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1. INTRODUCTION

The multiplicity of a polynomial ¢ € C[z,..., 2] in the origin O € C" is the number
8m¢(,21, ey Zn)

OMiz10M2z9 . ..0Mnz,

min{m€Z>0 (0) 7&0} € Zxo U { + oo}

There is a similar but more subtle invariant
1
co(¢) = sup {8 €Q ‘ the function ‘7‘25 is locally integrable near O € C" » € Q3o U {400},
o

which is called the complex singularity exponent of the polynomial ¢ at the point O.
Example 1.1. Suppose that n = 2, and ¢ = 0 defines an irreducible curve in C2. Then

1 1
0(¢) = min (1, L )
m n
by [90], where (m,n) is the first pair of Puiseux exponents of ¢. On the other hand, the equality
1 1
11 =+
col 2 zn2 (Zhm 4 Jkme ) =min [ —, —, —4__™2__
0(1 2(1 2 ) ny no k—f—%-f*%
holds (see [109]), where ny,ny, my, mo, k are non-negative integers.
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Example 1.2. Let my,...,m, be positive integers. Then
n n n
. 1 mi m ) 1 1 1
mm<172mi>200<22i >>co<1_[12i )zmm(n“,m,...,%).
1= 1= 1=

The set of complex singularity exponents has interesting properties. Put
M, = {CO(¢) ‘ e (C[zl,...,zn]} CQU{ + o0}

which implies that 7,, C [0,1] U {+oc}. Then

the set H,, is closed in R U {+o0} (see [60]),
we expect that H, satisfies ascending chain condition (ACC) for every n (see [106]),
the set H,, satisfies ACC for n < 3 (see [169], [1], [109], [141], [58]),
it follows from [60] that the following assertions are equivalent:
— the set H,, satisfies ACC for every n € Z~g;
— for every n € Zxg, there is 6,, € (0,1) such that H, N (6,,1) = &;
e it follows from [106] that H,,—1 C H,, and

Hp-1 \ {17‘1'00} C OHn € Hp—1 \ { + 00}7

where OH,, is the set of all accumulation points of H,,,
e it follows from [109] and [110] that the set Hs is the union

— km1 < np—no < kmsg,

2 m1 + mso _
{m ‘ 2<me Z>[)} U kmlTTLQ T nymg + ngmy kg;d(Zh 7’:’2),”_6172 U {0; +OO}7
s 1101 11625 107 5 182 >0

which implies that OHa = H; \ {1,400}, where Hy = {1/n | n € Zxo} U {0},
e it follows from [110] that the intersection Hz N [2,1) is the union

5 1 5 2 5 4 19 15 12 25 15 5
= —_ 26 = 7‘ 24 = ‘ 22 N’ 1’1900 1~ [
{6+m‘m }U{6+3m " }U{6+9m+6 i }U{zo 16°13° 28" 17 6}
where m € Z-, which implies that 5/6 is the largest accumulation point of Hs (cf.
[145], [146)),

e it follows from [124] that OH3 = Ha \ {1, +o0} (cf. [106]),
e it follows from [104] that 41/42 is the maximal element of the set Hz N[0, 1).

Remark 1.3. For a non-constant ¢, the complex singularity exponent co(¢) coincides with the ab-
solute value of the biggest root of the Bernstein—Sato polynomial of ¢ (see [10], [105]).

Let X be a variety! with at most log canonical singularities (see [102]), let Z C X be a closed
subvariety, and let D be an effective Q-Cartier QQ-divisor on the variety X. Then the number

lctz (X, D) = sup {)\ eQ ‘ the log pair (X, /\D) is log canonical along Z} eQu { + oo}
is called a log canonical threshold of the divisor D along Z. It follows from [105] that
leto (T, (6 =0)) = o 9),
so that lctz (X, D) is an algebraic counterpart of the number ¢o(¢). One has
lctx (X, D) = inf {lctp(X, D) ‘ Pe X} = sup {/\ €eQ ‘ the log pair (X, )\D) is log canonical} ,

and, for simplicity, we put lct(X, D) = letx (X, D).

LAll varieties are assumed to be complex, algebraic, projective and normal if the opposite is not stated explicitly.
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Example 1.4. Suppose that X = P? and D € |Op2(3)|. Then

(1 if D is a smooth curve,

1if D is a curve with ordinary double points,

5/6 if D is a curve with one cuspidal point,

let ( X, D) — { 3/4if D consists of a conic and a line that are tangent,
2/3 if D consists of three lines intersecting at one point,

1/2 if Supp (D) consists of two lines,

1/3 if Supp(D) consists of one line.

Example 1.5. Suppose that X = P? and D € |Op2(d)| for d > 3. The papers [103] and
[112] show that the curve D is semistable (stable, respectively) if lct(X,D) > 3/d (> 3/d,
respectively).

The set of log canonical thresholds of Weil divisors has interesting properties, which are similar
to the properties of the set H,, (cf. [8]). Put
the variety X has at most log canonical singularities,
dim(X) = n and D is effective Q-Cartier Weil divisor
which implies that 7, C [O, 1] U { + oo}. Then
the set 7, satisfies ACC for n < 3 (see [169], [1], [109], [141], [58]),

e we expect that 7, satisfies ACC for every n (see [105, Conjecture 8.8]),
e it follows from [105, Proposition 8.8] that that 7,,—; C 7,, and

7;7,—1 \ {17 +OO} - az];“

where 07, is the set of all accumulation points of 7,
o it follows from [169] and [109] that 073 = 71\ {1, 400}, where 71 = {1/n | n € Zx}U{0},
e it follows from [145] and [146] that

1 1 1 1
oo [Li] = [La] < (L4 L sencza)
2 2 2 n

which implies that 5/6 is the largest accumulation point of 73 (cf. [110]),
e it follows from [124] that 073 = T3 \ {1, +o0} (cf. [106]),
e it follows from [104] that 41/42 is is the maximal element of the set 73 N [0,1).

Remark 1.6. If X is smooth, and D is a Weil divisor, then it follows from [131] that
dim (D)
m+ 1

’Z;L:{lct(X,D)‘ }CQU{+OO},

lct(X,D):dim(X)—sup{ ’ m€Z>0},

where Dy, is the m-th jet scheme of the divisor D (see [131]).
Suppose that X is a Fano variety with at most log terminal singularities (see [98]).
Definition 1.7. Global log canonical threshold of the Fano variety X is the number
let (X) = inf {lct (X, D) ‘ D is an effective Q-divisor on X such that D ~q —KX} > 0.
Remark 1.8. To define the number lct(X) € R, we only need to assume that
‘ —nK X‘ #* g

for some n > 0. This property is shared by many varieties (toric varieties, weak Fano varieties),
but all the currently known applications are related to the case when — K x is ample.

The number lct(X) is an algebraic counterpart of the a-invariant introduced in [179]. One has

the log pair (X, ED) is log canonical for
let(X) =supqeeQ n
every divisor D € ‘ — nKX| and all n € Z~g
3



Recall that every Fano variety X is rationally connected (see [170], [193]). Thus, the group
Pic(X) is torsion free. Then

the log pair (X, )\D) is log canonical }

for every effective Q-divisor D ~g —Kx

lct(X) = sup {A eQ

Example 1.9. Let X be a smooth hypersurface in P of degree m < n. Then
1
n+1l-—m
as shown in [20] (see Corollary 2.16). In particular, the equality lct(P™) = 1/(n + 1) holds.

lct (X) =

Example 1.10. Let X be a rational homogeneous space such that —Kx ~ rD and
Pic(X) = Z[D],
where D is an ample divisor and r € Z~o. Then let(X) = 1/r (see [78], [79]).
Example 1.11. Let X be a general intersection of hypersurfaces Fy, ..., F C P” such that

k
> deg(Fi) =n>5k+12> 11,
=1

where deg(F) > ... > deg(F1) > 2 and deg(F})) > 8. Then lct(X) =1 (see [158]).
In general, the number lct(X) depends on small deformations of the variety X.
Example 1.12. Let X be a smooth hypersurface in P(1,1,1, 1, 3) of degree 6. Then

543 13 33 7 33 8 9 11 13 15 17 19 21 29
ICt(X) €2 T 759373795 8’ T T8 T T A TG0 AR 85 an?
6'50°15°38°8°38°9710°12° 147167 18" 20" 22" 30

by [157] and [37], and all these values are attained.

Example 1.13. Let X be a smooth hypersurface in P(1""!, n) of degree 2n. The inequalities
2n —1

1>let(X) >
hold (see [37]). But the equality lct(X) =1 holds if X is general and n > 3.

Example 1.14. Let X be a smooth hypersurface in P" of degree n > 2. Then the inequalities

n—1
1>1ct(X)>T

hold (see [20]). Then it follows from [157] and [37] that

1ifn > 6,
92/25 if n = 5,
>
let (X) > 16/21 if n = 4,
3/4ifn =3,

whenver X is general. But lct(X) =1—1/n if X contains a cone of dimension n — 2.

Example 1.15. Let X be a quasismooth hypersurface in P(1, ay, az,as,aq) of degree Z?Zl a;
such that X has at most terminal singularities (see [102]), where a; < a2 < a3 < ayq. Then

~Kx ~ Op(1,a1,a5,a5,as) (1) ‘X7
and there are 95 possibilities for the quadruple (a1, a2, as,as) (see [89], [82]). Then
16/21 if a1 = ag = a3 = a4 = 1,
7/9 if (a1, a9,as3,a4) = (1,1,1,2),
1> lct(X) > ¢ 4/5if (a1,a9,a3,a4) = (1,1,2,2),
6/7 if (a1, a9,as3,a4) = (1,1,2,3),

[ 1 in the remaining cases,
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if X is general (see [27], [37], [29], [30]). The global log canonical threshold of the hypersurface
wr=13 4+ 22 4+ 4218 ¢ ]P’(l, 1,2,6,9) 2 Proj ((C[:U,y,z,t,w])
is equal to 17/18 (see [27]), where wt(x) = wt(y) = 1, wt(z) = 2, wt(t) = 6, wt(w) = 9.
Example 1.16. It follows from Lemma 6.1 that
ao
lct<IP’(a0,a1, e ,an)> = m,
where P(ag, a1, ..., a,) is well-formed (see [89]), and ap < a1 < ... < ap.

Example 1.17. Let X be a smooth hypersurface in P(1"*!, d) of degree 2d. Then
1

n+1—d

in the case when the inequalities 2 < d < n — 1 hold (see Proposition 20 in [28]).

let (X) =

Example 1.18. Let X be smooth surface del Pezzo. It follows from [31] that

1if K% =1 and | — Kx| contains no cuspidal curves,

5/6 if K% =1 and | — Kx| contains a cuspidal curve,

5/6 if K% =2 and | — K x| contains no tacnodal curves,

Lot (X) = 3/4 if K% = 2 and | — K| contains a tacnodal curve,
3/4 if X is a cubic in P® with no Eckardt points,

2/3 if either X is a cubic in P? with an Eckardt point, or K% = 4,

1/2if X =P x P! or K% € {5,6},

1/3 in the remaining cases.

It would be interesting to compute global log canonical thresholds of del Pezzo surfaces with
at most canonical singularities that are of Picard rank one, which has been classified in [62].

Example 1.19. Let X be a singular cubic surface in P? such that X has at most canonical
singularities. The singularities of the surface X are classified in [16]. It follows from [32] that

2/3 if Sing(X) = {A},
1/3 if Sing(X) 2 {A4}
1/3 if Sing(X) =

1/3 if Sing (X
let (X) = 1/4 if SingEX;
1/4 if Sing(X) =
1/6 if Sing(X) = {EG},

1/2 in the remaining cases.

It is unknown whether lct(X) € Q or not? (cf. Question 1 in [181]).
Conjecture 1.20. There is an effective Q-divisor D ~p —Kx on the variety X such that
lct(X) = lct(X, D) € Q.
Let G C Aut(X) be an arbitrary subgroup.
Definition 1.21. Global G-invariant log canonical threshold of the Fano variety X is

the log pair <X ) ED) has log canonical singularities for every
lct(X,G):sup eeQ n

G-invariant linear system D C ’ —nk X‘ and every n € Zsg

2It is even unknown whether let(X) € Q or not if X is a del Pezzo surfaces with log terminal singularities.
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Remark 1.22. To define the threshold lct(X, G) € RU {400}, we only need to assume that
‘ —nKk X} 75 %)
for some n > 0. But all known applications require —Kx to be ample, and G to be compact.

In the case when the Fano variety X is smooth and G is compact, the equality
let(X, G) = ag(X),
holds (see Appendix A), where ag(X) is the a-invariant introduced in [179]. It is clear that

et (X, G) — sup {)\ cQ the log pair (X , )\D) has log canonical singularities }

for every G-invariant effective Q-divisor D ~g —Kx
in the case when |G| < +00. Note that 0 <lct(X) <lct(X,G) € RU {+o0}.
Example 1.23. The simple group PGL(2, F7) is a group of automorphisms of the quartic
23y + 132 + 23z = 0 € P? = Proj (C[w,y, z}),
which induces an embedding PGL(2, F7) C Aut(P?). Then lct(P?, PGL(2,F7)) = 4/3 (see [31]).

Example 1.24. Let X be a smooth del Pezzo surface such that Kg( = 5. Then

e the isomorphism Aut(X) = S5 holds (see [161]),
e the equalities lct(X, S5) = let(X, As) = 2 hold (see [31]).

Example 1.25. Let X be the cubic surface in P? given by the equation
B+ 243 =0c P Proj((C[:c,y,z,t]),

and let G' = Aut(X) = Z3 x Sy. Then lct(X,G) = 4 by [31].
The following result was proved in [179], [132], [49] (see Appendix A).

Theorem 1.26. Suppose that X has at most quotient singularities, and the inequality
dim (X))

dim(X) +1

holds. Then X admits an orbifold Kahler—Einstein metric.
Let us show how to apply Theorem 1.26 (cf. Examples 1.13, 1.14, 1.15).

lct(X, G) >

Example 1.27. Let X be a quasismooth hypersurface in P(ag, a1, az, ag) of degree 2?20 a; —1,
where ap < a1 < ag < as. Then it follows from [49], [81], [13], [2] (cf. [14], [15]) that

e cither the surface X is smooth, which implies that

(a0, a1, a2,03) € { (1,1,1,1), (1,1,1,2), (1,1,2,3)},
and all possible values of lct(X) are contained in Example 1.18,
e or (ap,a1,az,a3) = (2,2n+1,2n+1,4n + 1) and lct(X) = 1, where n € Zxa,
e or we have the following sporadic possibilities:
— (ap,a1,a2,a3) = (2,3,3,5) and let(X) > 33/38;
— (ap,a1,a2,a3) = (1,2,3,5) and let(X) > 2/3;
— (ap,a1,a2,a3) = (1,3,5,7) and let(X) > 2/3 if X C P(1,3,5,7) is general;
— (ag,a1,a2,a3) = (1,3,5,8) and let(X) > 11/16 if X C IP(1,3,5,8) is general,
— the inequality lct(X) > 1 holds and
(2,3,5,9), (3,3,5,5), (3,5,7,11), (3,5, 7, 14), (3,5, 11,18)
5,14,17,21), (5,19,27,31), (5,19, 27,50), (7,11, 27,37)
7,11,27,44), (9,15,17,20), (9,15,23,23), (11,29, 39, 49)
11,49,69,128), (13,23, 35,57), (13, 35,81, 128)
6
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Example 1.28. Let X be a quasismooth hypersurface in P(aq, ..., as) of degree Z?:o a; — 1,
where a¢ < a; < az < az < agq. Then it follows from [82] that

e the inequality lct(X) > 3/4 holds for at least 1936 quintuples (ag, a1, az, as, as),
e the inequality lct(X) > 1 holds for at least 1605 quintuples (ag, a1, az, a3, aq).
Example 1.29. Let X be one of the following smooth Fano varieties:

e a Fermat hypersurface in P” of degree n/2 < d < n (cf. Example 1.25);
e a general complete intersection of three quadrics in PY that is given by

6 6 6
Zm? = Z)\ZJU? = Z,ulx? =0C Pl Proj(C[azo,...,xd),
=0 =0 =0

where )\; and p; are complex numbers;
e a smooth complete intersection of two quadrics in P? that is given by

5

5
Zx? = ZC%ZQ =0CP® %’Proj(C[xo,...,xg,]),
=0

i=0
where ( is a primitive sixth root of unity;
e a smooth complete intersection of a quadric and a cubic in P° that is given by

5 5
fo = ZCZ:E? =0CP’ %’Proj<C[ajo,...,x5]>,
i=0 i=0

where ( is a nontrivial cube root of unity;
e a hypersurface in P(1"!, ¢) of degree pq that is given by the equation

5
w? = Zx?q C IP’(l"Jrl, q) 2 Proj ((C [a:o, cey X, w]),
i=0
such that pg — ¢ < n, where wt(zg) = ... = wt(z,) = 1, wt(w) = q € Z>¢ and p € Z~o;
and let G = Aut(X). Then G is finite, and the inequality lct(X, G) > 1 holds (see [179], [132]).

Example 1.30. Let X be a blow up of P? along a disjoint union of two lines, let G be a maximal
compact subgroup in Aut(X). Then the inequality lct(X, G) > 1 holds by [132] (cf. Lemma 9.26).

If a variety with quotient singularities admits an orbifold Kédhler—Einstein metric, then

e cither its canonical divisor is numerically trivial;
e or its canonical divisor is ample (variety of general type);
e or its canonical divisor is antiample (Fano variety).

Remark 1.31. Every variety with at most quotient singularities that has numerically trivial or
ample canonical divisor always admits an orbifold Kéhler-Einstein metric (see [5], [190], [191]).

There are several known obstructions for the Fano variety X to admit a Kahler—Einstein met-
ric. For example, if the variety X is smooth, then it does not admit a Kéhler—Einstein metric if
either the group Aut(X) is not reductive (see [122]),
or the tangent bundle of X is not polystable with respect to —Kx (see [114]),

or the Futaki character of holomorphic vector fields on X does not vanish (see [68]),
or the pair (X, —Kx) is not K-semistable (see [182], [53], [54], [162], [163]).

Example 1.32. The following varieties admit no Kéhler—Einstein metrics:

e a blow up of P2 in one or two points (see [122]),
e a smooth Fano threefold P(Op2 @ Op2(1)) (see [176]),
e a smooth Fano fourfold

p(a*(opl(l)) e B*(Ow(l)))’

where a: P! x P2 — P! and 3: P! x P2 — P? are natural projections (see [68]).
7



Example 1.33. Let X be a smooth Fano threefold such that
Pic(X) = Z[ - Kx]
and —K% = 22. Then let(X) < 2/3 by Lemma 11.3 (see Section 3). But

the tangent bundle of the threefold X is stable (see [176]),

the group Aut(X) is trivial if the threefold X is general (see [167]),

there is X such that Aut(X) = {1} and X admits no Kéhler—Einstein metrics (see [182]);
there is X, whose group of automorphisms Aut(X) is not non-reductive (see [142]);

if Aut(X) = PSL(2,C), then X has a Kahler-Einstein metric (see [55] and Remark 3.2).

Recently new obstruction for the existence of orbifold K&hler—Einstein metrics on Fano vari-
eties with at most quotient singularities have been found (see [69], [175], [11]).

Example 1.34. Let X be a quasismooth hypersurface in P(ao, . .., a,) of degree d < Y a;,
where ag < ..., < a, and P(ao, ..., ay) is well-formed (see [89]). Then X is a Fano variety. If

n
Z a; > d + nag,
i=0
then X admits no orbifold Kéhler-Einstein metric (see [69], [175]).
The problem of existence of Kéhler—Einstein metrics on smooth toric Fano varieties is com-
pletely solved. Namely, the following result holds (see [115], [7], [187], [133]).
Theorem 1.35. If X is smooth and toric, then the following conditions are equivalent:

e the variety X admits a Kahler—Einstein metric;
e the Futaki character of holomorphic vector field of X vanishes;
e the baricenter of the reflexive polytope of X is zero.

It should be pointed out that the assertion of Theorem 1.26 gives only a sufficient condition for
the existence of a Kéhler—Einstein metric on X (cf. [119], [182]).
Example 1.36. Let X be a general cubic surface in P? that has an Eckardt point (see Defini-
tion 4.1). Then Aut(X) = Zs (see [52]) and
2

let (X, Aut(X)) —lot(X) = &

by [31]. But every smooth del Pezzo surface that has a reductive automorphism groups admits
a Kéhler-Einstein metric (see [183], [180]).

Example 1.37. Let X be a general hypersurface in P(1°,3) of degree 6. Then Aut(X) & Zs
(see [123]) and

1
lot (X, Aut(X) ) =let(X) = 5
by [28]. But X admit a Kdhler—Einstein metric (see [3]).

The problem of existence of Kéhler—Finstein metrics on singular Fano varities that have
quotient singularities is not well studied even for del Pezzo surfaces with canonical singularities.
Example 1.38. Let X be a cubic surface in P3. Then

e the surface X admits a Kdhler—Einstein metric if Sing(X) = @ (see [180]),

e the surface X does not admit an orbifold Kahler—Einstein metric in the case when it has
at least one singular point that is not a singular point of type A; or As (see [51]),

e the surface that is given by the equation

zyz + xyt + x2t +yzt =0 C P3 = Proj((C[x,y, z,t])

admits an orbifold Kéahler-Einstein metric and has 4 singular points of type A; (see [32]),
e the surface that is given by the equation

zyz =12 C P? = Proj <(C [m,y, 2, t])

admits an orbifold Kéhler—Einstein metric and has 3 singular points of type Ag (see [32]).
8



Example 1.39. Let X be a complete intersection of two quadrics in P4. Then

o the surface X admits a Kédhler-Einstein metric if Sing(X) = @ (see [180]),

e the surface X does not admit an orbifold K&hler—Einstein metric in the case when it has
at least one singular point that is not an ordinary double point (see [88]),

e if the surface X C P* can be given by the equations

4 4
ng = Z/\Zm? —0CPt Proj(C[xo,...,a;4]>
=0 =0

and X has at most ordinary double points, then let(X,Z3) = 1 (see [116]).

