)→ k → 0.

On the other hand, from sequence (5.29) we see that the module ∇(p−3)(ω1+ω3) surjects onto our

H2(Gr2,4,F
∗(V/U2)⊗ Sp−2U∗2 ⊗ L−3ω2). However, HomSL4(∇(p−3)(ω1+ω3),∇(p−4)ω1

) = 0.

A theorem of Carter and Lusztig [10] says that if there is a non–zero homomorphism between

two Weyl modules ∇λ1 ,∇λ2 that correspond to partitions λ1, λ2, then λ1 ≤ λ2 in a standard partial

ordering. Namely, λ1 ≤ λ2 means that one can obtain the partition diagram of λ1 from that of λ2

by a sequence of steps, at each step getting a new partition diagram by raising a square from the

end of one row to the end of another. Now, the weight (p − 3)(ω1 + ω3) corresponds to partition

(2p− 6, p− 3, p− 3, 0), while the corresponding partition for the weight (p− 4)ω1 is (p− 4, 0, 0, 0).

We conclude that the space of homomorphisms is zero, hence the statement.

We finally obtain a map:

H2(Gr2,4,L−pω2 ⊗ SpU∗2 )⊗H2(Gr2,4,S
p−2U∗2 ⊗ L−3ω2)→(5.32)

→ H2(Gr2,4,F
∗U2 ⊗ SpU∗2 )⊗H2(Gr2,4,F

∗U⊥2 ⊗ Sp
n−2U∗2 ⊗ L(pn−3)ω2

)),(5.33)

or, taking into account the above identifications,
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(5.34) ∇ω1+(p−3)ω3
⊗∇(p−4)ω1

→ ∇(p+1)ω1+(p−3)ω3
⊗ k.

�

Finally, denote C the cokernel of the map from (5.34), we obtain:

(5.35) Hom(F∗OX ,F∗OX)→ Hom(F∗OGr2,4 ,F∗OGr2,4)→ C→ Ext1(F∗OX ,F∗OX)→ 0,

and all the higher Exti(F∗OX ,F∗OX) vanish.

6. Truncated symmetric powers

If one tries to prove cohomology vanishing for a single sheaf and there is a deformation of this

sheaf at one’s disposal, then one may try to compute the cohomology on the special fiber of the

family. Provided that cohomology vanishing holds on the special fiber, the vanishing of cohomology

for close fibers can be obtained from semicontinuity.

Let X be a scheme, and E a locally free sheaf over X of rank n. Consider the symmetric algebra

S•(E), and let Spec S•(E) =: S(E) be the cone defined by E . The symmetric algebra is then the

sheaf of functions on S(E) polynomial along the fibers of the projection π : S(E) → X; in other

words, π∗OS(E) = S•(E).

We have the zero section embedding s : X → S(E) splitting the projection π. Let I be the sheaf

of ideals of X inside S(E). If e1, e2, . . . , en is a local basis of E , then I is locally given by the ideal

(e1, e2, . . . , en). One has OX = OS(E)/I.

Consider the Frobenius power I [p] of I; locally it is generated by (ep1, e
p
2, . . . , e

p
n). The sub-

scheme given by the sheaf of ideals I [p] is called the Frobenius neighborhood of X; one has

OX[p] = OS(E)/I [p] = F∗s∗OX , and X ⊂ X [p] ⊂ S(E) is an embedding of schemes.

Definition 6.1. Put τ(E) := π∗OX[p].

Since X is smooth, the Frobenius morphism is flat, and computation in local coordinates shows

that τ(E) is locally free over OX of the rank pn (in a local basis (e1, e2, . . . , en) as above the fiber

of τ(E) is S•(E)/(ep1, e
p
2, . . . , e

p
n), also called the algebra of truncated symmetric powers).

6.0.1. More on truncated symmetric powers. Let V be a vector space over k. The truncated sym-

metric power functor TkV can also be defined as the image of the canonical map:

(6.1) TkV = Im (SkV→ DkV).

Here
⊕

DkV is the divided powers algebra. The notion of truncated symmetric powers can

obviously be sheafified. Thus, for a scheme X and a vector bundle E over X one has the sheaf of

truncated symmetric powers T•E of E .

Consider the Grothendieck–Springer resolution:
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G/B
j //

��

T∗(G/B)

π

��
0

i // N

Remark 6.1. In [26] we show that Lemma 4.1, and hence the vanishing of H1(G2/B, End(F∗OG2/B))

follow from H1(G/B,T•TG2/B) = 0.