Remark 1.40. Let X be a del Pezzo surface with canonical singularities such that K% < 2. Then

e the surface X admits a Kahler—Einstein metric in the following cases:
— if K% =2 and X has at most singular points of type A; or Ay (see [70]);
— if K% =1 and X has at most ordinary double points (see [31]);
e we expect X to admit no Kéahler-Einstein metrics if X has relatively bad singulari-
ties (cf. [51], [113]).

The numbers lct(X) and let(X, G) play an important role in birational geometry.

Example 1.41. Let V and V be varieties with at most terminal and Q-factorial singularities,
and let Z be a smooth curve. Suppose that there is a commutative diagram

such that 7 and 7 are flat morphisms, and p is a birational map that induces an isomorphism
VAX2V\X,
where X and X are scheme fibers of m and 7 over a point O € Z, respectively. Suppose that

e the fibers X and X are irreducible and reduced,
e the divisors —Ky and — Ky are m-ample and 7-ample, respectively,
e the varieties X and X have at most log terminal singularities,

and p is not an isomorphism. Then it follows from [136] and [32] that
(1.42) let(X) +1et(X) < 1,
where X and X are Fano varieties by the adjunction formula.

In general, the inequality 1.42 is sharp (see [152], [72], [73], [137]).

Example 1.43. Let 7: V — Z be a surjective flat morphism such that

e the variety V is a smooth threefold,

e the variety Z is a smooth curve,

e the divisor — Ky is m-ample,
let X be a scheme fiber of the morphism 7 over a point O € Z such that X is a smooth cubic
surface in P3 that has an Eckardt poin P € X (cf. Definition 4.1), let Ly, Lo, L3 C X be the lines
that pass through the point P. Then it follows from [41] that there is a commutative diagram

U7
v N
Vo - -V
A Z

such that « is a blow up of the point P, the map ¢ is an antiflip in the proper transforms of
the curves L1, Lo, L3, and (3 is a contraction of the proper transform of the fiber X. Then
9



the birational map p is not an isomorphism,

the threefold V has terminal and Q-factorial singularities,
the divisor —Kj; is a Cartier m-ample divisor,

the map p induces an isomorphism

VAX 2V \X,

where X is a scheme fiber of 7 over the point O,
e the surface X is a cubic surface with a singular point of type Dy.

The latter assertion implies that lct(X) + lct(X) = 1 (see Examples 1.18 and 1.19).

Global log canonical thresholds can be used to prove that some Fano varieties are non-rational.

Definition 1.44. The variety X is said to be birationally superrigid if the following conditions
hold:

rk Pic(X) = 1;
the variety X has terminal Q-factorial singularities;
there is no rational dominant map p: X --+ Y such that
— general fiber of the map p is rationally connected,
— the inequality dim(Y) > 1 holds;
there is no non-biregular birational map p: X --» Y such that
— the variety Y has terminal Q-factorial singularities;
— the equality rk Pic(Y’) = 1 holds.

The following result is known as the Noether—Fano inequality (see [40], [96], [22], [159)]).

Theorem 1.45. The following conditions are equivalent:

e the variety X is birationally superrigid;
e the following conditions hold:
— the equality rk Pic(X) = 1 holds;
— the variety X has terminal Q-factorial singularities;
— for every linear system M on the variety X that does not have fixed components,
the log pair (X, AM) has canonical singularities, where Kx + AM ~q 0.

Proof. Because one part of the required assertion is well-known (see [40], [22], [159]), we prove
only another part of the required assertion. Suppose that

e the variety X is birationally superrigid,
e but there is a linear system M on the variety X such that M has no fixed components,
the singularities of (X, A\M) are not canonical, where Kx + AM ~q 0.

It follows from [75] that there is birational morphism 7: V' — X such that

e the variety V' is smooth,
e the proper transform of M on the variety V' has no base points,

and let B be the proper transform of the linear system M on the variety V. Then
T T
Ky 4+ AB ~Q W*(KX + )\M) + ZaiEi ~Q Zaz’Eiy
i=1 i=1

where E; is an exceptional divisor of 7, and a; € Q.
It follows from [9] that there is a commutative diagram

such that p is a birational map, the morphism ¢ is birational, the divisor

Ky + )\,O(B) ~Q gb* (KX + )\./\/l) + Z aip(Ei) ~Q Z aiP(Ei)
i=1 1=1
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is ¢-nef, the variety U is Q-factorial, the log pair (U, Ap(B) has terminal singularities.
The morphism ¢ is not an isomorphism. It follows from [169, 1.1] that

ai > 0 = dim (p(E;) ) < dim(X) -2,

but it follows from the construction of the map p that there is k € {1,...,r} such that
e the inequality a; < 0 holds,
e the subvariety p(Ej) C U is a divisor,
because the singularities of the log pair (X, AM) are not canonical.
The divisor Ky +Ap(B) is not pseudo-effective. Then it follows from [9] that there is a diagram

U----- -y
d A
X Z

such that 1 is a birational map, the morphism 7 is a Mori fibred space (see [102]), and the
divisor

~(Ky +A(vep)(8))
is 7-ample. The variety Y has terminal Q-factorial singularities, and rk Pic(Y/Z) = 1. Then
e the birational map % o po 7~ ! is not an isomorphism, because Ky + AM ~q 0,
e general fiber of the morphism 7 is rationally connected (see [193]),

which contradicts the assumption that X is birationally superrigid. O

Birationally superrigid Fano varieties are non-rational. In particular, if the variety X is bira-
tionally superrigid, then dim(X) # 2 (cf. [117], [118], [95]).

Example 1.46. It follows from [97] that smooth quartic hypersurface
et +awd + oyt — 622+t P =0c Pt Proj((C[:c,y,z,t,wD
is smooth and unirational (cf. [120]) and birationally superrigid (cf. [38]).

Example 1.47. The following smooth Fano varieties are birationally superrigid:

e a smooth hypersurface in P" of degree n for 4 < n < 12 (see [97], [147], [19], [155], [59));
e a general hypersurface in P" of degree n > 4 (see [151]);

e a smooth hypersurface in P(1"1,n) of degree 2n > 6 (see [94], [148]).

e a general complete intersection of hypersurfaces Fi, ..., Fy C P” such that

k
D deg(Fi)=n=3k+1>71,
=1

where deg(Fy) > ... > deg(F3) > deg(F1) > 2 (see [154));
a smooth fourfold complete intersection in P of degree 8 containing no planes (see [21]);
a smooth Fano variety X such that there is a double cover

T X —VcpP

where V' is a hypersurface, 7 is ramified in a divisor R € |Opn(2n — 2deg(V))|v |, and
— either deg(V) =2 and n > 5 (see [148]),
—or V and R € |Opn(2n — 2deg(V))|v| are general and n > 5 (see [153]),
—or 3 <deg(V) <4 andn > 8 (see [24]).
e a sextic hypersurface in P® with at most ordinary double points (see [25]).

Example 1.48. Let m: X — P3 be a double cover branched along a surface S C P? of degree 6
such that the sextic surface S has at most ordinary double points. Then
the inequality [Sing(S)| < 65 holds (see [84], [188]),
for any 65 > k € Z~q, there exists S C P3 such that |Sing(S)| = k (see [18], [6]),
the variety X is birationally superrigid in the case when rk C1(X) =1 (see [97], [34]),
the equality rk C1(X) = 1 holds if |Sing(S)| < 14 (see [34]),

11



e suppose that the surface S is a Barth sextic (see [6]) that is given by
2
4(72332 —y2) <72y2 —z2) (7‘222 —x2> =t? (1—1—27) <x2+y2+22 —t2> CcP3 Proj ((C [x, Y, 2, t] ),

where 7 = (1 +/5)/2; then rk C1(X) = 14 (see [56]) and the diagram

Yye——pt
| |
Pl (K
\ Y
X P3

commutes (see [56], [140]), where
— the variety Y is a determinantal quartic threefold in P* such that |Sing(Y)| = 42,
— the map 9 is the projection from a singular point of the quartic Y,
— the map p is a birational map,

which implies that the threefold X is rational.

The following result is proved in [157].

Theorem 1.49. Let X3, X», ..., X, be birationally superrigid Fano varieties such that lct(X;) >
1,let(X2) > 1,...,1ct(X,) > 1. Then

e the variety X1 X ... x X, is non-rational and
Bir<X1 X ... % XT> :Aut<X1 X ... % XT),
e for every rational dominant map
p:r X1 X ...x X, --»Y,

whose general fiber is rationally connected, there is a commutative diagram

X1 x...x X,
l \\\\\p
™ \\
Xilx...xXik———_g_____::;Y
for some {i1,...,ix} € {1,...,r}, where { is a birational map, and 7 is a projection.

Varieties satisfying all hypotheses of Theorem 1.49 exist (see Examples 1.11, 1.13, 1.14, 1.47).
Example 1.50. Let X be a hypersurface that is given by
w? =28 + 9% + 20 + 1% + 22?2t C P(l, 1,1, 1,3) = Proj ((C [az,y, z,t,w]),

where wt(z) = wt(y) = wt(z) = wt(t) = 1 and wt(w) = 3. Then
o the threefold X is smooth and birationally superrigid (see [94]),
e it follows from [37] that the equality lct(X) = 1 holds.

Example 1.51. Let X be a hypersurface that is given by
2n

n n—4 n
UJQZZCL‘ZZW'—{-&Z Zaijxi CP(l”H,n) %Pr0j<(C[:E0,x1,...,xn,w])
=0

i=1 \ j=0

for some ¢ € C 3 a;;, where wt(z;) = 1 and wt(w) = n. Suppose that any n + 1 forms among

n n n
LOyLlye--s Ty, E a1;Tq, E A2iLjy « vy E Ap—44:T4
=0 =0 =0

are linearly independent. Put A = max{|a;;|}. Suppose that the inequalities n > 8 and

1> |e| (2nA + 2A) o
12



hold. Then X is birationally superrigid and let(X) = 1 (see [148], [160]). The hypersurface

2n
n

n n—4
w? = 2"’ Zx?n + Z Z (+1)
i=0 i=1 \j=0
is birationally superrigid, and its global log canonical threshold is 1 (see [160]).
Suppose, in addition, that the subgroup G C Aut(X) is finite (cf. [71]).

Definition 1.52. The Fano variety X is G-birationally superrigid if

e the G-invariant subgroup of the group C1(X) is isomorphic to Z,

e the variety X has terminal singularities,

e there is no G-equivariant rational dominant map p: X --» Y such that
— general fiber of the map p is rationally connected,
— the inequality dim(Y") > 1 holds,

e there is no G-equivariant non-biregular birational map p: X --+ Y such that
— the G-invariant subgroup of the group CI(Y’) is isomorphic to Z,
— the variety Y has terminal singularities.

Arguing as in the proof of Theorem 1.45, we obtain the following result.

Theorem 1.53. The following conditions are equivalent:

e the variety X is G-birationally superrigid;
e the following conditions hold:
— the G-invariant subgroup of the group CI(X) is isomorphic to Z;
— the variety X has terminal singularities;
— for every G-invariant linear system M on variety X that has no fixed components,
the log pair (X, AM) is canonical, where Kx + AM ~q 0.

If X is birationally superrigid, then X is G-birationally superrigid for any G C Aut(X).

Example 1.54. Let X be a smooth surface in P(1, 1,2, 3) of degree 6 such that the G-invariant
subgroup of the group Pic(X) is Z. Then X is G-birationally superrigid (see [117], [118],[95]).

The proof of Theorem 1.49 implies the following result (see [31]).

Theorem 1.55. Let X; be a Fano variety, and let G; C Aut(X;) be a finite subgroup such that
e the variety X; is G;-birationally superrigid,
e the inequality lct(X;, G;) > 1 holds for any i = 1,...,r.

Then the following assertions hold:

e there is no G; X ... X Gr-equivariant birational map p: X7 x ... x X, ——» P™;
e every G1 X ... X GGp-equivariant birational automorphism of X; x ... x X, is biregular;
e for every G1 X ... X G-equivariant rational dominant map

p:r Xi X ... x X, --2Y,

whose general fiber is rationally connected, there a commutative diagram

X1><...><XT
i \\\\\p
i \\\
X; X...XXik————g—___::;Y
where £ is a birational map, 7 is a natural projection, and {i,...,it} C {1,...,7}.

Varieties satisfying all hypotheses of Theorem 1.55 do exist (see Example 1.25).
Example 1.56. The simple group Ag is a group of automorphisms of the sextic

1023y® + 922° + 929 + 2728 = 45229222 + 135221 C P2 2 Proj (cc (2,7, z]),
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which induces an embedding Ag C Aut(PP?). It follows from [44] that P? is Ag-birationally super-
rigid. But the equality lct(P?, Ag) = 2 holds (see [31]). Thus, there is an induced embedding

Ag x Ag = Q C Bir(P*)
such that © is not conjugate to any subgroup in Aut(P*) by Theorem 1.55.
Example 1.57. Suppose that X be a smooth cubic surface in P? that is given by
Pyttt rta? =0cCc PP Proj(@[w,y,z,t]).
Then Aut(X) = S5 (see [52]). Hence, by [31]
let (X, S5) = let(X, As) = 2,
and the surface X is As-birationally superrigid (see Example 1.54).
Let us consider Fano varieties that are close to being birationally superrigid.

Definition 1.58. The Fano variety X is birationally rigid® if

e the equality rk Pic(X) = 1 holds,

e the variety X has Q-factorial and terminal singularities,

e there is no rational dominant map p: X --» Y such that
— a general fiber of the map p is rationally connected,
— the inequality dim(Y) > 1 holds,

e there is no birational map p: X --+ Y such that
— the varieties Y and X are not biregular,
— the variety Y has terminal Q-factorial singularities,
— the equality rk Pic(Y') = 1 holds.

Arguing as in the proof of Theorem 1.45, we obtain the following result.

Theorem 1.59. The following conditions are equivalent:

e the variety X is birationally rigid;
e the following conditions hold:
— the equality rk Pic(X) = 1 holds;
— the variety X has Q-factorial and terminal singularities;
— for every linear system M on the Fano variety X that does not have fixed compo-
nents, there is birational automorphism ¢ € Bir(X) such that the log pair

(X, M)
has canonical singularities, where Kx + A§(M) ~q 0.
Remark 1.60. For every n > 5, there exists a smooth Fano variety X of dimension n such that
Pic(X) =Z[ — Kx|
and the variety X is not birationally rigid (see [17]).
Birationally rigid Fano varieties are non-rational (see [40], [96], [22], [159]).

Example 1.61. The following varieties are birationally rigid but not birationally superrigid:
e a general complete intersection of a quadric and a cubic in P® (see [99]);
e a smooth double cover of a quadric in P4 branched over a surface of degree 8 (see [94]).

One usually seeks for the birational automorphism in Definition 1.58 in a given set of birational
automorphisms. This leads to the following definition.

3There are several definitions of birational rigidity and birational superrigidity (see [40], [42], [96], [22], [159]).
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Definition 1.62. Suppose that X is birationally rigid. A subset I' C Bir(X) untwists all max-
imal singularities if for every linear system M on the variety X that has no fixed components,
there is a birational automorphism £ € I' such that the log pair

(X, 2(m))
has canonical singularities, where X is a rational number such that Kx + A (M) ~q 0.

If X is birationally rigid and there is I' C Bir(X) that untwists all maximal singularities, then
the group Bir(X) is generated by I" and Aut(X).

Example 1.63. Let X be a sufficiently general hypersurface in P” of degree n > 5 that has one
ordinary singular point O = Sing(X) of multiplicity n — 2. Then the projection

Y X —-» Pt
from the point O induces an involution that untwists all maximal singularities (see [156]).

If X is defined over a perfect field, then Definition 1.58 still makes sense (see [117], [118],
[95]).

Definition 1.64. The variety X is universally birationally rigid if for any variety U, the variety
X ® Spec ((C(U))
is birationally rigid over a field of rational functions C(U) of the variety U.
Example 1.65. Let X be a smooth Fano threefold such that there is a double cover
T X — Q CP?,
where @ is a quadric threefold, and 7 is branched in a surface S C @ of degree 8. Put
C= {C’ cX ‘ C is a smooth curve such that — Kx - C = 1},

then C is a one-dimensional family. For every curve C' € C there is a commutative diagram

X z Q

| |
Yo | ¢c

\ \

P2 =P
where ¢¢ is a projection from the line 7(C). General fiber of the map ¢ is an elliptic curve,
the map ¢ induces an elliptic fibration with a section and an involution 7¢ € Bir(X). Then
Yo € Aut(X) < C C S,
and S contains no curves in C if X is general. It follows from [94] that there is an exact sequence
1—T — Bir(X) — Aut(X) — 1,

where I is a free product of subgroups that are generated by non-biregular birational involutions
constructed above. Hence the Fano variety X is universally birationally rigid (see [94]).

Example 1.66. Let X be a quartic threefold in P* that has at most ordinary double points. Then
the inequality [Sing(X)[ < 45 holds (see [186]),
in general, the variety X is not birationally superrigid if Sing(X) # &,
the variety X is universally birationally rigid if rk C1(X) = 1 (see [97], [149], [125], [172]),
the inequality rk C1(X) < 16 holds (see [100], [101]),
the equality rk C1(X) = 1 holds if |Sing(X)| < 8 (see [23]),
the equality rk C1(X) = 1 holds if the following conditions hold:
— the inequality |Sing(X)| < 12 holds;
— the quartic X contains neither planes or quadric surfaces (see [171]);
e in the case when |Sing(X)| = 45, it follows from [83] that X can be given by the equation

w4—w<x3+y3+z3+t3> + 3zyzt =0 C P* %Pr0j<(C[x,y,z,t,w]>,

the quartic X is determinantal and rational, and rk C1(X) = 16 (see [76], [100], [101]).
15



Birationally superrigid Fano varieties are universally birationally rigid.

Definition 1.67. Suppose that X is universally birationally rigid. A subset I' C Bir(X) uni-
versally untwists all maximal singularities if for every variety U the induced subset

I € Bir(X) C Bir (X @ Spec(C(V)) )
untwists all maximal singularities on X ® Spec(C(U)).

An identity map universally untwists all maximal singularities if X is birationally superrigid.

Remark 1.68. Suppose that X is birationally rigid, and dim(X) # 1. Let I' C Bir(X) be a
subset. It follows from [107] that the following conditions are equivalent:

e the subset I' universally untwists all maximal singularities;
e the subset I' untwists all maximal singularities, and Bir(X) is countable.

Example 1.69. In the assumptions of Example 1.15, suppose that X is general. Then

e the hypersurface X is universally birationally rigid (see [43]),
e there are involutions 7i,...,7; € Bir(X) such that that the sequence of groups

1— <7'1,-~-77'k> —>Bir(X) —>Aut(X) — 1

is exact (see [43], [35]), where (71,...,7x) is a subgroup generated by 71,..., Tg,
e the subgroup (71, ..., 7x) universally untwists all maximal singularities (see [43]).

All relations between the involutions 71, ..., 7, are found in [35]. The papers [164], [165], [35],
[26] classify all maps ¢: X --» P2 such that the diagram

commutes, where « is a birational morphism, and w is an elliptic fibration. The papers [164],
[165], [36] classify all maps ¢: X --» P! such that the diagram

commutes, where [ is a birational morphism, and 7 is a fibration into surfaces of Kodaira
dimension zero.

Let Xq,..., X, be Fano varieties that have at most Q-factorial and terminal singularities, let
7TZ‘ZX1 X...XXZ',1 XXiXXi+1X...XXT—>X1 X...XXl',l XEXXZ;H X...XXT

be a natural projection, and let X; be a scheme general fiber of the projection 7;, which is defined
over C(X7 x...x X;_1 x X; X Xj41 X...x X,). Suppose that rkPic(X;) = ... = rkPic(X,) = 1.

Remark 1.70. There are natural embeddings of groups
T
[IBir(x.) € (Bir(x),....Bir(%,) ) € Bir(X1 x ... x X, ).
i=1

The following generalization of Theorem 1.49 holds (see [27]).
Theorem 1.71. Suppose that X1, Xo,..., X, are universally birationally rigid. Then

e the variety X| x ... x X, is non-rational and
Bir(X1 % ... x X, ) = (Bir(A1),..., Bir(%,), Aut(X1 x .. x X, ) ),
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e for every rational dominant map p: X1 x...x X, --+ Y, whose general fiber is rationally

connected, there is a subset {iy,... it} C {1,...,7} and a commutative diagram
Xix..xX,——-"— =Xy x...x X,
i
™ \\
XZ'X...XXZ'k 77777777 ¢ 777777***iiy

where £ and ¢ are birational maps, and 7 is a projection,
in the case when the inequalities lct(X7) > 1,1lct(X2) > 1,...,lct(X,) > 1 hold.

Corollary 1.72. Suppose that there are subgroups I'y C Bir(X3),...,I', C Bir(X,) that uni-
versally untwists all maximal singularities, and let(X1) > 1,1ct(X2) > 1,...,1ct(X,) > 1. Then

Bir(X1 X .. % Xr) — <HF Aut<X1 X ... % X)>
=1

The following four examples are implied by Examples 1.14, 1.15, 1.47, 1.69 and [123].
Example 1.73. Let X be a general hypersurface in P(1,1,4,5,10) of degree 20. The sequence
m
1 <Z Z> B‘(Xx...xX) S 1
— g 9 % Lo | — DIr — Om —

m times

is exact, where S,, is a permutation group, and Zs * Zo is the infinite dihedral group.
Example 1.74. Let X be a general hypersurface in P(1,1,3,4,5) of degree 13. Then
Bir(X X V) ~ Ty 5 Ty 5 Loy,
where V' is a general hypersurface in P™ of degree n > 6.
Example 1.75. Let X be a general hypersurface in P(1,1,2, 3, 3) of degree 9. Then
Bir(X X V) = <a, b,c ’ === (abc)2 = 1>,
where V is a general hypersurface in P" of degree n > 6.
Example 1.76. Let X be a general hypersurface in P(1,1,2,2,3) of degree 8. Then
Bir(X x V) S oo % Doy % Ly % Loy % Lo,

where V is a general hypersurface in P™ of degree n > 6.

Suppose now that X is a smooth Fano threefold (see [98]). Let

1(X) € {1.1,1.2,...,1.17,2.1,...,2.36,3.1,...,3.31,4.1,...,4.13,5.1,...,5.7,5.8}

be the ordinal number of the deformation type of the threefold X in the notation of Table 1.

Remark 1.77. The threefold X lies in 105 deformation families (see [92], [93], [126], [128], [129],
[127)).

The main purpose of this paper is to prove the following result.

Theorem 1.78. The following assertions hold:
o lct(X) =1/5 for I(X) € {2.36,3.29};
e lct(X) =1/4 for

1(X) € {1.17,2.28,2.30,2.33,2.35,3.23,3.26,3.30,4.12};
o lct(X)=1/3 for
1(X) € {1.16, 9.29,2.31,2.34,3.9,3.18, ..., 3.22,3.24,3.25,3.28,3.31,4.4, 4.8, ... 4.11,5.1, 5.2};

o lct(X) = 3/7 for J(X) = 4.5;
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o lct(X) =1/2 for
1.11,1.12,1.13,1.14,1.15,2.1,2.3,2.18, 2.25,2.27,2.32, 3.4, 3.10, 3.11, 3.12,

J(X> < {3.14,3.15,3, 16,3.17,3.24,3.27,4.1,4.2,4.3,4.6,4.7,5.3,5.4,5.5,5.6, 5.7, 5.8} ;

e if the threefold X is general in moduli, then
1/3if 3(X) = 2.23,
1/2if I(X) € {2.5,2.8,2.10,2.11,2.14,2.15,2.19,2.24,2.26,3.2,3.5, . . ., 3.8,4.13},
let(X) = 2/3if I(X) = 3.3,
3/4 if I(X) € {2.4,3.1},

1if 3(X) =1.1.

Hence, if the threefold X is general in moduli, then we do not know lct(X) only when
J(X) € {1.2, 1.3,1.4,1.5,...,1.10,2.2,2.6,2.7,2.9,2.12,2.13, 2.16, 2.17, 2.20, 2.21, 2.22, 3.13},
and the generality condition in Theorem 1.78 can not be omitted in many cases.

Example 1.79. Suppose that J(X) = 4.13. Note that this deformation type was omitted
in [126], and it has been discovered only twenty years later (see [127]). There is a birational
morphism
ar X — P x P x P!
that contracts a surface £ C X to a curve C such that C'- F} = C-Fy =1 and C - F3 = 3, where
FIYF~ ;2P x P!
are fibers of three different projections P! x P! x P! — P!, respectively. Then
let(X) =1/2
by Theorem 1.78 if X is general. There is a surface G € |F} + F3| such that C C G. Then
—~Kx ~2G+ E + F3,
where F3 C X D G are proper transforms of F3 and G, respectively. Then lct(X) < 1/2. But
let (X) < 1ct<X, 2G + E + F3> <4/9 < 1/2
in the case when the intersection F3 N C' consists of a single point.

We hope that the proof of Theorem 1.78 can be used to
e study the slope stability of the threefold X in the sense of [162] and [163],
e study the problem of existence of a Kahler—Einstein metric on the threefold X,
e compute lct(X, G) for various subgroups G C Aut(X).
Remark 1.80. The stability of the tangent bundle of X was studied in [176]. It is known that
e the tangent bundle of X is unstable with respect to —Kx when

1(X) e {2.35,2.36,3.29,3.30,3.31,4.11,4.12},
e the tangent bundle of X is semistable with respect to —Kx when
J(X) € {2.33, 2.34,3.27,3.28,4.10,5.2, . . ., 5.8},
e the tangent bundle of X is stable with respect to —Kx when
1(X) ¢ {2.33,2.34,2.35,2.36,3.27,...,3.31,4.10,4.11,4.12,5.2,...,5.8}.

We organize the paper in the following way:

in Section 2, we consider auxiliary results that are used in the proof of Theorem 1.78;
in Section 3, we find the global log canonical threshold of the Mukai—-Umemura threefold;
in Section 4, we prove Theorem 4.2 that is required for Example 5.4 and Lemma 8.2;
in Section 5, we consider facts on surfaces that are used in the proof of Theorem 1.78;
in Section 6, we compute global log canonical thresholds of toric Fano varieties;
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e in Section 7, we prove Theorem 1.78 for smooth Fano threefolds of index 2, i.e., for
1(X) € {1.1171.1271.1371.1471.1572.32,2.35,3.27};

in Section 8, we prove Theorem 1.78 in the case when rk Pic(X) = 2;
in Section 9, we prove Theorem 1.78 in the case when rk Pic(X) = 3;
in Section 10, we prove Theorem 1.78 in the case when rk Pic(X) > 4;
in Section 11, we find upper bounds for lct(X) in the case when

I(X) e {1.8, 1.9,1.10,2.9,2.12,2.13,2.16,2.17,2.20,2.21,2.22,3.13};

e in Appendix A, written by J.-P.Demailly, the relation between global log canonical
thresholds of smooth Fano varieties and the a-invariants of smooth Fano varieties intro-
duced by G.Tian in [179] for the study of the existence of K&hler-Einstein metrics has
been studied;

e in Appendix B, we put Table 1 that contains the list of all smooth Fano threefolds
together with the known values and bounds for their global log canonical thresholds.

We use a standard notation Dy ~ Ds (resp., D; ~g D3) for the linearly equivalent (resp.,
Q-linearly equivalent) divisors (resp., Q-divisors). If a divisor (resp., a Q-divisor) D is linearly
equivalent to a line bundle £ (resp., is Q-linearly equivalent to a divisor that is linearly equivalent
to £), we write D ~ L (resp., D ~g L). Recall that Q-linear equivalence coincides with
numerical equivalence in the case of Fano varieties.

A divisor D on P™ x P2 x ... x P" is said to be of multidegree (aj,ag,...,an) € Z™ if
m
D ~ %" a;H;, where
i=1

H; ~ 7} (OIP’"i (ai)),
is a pull-back of a hyperplane section of P™ under the projection m;: P"t xP"2 x ... x P"m — P™
is a natural projection. A curve C' C P™ x P" x ... x P™ ig said to be of multidegree
(ar,a2,...,amy) € Z™ if
v (O[Pmi (1)) C =uq
fori=1,...,m.
The projectivisation Py (£) of a vector bundle £ on a variety Y is the variety of hyperplanes
in the fibers of £. The symbol F,, denotes the Hirzebruch surface P(Op1 & Op1(n)).
We always refer to a smooth Fano threefold X using the ordinal number J(X) introduced in
Table 1.
We are very grateful to J.-P. Demailly for writing Appendix A, and to A. Iliev, A. G. Kuznetsov

and Yu. G. Prokhorov for useful discussions. The first author would like to express his gratitude
to IHES (Bures-sur-Yvette, France) and MPIM (Bonn, Germany) for hospitality.

2. PRELIMINARIES

Let X be a variety with log terminal singularities. Let us consider a Q-divisor

,
Bx =) _aB,
i=1

where B; is a prime Weil divisor on the variety X, and a; is an arbitrary non-negative rational
number. Suppose that Bx is a Q-Cartier divisor such that B; # B; for i # j.
Let m: X — X be a birational morphism such that X is smooth (see [75]). Put

T
By = Z a; Bj,
i=1

where B; is a proper transform of the divisor B; on the variety X. Then

n
KX+BX ~Q 7T*<Kx—|-Bx> —I—ZCiEi,
i=1
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where ¢; € Q, and E; is an exceptional divisor of the morphism 7. Suppose that

(Uz)ulus)

is a divisor with simple normal crossing. Put
_ n
BY =Bg - «FE;
=1

Definition 2.1. The singularities of (X, Bx) are log canonical (resp., log terminal) if

e the inequality a; < 1 holds (resp., the inequality a; < 1 holds),
e the inequality ¢; > —1 holds (resp., the inequality ¢; > —1 holds),

foreveryi=1,...,7rand j=1,...,n.
One can show that Definition 2.1 does not depend on the choice of the morphism 7. Put
res(xBx) = [ U B |U[ U =) ] ¢ X,
a; 21 c<—1
then LCS(X, By) is called the locus of log canonical singularities of the log pair (X, Bx).

Definition 2.2. A proper irreducible subvariety Y C X is said to be a center of log canonical
singularities of the log pair (X, Bx) if one of the following conditions is satisfied:

e cither the inequality a; > 1 holds and Y = B;,
e or the inequality ¢; < —1 holds and Y = 7(E;),

for some choice of the birational morphism 7: X — X.
Let LCS(X, Bx) be the set of all centers of log canonical singularities of (X, By ). Then
Y e ]L(CS<X, BX) — Y C LCS(X, BX)
and LCS(X,Bx) =@ <= LCS(X,Bx) =@ <= the log pair (X, By) is log terminal.

Remark 2.3. Let ‘H be a linear system on X that has no base points, let H be a sufficiently
general divisor in the linear system H, and let Y C X be an irreducible subvariety. Put

m
Y‘H - z; 7,
where Z; C H is an irreducible subvariety. It follows from Definition 2.2 (cf. Theorem 2.20) that
Y eL(CS(X, BX) — {Zl,...,Zm} Q]L(CS(H, BX‘H).
Example 2.4. Let a: V — X be a blow up of a smooth point O € X. Then
By ~g a*(Bx) — multo(Bx)E,
where multo(Bx) € Q, and E is the exceptional divisor of the blow up «. Then
multp (BX) > 1
if the log pair (X, Bx) is not log canonical at the point O. Put
BY = By + (multo(BX) — dim(X) + 1>E,

and suppose that multo(Bx) > dim(X) — 1. Then O € LCS(X, By) if and only if

e cither £ € LCS(V,BY), i.e. multo(Bx) > dim(X),
e or there is a subvariety Z C F such that Z € LCS(V, BY).
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The locus LCS(X, Bx) C X can be equipped with a scheme structure (see [132], [169]). Put

I(X, BX> - w*(i(cﬂEi - itaiﬂ%),

1= 1=

and let £(X, Bx) be a subscheme that corresponds to the ideal sheaf Z(X, Bx).

Definition 2.5. For the log pair (X, Bx), we say that

o the subscheme £(X, Bx) is the subscheme of log canonical singularities of (X, Bx),
e the ideal sheaf 7(X, Bx) is the multiplier ideal sheaf of (X, Bx).

It follows from the construction of the subscheme L£(X, Bx) that
Supp <£(X, BX)) — LCS (X, BX) c X.

The following result is the Nadel-Shokurov vanishing theorem (see [169], [111, Theo-
rem 9.4.8]).

Theorem 2.6. Let H be a nef and big Q-divisor on X such that
Kx +Bx+H~qD
for some Cartier divisor D on the variety X. Then for every i > 1

Hi (X, I(X,Bx)® D) —0.

Proof. 1t follows from the Kawamata—Viehweg vanishing theorem (see [105]) that

n T
Riﬂ'* (W*(KX + BX —+ H) —+ Z[CI]EZ — ZLCLLJBZ> =0
i=1 i=1
for every ¢ > 0. It follows from the equality of sheaves

7T*<7r*(KX + Bx + H) + i[cz-‘Ez — italJBJ :I(X,Bx) ® D
=1 =1
and from the degeneration of a local—to-;lobal spectrZaI sequence that
H'(X,T(X, Bx) @ D) = H' (X, (Kx + Bx + H) + i(cﬂEi =Y lailBi),
i=1 i=1
for every ¢« > 0. But for ¢ > 0, the cohomology group Z 2
Hi<X,7r*(KX + Bx +H) + Zn:(cﬂEz — ZT:LGUB@)
i=1 i=1
is trivial by the Kawamata—Viehweg vanishing the;rem (see [1(;5]) O

For every Cartier divisor D on the variety X, let us consider the exact sequence of sheaves

0 —Z(X,Bx) ® D — Ox (D) — O (x, 5y)(D) — 0,

and let us consider the corresponding exact sequence of cohomology groups
H(0x (D)) — H°(Opx 5y (D)) — H'(Z(X,Bx) @ D).

Theorem 2.7. Suppose that —(Kx + Bx) is nef and big. Then LCS(X, Bx) is connected.
Proof. Put D = 0. Then it follows from Theorem 2.6 that the sequence

C=1°(0x) — H"(Opx 5y)) — H'(Z(X,Bx)) =0
is exact. Thus, the locus

LCS(X, BX) - supp(z(x, BX))

is connected. g

Let us consider few elementary applications of Theorem 2.7 (cf. Example 1.18).
21



Lemma 2.8. Suppose that LCS(X, Bx) # @, where X = P", and
Bx ~qg —AKx
for some rational number 0 < A < n/(n+ 1). Then

e the inequality dim(LCS(X, Bx)) > 1 holds,
e the subscheme L£(X, Bx) does not contain isolated zero-dimensional components.

Proof. Suppose that there is a point O € X such that
LCS(X, )\BX> —ouy,

where > C X is a possibly empty subset such that O ¢ X.
Let H be a general line in X = P2. Then the locus

LOS(X ABx + H) =OUH U
is disconnected. But the divisor —(Kx +ABx+ H) is ample, which contradicts Theorem 2.7.
Lemma 2.9. Suppose that LCS(X, By) # @, where X = P3, and
Bx ~g —AKx
for some rational number 0 < A < 1/2. Then LCS(X, Bx) contains a surface.
Proof. Suppose that LCS(X, Bx) contains no surfaces. Let S C P3 be a general plane. The locus
LCS(P?, By +5)
is connected by Theorem 2.7. Then (S, Bx|s) is not log terminal by Remark 2.3. But the locus

LCS (5, Bx ‘S)
consists of finitely many points, which is impossible by Lemma 2.8. O
Lemma 2.10. Suppose that LCS(X, By) # @, where X is a smooth quadric threefold in P*, and
Bx ~qg —AKx

for some rational number 0 < A < 1/2. Then LCS(X, Bx) contains a surface.
Proof. Let L C X be a general line, let P, € L 5 P, be two general points, let H; and Hs be
the hyperplane sections of X that are tangent to X at the points P, and Ps, respectively. Then
3
LCS <X, ABx + <H1 n H2>> — LCS (X, /\BX> UL

is disconnected, which is impossible by Theorem 2.7. O
Remark 2.11. One can prove Lemmas 2.9, 2.10 and 2.29 using the following trick. Suppose that
Bx ~qg —AKx

for some A € Q such that 0 < X\ < 1/2, where X is either P3, or P! x P2, or a smooth quadric
threefold, and the set LCS(X, Bx) contains no surfaces. Then

LCS(X, BX) cy,

where ¥ C X is a (possibly reducible) curve. For a general ¢ € Aut(X) we have
$(2) NS =2,

which implies that LCS(X, ¢(Bx)) NLCS(X, Bx) = @. But

LCS(X, 6(Bx) + Bx ) = LCS(X, ¢(Bx)) | JLCS(X, Bx)

whenever ¢ is sufficiently general. The latter contradicts Theorem 2.7 since A < 1/2.

Lemma 2.12. Suppose that LCS(X, Bx) # @, where X is a blow up of P? in one point, and
Bx ~g —\Kx

for some rational number 0 < A < 1/2. Then LCS(X, By) contains a surface.
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Proof. Suppose that the set LCS(X, Bx) contains no surfaces. Let
a: X — P3
be the blow up of a point, and let E' be the exceptional divisor of . In the case when
LCS(X, ABX) 7 E,

we can apply Lemma 2.9 to the pair (P3, a(By)) to get a contradiction. Hence LCS(X, Bx) C E.
Let H C P3 a general hyperplane, and let Hy C P3 5 H, be general hyperplanes that pass
through a(F). Denote by H, H; and Hs the proper transforms of these planes on X. Then

LCS (X, Bx + %(Hl + Hy + 2H)>
is disconnected, which is impossible by Theorem 2.7. O
Lemma 2.13. Suppose that X is a cone in P* over a smooth quadric surface, and
Bx ~g —AKx
for some rational number 0 < A < 1/3. Then LCS(X, Bx) = @.
Proof. Suppose that LCS(X, Bx) # @. Let S C X be a general hyperplane section. Then

LCS(S, BX’S) — g,

because S = P! x P! and lct(P! x P!) = 1/2 (see Example 1.18).
One has |LCS(X, Bx)| < +00 by Remark 2.3. Then the locus

LCS (X, By + S)
is disconnected, which contradicts Theorem 2.7. O

The following result is a corollary Theorem 2.6 (see [132, Theorem 4.1]).

Lemma 2.14. Suppose that —(Kx + Bx) is nef and big and dim(LCS(X, Bx)) = 1. Then

the locus LCS(X, By) is a connected union of smooth rational curves,

every two irreducible components of the locus LCS(X, Bx) meet in at most one point,
every intersecting irreducible components of the locus LCS(X, Bx) meet transversally,
no three irreducible components of the locus LCS(X, Bx) meet in one point,

the locus LCS(X, By ) does not contain a cycle of smooth rational curves.

Proof. Arguing as in the proof of Theorem 2.7, we see that the locus LCS(X, Bx) is a connected
tree of smooth rational curves with simple normal crossings. O

To consider another application of Theorem 2.7, we need the following result (see [150], [21]).
Lemma 2.15. Suppose that X is a smooth complete intersection ﬂleGi C P™, and
By ~g Opn(1 ‘ :
x ~g Opr (1)
where Gj is a hypersurface. Let S C X be an irreducible subvariety such that dim(S) > k. Then
multg(BX) < 1.

Proof. We may assume dim(S) = k < (m — 1)/2. Let P be a sufficiently general point in P™,
and let C C P™ be a cone over the subvariety S with vertex in the point P. Then
CNX=SUR,
where R is a curve on X. Let us calculate |[R N S|. Let
X — Pl o Gy — P e G — P
be projections from the point P, let D C X and D; C G; be the ramification subvarieties of the
projections 7 and m;, respectively. Put C N G; = S U R;. Then

RRNS=D;NnS
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by [155, Lemma 3]. Hence, it follows from R = Nf_ | R; and D = N¥_; D; that RNS=DNS.
Let (2q,...,2m) be homogeneous coordinates on P such that
P = (p07 s 7pm)7
and G; C P™ is given by the equation F;(zp,...,2n) =0. Then D C X is cut out by

ZaFl(ZO,...,Zm)pi :ZaFQ(Zo,...,Zm)p‘ _ ZaFk(ZO,...,Zm)pi —0.

N (321' X 8zi ! - 621'
=0 1=0 1=0
Let F, be a linear system on P that contains divisors
" OF(z0,...,%
S (70 m):O,r:L...,k.
; 0z
=0
The variety X is smooth. Hence
[RNS| =D S| = deg($) [T (deg(F) ~ 1),
i=1
because Fi, ..., Fr do not base points on X. Therefore, we have the inequality

k
deg(8) [] (deg(F:) ~1) = Bx - R > OZSmuItS(BX) = mults(Bx)|RN S
=1 €RN

which implies multg(By) < 1. O

Y

Using Remark 2.3, Theorem 2.7 and Lemma 2.15, we obtain the following result.

Corollary 2.16. Let X is a smooth complete intersection ﬂleGi C P™ such that
k
m+1— Zdeg(Gi) >k+1,
i=1
where G; is a hypersurface in P". Then X is a Fano variety and

1
let(X) = .
¢ ( ) m+1-— Zle deg(Gi)

Let us consider another simple application of Theorem 2.7 and Lemma 2.15.