Example 6.1. Let X be a point and E is a locally free sheaf of rank 1 over X. The cone defined

by E is then isomorphic to A1 = Spec k[x]. The sheaf OX is the skyscraper sheaf δ0 = k[x]/(x),

and π∗OX[p] is given by the k-module k[x]/(xp). It is a finite-dimensional vector space over k with

a basis 1, x, . . . , xp−1.

Example 6.2. Let X be a scheme and L a line bundle over X. Then X is a divisor in S(L), and

X [p] is given by the sheaf of ideals Ip; in this case the Frobenius neighborhood coincides with the

p-th infinitesimal neighborhood. The sheaf OX/Ip has a filtration with graded factors isomorphic

to Ik/Ik+1 = Sk(I/I2) for 0 ≤ k ≤ p− 1. Note that I/I2 is the conormal sheaf to X in S(L); it

is isomorphic to L. Hence, in K0(X) one has

[τ(L)] = [OX ] + [L] + · · ·+ [Lp−1].

Claim 6.1. Let g : X → Y be a morphism of smooth schemes, and E a locally free sheaf on Y .

Then

g∗(τ(E)) ' τ(g∗(E)).

Proof. Let S be the cone defined by E . Consider the diagram:

g∗S
g′ //

π′

��

S

π

��
X g

//

s′

FF

Y

s

EE

Here s : Y → S and s′ : X → g∗S are the zero section embeddings. Using the base change along

the above diagram, and commutativity of the Frobenius morphism with arbitrary morphisms, one

has:

(6.2) Lg∗π∗F
∗s∗OY = π′∗Lg

′∗F∗s∗OY

Applying the functor H0 = τ≤0τ≥0 to the above isomorphism, we get:

(6.3) g∗π∗F
∗s∗OY = π′∗g

′∗F∗s∗OY .
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Therefore,

(6.4) g∗τ(E) = g∗π∗F
∗s∗OY = π′∗g

′∗F∗s∗OY = π′∗F
∗g′∗s∗OY .

On the other hand,

τ(g∗E) = π′∗F
∗s′∗OX ,

and the statement follows from an isomorphism g′∗s∗OY = s′∗OX (for instance, one can use the

Koszul resolution
∧•(π∗E) = s∗OY , and

g′∗
•∧

(π∗E) =
•∧

(g′∗π∗E) =
•∧

(π′∗g∗E) = s′∗OX .

�

Remark 6.2. Proposition 2.6 of [22] states the equality τ(E) = θp(E) in K0(X). Here θp(E) is the

Bott element, which shows up in the Adams–Riemann-Roch formula. Proposition 3.2 of loc.cit.

allows to deduce the Adams–Riemann-Roch theorem.

7. Frobenius neighborhood of the diagonal

In this section we show that Proposition 3.2 from [22] is in fact just yet another instance of

deformation to the normal cone. For the purposes of computing of cohomology groups using degen-

eration, it seems instructive to give a proof of this statement that would highlight the degeneration

construction.

Proposition 7.1. Let x ∈ K0(X). Then F∗F∗(x) = τ(Ω1
X) · x.

Proof. Let ∆ ⊂ X ×X be the diagonal, and p1, p2 the two projections. First, one has:

Claim 7.1.

(7.1) F∗F∗(x) = p1∗([Fr(∆)] · p∗2(x)) = p2∗([Fr(∆)] · p∗1(x)),

where [Fr(∆)] is the class of the structure sheaf of the Frobenius neighborhood of ∆.

Proof. This claim follows from Lemma 2.1 of [23]. For convenience of the reader we recall the

proof.

Let π : Y → X be a morphism. Consider the cartesian square:

Ỹ
p2 //

p1

��

Y

π

��
X

F // X

We first observe that the fibered product Ỹ is isomorphic to the left uppermost corner in the

cartesian square:
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Ỹ //

i

��

∆

i∆

��
X × Y F×π // X ×X

where ∆ is the diagonal in X ×X. If π is flat then one has an isomorphism of sheaves i∗OỸ =

(F × π)∗(i∆∗O∆). Indeed, the isomorphism of two fibered products follows from the definition of

fibered product. The isomorphism of sheaves follows from flatness of the Frobenius morphism and

from flat base change.

In particular, consider the cartesian square:

X̃
π2 //

π1

��

X

F

��
X

F // X

Denote ĩ : X̃ → X ×X the embedding. Then:

(7.2) ĩ∗OX̃ = (F× F)∗(i∆∗O∆) = Fr(∆).

By flat base change one gets an isomorphism of functors, the Frobenius morphism F being flat:

(7.3) F∗F∗ = π1∗π2
∗.