Lemma 2.17. Let X be a cubic hypersurface in P4 such that |Sing(X)| < 4+o0. Suppose that
Bx ~gp —Kx,

and there is a positive rational number A < 1/2 such that LCS(X, A\Bx) # @. Then

LCS(X, ABx) = I,
where L is a line in X C P* such that L N Sing(X) # @.
Proof. Let S be a general hyperplane section of X. Then

Su LCS(X, /\BX> C LCS (X, ABx + S),

which implies that dim(LCS(X,ABx)) > 1 by Theorem 2.7. Then

LCS(S, )\BX’S) .
by Remark 2.3. But [LCS(S, ABx|s)| < +oo by Lemma 2.15. There is a point O € S such that

LCS(S, ABx S) —0
by Theorem 2.7. Therefore, there is a line L C X such that LCS(X, ABx) = L by Remark 2.3.
Arguing as in the proof of Lemma 2.15, we see that L N Sing(X) # . O

Similar to Lemma 2.17, one can prove the following result.
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Lemma 2.18. Suppose that there is a double cover 7: X — P3 branched over an irreducible
reduced quartic surface R C P? that has at most ordinary double points, the equivalence

Bx ~g —AKx
holds and LCS(X, Bx) # &, where A < 1/2. Then Sing(X) # @ and
LCS (X, BX> — I
where L is an irreducible curve on X such that —Kx - L = 2 and L N Sing(X) # @.
Proof. We have —Kx ~ 2H, where H is a Cartier divisor on X such that
H~ 7 (02 (1) ).
The variety X is a Fano threefold, and H? = 2. Then
LCS (X, By + H)
must be connected by Theorem 2.7. Thus, there is a curve
Ce ]LCS(X, BX),
which implies that multc(Bx) > 1/A > 2.
Let S be a general surface in |H|. Put Bg = Bx|s. Then
—Ks~ Hl|g ~g %st

but the log pair (S, Bg) is not log canonical in every point of the intersection S N LCS(X, Bx).
The surface H is a smooth surface in P(1, 1,1, 2) of degree 4.
Let P be any point in S N LCS(X, Bx). Then there is a birational morphism

p: S — S

such that S is a cubic surface in P? and p is an isomorphism in a neighborhood of P. Then
(5. p(B5))

is not log terminal at the point p(P). Thus, we have LCS(S, p(Bs)) # @. But

1
L o(B5) g ~Kg ~ Ons (1)
which implies that LCS(S, p(Bg)) consists of one point by Lemma 2.15 and Theorem 2.7. Then

P=5n0C=8nLCS(X, By)

S"

if the point P is sufficiently general. Therefore, we see that
LCS (X, BX) —C,

the curve C' is irreducible and —Kx - C' = 2. Then 7(C) C P? is a line.
Suppose that C'N Sing(X) = @. Let us derive a contradiction.
Suppose that 7(C') C R. Take a general point O € C. Let

T(0) eI CP?

be a plane that is tangent to R at the point 7(0O). Arguing as in the proof of Lemma 2.15, we
see that R is reduced along 7(C'), because 7(C) N Sing(R) = &. Fix a general line

rcicp’
such that 7(O) € T. Let T' C X be an irreducible curve such that 7(I') = I'. Then

I' Z Supp (Bx),
because I' spans a dense subset in P3 when we vary the point O € C and the line I' C II. Note
that H - I' equals either 1 or 2, and multo(I') = 2 in the case when H - Gamma = 2. Hence

H-T>2\H-T=T-Bx > multo(f)multc(Bv) >H-T,
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which is a contradiction. Thus, we see that 7(C) ¢ R.
There is an irreducible reduced curve C C X such that

7(C)=7(C) c P3

and C' # C. Let Y be a general surface in |H| that passes through the curves C' and C. Then
Y is smooth, because C' N Sing(X) = &, and

C-C=C-C=-2

on the surface Y.
By construction, we have Y ¢ Supp(Bx). Put By = Bx|y. Then

By = mults (Bx)C + multg(Bx)C 4+ A
where A is an effective Q-divisor on the surface Y such that C' ¢ Supp(A) 7 C. But
By ~g 2A<C+ C),

which implies, in particular, that

(22 = multe (Bx) )€ - € = (multe (Bx) = 22)C- €+ A-C > (multe(Bx) —21)C-C > 0,
because A-C >0 and C-C > 0. Then mults(Bx) > 2, because C' - C' < 0. Thus, we have

—A ~q (mult@ (BX) — 2)\)0 + (multc (BX) — 2)\)0
which is impossible, because multc(Bx) > 2A and Y is projective. O
One can generalize Theorem 2.7 in the following way (see [169, Lemma 5.7]).
Theorem 2.19. Let ¥: X — Z be a morphism. Then the set
LCS(X, BX )

is connected in a neighborhood of every fiber of the morphism ¢ o 7: X — Z in the case when

e the morphism v is surjective and has connected fibers,
e the divisor —(Kx + Bx) is nef and big with respect to .

Let us consider one important application of Theorem 2.19 (see [108, Theorem 5.50]).

Theorem 2.20. Suppose that B is a Cartier divisor, a; = 1, and B; has at most log terminal
singularities. Then the following assertions are equivalent:

e the log pair (X, Bx) is log canonical in a neighborhood of the divisor By;
e the singularities of the log pair (B1,Y ;_,a;B;|p,) are log canonical.

Proof. Suppose that the singularities of the log pair (X, Bx) are not log canonical in a neigh-
borhood of the divisor By C X. Let us show that (B1,Y ;_,a;B;j|p,) is not log canonical.
In the case when a,, > 1 and B,, N B; # @ for some m > 2, the log pair

(Bl, gaiBi Bl)

is not log canonical by Definition 2.1. Thus, we may assume that a; < 1 for every i. Then

(X, By + i )\alBl>
=2

is not log canonical as well for some rational number A < 1. Then

T T n

Kg+Bi+) AaiBi~g 7 (KX + By + Z)\aZBZ) +) diE;
i=2 i=2 i=1

for some rational numbers dy, ..., d,. It follows from Theorem 2.19 that

BlﬂEk#Q
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and the inequality di < —1 holds for some k. But

r r
KBI + Z )\alBZ 5 ~Q d)* (KBl + Z )\CLZBl Bl’
=2 =2

Bl) + ;diEi

where ¢: By — Bj is a birational morphism that is induced by .
Thus, the log pair (B1,> ;5 Aa;B;|p,) is not log terminal. Then the log pair

T
(Bh ZaiBi Bl)
i—2

is not log canonical. The rest of the proof is similar (see the proof of [105, Theorem 7.5]). O

The simplest application of Theorem 2.20 is a non-obvious result (see [108, Corollary 5.57]).
Lemma 2.21. Suppose that dim(X) =2 and a; < 1. Then

]
(ZaiBi) "By >1
=2

whenever (X, Bx) is not log canonical at some point O € B; such that O ¢ Sing(X)USing(By).

Proof. Suppose that (X, Bx) is not log canonical in a point O € B;. By Theorem 2.20, we have

iBi)'B > lt( iBi ) 1
<;CL 1 multop ;a/ B >

if O ¢ Sing(X)USing(By), because (X, B1 + Y ._, a;B;) is not log canonical at the point O. [

Let us consider another application of Theorem 2.20 (cf. Lemma 2.30).

Lemma 2.22. Suppose that X is a Fano variety with log terminal singularities. Then

let(P' x X) = min (; lct(X)) .

Proof. The inequalities 1/2 > lct(V x U) < let(X) are obvious. Suppose that

Ict (IP’l X X> < min (; 1ct(X)> :

and let us show that this assumption leads to a contradiction.
There is an effective Q-divisor D ~g —Kp14 x such that the log pair

(]P’l x X, AD)
is not log canonical in some point P € P! x X, where A\ < min(1/2,lct(X)).
Let F be a fiber of the projection P! x X — P! such that P € F. Then
D =uF +9Q,

where (2 is an effective Q-divisor on P! x X such that F' ¢ Supp(€2).
Let L be a general fiber of the projection P! x X — X. Then

2=D-L=p+Q-L>p,
which implies that the log pair (]P>1 x X, F + A\Q) is not log canonical at the point P. Then

(7. 20| )
F
is not log canonical at the point P by Theorem 2.20. But
Q| ~qD| ~q-Kr,
F Q F Q F

which is impossible, because X = F' and A < lct(X). O
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Let P be a point in X. Let us consider an effective divisor

r
A= ZEiBi ~Q Bx,
=1

where €; is a non-negative rational number. Suppose that

e the divisor A is a Q-Cartier divisor,
e the equivalence A ~g Bx holds,
e the log pair (X, A) is log canonical in the point P € X.

Remark 2.23. Suppose that (X, By) is not log canonical in the point P € X. Put

. a;
a=min§ —
&g

where « is well defined, because there is €; % 0. Then a < 1, the log pair

5i7£0}7

is not log canonical in the point P € X, the equivalence

T

a; — Qg;
Y BB g Bx ~g A
i=1 I—a ' 7O7ET0

holds, and at least one irreducible component of the divisor Supp(A) is not contained in
(0.
i=1
The assertion of Remark 2.23 is obvious. Nevertheless it is very useful.

Lemma 2.24. Suppose that X = C7 x Cy, where C; and C5y are smooth curves, suppose that
Bx ~qg AE + pF

where F = C7 and F = C5 are curves on the surface X such that
E-E=F-F=0

and £- F =1, and A and u are non-negative rational numbers. Then

e the pair (X, By) is log terminal if A < 1 and p < 1,
e the pair (X, Bx) is log canonical if A < 1 and p < 1.

Proof. Suppose that A\, u < 1, but (X, Bx) is not log terminal at some point P € X. Then
multp(BX) > 1,
and we may assume that E ¢ Supp(Bx) or F' ¢ Supp(Bx) by Remark 2.23. But
E-Bx =p, F-Bx =,
which immediately leads to a contradiction, because multp(Bx) > 1. |
Let [Bx] be a class of Q-rational equivalence of the divisor By. Put
lct (X, [BXD = inf {lct (X7 D) ‘ D is an effective Q-divisor on X such that D ~q BX} >0,
and put let(X, [Bx]|) = +oo if Bx = 0. Note that By is an effective by assumption.
Remark 2.25. The equality lct(X, [-Kx]) = lct(X) holds (see Definition 1.7).

Arguing as in the proof of Lemma 2.22, we obtain the following result.
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Lemma 2.26. Suppose that there is a surjective morphism with connected fibers
¢o: X —Z
such that dim(Z) = 1. Let F be a fiber of ¢ that has log terminal singularities. Then either
1ctF<X, BX> > lct(F, [BX}FD,
or there is a positive rational number € < lct(F, [Bx|r]) such that FF C LCS(X,eBx).

Proof. Suppose that lctp(X, Bx) < lct(F, [Bx|r]). Then there is a rational number

e < 1ct(F, [BX]FD
such that the log pair (X,eByx) is not log canonical at some point P € F. Put
Bx = pbF +Q,

where Q is an effective Q-divisor on X such that F' ¢ Supp(Q).
We may assume that ep < 1. Then (X, F' 4 Q) is not canonical at the point P. Then

(7 =01,

is not log canonical at P by Theorem 2.20. But Q|r ~g Bx|r, which is a contradiction. O
Let us show how to apply Lemma 2.26.

Lemma 2.27. Let Q C P* be a cone over a smooth quadric surface, and let a: X — Q be a
blow up along a smooth conic C' C @ \ Sing(Q). Then lct(X) = 1/3.

Proof. Let H be a general hyperplane section of Q C P* that contains C, and let H be a proper
transform of the surface H on the threefold X. Then

—Kx ~3H +2E,

where F is the exceptional divisor of a.. In particular, the inequality lct(X) < 1/3 holds.
We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/3.
There is a commutative diagram

where 3 is a morphism given by the linear system |H|, and 1 is a projection from the two-
dimensional linear subspace that contains the conic C.
Suppose that LCS(X, AD) contains a surface M C X. Then

D =uM +Q,

where 1 > 1/A, and 2 is an effective Q-divisor such that M ¢ Supp(€2).
Let F be a general fiber of 8. Then F = P! x P! and

D| =uM| +9Q| ~q-Kr,

F PR + rQ E

which immediately implies that M is a fiber of the morphism §. But
(D) = pa (M) + a(Q) ~q —Kq ~ 3a(M),

which is impossible, because p > 1/A > 3. Thus, the set LCS(X, AD) contains no surfaces.
There is a fiber S of the morphism ( such that

S # SnLcs(X, )\D) + g,

which implies that S is singular by Lemma 2.26, because lct(P* x P) = 1/2.
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Thus, the surface S is an irreducible quadric cone in P3. Then
LCS(X, /\D) cs

by Theorem 2.7. We may assume that either S ¢ Supp(D) or E ¢ Supp(D) by Remark 2.23,

because
2
(x.5+28)

has log canonical singularities, and the equivalence 35 + 2E ~g D holds.
Put ' = ENS. The curve I' is an irreducible conic in S. Then

LCS(X, AD) cT

by Lemma 2.13. Intersecting D with a general ruling of the cone S C P3, and intersecting D
with a general fiber of the projection £ — C, we see that

I ¢ LCS (X, AD),

which implies that LCS(X, AD) consists of a single point O € I" by Theorem 2.7.
Let R be a general (not passing through O) surface in |a*(H)|. Then

LCS <X, )\D+;(H+2R>> ~RUO,

which is impossible by Theorem 2.7, since —Kx ~ H + 2R ~g D and A < 1/3. Il
The following generalization of Lemma 2.26 is proved in [79].

Theorem 2.28. Suppose that there is a surjective morphism with connected fibers

¢: X — 7
such that ¢ is smooth in a neighborhood of a fiber F' of the morphism ¢. Then either
lctp(X, BX) > lct<F, [BXyFD,

or the equality lcto (X, Bx) = lctg(X, Bx) holds for every two points O € F 3 Q.
Let us consider two elementary applications of Theorem 2.28.

Lemma 2.29. Suppose that LCS(X, Bx) # @, where X = P! x P? and

Bx ~g —AKx
for some rational number 0 < A < 1/2. Then LCS(X, By) contains a surface.

Proof. Suppose that LCS(X, Bx) contains no surfaces. By Theorems 2.7 and 2.28, we have
LCS(X, BX) —F
where F is a fiber of the natural projection m3: X — P2, Let S be a general surface in
i (0=(1)]
let M, and M> be general fibers of the natural projection m;: X — P'. Then the locus
LCS <X, )\D+;(M1+M2+3S)> —FUS

is disconnected, which is impossible by Theorem 2.7. U
Lemma 2.30. Let V and U be smooth Fano varieties. Then
let(V x U) = min(let(V), let(V)).
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Proof. The inequalities lct(U) = let(V x U) < let(U) are obvious. Suppose that
let(V x U) < min (let(V), let(U)),

and let us show that this assumption leads to a contradiction.
There is an effective Q-divisor D ~g —Ky xy such that the log pair

(V % U, /\D)

is not log canonical in some point P € V' x U, where A\ < min(lct(V),lct(U)).
Let us identify V' with a fiber of the projection V x U — U that contains the point P. Then

leto (V % U, D) = leto (V x U, D)
for every points O € V 3 @ by Theorem 2.28, because the inequalities
let(V) > A > lety (V x U, D) >1et(V; D, |) =1et(V, [~ Kv]) =let (V)

are inconsistent. So, the log pair (V x U, AD) is not log canonical in every point of V.C V x U.
Let us identify U with a general fiber of the projection V' x U — V. Then

D‘U ~e —Hu,
and (U, AD|y) is not log canonical in U NV by Remark 2.3 (applied dim(V') times here), which
contradicts the inequality A < lct(U). O

We believe that the assertion of Lemma 2.30 holds for log terminal varieties (cf. Lemma 2.22).

3. THE MUKAI-UMEMURA THREEFOLD

The main purpose of this section is to compute the global log canonical threshold of one
remarkable smooth Fano threefold (cf. [55]) to illustrate the proof of Theorem 1.78.

Lemma 3.1. Let X be the smooth Fano threefold such that*
Pic(X) = Z[ - K],
the equality —K3% = 22 holds, and Aut(X) = PSL(2,C). Then let(X) = 1/2.
Proof. Let U C C[z, y] be a subspace of forms of degree 12. Consider U = C!3 as the affine part of
]P’(U @ <c) o pl3,

and let us identify P(U) with the hyperplane at infinity.
The natural action of SL(2,C) on C|z,y] induces an action on P(U & C). Put

¢ =xy (a:w - 113053/5 — y10> eU

and consider the closure SL(2,C) - [¢ + 1] C P(U @ C). It follows from [130] that
X = SL(2,C) - [¢+ 1],

and the embedding X C P(U @ C) = P!3 is induced by | — Kx]|.
The action of SL(2,C) on X has the following orbits (see [98, Theorem 5.2.13]):

o the three-dimensional orbit ¥3 = SL(2,C) - [¢ + 1];
e the two-dimensional orbit Xy = SL(2,C) - [xy!!];
e the one-dimensional orbit ¥; = SL(2,C) - [y'?].
The orbit X3 is open, the orbit ¥; 2 P! is closed, and
iz = X1 U X9,
so that the orbit 39 is neither open nor closed. One has
Xﬁ]P)(U) =21 U
and X =31 UXoU3X3. Put R=XNP(U). It follows from [130] that

4The threefold X satisfying these assumptions is unique (see [130] and [142]).
31



the surface R is swept out by lines on X C P'3,

the surface R contains all lines on X C P13,

for any lines L1 C R D Lo such that Ly # Lo, one has L1 N Ly = &,
the surface R is singular along the orbit ¥; = P!,

the normalization of the surface R is isomorphic to P* x P!,

for every point P € ¥, the surface R is locally isomorphic to

e s ()

which implies that lct(X, R) = 5/6.
The structure of the surface R can be seen as follows. We see that

Y = {[(am—}—by)(cx—{—dy)n} ‘ ad — bc = 1} CP(U),

which implies that there is a birational morphism v: P! x P! — R that is defined by
vila:b] x [c:d] — {(a:c#—by)(cx +dy)11] € R,
so that v is a normalization of the surface R.
Let V5 be a smooth Fano threefold such that
—Ky, ~2H

and H® = 5, where H is a Cartier divisor on V5. Then |H| induces an embedding X C PS.
Let L = P! be a line on X. Then N7y = Opi(—2) & Op1(1). Let

ap: U, — X
be a blow up of the line L, and let E, be the exceptional divisor of a;,. Then
Ep =3,
and it follows from Theorem 4.3.3 in [98] (see [45], [178]) that there is a commutative diagram

Up,----- =Wy,
OéLl \LﬁL
X=myr =%

where pr, is a flop in the exceptional section of E 22 F3, the morphism g contracts a surface
Dy, C Wy, to a smooth rational curve of degree 5, and 1, is a double projection from the line L.
Let Dy, C X be the proper transform of the surface Dy. Then

multy, (DL) =3
and Dj, ~ —Kx. It follows from [63] that X \ D = C? (cf. [138], [139], [65]).
It follows from [64] that there is an open subset Dy C Dy, that is given by
prox* + (ulyz +uzz3)x3 + (u:ayg + pay?2? +u5yz4)ﬂ:2 + (u6y4z +u7y323)$+ﬂsy6 + poy®z* =0
in C® = Spec(Clz, vy, 2]), where LN %1 € Dy, is given by the equations z = y = z = 0, and
po = —2852, g = 29335, o = —23%5, 3 = —28337, uy = —2134127,
ps = 2"3%, po = 2°3°89, g = —2°3°%, g = —3°5°, pg = 2°3".
Put O, = ¥1 N L. Then multp, (Dy) = 4, and it follows from Proposition 8.14 in [105] that
1_
LCS (X, 2DL> — 0
and lct(X, Dy) = 1/2. Thus, we see that lct(X) < 1/2.
Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor
D ~g —Kx

such that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2.
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By Remark 2.23, we may assume that R ¢ Supp(D), because lct(X, R) = 5/6.
Let C be a line in X such that C' ¢ Supp(D). Then

1=D-C = multp, (D)multoc (C) = multp, (D),

which implies that O ¢ LCS(X, AD). In particular, we see that ¥; ¢ LCS(X, AD).
Let T' be an irreducible curve in Supp(D) such that O¢c € T'. Then

multp (Dc) multp (Dc)

5 + Amultp (D) < 5

1 -
multp <2DC + AD) = + Amulto,, (D) < 1,

because A < 1/2 and Sing(D¢) = C, because D¢ # R. Thus, we see that
1.
I ¢ LCS (X, 5D+ )\D> > Lcs(X, )\D) U0,

which is impossible by Theorem 2.7, because O¢ € LCS(X,A\D) and A < 1/2. O
The threefold satisfying all hypotheses of Lemma 3.1 is called the Mukai-Mumemura threefold.

Remark 3.2. Let X be the Mukai-Mumemura threefold. Then it follows from [55] that

let(X, SO(3)) = %

Remark 3.3. Let X be a smooth Fano threefold such that Pic(X) = Z[—Kx]. Then it follows
from the papers [143], [91], [74] that the following conditions are equivalent:

o K g’( = 22 and the threefold X is the Mukai-Mumemura threefold;
° —Kg’( > 16 and for any curve P! =2 L C X such that —Kx - L = 1, we have

Niyx = O0pi (1) ® Opi (- 2),
° —Kg’( > 6 and for any two curves Ly C X D Lo such that
—Kx-L1=-Kx-Ly=1,
either Ly = Lo, or L1 N Ly = @.
Remark 3.4. Let Z C P? be a plane quartic curve. Then Z is given by an equation

((#,9,2) =0 C P* = Proj(Cla,y, 4]

where ((z,y, z) is a form of degree 4. A polar hexagon of the curve Z C P? is the union

6
_ , _ 2
Fg({,(aﬁ,y,z) 0) cP

such that ((z,y,2) = Z?:l ¢z, y,2), where &(x,y, 2) is a non-zero linear form. Put

X¢ = {T € Hilbg(P2) | T is polar to 2 < P2},

where we identify the polar hexagon I" with a point in Hilbg(P?). Then it follows from [167] that
the variety X is a smooth Fano threefold such that

PiC(XC) = Z[ - KXc]

and the equality —K}C = 22 holds in the case when the homogeneous form ((x, y, z) is sufficiently
general®. It follows from [130] that X, is the Mukai-Mumemura threefold if

((z,y,2) = (x2 + 92 + z2)2.