Note that all the functors F∗,F
∗, π1∗, π2

∗ are exact, the Frobenius morphism F being affine. One

has π1 = p1 ◦ ĩ, π2 = p2 ◦ ĩ. Hence, for x ∈ K0(X), one has:

(7.4) F∗F∗(x) = p1∗(p
∗
2(x) · [̃i∗OX̃ ]) = p1∗(p

∗
2(x) · [Fr(∆)]),

the other isomorphism following from symmetry. �

Consider deformation of the diagonal embedding ∆ ⊂ X ×X to the normal cone ([12], Chapter

5):

∆× P1

pr

$$

� � i // M

ρ

||
P1

For any value of the parameter t 6= ∞ ∈ P1, the restriction it of the embedding i to ∆ × t is

isomorphic to the diagonal embedding ∆× t ⊂ X ×X, while the restriction i∞ of the embedding



THE FROBENIUS MORPHISM ON HOMOGENEOUS SPACES, I 25

i to pr−1(∞) is isomorphic to the embedding of X (identified with ∆) to the normal cone, that is

the cone defined by the sheaf of Kähler differentials Ω1
X .

Consider the structure sheaf i∗O∆×P1 of the big diagonal, and its Frobenius pullback F∗i∗O∆×P1 .

The total space M of the deformation, by construction, is equipped with two projections p1, p2 :

M → X × P1, such that pi|Mt = πi : X × X → X for t 6= ∞, and p1|M∞ = p2|M∞ = π : M∞ =

Spec (S•(Ω1
X))→ X. Consider the diagram:

Mt
� � it //

πt

��

M

p1

��
X × {t} �

� it // X × P1

We can assume that a class x ∈ K0(X) is represented by a vector bundle on X. Denote E the

pullback of that vector bundle to X ×P1, and consider the complex of sheaves on X ×P1 obtained

as follows:

(7.5) F(E) = R•p1∗(F
∗i∗O∆×P1 ⊗ p∗2E).

We first observe that F(E) is actually a sheaf; this follows from Rip1∗(F
∗i∗O∆×P1 ⊗ p∗2E) = 0 for

i > 0. Indeed, p1 is obtained by base change from the Frobenius morphism, which is affine, hence the

vanishing of higher direct images. Furthermore, F(E) is locally free, i.e. a vector bundle. To see this,

it is sufficient to show that the rank of F(E) is constant at all closed points (x, t) ∈ X×P1. Since the

sheaf F∗i∗O∆×P1 if flat over X×P1, the Euler characteristic χ =
∑

(−1)ihi(p−1
1 (x, t),F∗i∗O∆×P1 ⊗

p∗2(E)|p−1
1 (x,t)) is constant, and by the vanishing of higher direct images we see that F(E) has constant

rank. Hence it is a locally free sheaf.

Using the base change around the above diagram, we obtain, the morphism p1 being flat:

(7.6) Li∗tF(E) = Li∗tR
•p1∗(F

∗i∗O∆×P1 ⊗ p∗2E) = R•πt∗Li
∗
t (F
∗i∗O∆×P1 ⊗ p∗2E),

and

(7.7) R•πt∗Li
∗
t (F
∗i∗O∆×P1 ⊗ p∗2E) = πt∗Li

∗
t (F
∗i∗O∆×P1 ⊗ p∗2E).

The last equality follows from affinity of πt that is obtained by base change from the affine

morphism p1. On the other hand, the sheaf F(E) is locally free; hence higher inverse images

Lki∗tF(E) vanish, and we can simply write:

(7.8) i∗tF(E) = πt∗i
∗
t (F
∗i∗O∆×P1 ⊗ p∗2E).

For any t1, t2 ∈ P1 the classes [Li∗t1F(E)] = [i∗t1F(E)] and [Li∗t2F(E)] = [i∗t2F(E)] are equal in

K0(X × {t}) = K0(X). One has for t 6=∞:

(7.9) πt∗i
∗
t (F
∗i∗O∆×P1 ⊗ p∗2E) = πt∗(F

∗it∗O∆t ⊗ π∗2Et),

and by Claim 7.1 the last group is isomorphic to F∗F∗Et. On the other hand, for t = ∞ one

obtains:

(7.10) π∞∗i
∗
∞(F∗i∗O∆×P1 ⊗ p∗2E) = π∗(F

∗i∗∞i∗O∆×P1 ⊗ π∗E∞) = π∗(F
∗s∞∗OX ⊗ π∗E∞),
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where s∞ = i∗∞i is the zero section embedding of X into the normal cone Spec(S•(Ω1
X)). By

the projection formula the last group is isomorphic to τ(Ω1
X) ⊗ E . Hence the statement of the

lemma. �
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