SVarieties X that are smooth compactifications of C* were studied in [138], [139], [63], [144], [64], [65].
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4. CUBIC SURFACES

Let X be a cubic surface in P? that has at most one ordinary double point.

Definition 4.1. A point O € X is said to be an Eckardt point if O ¢ Sing(X) and
O=LiNLyNLs,

where L1, Ly, L3 are different lines on the surface X C P3.

General cubic surfaces have no Eckardt points. It follows from Example 1.18 and 1.19 that

et (X) = { 3/4 when X has no Eckardt points and Sing(X) = @

2/3 when X has an Eckardt point or Sing(X) #+ .

Let D be an effective Q-divisor on X such that D ~g —Kx, and let w be a positive rational
number such that w < 3/4. In this section we prove the following result (cf. [20], [33], [31]).

Theorem 4.2. Suppose that (X,wD) is not log canonical. Then
LCS(X, wD) — 0,
where O € X is either a singular point or an Eckardt point.

Suppose that (X,wD) is not log canonical. Let P be a point in LCS(X,wD). Suppose that

e neither P = Sing(X),
e nor P is an Eckardt point.

Lemma 4.3. One has LCS(X,wD) = P.
Proof. Suppose that LCS(X,wD) # P. Then there is a curve C' C X such that

PeCC LCS(X, wD)

by Theorem 2.7. Then there is an effective Q-divisor 2 on X such that C' ¢ Supp(Q2) and
D = uC +Q,
where 11 > 1/w. Let H be a general hyperplane section of X. Then
3=H-D=pH -C+H- Q> pdeg(C),

which implies that either deg(C') = 1, or deg(C) = 2.
Suppose that deg(C) = 1. Let Z be a general conic on X such that —Kx ~ C + Z. Then

2u if C'N Sing(X) =0
3p/2 if C N Sing(X) # @,

which implies that p < 4/3. But g > 1/w > 4/3, which gives a contradiction.
We see that deg(C) = 2. Let L be a line on X such that —Kx ~ C + L. Then

D=uC+AL+T7T,
where A € Q such that A > 0, and T is an effective Q-divisor such that C' ¢ Supp(Y) 7 L. Then
20— Xif CNSing(X) =2
3p/2 — A/2 if C'NSing(X) # @,

which implies that u < 7/6 < 4/3, because A\ < 4/3 (see the case when deg(C) = 1). But
p > 4/3, which gives a contradiction. O

2:Z-D:MZ~C+Z-Q>MZ~C:{

1:L-D:ML-C+)\L-L+L-T>ML~C+)\L-L:{

Let m: U — X be a blow up of P, and let F be the m-exceptional curve. Then
D ~g (D) + multp (D)E,
where multp(D) > 1/w and D is a proper transform of D on the surface U. The log pair

(v, wD + (wmultp (D) ~ 1)E)



is not log canonical at some point @ € E. Then either multp(D) > 2/w, or
(4.4) multg (D) + multp (D) > 2/w > 8/3,

because the divisor wD + (wmultp(D) — 1)E is effective.
Let T be the unique hyperplane section of X that is singular at P. We may assume that

Supp(T) Z Supp(D)
by Remark 2.23, because (X,wT) is log canonical. The following cases are possible:

e the curve T is irreducible;
e the curve T is a union of a line and an irreducible conic;
e the curve T consists of 3 lines.

Hence T is reduced. Note that multp(7") = 2 since P is not an Eckardt point. We exclude these
cases one by one.

Lemma 4.5. The curve T is reducible.

Proof. Suppose that T is irreducible. Then there is a commutative diagram

where 1) is a double cover branched over a quartic curve, and p is the projection from P € X.
Let T be the proper transform of T on the surface U. Suppose that @ € T'. Then

3-2multp(D) = T-D > multq(T)multq (D) > multe(T) (8/3-multp(D)) > 8/3—multp (D),

which implies that multp(D) < 1/3. But multp(D) > 4/3. Thus, we see that Q & T.
Let 7 € Aut(U) be an involution® induced by . It follows from [118] that

T*<7T*(—KX)> ~7r*(—2KX) - 3E,

and 7(T) = E. Put Q=mo 7(Q). Then Q # P, because Q ¢ T.
Let H be the hyperplane section of X that is singular at (). Then T # H, because P # Q
and T is smooth outside of the point P. Hence P ¢ H, because otherwise

3=H-T> multp(H)multp(T) + muth(H)muth (T) > 4.
Let H be the proper transform of H on the surface U. Put R = 7(H) and R = m(R). Then
R~ 7*(—-2Kx) - 3E,

ant the curve R must be singular at the point Q. B
Suppose that R is irreducible. Taking into account the possible singularities of R, we see that

3
X, -R
(x5%)
is log canonical. Thus, we may assume that R Z Supp(D) by Remark 2.23. Then
6 — 3multp(D) = R D > multq(R)multq(D) > 2(8/3 — multp (D)),

which implies that multp(D) < 2/3. But multp(D) > 4/3. The curve R must be reducible.
The curves R and H are reducible. So, there is a line L C X such that P ¢ L > Q.
Let L be the proper transform of L on the surface U. Put Z = 7(L). Then L - E =0 and

L-T=L 7(-Kx)=1,
which implies that Z- E =1 and Z - 77*( — KX) = 2. We have Q € Z. Then
2 —multp(D) = Z- D > multg(D) > 8/3 — multp(D) > 2 — multp (D)
in the case when Z ¢ Supp(D). Hence, we see that Z C Supp(D).

6The involution 7 induces an involution in Bir(X) that is called a Geiser involution.
35



Put Z = 7(Z). Then Z is a conic such that P € Z and
—Kx~L+Z,
which means that L U Z is cut out by the plane in P? that passes through Z. Put
D=cZ+17,

where € € Q such that € > 0, and Y is an effective Q-divisor such that Z ¢ Supp(7Y).

We may assume that L € Supp(Y) by Remark 2.23. Then
2¢ift Zn Sing(X) =,
|=L-D=e¢Z-L+L-T>eZ L= , .
3e/2 if Z N Sing(X) # @,

which implies that e < 2 /3.
Let T be the proper transform of T on the surface U. Then the log pair

(U, swZ +wT + (wmuttp(D) 1))

is not log canonical at Q € Z. Then

WY - Z+ (wmultp(D) = 1) = (wT + (wmultp(D) = 1)E) - Z > 1
by Lemma 2.21, because ¢ < 2/3. In particular, we see that
2 — multP(D) +eif ZnN Sing(X) =,
2 —multp (D) +¢/2 if Z N Sing(X) # &,
which implies that e > 2/3. But e < 2/3. O

8/3—multp(D) < Z-T =2-multp(D)—eZ-Z = {

Therefore, there is a line L1 C X such that P € L. Put
D= mlLl + Qa
where my € Q such that Q is an effective Q-divisor such that L ¢€ Supp(f2). Then
1+ my if Ly NSing(X) = 2,
4/3<1/w<Q-L1:1—m1L1-L1: ! ‘1 ( )
14 mq/2 if Ly N Sing(X) # 2.

Corollary 4.6. The following inequality holds:
1/3 if Ly N Sing(X) = &,
' { 2/3 if L; N Sing(X) # @.
Remark 4.7. Suppose that X is singular. Put O = Sing(X). It follows from [16] that
O=TI'1NTeNI3NTyNTsNTs,

where T'q, ..., g are different lines on the surface X C P3. The equivalence

6
92K x ~ Z T;
=1

holds. Suppose that L1 =T'y. Let I, ..., IIg C P? be planes such that
L1 C HZ‘ D) Fi,
and let Ao, ..., Ag be lines on the surface X such that
LLUT;UN =T;NX C X C PP,
which implies that —Kx ~ L1 +I'; + A;. Then
6 6 6
S5Kx ~ AL+ > A+ (L4 Y T) ~ AL + Y0 A - 2Kx,

1=2 =2 1=2
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which implies that —3Kx ~ 4L + 2?22 A;. But the log pair

6 .
(X, Ly + 21:32 A,)

is log canonical at the point P. Thus, we may assume that

Supp <Z A ) Z Supp(D)

thanks to Remark 2.23, because L; C Supp(D). Then there is Ay such that
1=D- A= <m1L1+Q> g =my+ QA > my,
because O ¢ Ag. Thus, we may assume that m; < 1 if L; N Sing(X) # @.
Arguing as in the proof of Lemma 2.15, we see that my < 1 if Ly N Sing(X) = @.
Lemma 4.8. There is a line Lo C X such that Ly # Ly and P € Ls.
Proof. Suppose that there is no line Ly C X such that Ly # Lo and P € Ly. Then
T=L+C,

where C is an irreducible conic on the surface X C P3 such that P € C.
It follows from Remark 2.23 that we may assume that C' € Supp(§2), because m; # 0.
Let L; and C be the proper transforms of L; and C' on the surface U, respectively. Then

D ~gmiLi+ Qg (mily+Q) = (my + multp(Q) ) E ~g 7*(D) — multp(D)E,
where Q is the proper transform of the divisor 2 on the surface U. We have
2/3 —my, if L1 N Sing(X) = 2,
2/3 —my/2, if Ly NSing(X) # @
which implies that m; < 2/3 if L1 N Sing(X) = &. It follows from inequality 4.4 that
multg (Q) > 8/3 — multp (Q) —my (1 + multg (El)).

Suppose that Q € Li. Then it follows from Lemma 2.21 that

OgC_"Q:2—multp(D)+m10-i<2/3—m1C_"E1:{

1+ 2my, if Ly N Sing(X) = &,
1+ 3m1/2, if L1 NSing(X) # @,

which is impossible, because m; < 1 if L N Sing(X) # @ by Remark 4.7.
We see that Q ¢ Li. Suppose that Q € C. Then

2 —multP(Q) —my—miC-L1=C-Q>8/3 —multP(Q) —mq,

8/3 < El . (Q—l— (multp(Q) —|—m1)E> =1- mlil . El = {

which is impossible, because m;C - L1 > 0. Hence, we see that Q ¢ C.
There is a commutative diagram

U ¢ w
W\L \Lqp
X----->P

where ( is a birational morphism that contracts the curve L1, the morphism v is a double cover
branched over a quartic curve, and p is a linear projection from the point P € X.
Let 7 be the birational involution of U induced by . Then

e the involution 7 is biregular <= L; N Sing(X) = &,
e the involution 7 acts biregularly on U \ Ly if Ly N Sing(X) # @,
e it follows from the construction of 7 that 7(F) = C,
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e if L; N Sing(X) = @, then
(L1) ~ Ly, 7 (B) ~ C, 7 (7 ( = Kx) ) ~ 7*(~ 2Kx) = 3E - Ly.

Let H be the hyperplane section of X that is singular at 7o 7(Q) € C. Then P ¢ H, because
C is smooth. Let H be the proper transform of H on the surface U. Then

Ly & Supp(H) 2 C,
and we can put R = 7(H) and R = 7(R). Then R is singular at the point Q, and
R~7"(—2Kx) —3E — Ly,

because R does not pass through a singular point of X if Sing(X) # @.
Suppose that R is irreducible. Then R + L1 ~ —2Kx, but the log pair

(X,2<R+<LQ>

is log canonical. Thus, we may assume that R € Supp(D) by Remark 2.23. Then
5= 2(my + muttp(©)) +m (14 Ly Ly) = R+ Q > 2multg () > 2(8/3 — my — muttp(©) )
which implies that m; < 0. The curve R must be reducible.
There is a line L C X such that P ¢ L and wo7(Q) € L. Then
LNl =

because mo71(Q) € C and (C+Ly)-L =T L = 1. Thus, there is unique conic Z C X such that
—Kx ~L+Zand P € Z. Then Z is irreducible and P = Z N Ly, because (L + Z) - Ly = 1.
Let L and Z be the proper transform of L and Z on the surface U, respectively. Then

2 if LN Sing(X) = &,
3/2 if LN Sing(X) # @.
We have 7(Z) = L. Then Q € Z. Suppose that Z Z Supp(f2). Then

2—my — multp(Q) =7Z-Q>8/3—my — multp(Q),

LC=ZE=1,

~i

\Z=LE=LL =0, 22=1-LZ LZ= {

which is impossible. Thus, we see that Z C Supp(Q). But the log pair
(%, wz+2)
is log canonical at the point P. Hence, we may assume that L ¢ Supp(f2) by Remark 2.23. Put
D=c¢Z+mL+7,
where T is an effective Q-divisor such that Z ¢ Supp(Y) 2 Li. Then
2¢if LN Sing(X) =,
3e/2 if LN Sing(X) # @,
which implies that ¢ < 2/3. But ZN L; = @. Then it follows from Lemma 2.21 that
2—nmm4Dyﬁﬁ-Z:Z-T>8B—nmm4D)
where T is a proper transform of T on the surface U. We deduce that ¢ > 2/3. Bute < 2/3. O

1:L~D:6L-Z+m1L-L1+L-T:esL-ZJrL-T>5L~Z:{

Therefore, we see that T'= L1 4+ Lo + L3, where L3 is a line such that P ¢ Ls. Put
D =miLi +moLls + A,

where A is an effective Q-divisor such that Ly & Supp(A) 2 L.

The inequalities m; > 1/3 and mg > 1/3 hold by Corollary 4.6. We may assume that
Ls & Supp(A) by Remark 2.23. If the singular point of X (provided that there exists one) is
contained in either L; or Lo, we may assume without loss of generality that it is contained in
Ly. Then Lz - Ly =1 and L3 - L1 = 1/2 in the case when L; N Sing(X) # @, and

Ly-Lo=L3-L; =1

in the case when Ly N Sing(X) = @. Then 1 —m Ly - Lg —mgo = Lz - A > 0.
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Let L; and L3 be the proper transforms of L and Ly on the surface U, respectively. Then
miLy +maLy + A ~q " (mlLl + molLo + A) — (m1 + msa + multP(A))E,
where A is the proper transform of A on the surface U. The inequality 4.4 implies that
(4.9) multq(A) > 8/3 — multp(A) — my (1 -+ multg(Ly) ) = ma 1+ multg(L2) ).
Lemma 4.10. The curve Ly does not contain the point Q.
Proof. Suppose that Q € Ly. Then
1-— multP(A) —mi+mg=Ly-A>8/3— multp(A) —m] —ma
by Lemma 2.21. Thus, we have mg > 5/6. It follows from Lemma 2.21 that
1—mo—miLly-L1 =A-L1 >4/3 —mo,
but Ly - Ly = —1if L1 NSing(X) = @, and Ly - Ly = —1/2 if L; N Sing(X) # @. Then
1/3if Ly N Sing(X) = &,
" { 2/3 if Ly N Sing(X) # 2,
by Corollary 4.6, which is impossible because mg > 5/6 and

1>mlq -L3+m2.

Lemma 4.11. The curve L; does not contain the point Q.
Proof. Suppose that Q € L. Arguing as in the proof of Lemma 4.10, we see that
Ly N Sing(X) # &,
which implies that L; - Ly = —1/2. Then m; > 10/9, because
143m1/2 = Ly (A + (multp(A) = my — ms)E) > 8/3
by Lemma 2.21. But m; < 1 by Remark 4.7. 0

Therefore, we see that Ly # Q & Lo. There is a commutative diagram

U w
W\L \Lq,/)
X--—-- > P2

where ( is a birational morphism that contracts the curves L; and Lo, the morphism ¢ is a
double cover branched over a quartic curve, and p is the projection from the point P.
Let 7 be the birational involution of U induced by . Then

the involution 7 is biregular <= L; N Sing(X) = &,

the involution 7 acts biregularly on U \ Ly if L; N Sing(X) # @,
the equality 7(Ly) = Ls holds,

if L, N Sing(X) = @, then 7(L1) = L; and

(7"~ Kx)) ~ 7~ 2Kx) = 35— Ly - Ly.
Let L3 be a proper transform of L3 on the surface U. Then 7(E) = L3 and
LiULy Fwo7(Q) € Ls.

Lemma 4.12. The line L3 is the only line on X that passes through the point 7 o 7(Q).
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Proof. Suppose that there is a line L C X such that L # Ls and 7w o 7(Q) € L. Then
LNLi=LNLy=o

because mo7(Q) € Ls and (L1 + Ly + L3) - L = 1. Thus, there is unique conic Z C X such that
—Kx ~L+Z and P € Z. Then Z is irreducible, because P ¢ L and P is not an Eckardt point.
Let L and Z be the proper transform of L and Z on the surface U, respectively. Then

o o o 2 if LN Sing(X) =@,
L-I3=2-E=1,2-Z=1-L-2, L-Z—
3/2 if LN Sing(X) # @,
and Ly-Z=Ly-Z=L-E=L-Li=L-Ly=0. B
We have 7(Z) = L. Then Q € Z, which implies that Z C Supp(A) because
2 —multp(A) —mi—mg=2-Q>8/3 —multp( )
in the case when Z ¢ Supp(A). On the other hand, the log pair

<X, w(L + Z))

— ma

is log canonical at the point P. Hence, we may assume that L ¢ Supp(A) by Remark 2.23. Put
D=cZ+miL1+molo+ T,

where T is an effective Q-divisor such that Z ¢ Supp(Y). Then

2¢ if LN Sing(X) =2,

3¢/2 if LN Sing(X) # @,

which implies that ¢ < 2/3. But ZN L; = @. Then it follows from Lemma 2.21 that
2—multp(D) —eZ-Z=2-T >8/3—multp(D),

where T is a proper transform of T on the surface U. We deduce that ¢ > 2/3. But e < 2/3. O

l1=L-D=eL-Z4+mL-Ih1+L-Y=eL-Z+L-YT>2eclL-Z= {

Therefore, there is an unique irreducible conic C C X such that
—Kx ~L3+C

and 7o 7(Q) € C. Then C + L3 is a hyperplane section of X that is singular at 7 o 7(Q).
Let C' be the proper transform of C' on the surface U. Put Z = 7(C) and Z = n(Z).

Lemma 4.13. One has L; N Sing(X) # .
Proof. Suppose that L; N Sing(X) = @. Then
CNLi=CNLy=0
because (Lj + Ly + L3) - C = L3 - C = 2. One can easily check that
Z ~7*(—2Kx) —4E — Ly — Lo,
and Z is singular at P. Then —2Kx ~ Z + L1 + Ly. But the log pair

(U, %(Z+L1 +L2)>

is log canonical at P. Thus, we may assume that Z ¢ Supp(D) by Remark 2.23.
We have @ € Z and Z - E = 2. Then it follows from the inequality 4.4 that

4— 2multP(D) =7Z-D> muth( ) >8/3 — multp( )
which implies that multp(D) < 4/3. But multp(D) > 4/3. O
Thus, we see that L; N L3 = Sing(X) # @. Then L N Ly € C, which implies that
Z ~7"(—2Kx) —4E — 2Ly — Lo,
and Z is smooth rational cubic curve. Then —2Kx ~ Z + 2L; + Lo. But the log pair

<U, %(Z Y26y + Lz))
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is log canonical at P. Thus, we may assume that Z ¢ Supp(D) by Remark 2.23.
We have QQ € Z and Z - E = L1 = 1. Then it follows from the inequality 4.4 that

3 — multp(A) —2mi—me=2-A> muth(A) >8/3 — multp(A) —mi — ma,
which implies that m; < 1/3. But m; > 2/3 by Corollary 4.6.
The obtained contradiction completes the proof Theorem 4.2.
5. DEL PEZZO SURFACES

Let X be a del Pezzo surface that has at most canonical singularities, let O be a point of
the surface X, and let Bx be an effective Q-divisor on the surface X. Suppose that

e the point O is either smooth or an ordinary double point of X,
e the surface X is smooth outside the point O € X.

Lemma 5.1. Suppose that Sing (X) = O, K% = 2 and the equivalence
Bx ~q —puKx
holds, where 0 < 1 < 2/3. Then LCS(X, uBx) = @.
Proof. Suppose that LCS(X, uBx) # @. There is a curve P! = [ ¢ X such that

LCS <X, MBX) ZL

the equality L - L = —1 holds, and L N Sing(X) = &. Thus, there is a birational morphism
m: X — S that contracts the curve L. Then

LCS (S, um(Bx)) # 2

due to the choice of the curve L C X. But —Kg ~g 7(Bx), and S C P? is a cubic surface that
has at most one ordinary double point, which is impossible (see Examples 1.19 and 1.18). O

Lemma 5.2. Suppose that Sing(X) = @, K% = 5, the equivalence
Bx ~q —puKx
holds, where 1 € Q is such that 0 < p < 2/3. Assume that LCS(X, Bx) # @. Then

e cither the set LCS(X, Bx) contains a curve,
e or there are a curve P! 2 L ¢ X and a point P € L such that L - L = —1 and

LCS (X, BX) ~ P,
Proof. Suppose that LCS(X, Bx) contains no curves. Then it follows from Theorem 2.7 that
LCS(X, BX) _ P,

where P € X is a point. We may assume that P does not lie on any curve P! = L C X such that
the equality L - L = —1 holds. Then there is a birational morphism ¢: X — P? such that ¢ is
an isomorphism in a neighborhood of the point P. Note that

6(P) e LCS(P?, 6(Bx)) # 2,
the set LCS(PP?, ¢(Bx)) contains no curves, and
¢(Bx) ~g —pKpe.
Since pu < 2/3, the latter is impossible by Lemma 2.8. O

Example 5.3. Suppose that O = Sing(X) and K% = 5. Let a: V — X be a blow up of O, and
let E be the exceptional divisor of . Then there is a birational morphism w: V' — P? such that

e the morphism w contracts the curves Ey, Ey, E3, FEy,
e the curve w(FE) is a line in P? that contains w(E1), w(Es), w(F3), but w(E) Z w(Ey).
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Let Z be a line in P? such that w(E;) € Z 3 w(Ey4). Then
2E—|—Z—|—2E1+EQ—|—E3N—Kv,

where Z C V is a proper transform of Z. One has

9

DN | =

lct(X, a(Z—I— 2a(E1) + a(Eg) —|—a(E3)) =

which implies lct(X) < 1/2. Suppose that —Kx ~q 2Bx, but (X,
Then

S

x) is not log canonical.

Ky + By +mE ~q a*(KX +Bx>,
for some m > 0, and By is the proper transform of Bx on the surface V. Then
(V, By + mE)

is not log canonical at some point P € V. There is a birational morphism 7: V' — U such that

e the surface U is a smooth del Pezzo surface with K % =6,
e the morphism 7 is an isomorphism in a neighborhood of P € X,

which implies that (U, 7(By) + mm(E)) is not log canonical at 7(P). But
1
7(By) + mn(E) ~g —= Ky,

which is impossible, because lct(U) = 1/2 (see Example 1.18). We see that lct(X) = 1/2.
Example 5.4. Suppose that Kg( = 4. Arguing as in Example 5.3, we see that the equality

1/2 when O = Sing(X),

et (x) = 4/ 5(X)

2/3 when Sing(X) = &,
holds (cf. [189]). Take A < 1. Suppose that

Bx ~qp —Kx,

and (X, ABx) is not log canonical at some point P € X \ O. There is a commutative diagram

where U is a cubic surface in P? that has canonical singularities, the morphism « is a blow up
of the point P, the morphism ( is birational, and v is a projection from the point P € X. Then

Ky + ABy + ()\multp(BX) - 1)E ~g a* (KX + )\BX>,
where FE is the exceptional divisor of «, and By is the proper transform of Bx. Note that
(v. ABy + (Amulep(Bx) 1) E)
is not log canonical at some point @ € E and multp(Bx) > 1/A. Then the log pair
(v, ABy + (Amulep(Bx) - ) E)
is not log canonical at the point Q) € E as well. But the equivalences
By + (multp(Bx) — 1) E ~g Ky + o (Kx + Bx ) ~q ~Kv,

hold. Suppose that P is not contained in any line on the surface X. Then

e the morphism 3: V — U is an isomorphism,
e the cubic surface U is smooth outside of the point 1(0O),

e the point 9(0O) is at most ordinary double point of the surface U,
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which implies that A > 2/3 (see Example 1.19).
Suppose that A = 3/4. Then the point

$(Q) e U c P®

must be an Eckardt point (see Definition 4.1) of the surface U by Theorem 4.2. But
B(E)cUcCP?

is a line. So, there are two conics C # Cy contained in X such that P = Cy N Cy and
Cy+Cy ~ —Kx.

Lemma 5.5. Suppose that O = Sing(X) and K% = 6 such that there is a diagram

|4
RN
X P2

where (3 is a blow up of three points P1, P2, P5 € P? lying on a line L C P2, and « is a birational
morphism that contracts an irreducible curve L to the point O such that §(L) = L. Then

LCS(X, )\BX) )

in the case when LCS(X,ABx) # @, Bx ~g —Kx and XA < 1/2.
Proof. Suppose that Bx ~g —Kx and

o # LCS(X, /\BX) £0,
let M C P? be a general line, and let M C V be its proper transform. Then

Ky ~ 2a(3)

and O € a(M). Thus, the set LCS(X, ABx) contains a curve, because otherwise the locus

LCS(X, ABx +a(M))

would be disconnected, which is impossible by Theorem 2.7.
Let C C X be an irreducible curve such that C C LCS(X, ABx). Then
Bx = eC + Q,

where € > 2, and Q is an effective Q-divisor such that C' ¢ Supp(f2).
Let T'; C X be a proper transform of a general line in P? that passes through P;. Then

OgliuUlbuls
and —Kx -I'1=—Kx -I's = —Kx -T's = 2. But
—Kx ~qI't + T2+ 1T},
which implies that there is m € {1, 2,3} such that C' -T',,, # 0. Then
2=Bx Ty =(C+Q) - Tp>eC Ty >e>2,
because I'y, ¢ Supp(Bx). The obtained contradiction completes the proof. Il

Remark 5.6. Suppose that O = Sing(X) and Kg( =6. Let a: V — X be a blow up of the point
O € X, and let F be the exceptional divisor of . Then

Kv+Bv+mENQ Oé*<Kx+Bx)

for some m > 0, and By is the proper transform of Bx on V. Note that lct(X) < 1/3. Suppose
that lct(X) < 1/3, i.e. there exists an effective Q-divisor Bx ~g —Kx, such that the log pair
(X,1/3Bx) is not log canonical. Then the log pair

(V, ;(BZ;— mE))



is not log canonical at some point P € V. There is a birational morphism 7: V' — U such that
U is either F; or P! x P! and 7 is an isomorphism in a neighborhood of P € X. Then the log
pair

(U3 (x(By) + m(2) )
is not log canonical at the point 7(P). But we know that
—Ky ~q 7(Bv) + mn(E),
so the latter contradicts Example 1.18. Hence lct(X) = 1/3.

Lemma 5.7. Suppose that X = P(1,1,2) and Bx ~g —Kx, but there is a point P € X such
that

O+4Pec LCS(X, )\BX)
for some A < 1/2. Take L € |Op(1,1,2)(1)| such that P € L. Then L C LCS(X, ABx).
Proof. Suppose that there is a curve I' € LCS(X, ABx) such that P € ' # L. Then
Bx = ul'+Q,
where > 2, and 2 is an effective Q-divisor such that I" ¢ Supp(2). Hence
pul' +Q ~q 4L

and I' ~ mL, where m € Z~y. But m > 2, because P € I' # L, which is a contradiction.
Suppose that L € LCS(X, ABx). Then it follows from Theorem 2.7 that

LCS (X, )\BX) — P,

because we proved that LCS(X, ABx) contains no curves passing through P € X.
Let C € |Op(1,1,2)(1)| be a general curve. Then

LCS(X,ABx +C) = PUC,
which is impossible by Theorem 2.7. O
Lemma 5.8. Suppose that X = F;. Then there are 0 < u € Q 3 A > 0 such that
Bx ~g puC + AL,
where C and L are irreducible curves on the surface X such that
c-C=-1,C-L=1
and L - L = 0. Suppose that 4 < 1 and A < 1. Then LCS(X, Bx) = @.

Proof. The set LCS(X, Bx) contains no curves, because L and C generate the cone of effective
divisors of the surface X. Suppose that LCS(X, Bx) contains a point O € X. Then

Kx+Bx+ ((1-p)C+(2=NL) ~g—(L+0),
because —Kx ~qg 2C + 3L. But it follows from Theorem 2.6 that the map
0= H0<(’)X( L C)) s H0<(’)£(X73X)> 40
is surjective, because the divisor (1 — u)C + (2 — X)L is ample. O
Lemma 5.9. Suppose that Sing(X) = @ and K% = 7. Then
Ly Ly=Ly-Lo=1Ly-Lys=—1, L -Lyo=Ly-Ly=1, Ly -L3 =0
where Ly, Lo, L3 are exceptional curves on X. Suppose that LCS(X, Bx) # & and
Bx ~q —pKx,

where 1 < 1/2. Then LCS(X, Bx) = La.
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Proof. Let P be a point in LCS(X, Bx). Then P € Ly, because lct(P! x P!) = 1/2, and there
is a birational morphism X — P! x P! that contracts only the curve L.

Suppose that LCS(X, Bx) # L. Then LCS(X, Bx) = P by Theorem 2.7.

We may assume that P ¢ L3. There is a birational morphism ¢: X — P? that contracts the
curves L1 and L3. Let C; and C3 be proper transforms on X of sufficiently general lines in P2
that pass through the points ¢(L1) and ¢(L3), respectively. Then

—Kx ~ Cy +2C3 + Ls,

and C; # P & Cy. Therefore, we see that

C,UP CLCS (X, AD+;<01+202+L3>) CCyUPULs,

which is impossible by Theorem 2.7, because P ¢ Ls. O
Lemma 5.10. Suppose that O = Sing(X), the equality Kg( = 7 holds, the equivalence
4
B X ~Q C + gL

holds, where L =2 P! = C' are curves on the surface X such that
L-L=-1/2,C-C=-1,C-L=1,
but the log pair (X, Bx) is not log canonical at some point P € C. Then P € L.

Proof. Let S be a quadratic cone in P3. Then S 2 P(1, 1, 2) and there is a birational morphism
6: X — S cP?

that contracts the curve C' to a smooth point @ € S. Then Q € ¢(L) € |Op(y,1,2)(1)]-
Suppose that P € L. Then it follows from Remark 2.23 that to complete the proof we may
assume that either C' ¢ Supp(Bx) or L ¢ Supp(Bx), because the log pair

4
X -L
(x.c+3z)

is log canonical in the point P € X. Suppose that C' ¢ Supp(Bx). Then
1
g =Bx-C> multp(Bx) > 1,

which is impossible. Therefore, we see that C' C Supp(Bx). Then L ¢ Supp(Bx). Put
B X =€ C+ Q,
where Q is an effective Q-divisor such that C' ¢ Supp(2). Then
1

§:Bx~L:€+Q*L>E,

which implies that ¢ < 1/3. Then
1<Q-C=1/3+¢<2/3

by Lemma 2.21, which is a contradiction. Il

6. TORIC VARIETIES

The purpose of this section is to prove Lemma 6.1 (cf. [7], [174], [39]).

Let N = Z" be a lattice of rank n, and let M = Hom(N,Z) be the dual lattice. Put
Mr = M ®7z R and Ng = N ®z R. Let X be a toric variety defined by a complete fan ¥ C Ng,
let

Al = {01,...,vm}

be a set of generators of one-dimensional cones of the fan X. Put
A= {wGM ‘ <w,vi> > —1 for all i = 1,...,m}.

Put T'= (C*)" C Aut(X). Let A be the normalizer of 7' in Aut(X) and W = N/T.
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Lemma 6.1. Let G C W be a subgroup. Suppose that X is Q-factorial. Then

1
ICt<X’ G) - 1+max{<w,v> |weAG ve Al}’

where A% is the set of the points in A that are fixed by the group G.

Proof. Put u = 1+max{{w,v) | w € A% v € Ay}. Then p € Q is the largest number such that
—Kx ~Q AR+ H,
where R is an integral T' x G-invariant effective divisor, and H is an effective Q-divisor. Hence
1
let(X,G) < —.
1

Suppose that lct(X,G) < 1/p. Then there is an effective G-invariant Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some rational A < 1/pu.
There exists a family {D, | t € C} of G-invariant effective Q-divisors such that

e the equivalence D; ~g D holds for every t € C,
e the equality D; = D holds,
e for every t # 0 there is ¢, € Aut(X) such that
Dt = ¢t (-D) = D)
e the divisor Dy is T-invariant,
which implies that (X, ADy) is not log canonical (see [49]).
On the other hand, the divisor Dy does not have components with multiplicity greater then
, which implies that (X, ADy) is log canonical (see [61], [121]), which is a contradiction. O

Corollary 6.2. Let X = Ppn(Opn @ Opn(—a1) @ ...® Opn(—ag)), a; = 0fori=1,..., k. Then
1

let(X) = p .
1+ max{k:, n+> 4 ai}

Proof. Note that X is a toric variety, and A7 consists of the following vectors:

(0,...,0,1,0,0,...,0),
(-1,...,-1,0,0,...,0),
(0,0,...,0,1,0,...,0),

(0,0,...,0,0,...,0,1),
(—a1,...,—ap,—1,...,—1),
which implies the required assertion by Lemma 6.1. [l
Applying Corollary 6.2, we obtain the following result.
Corollary 6.3. In the notation of section 1 one has
1/4 whenever J(X) € {2.33,2.35},
lct (X ) =
{ 1/5 whenever J(X) = 2.36.
On the other hand, straightforward computations using Lemma 6.1 imply the following result.

Corollary 6.4. In the notation of section 1 one has
1/3 whenever J(X) € {3.25,3.31,4.9,4.11,5.2},
let(X) = { 1/4 whenever 1(X) € {3.26,3.30,4.12},
1/5 whenever J(X) = 3.29.
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Another application of Lemma 6.1 is an immediate proof of the following result, obtained
in [77].

Example 6.5. Let X be a blow up of P, n > 2, at k 4+ 1 points that are not contained in a
linear subspace of dimension k — 1. Assume that k£ < n. Then the points are in general position
(i.e. no r + 1 of them are contained in a linear subspace of dimension r — 1), so that X is toric,

and
1

n+1
by Lemma 6.1. Note that X is a Fano variety only if K = 1, or n = 2 and k < 3 (cf. [77,
Chapter 5]).

let (X) =

Remark 6.6. Let X be a blow up of P, n > 2, at n+ 1 points that are not contained in a linear
subspace of dimension n — 1. Then X is not Fano whether n > 3, but the points are still in
general position, so that X is toric, and

let(X) = -

by Lemma 6.1. On the other hand, there is a natural action of the symmetric group Sp,4+1 on X
such that
ICt(X, Sn+1) = 1.
7. DEL PEZZO THREEFOLDS

We use the assumptions and notation of Theorem 1.78. Suppose that —Kx ~ 2H, where H
is a Cartier divisor that is indivisible in Pic(X).
The purpose of this section is to prove the following result.

Theorem 7.1. The equality lct(X) = 1/2 holds, unless J(X) = 2.35 when lct(X) = 1/4.
It follows from Theorems 3.1.14 and 3.3.1 in [98] that

AX) e {1.11, 1.12,1.13,1.14,1.15, 1.17,2.32,2.35,3.27},

and by [20] and [28] (see also Lemma 2.18) one has let(X) = 1/2 if J(X) € {1.12,1.13}.
It follows from Lemma 2.30 that lct(X) = 1/2 when J(X) = 3.27.

Lemma 7.2. Suppose that J(X) = 2.35. Then lct(X) = 1/4.

Proof. There is a birational morphism 7: X — P3 that contracts a surface £ = P? to a point
P € P3. Hence lct(X) < 1/4, because

—Kx ~2F + 4T,

where T is the proper transform of a plane in P? that passes through P € P3.
Suppose that lct(X) < 1/4. Then there is an effective Q-divisor D such that

1

but the log pair (X, AD) is not log canonical for some rational number A < 1.
Let R be a proper transform on X of a general plane in P3. Then

LCS <X, AD + R>

must be connected by Theorem 2.7, because —(Kx + AD + R) is ample. Thus, we see that

o the subscheme £(X, AD) is not zero-dimensional,

e the locus LCS(X, AD) is not contained in E,
which implies that (P3, Aw(D)) is not log canonical. But lct(P?) = 1/4 and 7(D) ~g Ops(1),
which is a contradiction. O

Remark 7.3. Actually, the assertion of Lemma 7.2 is contained in Corollary 6.3, but we still
prefer to give a detailed proof that may have further applications.
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We are left with the cases
IX) e {1.11, 1.14, 1.15,2.32},
while the inequality lct(X) < 1/2 is obvious, because |H| is not empty.
Lemma 7.4. Suppose that J(X) = 2.32. Then lct(X) = 1/2.

Proof. We may suppose that lct(X) < 1/2. Then there is an effective Q-divisor D ~q H
such that the log pair (X, AD) is not log canonical for some positive rational number A\ < 1.
The threefold X is a divisor on P? x P? of bi-degree (1,1). There are two natural P'-bundles
m: X — P? and mp: X — P?, and applying Theorem 2.28 to 7 and 7 we immediately obtain
a contradiction. O

Remark 7.5. Suppose that Pic(X) = Z[H], and there is an effective Q-divisor D ~q H such that
the log pair (X, AD) is not log canonical for some positive rational number A < 1. Put

D=eS+Q~qH,
where S is an irreducible surface and €2 is an effective Q-divisor such that

Supp (Q) D S.

Then ¢ < 1, because Pic(X) = Z[H]|, which implies that the set LCS(X,AD) contains no
surfaces. Moreover, for any choice of H € |H| the locus

LCS(X, AD + H)

is connected by Theorem 2.7. Let H be a general surface in |H|. Since LCS(X,AD + H)
is connected, one obtains that the locus LCS(X,AD + H) has no isolated zero-dimensional
components outside the base locus of the linear system |H|. Note that |H| has no base points
at all, unless J(X) = 1.11 when Bs|H| consists of a single point O. Note that in the latter case
O ¢ LCS(X, A\D), since X is covered by the curves of anticanonical degree 2 passing through O.
Hence the locus LCS(X, AD) never has isolated zero-dimensional components; in particular, it

contains an (irreducible) curve C. Put D|g = D. Then
—Kg ~H|, ~qD,

but (H, AD) is not log canonical in every point of the intersection H NC'. The locus LCS(H, AD)
is connected by Theorem 2.7. But the scheme L£L(H, D) is zero-dimensional. We see that

H-C=|HnC|=1,
and the locus LCS(X, AD) contains no curves besides the irreducible curve C.
Lemma 7.6. Suppose that J(X) = 1.15. Then lct(X) = 1/2.

Proof. We may suppose that lct(X) < 1/2. Then there is an effective Q-divisor D ~g H
such that the log pair (X, AD) is not log canonical for some positive rational number A\ < 1.
The linear system |H| induces an embedding X C P%. Thus, it follows from Remark 7.5 that
the locus LCS(X, AD) consists of a single line C ¢ X C PS.
It follows from [98, Proposition 3.4.1] (see [92] and [67]) that there is a commutative diagram

where @ is a quadric in P4, the morphism « is a blow up of C, the morphism £ is a blow up of
a smooth rational cubic curve Z C @, and the map 1) is a projection from the line C.

Let S be the exceptional divisor of (3, and let L be a fiber of the morphism [ over a general
point of the curve Z. Put S = a(S) and L = «(L). Then S ~ H, the curve L is a line, and the
surface S is singular along C. Moreover, the singularity of S at a general point of C' is locally
isomorphic to T x A', where T is a germ of a nodal curve. In particular, the pair (X, S) is log
canonical.

48



We may assume that Supp(D) 7 S by Remark 2.23. Then
1=L-D>multc(D) >1/A>1,
which is a contradiction. g
Lemma 7.7. Let J(X) = 1.14. Then lct(X) = 1/2.

Proof. We may suppose that lct(X) < 1/2. Then there is an effective Q-divisor D ~qg H

such that the log pair (X, AD) is not log canonical for some positive rational number A\ < 1.
The linear system | H| induces an embedding X C P such that X is a complete intersection of

two quadrics. Then the locus LCS(X, AD) consists of a single line C C X C P® by Remark 7.5.
It follows from [98, Proposition 3.4.1] that there is a commutative diagram

where v is a projection from C', the morphism « is a blow up of the line C, and 3 is a blow up
of a smooth curve Z C P3 of degree 5 and genus 2.

Let S be the exceptional divisor of 3, and let L be a fiber of the morphism 3 over a general
point of the curve Z. Put S = a(S) and L = «(L). Then S ~ 2H, the curve L is a line, and
mult(S) = 3. But the log pair (X, 1/2S) is log canonical, which implies that we may assume
that Supp(D) 7 S by Remark 2.23. Then

1=L-D >multe(D) >1/A> 1,
which is a contradiction. O

Remark 7.8. Let V C P be a complete intersection of two quadric hypersurfaces that has
isolated singularities, and let By be an effective Q-divisor on V' such that By ~g —Ky and

LCS(ViuBy ) # 2,

where 1 < 1/2. Arguing as in the proof of Lemma 7.7, we see that
Les(ViuBy) € L,

where L C V is a line such that L N Sing (V) # @.

Lemma 7.9. Suppose that J(X) = 1.11. Then let(X) = 1/2.

Proof. We may suppose that lct(X) < 1/2. Then there is an effective Q-divisor D ~g H
such that the log pair (X, AD) is not log canonical for some positive rational number A\ < 1.
Recall that the threefold X can be given by an equation

w? =t +t2f2($,y,2) +tf4(a?,y,z) —l—fﬁ(x,y,z) C P(1,1,1,2,3) = Proj (C[m,y,z,t,w}),

where wt(z) = wt(y) = wt(2) = 1, wt(t) = 2, wt(w) = 3, and f; is a polynomial of degree 1.
The locus LCS(X, AD) consists of a single curve C' C X such that H - C =1 by Remark 7.5.
Let ©: X --» P? be the natural projection. Then 1 is not defined in a point O that is cut

out by x =y = 2 = 0. The curve C does not contain the point O, because otherwise we get

1=T-D> multo(D)multo(F) > multC(D) >1/A>1,

where I is a general fiber of the projection 1. Thus, we see that (C) C P? is a line.
Let S be the unique surface in |H| such that C' C S. Let L be a sufficiently general fiber of
the rational map 1 that intersects the curve C. Then L C Supp (D), since otherwise

1=D-L>multc(D) >1/\> 1.

We may assume that D = S by Remark 2.23. Then S has a cuspidal singularity along C.
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We may assume that the surface S is cut out on X by the equation z = 0, and we may assume
that the curve C' is given by w =t =2z = 0. Then S is given by

w? =3 +t2f2(0,y, z) +tf4(0,y,z) C IP’(l, 1,2,3) s Proj(C[y,z,t,w]),

and fg(z,y,2) = xfs(x,y, z), where f5(z,y, z) is a homogeneous polynomial of degree 5.
Since the surface S is singular along the curve C, one has

fa(z,y,2) =z f3(z,y,2),
where f3(z,y, z) is a homogeneous polynomial of degree 3. Then every point of the set
T = f5(m,y,z) =t=w=0C P(1,1,1,2,3)
must be singular on X, which is a contradiction, because X is smooth. O

The assertion of Theorem 7.1 is completely proved.

8. FANO THREEFOLDS WITH p = 2

We use the assumptions and notation introduced in section 1.
Lemma 8.1. Suppose that J(X) = 2.1 or J(X) = 2.3. Then lct(X) = 1/2.

Proof. There is a birational morphism «: X — V that contracts a surface £ C X to a smooth
elliptic curve C C V, where V is one of the following Fano threefolds:

e smooth hypersurface in P(1,1,1,2,3) of degree 6;
e smooth hypersurface in P(1,1,1,1,2) of degree 4.

The curve C' is contained in a surface H C V such that
Pic(V) = Z[H]
and —Kx ~ 2H. Then C is a complete intersection of two surfaces in |H|, and
~Kx ~2H+ E,

where F is the exceptional divisor of the birational morphism «, and H is a proper transform
of the surface H on the threefold X. In particular, the inequality lct(X) < 1/2 holds.

We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A\ < 1/2. Then

o+ LCS(X, AD) CE,
since lct(V') = 1/2 by Theorem 7.1 and a(D) ~q 2H ~ —Ky.
Put k= H - C. Then k = H3 € {1,2}. Note that
Nejy = OC(H\C> @OC(H\C),
which implies that £ = C x P'. Let Z = C and L = P! be curves on F such that
Z-Z=L-L=0

and Z-L =1. Then o*(H)|g ~ kL, and since

~2Z ~ K~ (Kx +E)| ~ (2B -20"(H))| ~-2kL+2E| .

we see that E|g ~ —Z + kL. Put
D = puE +Q,
where Q is an effective Q-divisor on X such that £ ¢ Supp().
The pair (X, E 4+ \Q2) is not log canonical in the neighborhood of E. Hence, the log pair

E

Q| ~o (- Kx—uB)| ~q (20" (H) - (1+0)E)| ~o (1+1m)Z+k(1-p)L,

and 0 < Ak(1 — p) < 1, which contradicts Lemma 2.24. O
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Lemma 8.2. Suppose that J(X) = 2.4 and X is general. Then lct(X) = 3/4.

Proof. There is a commutative diagram

X
N

where 9 is a rational map, « is a blow up of a smooth curve C C P? such that
C=H, -Hy

for some Hi, Hy € |Ops(3)], and [ is a fibration into cubic surfaces.
Let P be a pencil in |Ops3(3)| generated by H; and Hy. Then v is given by P.
We assume that X satisfies the following generality conditions:

e every surface in P has at most one ordinary double point;
e the curve C contains no Eckardt points” (see Definition 4.1) of any surface in P.

Let E be the exceptional divisor of the birational morphism «. Then
4 _ 1 4 _ 1
-Hi+-F~g-Hy+ -FE ~g —K
3 + 3 Q 32 + 3 Q X5

where H; is a proper transform of H; on the threefold X. We see that let(X) < 3/4.
We suppose that lct(X) < 3/4. Then there exists an effective Q-divisor D ~gp —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number \ < 3/4.
Suppose that the set LCS(X, AD) contains a (irreducible) surface S C X. Then

D=eS+A,
where € > 1/, and A is an effective Q-divisor such that S ¢ Supp(A). Then
(. o],
Hy
is not log canonical by Remark 2.3 if S N H; # @. But
D

g, e —Kpg,-
We can choose H; to be a smooth cubic surface in P3. Thus, it follows from Theorem 4.2 that
SNH, =0,
which implies that S ~ Hj. Thus, we see that a(S) is a cubic surface in P. Then
ca(S) + a(A) ~g Ops (4),

which is impossible, because € > 1/X > 4/3.
Let F be a fiber of § such that F NLCS(X,AD) # @. Put

D=uF+Q,

where € is an effective Q-divisor such that F' ¢ Supp(2). Then the log pair (F, AQ|r) is not log
canonical by Theorem 2.20, because Au < 1. It follows from Theorem 4.2 that

LCS(F, )\Q’ ) — 0,
F
where either O is an Eckardt point of the surface F', or O = Sing(F’). By Theorem 2.7
LCS (X, AD) - LCS(X, AiF + )\QD) — 0,

because it follows from Theorem 2.20 that (X, F' 4+ AQD) is not log canonical at O and is log
canonical in a punctured neighborhood of O. But O ¢ E by our generality assumptions. Then

a(0) CLCS(P?, Aa(D)) C a(O)UC,

"Note that C does not contain singular points of the surfaces in P since C' is a complete intersection of two
surfaces from P.
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where a(O) € C. But A < 3/4, which contradicts Lemma 2.8. O
Lemma 8.3. Suppose that J(X) € {2.5,2.10,2.14} and X is general. Then lct(X) = 1/2.

Proof. There is a commutative diagram

where V' is a smooth Fano threefold such that — Ky ~ 2H for some H € Pic(V') and
(V) e {113, 1.14, 1.15},
the morphism « is a blow up of a smooth curve C' C V such that
C =H;-H

for some Hy,Hs € |H|, Hi # Ha, the morphism [ is a del Pezzo fibration, and 1 is a linear
projection.
Let E be the exceptional divisor of the birational morphism «. Then

2H1+EN2HQ+EN*K)(,

where H; is a proper transform of H; on the threefold X. We see that let(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A\ < 1/2. Then

o +LCS (X, AD) CE,

because (D) ~g —Ky and let(V) = 1/2 by Theorem 7.1.
We assume that the threefold X satisfies the following generality condition: every fiber of the

del Pezzo fibration £ has at most one singular point that is an ordinary double point.
Let F' be a fiber of § such that F NLCS(X,AD) # @. Put

D = uF +Q,
where Q is an effective Q-divisor on X such that F' ¢ Supp(€2). Then
2(D) = pa(F) + () ~o 2a(F) ~o K.
which implies that p < 2. Then (F, AQ|r) is also not log canonical by Theorem 2.20. But
Q‘F ~o —Kr,
which implies that lct(F) < A < 1/2. But F' has at most one ordinary double point and
K% =H3<5,

which implies that lct(F) > 1/2 (see Examples 1.18, 1.19, 5.3 and 5.4), which is a contradiction.
U

Lemma 8.4. Suppose that J(X) = 2.8 and X is general. Then lct(X) = 1/2.
Proof. Let O € P? be a point, and let a: V7 — P3 be a blow up of the point O. Then
Vr 2P(Op @ Op2 (1) ),
and there is a Pl-bundle m: Vs — P2. Let E be the exceptional divisor of a. Then E is a

section of .
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There is a quartic surface R C P? such that Sing(R) = O, the point O is an isolated double
point of the surface R, and there is a commutative diagram

where w is a double cover branched in R, the morphism 7 is a double cover branched in the
proper transform of R, the morphism [ is a birational morphism that contracts a surface £ such
that n(£) = E to the singular point of V5 and

w <Sing(Vg)> =0,

the map 1 is a projection from the point O, and ¢ is a conic bundle.

We assume that X satisfies the following mild generality condition: the point O is an ordinary
double point of the surface R. Then F = P! x P!,

Let H be the proper transform on X of the general plane in P? that passes through O. Then

—KXw2E+E,

which implies that let(X) < 1/2.

We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~gp —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number \ < 1/2.

It follows from Lemma 2.18 that LCS(X, D) N E # @. Put

D =uE +9,
where  is an effective Q-divisor on X such that E ¢ Supp(£2). Then
2:D42:@E+Q)P:2M+QT>2%
where I' is a general fiber of the conic bundle ¢. Hence p < 1. Thus, the log pair
(5 0],
E
is not log canonical by Theorem 2.20, because LCS(X, D) N E # @. But

1+p
q ~o — PR
g QT g UF

which is impossible by Lemma 2.24. O
Lemma 8.5. Suppose that J(X) = 2.11 and X is general. Then lct(X) = 1/2.

Proof. Let V be a cubic hypersurface in P4. Then there is a commutative diagram

such that a contracts a surface £ C X to a line L C V, the map v is a linear projection from
the line L, the morphism ([ is a conic bundle.

We assume that X satisfies the following generality condition: the normal bundle N7, v to
the line L on the variety V is isomorphic to Op, & Or..

Let H be a hyperplane section of V' such that L. C H. Then

—Kx ~2H+E,

where H C X is the proper transform of the surface H. In particular, let(X) < 1/2.
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We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A\ < 1/2. Then

o #LCS (X, AD) CE,

since lct(V) = 1/2 and «(D) ~g —Ky. Note that E = P! x P! by the generality condition.
Let F C FE be a fiber of the induced projection £ — L, let Z C E be a section of this
projection such that Z-Z = 0. Then o*(H)|g ~ F and E|g ~ —Z, because

27 ~2F ~ Kp~ (Kx + E)| ~2(E-o*(H))| ~-2F+28B| .
E E E
Put D = pE + Q, where  is an effective Q-divisor on X such that £ ¢ Supp(€2). Then
2=D-I'=pE-T+Q -T2 puE-T =2pu,

where I' is a general fiber of the conic bundle . Thus, we see that u < 1.
The log pair (E, AQ|g) is not log canonical by Theorem 2.20. But

™ (_KX_ME)‘ENQ (14 p)Z +2F,

which contradicts Lemma 2.24, because p < 1 and A < 1/2. ]

Q

Lemma 8.6. Suppose that J(X) = 2.15 and X is general. Then lct(X) = 1/2.

Proof. There is a birational morphism «: X — P3 that contracts a surface £ C X to a smooth
curve C' C P3 that is complete intersection of an irreducible quadric Q@ C P3 and a cubic F C P3.
We assume that X satisfies the following generality condition: the quadric () is smooth.
Let @ be a proper transform of @ on the threefold X. Then there is a commutative diagram

where V' is a cubic in P* that has one ordinary double point P € V, the morphism 3 contracts
the surface ) to the point P, and < is a linear projection from the point P.
Let E be the exceptional divisor of «. Then
—-K X ~ 2@ + F
and B(E) C V is a surface that contains all lines on V' that pass through P. We see that
let(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such

that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2.
It follows from Lemma 2.17 that either

o # LCS(X, /\D) co,
or the set LCS(X, AD) contains a fiber of the natural projection E — C'. In both cases
LCS(X, /\D) NG+ .
We have Q = P! x PL. Put
D=pQ+9,
where Q is an effective Q-divisor on X such that Q ¢ Supp(£2). Then
a(D) ~q pQ + a(Q) ~q —Kps,
which gives < 2. The log pair (Q, AM2|g) is not log canonical by Theorem 2.20. But
1+ p

Q| ~o - Kg
QQ 2 Q7

which implies that ¢ > 1 by Lemma 2.24.
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It follows from Remark 2.23 that we may assume that E ¢ Supp(D). Then
1=D - F=uQ -F+Q-F=p+Q-F>yu,
where F'is a general fiber the natural projection £ — C. But p > 1, which is a contradiction. [J
Lemma 8.7. Suppose that J(X) = 2.18. Then lct(X) = 1/2.
Proof. There is a smooth divisor B C P! x P? of bidegree (2,2) such that the diagram

AT

1 pl 2
P —— P! x P2 —

PQ

commutes, where 7 is a double cover that is branched in B, the morphisms 7, and 7o are natural
projections, the morphism ¢ is a quadric fibration, and ¢ is a conic bundle.

Let H; be a general fiber of 71, and let Hs be a general surface in |75(Op2(1))|. Then
B ~2H, +2H,.

Let H; be a general fiber of ¢, and let Hy be a general surface in |¢3(Op2(1))|. Then

—Kx ~ I‘jl +2ﬁ2,

which implies that let(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~gp —Kx such
that the log pair (X, A\D) is not log canonical for some positive rational number A < 1/2.
Applying Lemma 2.26 to the fibration ¢; we see that

o + LCS(X, AD) cO,

where @) is a singular fiber of ¢;. Moreover, applying Theorem 2.28 to the fibration ¢, we see
that

o #LCS(X, /\D) CONR,

where R C X be an irreducible surface that is swept out by singular fibers of ¢5. In particular,
the set LCS(X, AD) contains no surfaces.
Suppose that LCS(X, AD) is zero-dimensional. Then

1/~ _ _
LCS <X, D+ 3 (H1 + 2H2)> — LCS(X, AD) U Hy,
which is impossible by Theorem 2.7.
We see that the set LCS(X, AD) contains a curve I' C Q N R. Put
D =pQ+Q,
where  is an effective Q-divisor such that @ ¢ Supp(€2). Then

a0 )
(@ 2],
is not log canonical along I" by Theorem 2.20. But

o (-0 s0)] 0o
o™e XMQQ@Q

which implies that I is a ruling of the cone Q C P? by Lemma 5.7. Then ¢5(I') C P? is a line,
and

$2(T) € ¢2(R).
But ¢2(R) C P? is a curve of degree 4. Thus, we see that
$2(R) = ¢2(I') U Z,
where Z C P? is a reduced cubic curve. Then ¢o induces a double cover of

62(T) \ (02(1) N 2)
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that must be unramified (see [192]). But the quartic curve ¢2(R) has at most ordinary double
points (see [192], [166]). Then

|p2(T) N Z| =3,
which is impossible, because ¢o(I") = P O
Lemma 8.8. Suppose that J(X) = 2.19 and X is general. Then lct(X) = 1/2.

Proof. Tt follows from [98, Proposition 3.4.1] that there is a commutative diagram

where V is a complete intersection of two quadric fourfolds in P, the morphism « is a blow up of
a line L C V, the morphism § is a blow up of a smooth curve C' C P3 of degree 5 and genus 2,
and the map 1 is a linear projection from the line L.

Let E and R be the exceptional divisors of a and (3, respectively. Then

e the surface 3(F) C P? is an irreducible quadric,
e the surface a(R) C V is swept out by lines that intersect the line L.

We assume that X satisfies the following generality condition: the surface G(FE) is smooth.
Let H be any hyperplane section of V' C P® such that L C H. Then

2H+FE~R+2E ~ —Ky,

where H is a proper transform of H on the threefold X. We see that let(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2. Then

o #LCS(X,AD) CE~P! x P!

because a(D) ~g —Ky and lct(V) = 1/2 by Theorem 7.1.
Let F be a fiber of the projection £ — L, and let Z be a section of this projection such that
Z-Z =0. Then o*(H)|g ~ F and E|g ~ —Z, because

27 ~2F ~ Kp~ (Kx + E)| ~2(E-a*(0))| ~2E -2F.
E E E
By Remark 2.23, we may assume that either E' ¢ Supp(D), or R ¢ Supp(D), because the log
pair
(X, AR+ 2E))
is log canonical and —Kx ~ R+ 2FE. Put
D =puE +9Q,

where Q is an effective Q-divisor on X such that £ ¢ Supp(Q?).
Suppose that p < 1. Then (X, E + AQ) is not log canonical, which implies that

(720 )

is also not log canonical by Theorem 2.20. But
Q| ~o (= EKx—uB)| ~o(1+1)2+2F,

which contradicts Lemma 2.24, because p < 1 and A < 1/2.
Thus, we see that g > 1. Then we may assume that R ¢ Supp(D).
Let T" be a general fiber of the projection R — C. Then I' ¢ Supp(D) and

1l=—Kx -I'=pE - T+Q-T'=p+Q-T 2> pu,
which is a contradiction. O

Lemma 8.9. Suppose that J(X) = 2.23 and X is general. Then lct(X) = 1/3.
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Proof. There is a birational morphism a: X — @ such that Q C P* is a smooth quadric three-
fold, and « contracts a surface £ C X to a smooth curve C' C () that is a complete intersection of
a hyperplane section H C @ and a divisor F' € |Og(2)|.

We assume that X satisfies the following generality condition: the quadric surface H is
smooth.

Let H be a proper transform of H on the threefold X. Then there is a commutative diagram

where V' is a complete intersection of two quadrics in P® such that V has one ordinary double
point P € V', the morphism 3 contracts H to the point P, and v is a projection from P.
Let E be the exceptional divisor of a. Then

—Kx ~3H+2F

and B(F) C V is a surface that contains all lines that pass through P. In particular, lct(X) <
1/3.

We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number \ < 1/3.

It follows from Remark 7.8 that either

o+ LCS (X, AD) CH,
or the set LCS(X, AD) contains a fiber of the natural projection E — C. In both cases
LCS (X, AD) NH+o.

We have H = P! x P!. There is a non-negative rational number p such that
D = puH + Q,
where Q is an effective Q-divisor on X such that H ¢ Supp(f2). Then
(D) ~g pH + a(Q) ~g —Kq,
which gives u < 3. The log pair (H,\Q|z) is not log canonical by Theorem 2.20. But

1+p
Q‘ ~y — PR
g QT g TH

which implies that ¢ > 1 by Lemma 2.24.
It follows from Remark 2.23 that we may assume that E ¢ Supp(D), because the log pair

(X.A(3H +2E))
is log canonical. Let F' be a general fiber the natural projection £ — C. Then
l=D-F=uH -F+Q-F=p+Q -F>yu,
which is a contradiction, because p > 1. g
Lemma 8.10. Suppose that J(X) = 2.24 and X is general. Then lct(X) =1/2.
Proof. The threefold X is a divisor on P? x P? of bidegree (1,2). Let H; be a surface in

7 (0r(1) )
where 7;: X — P? is a projection of X onto the i-th factor of P? x P2, i € {1,2}. Then
—Kx ~2H; + Ho,

which implies that let(X) < 1/2. Note that 71 is a conic bundle, and 75 is a P'-bundle.
Let A C P? be the degeneration curve of the conic bundle 7;. Then A is a cubic curve.
We suppose that X satisfies the following generality condition: the curve A is irreducible.
57

)



Assume that let(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such that
the log pair (X, AD) is not log canonical for some positive rational number A\ < 1/2.
Suppose that the set LCS(X, AD) contains a surface S C X. Then

D =uS+9Q,
where € is an effective Q-divisor such that S ¢ Supp(2), and p > 1/A. Let F; be a general fiber
of m;, i € {1,2}. Then
2=D -F,=pS - F,+Q-F, > uS- F,

but either S- Fy > 1 or S - Fy > 1. Thus, we see that u < 2, which is a contradiction.
By Theorem 2.28 and Theorem 2.7, there is a fiber I'y of the P'-bundle 75 such that

o+ LCS <X, /\D) — Ty,

because the set LCS(X, AD) contains no surfaces.
Applying Theorem 2.28 to the conic bundle 71, we see that

™ (Fg) (- A,
which is impossible, because A C P? is an irreducible cubic curve and 7 (I's) C P? is a line. [0
Lemma 8.11. Suppose that J(X) = 2.25. Then lct(X) = 1/2.

Proof. Recall that X is a blow up a: X — P3 along a normal elliptic curve C of degree 4.

Let @ C P3 be a general quadric containing C, and let Q C X be a proper transform of Q.
Then
where E' is the exceptional divisor of «.. In particular, let(X) < 1/2.

We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such

that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2.
Note that the linear system |@Q| defines a quadric fibration

b: X — P,

such that every fiber of ¢ is irreducible. Then the log pair (X, AD) is log canonical along every
nonsingular fiber Q of the fibration ¢ by Theorem 2.28 since lct(Q) = 1/2 (see Example 1.18).

The locus LCS(X, AD) does not contain any fiber of ¢, because a(D) ~q 2Q and every fiber
of ¢ is irreducible. Therefore, we see that dim(LCS(X,AD)) < 1.

Let Z be an element in LCS(X, AD). There is a singular fiber Q1 of the fibration ¢ such that
Z C Q1. Note that ¢ has 4 singular fibers and each of them is a proper transform of a quadric
cone in P? with vertex outside C.

Let Q2 be a singular fiber of ¢ such that Q1 # Q2, let H be a proper transform of a general
plane in P? that is tangent to the cone a(Q2) C P? along one of its rulings L C a(Q2), and let
R be a proper transform of a very general plane in P3. Put

A:AD+%((1+&)Q2+(2—5)H+35R)

for some positive rational number € < 1 — 2\. Then

14+e+2)\

ANQ-()\—I-%(l—FE))KXNQ— 5

KXa

which implies that —(Kx + A) is ample.
Let L be a proper transform on X of the line L. Then
ZULC LCS(X,A) C Ql U QQ,
which is impossible by Theorem 2.7, because —(Kx + A) is ample. O

Lemma 8.12. Suppose that J(X) = 2.26 and X is general. Then lct(X) = 1/2.
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Proof. Let V' be a smooth Fano threefold such that — Ky ~ 2H and
Pic(V) = Z[H],
where H is a Cartier divisor such that H®> = 5 (i.e. J(V) = 1.15). Then |H| induces an

embedding X C PS.
It follows from [98, Proposition 3.4.1] (see also [67]) that there is a line

LcXcpS

such that there is a commutative diagram

where @ is a smooth quadric hypersurface in P*, the morphism « is a blow up of the line L C V,
the morphism £ is a blow up of a twisted cubic curve P! = C' C @, and 1) is a projection from
the line L.

Let S be the exceptional divisor of the morphism 3. Put S = «(S). Then S ~ H, and S is
singular along the line L. Let E be the exceptional divisor of the morphism «. Then

B(E) ~ Op (1),

which implies that 3(FE) is an irreducible quadric surface.
We suppose that X satisfies the following generality condition: the surface S(E) is smooth.
The equivalence —Kx ~ 25 + 3F holds. Moreover, the log pair

(X, %(25 + 3E>>

is log canonical but not log terminal. Thus, we see that lct(X) < 1/3.
We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/3. Then

o +LCS (X, AD) CE,

because a(D) ~g —Ky and lct(V) = 1/2 by Theorem 7.1.

Note that E = P! x P! by our generality condition. Let F be a fiber of the projection £ — L,
and let Z be a section of this projection such that Z-Z = 0. Then o*(H)|g ~ F and E|g ~ —Z,
because

22 —2F ~ Kp~ (Kx+ E)| ~2(B—a’(H))| ~28| -2F.

By Remark 2.23, we may assume that either £ ¢ Supp(D), or S ¢ Supp(D). Put

D= uFE +9Q,

where (2 is an effective Q-divisor on X such that E ¢ Supp(€2).
Suppose that © < 2. Then (X, E + AQ) is not log canonical, which implies that

E

Q| ~q(-Kx—uE)| ~q(1+p)Z+2F,

which contradicts Lemma 2.24, because p < 2 and A < 1/3.

Thus, we see that g > 2. Then we may assume that S ¢ Supp(D).
Let T" be a general fiber of the projection S — C. Then I' ¢ Supp(D) and

1l=—Kx - I'=pE - T+Q-T'=p+Q-T > pu,
which is a contradiction. O

Lemma 8.13. Suppose that J(X) = 2.27. Then lct(X) = 1/2.
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Proof. There is a morphism «: X — P3 contracting a surface F to a twisted cubic curve C' C P3,
and X = P(€), where £ is a stable rank two vector bundle on P? with ¢1(£) = 0 and ¢;(€) = 2
such that the sequence

0—>OP2(—1)@O[P2(—1) %OPQ@Opz@OPQ@OPQ—>€®O]P>2(1) — 0

is exact (see [50] and [177, Application 1]). B
Let Q@ C P3 be a general quadric containing C, and let Q C X be a proper transform of Q.
Then

—KXwQQ—I-E,

where E is the exceptional divisor of . In particular, we see that let(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2.
Suppose that the set LCS(X, AD) contains a surface S C X. Put

D =puF +9,

where > 1/X and Q is an effective Q-divisor such that F' ¢ Supp(2).
Let ¢: X — P? be the natural P'-bundle. Then

2=D-T=puF -T+Q-T'=pF-T+Q-F>uF-T,
where I' is a general fiber of ¢. Thus, we see that F' is swept out by the fibers of ¢. Then
o(F) ~ Ops (d)

and d > 2. But o(D) ~q po(F) + () ~g Ops(4), which is a contradiction.
We wee that the locus LCS(X, AD) contains no surfaces. Applying Theorem 2.28 to (X, D)
and ¢, we see that

L CLCS <X, AD),
where L is a fiber of ¢. Note that (L) is a secant line of the curve C C P3. One has
a(L) € LCS(P*, xa(D)) € a(LCS(X, AD) ) UC,
which is impossible by Lemma 2.9. (Il
Lemma 8.14. Suppose that J(X) = 2.28. Then lct(X) = 1/4.
Proof. There is a blow up a: X — P3 along a plane cubic curve C' C P3. One has
Ky ~ 4G + 3E,

where E is the exceptional divisor of @ and G is a proper transform of the plane in P? that
contains the curve C'. In particular, we see that the inequality lct(X) < 1/4 holds.

We suppose that lct(X) < 1/4. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some rational number A\ < 1/4. One has

o #1LCS(X, AD) CE,

since lct(P*) = 1/4. Computing the intersections with a strict transform of a general line in P3
intersecting the curve C, one obtains that LCS(X, AD) does not contain the divisor E. Moreover,
any curve I' € LCS(X, A\D) must be a fiber of the natural projection

Yv: E—C

by Lemma 2.14. Therefore, we see that either the locus LCS(X, AD) consists of a single point,
or the locus LCS(X, AD) consists of a single fiber of the projection 1) by Theorem 2.7.

Let R be a sufficiently general cone in P3 over the curve C, and let H be a sufficiently general
plane in P? that passes through the point Sing (R). Then

LCS (X, AD + Z(R + H)) - LCS(X, AD) |JSing (R),
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where R and H are proper transforms of R and H on the threefold X. But the divisor
— <KX +AD + %(RJr H)> ~g (A\—1/4)Kx
is ample, which contradicts Theorem 2.7. Il

Lemma 8.15. Suppose that J(X) = 2.29. Then lct(X) = 1/3.

Proof. There is a birational morphism «: X — @ such that () is a smooth quadric hypersurface,
and « is a blow up along a smooth conic C' C Q. -
Let H be a general hyperplane section of Q C P* that contains C, and let H be a proper
transform of the surface H on the threefold X. Then
—Kx ~3H +2E,

where FE is the exceptional divisor of a.. In particular, the inequality lct(X) < 1/3 holds.
We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some rational A < 1/3. Then

o+ LCS (X, )\D) CE,

since lct(Q) = 1/3 (see Example 1.9) and o(D) ~q —Kgq.

The linear system |H| has no base points and defines a morphism 3: X — P!, whose general
fiber is a smooth quadric surface. Then the log pair (X, \D) is log canonical along the smooth
fibers of 3 by Theorem 2.28 (see Example 1.18).

It follows from Theorem 2.7 that there is a singular fiber S ~ H of the morphism [ such that

o ;ALCS(X,AD) CENS,

and a(S) C P? is a quadratic cone. Put I' = ENS. Then I is an irreducible conic, the log pair

2
X, S+:E
(x.557)

has log canonical singularities, and 35 +2E ~g D. Therefore, it follows from Remark 2.23 that
to complete the proof we may assume that either S ¢ Supp(D) or E ¢ Supp(D).

Intersecting the divisor D with a strict transform of a general ruling of the cone a(S) C P3
and with a general fiber of the projection £ — C', we see that

T ¢ LCS (X, )\D),
which implies that LCS(X, AD) consists of a single point O € " by Theorem 2.7.
Let R be a general (not passing through O) surface in |a*(H)|. Then
1,
LCS (X, AD + 2(H+2R)> — RUO,

which is impossible by Theorem 2.7, since —Kx ~ H + 2R ~g D and A < 1/3. O
Lemma 8.16. Suppose that J(X) = 2.30. Then lct(X) = 1/4.

Proof. There is a commutative diagram

where @ is a smooth quadric threefold in P*, the morphism « is a blow up of a smooth conic
C C P3, the morphism £ is a blow up of a point, and « is a projection from a point.

Let G be a proper transform on the variety X of the unique plane in P2 that contains the
conic C'. Then the surface G is contracted by the morphism 3, and

~Kx ~ 4G + 3E,

where FE is the exceptional divisor of the blow up a. Thus, we see that let(X) < 1/4.
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We suppose that lct(X) < 1/4. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some rational A\ < 1/4. Then

o # Lcs(X, )\D) CENG,

because lct(P4) = 1/4 and let(Q) = 1/3.
We may assume that either G ¢ Supp(X) or E ¢ Supp(X) by Remark 2.23.
Intersecting D with lines in G =2 P? and with fibers of the projection E — C, we see that

Lcs(X, AD) CENG

which implies that there is a point O € E'N G such that LCS(X, AD) = O by Theorem 2.7.
Let R be a general surface in |o*(H)| and F' a general surface in |a*(2H) — E|. Then

LCS (X, )\D+;(F+2R>) — RUO,

which is impossible by Theorem 2.7 since —Kx ~ F' + 2R ~g D and X < 1/4. ]
Lemma 8.17. Suppose that IJ(X) = 2.31. Then lct(X) = 1/3.

Proof. There is a birational morphism a: X — @ such that @ is a smooth quadric hypersurface,
and « is a blow up of the quadric @) along a line L C Q.

Let H be a sufficiently general hyperplane section of the quadric @ C P* that passes through
the line L, and let H be a proper transform of the surface H on the threefold X. Then

—Kx ~3H +2E,

where E is the exceptional divisor of a.. In particular, let(X) < 1/3.
We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some rational A < 1/3. Then

o +LCS (X, AD) CE,
since lct(Q) = 1/3 and a(D) ~qg —Kg.

The linear system |H| defines a P!-bundle ¢: X — P? such that the induced morphism
E = F; — P? contracts an irreducible curve Z C E. One has

LCS(X, )\D) —ZCE
by Theorem 2.28. Put
D = puFE +Q,
where (2 is an effective Q-divisor on X such that E ¢ Supp(€2). Then
2=D - F=uE-F+Q-F=p+Q-F >y,
where F' is a general fiber of ¢. Note that the log pair

(X, E+ AQ)

is not log canonical, because A < 1/3. Then (E, AQ|g) is not log canonical by Theorem 2.20.
Let C be a fiber of the natural projection £ — L. Then

Q ~g3C+ (1447,

which implies that (E, AQ|g) is log canonical by Lemma 5.8, which is a contradiction. O
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9. FANO THREEFOLDS WITH p = 3

We use the assumptions and notation introduced in section 1.
Lemma 9.1. Suppose that J(X) = 3.1 and X is general. Then lct(X) = 3/4.
Proof. There is a double cover

w: X — P! x P! x P!
branched over a divisor of tridegree (2,2,2). The projection
P! x P! x Pt — P!

onto the i-th factor induces a morphism 7;: X — P!, whose fibers are del Pezzo surfaces of
degree 4.

Let R; be a singular fiber of the fibration 71, let @) be a singular point of the surface R, and
let Ry and R3 be fibers of my and w3 such that

Ry > Q € Rs,
respectively. Then multg(R: + Ro + R3) = 4, which implies that the log pair

(X, %<R1 + Ry +R3)>

is not log terminal at Q. But —Kx ~ Ry + Ry + R3. Thus, we see that lct(X) < 3/4.
We suppose that the threefold X satisfies the following generality condition: for an arbitrary
point O € X, there is k € {1, 2,3} such that

the fiber F} of the fibration m; that contains O is smooth at the point O,

the singularities of the surface F} consist of at most one ordinary double point,
for every smooth curve I' C Fj, such that —Kpg, -I' =1, we have O ¢ T,

for every smooth curves A; C S D As such that

—Kp, Ay =—Kp, - Ay =2
and Ay + Ay ~ —KFp,, we have O # A1 N Ag.
We suppose that lct(X) < 3/4. Then there exists an effective Q-divisor D ~g —Kx such that

the log pair (X, AD) is not log canonical at some point P € X for some rational number A\ < 3/4.
Let S; be a fiber of m; such that P € S;. Without loss of generality, we may assume that

the surface S; is smooth at the point P,

the singularities of the surface S; consist of at most one ordinary double point,
for every smooth curve L C S; such that —Kg, - L =1, we have P &€ L,

for every smooth curves Cy C S1 D (s such that

—Kg, -C1=—Kg, -Cy =2
and C7 + Cy ~ —Kg,, we have P # C1 N Ch.
The surface S; is a del Pezzo surface of degree 4. One has
D = pS1 + Q,

where Q is an effective Q-divisor on X such that S; ¢ Supp(92).
Let ¢: X — P! x P! be a natural conic bundle induced by the linear system

’52 + 53 ’7
and let I" be a general fiber of the conic bundle ¢. Then
2=D -I'=upS; - T+Q-T=2u+Q-T >2p,
which implies that g < 1. Then (X, S; + Af2) is not canonical at the point P. Hence

(51, 20| )
St
is not log canonical at the point P by Theorem 2.20. But
Q ~oD|l ~o-K
5 Q s Q Sk
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which is impossible (see Example 5.4 and mind the generality assumption). O
Lemma 9.2. Suppose that J(X) = 3.2 and X is general. Then lct(X) = 1/2.
Proof. The threefold X is a primitive Fano threefold (see [128, Definition 1.3]). Put
U= P<OIP’1><IP’1 © Opiypi (= 1,-1) @ Opiypr (- 1, —1)),
let 7: U — P! x P! be a natural projection, and let L be a tautological line bundle on U. Then
X e ‘2L +ot (oplxpl (2,3)) ‘
Let us show that let(X) < 1/2. Let Ey and Ey be surfaces in X such that
m(E1) C P! x P! 5 n(E»)
are divisors on P! x P! of bi-degree (1,0) and (0,1), respectively. Then
Ky~ L)X +2E, + B,

which implies that let(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~gp —K x such that
the log pair (X, AD) is not log canonical at some point P € X for some rational number A < 1/2.
It follows from [86, Proposition 3.8] that there is a commutative diagram

IF’1<—,TI]P’1><]P’1T>P1

where V is a Fano threefold that has one ordinary double point O € V such that
Pic(V) =Z[ — Kv/|
and —K‘g/ = 16, the morphism « contracts a unique surface
P'xP'2ScX

such that S ~ L|x to the point O € V', the morphism f; contracts S to a smooth rational curve,
the morphism ; contracts the curve (3;(S) to the point O € V so that the rational map

")/2071_1: Uy --+» Us

is a flop in 41(S) =2 P!, the morphism 15 is a quadric fibration, and the morphisms 1, ¢1, ¢ are
fibrations whose fibers are del Pezzo surfaces of degree 4, 3 and 6, respectively. The morphisms
71 and 7 are natural projections, and w = m|x. Then

CYV) =Z[a(Er)] @ Z]a(E,)],

and w is a conic bundle. The curve ;(.5) is a section of 91, and (2(S) is a 2-section of 5.

We assume that the threefold X satisfies the following mild generality condition: every sin-
gular fiber of the del Pezzo fibration ¢ has at most A; singularities.

Applying Lemma 2.26 to the fibration ¢, we see that

o + LCS(X, )\D) C S

where S7 is a singular fiber of the del Pezzo fibration ¢;, because the global log canonical
threshold of a smooth del Pezzo surface of degree 6 is equal to 1/2 by Example 1.18.
Applying Lemma 2.26 to ¢2, we obtain a contradiction by Example 1.38. O

Lemma 9.3. Suppose that J(X) = 3.3 and X is general. Then lct(X) = 2/3.
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Proof. The threefold X is a divisor on P! x P! x P2 of tridegree (1,1,2). In particular,
~Kx ~ 1 (0(1)) +75(0p1 (1)) + 67 (0p (1)),

where 71: X — P! and m;: X — P! are fibrations into del Pezzo surfaces of degree 4 that are
induced by the projections of the variety P! x P! x P2 onto its first and second factor, respectively,
and ¢: X — P? is conic bundle that is induced by the projection P! x P! x P2 — P2,

Let ap: X — P! x P? be a birational morphism induced by the linear system

73O (1)) + 0" (0e2 (1)) .
let H; € |7f(Op1(1))| and R € |¢*(Op2(1))| be general surfaces. Then
Hy ~ Hy+ 2R — F»,

where Fs is the exceptional divisor of the birational morphism «s. Hence

3 1 1
—Kx ~Hi+Hy+ R~q §H1+§H2+ §E2,

which implies that let(X) < 2/3.
We suppose that the threefold X satisfies the following generality conditions: for an arbitrary
point O € X, there is k € {1,2} such that

e the fiber F}, of the fibration 7 that contains the point O is smooth at the point O,
e the singularities of the surface F} consist of at most one ordinary double point,
e for every smooth curve I' C Fj, such that —Kp, -T' = 1, we have O ¢ T if Sing(Fj,) # @.

We suppose that Ict(X) < 2/3. Then there exists an effective Q-divisor D ~g —K x such that
the log pair (X, AD) is not log canonical at some point P € X for some rational number A < 2/3.
Let S; be a fiber of 7; such that P € S;. Then we may assume that

e the surface S; is smooth at the point P,
e the singularities of the surface S; consist of at most one ordinary double point,
e for every smooth curve L C S; such that —Kg, - L = 1, we have P ¢ L if Sing(S;) # @.

Put D = puS1 + Q, where Q is an effective Q-divisor such that S; ¢ Supp(£2). Then

(H2’ A H2>

is log canonical because lct(Hy) = 2/3. Thus, we see that p < 1/\. Hence

+ A0
Hy

(51, 20 )
S1
is not log canonical at the point P by Theorem 2.20. But
Q ~p-—-K
s, Q S1s
which is impossible (see Example 5.4). O

Lemma 9.4. Suppose that J(X) = 3.4. Then lct(X) = 1/2.

Proof. Let O be a point in P2. Then there is a commutative diagram

%4 Fi ————P!

[ =

Pl ~ Pl x P2 B —— P2
such that m; and v are natural projections, w is a double cover branched over a divisor B C P! xP?
of bi-degree (2,2), the morphism ~; is a fibration into quadrics, 2 and 7 are conic bundles,
the morphism £ is a blow up of the point O, the morphism « is a blow up of a smooth curve that
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is a fiber of 5 over the point O, the morphism 7 is a fibration into del Pezzo surfaces of degree 6,
and ¢ is a fibration into del Pezzo surfaces of degree 4.
Let H be a general fiber of 1, and let S be a general fiber of ¢. Then

~Kx~H+2S+E,

where E is the exceptional divisor of a. Thus, we see that let(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2. Then

2 # LCS <X, AD) CE,

because a(D) ~g —Ky and let(V) = 1/2 by Lemma 8.7.
Let I' be a fiber of 72 such that I' " LCS(X, AD) # @. Then

I CLOS(X, AD) CE,
by Theorem 2.28. Hence (H, AD|y) is not log canonical at the points H NT". But
D‘ ~q —KX‘ ~ —Kpg
H H
and lct(H) = 1/2, because H is a del Pezzo surface of degree 6, which is a contradiction. ]

Lemma 9.5. Suppose that J(X) = 3.5 and X is general. Then lct(X) = 1/2.

Proof. There is a birational morphism a: X — P! xP? that contracts a surface £ C X to a curve
C C P! xP? of bidegree (5,2). Let 71 : P! xP? — P! and 75: P! x P2 — P? be natural projections.

There is
Q¢ |m5(0(2))]
such that C C Q. Let H; be a general fiber of 7, let Hy be a surface in |75 (Op1(1))]. We have
—Kx ~2H, + Hy + Q,

where Hi, Hy,Q C X are proper transforms of Hy, Ha, Q, respectively. In particular, let(X) <
1/2.

We suppose that X satisfies the following generality condition: every fiber F' of 7 o « is
singular at most at one ordinary double point.

Assume that let(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such that
the log pair (X, AD) is not log canonical for some positive rational number A < 1/2.

Let S be an irreducible surface on the threefold X. Put

D =uS+Q,
where  is an effective Q-divisor such that S ¢ Supp(€2). Then

_ 1
i, 7< S Q)
( 1 5 wS + H1)
is log canonical (see Example 1.18). Thus, either p < 2, or S is a fiber of 71 o av.

Let I = P! be a general fiber of the conic bundle 7 o o. Then
2=D - T=upS-T+Q-T>uS- T,

which implies that p < 2 in the case when S is a fiber of m o a.
We see that the set LCS(X, AD) contains no surfaces. Now, applying Lemma 2.26 to 71 o «,
we obtain a contradiction with Example 5.4. O

Lemma 9.6. Suppose that J(X) = 3.6 and X is general. Then lct(X) = 1/2.
Proof. Let €: V — P3 be a blow up of a line L C P3. Then

V P(OPI @ Op1 @ Op (1))
66



and there is a natural P2-bundle 1: V' — P!, There is a smooth elliptic curve C' C P?3 of degree 4
such that L N C' = @ and there is a commutative diagram

ol X ¢

1/ lﬁ /

P3 3 |4

where 0 is a blow up of C, the morphism ( is a blow up of the proper transform of the line L,
the morphism ~ is a blow up of the proper transform of the curve C, and ¢ is a del Pezzo fibration.
We suppose that X satisfies the following generality condition: for every fiber F' of ¢, the sur-
face F' has at most one singular point that is an ordinary double point of the surface F.
Let E and G be the exceptional surfaces of 3 and =, respectively, let H C P? be a general
plane that passes through L, and let Q C P3 a quadric surface that passes through C. Then

—Kx ~2H+Q+E,
where H C X D Q are proper transforms of H and Q, respectively. We have lct(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~gp —Kx such

that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2.
It follows from Lemma 8.11 that lct(V) = 1/2. Therefore, we see that

@ # LCS (X, )\D) CG.

Note that every fiber of the fibration ¢ is a del Pezzo surface of degree 5 that has at most
one ordinary double point. Thus, applying Lemma 2.26 to ¢, we obtain a contradiction with
Example 5.3. O

Lemma 9.7. Suppose that J(X) = 3.7 and X is general. Then lct(X) = 1/2.

Proof. Let W be a divisor on P? x P? of bi-degree (1,1). Then —Ky, ~ 2H, where H is a Cartier
divisor on W. There is a commutative diagram

X
% \ )
P! x P2 o P! x P2
% y .
3 ¢
P2 w P2
|
Pl
\
]1;»1 /

where ¢ and i are natural projections, « is a blow up of a smooth curve C' C W such that
C = HiN Hs,

where Hy # Hj are surfaces in |H|, the map p is induced by the pencil generated by H; and Ho,

the morphism w is a del Pezzo fibration of degree 6, the morphisms ¢ and ¢ are P'-bundles,

while 3 and « contract surfaces My C X D My such that ¢poB3(M;) = £(C) and oy (Ms) = ¢(O).
Note that lct(X) < 1/2, because

—Kx ~ 2gl +E>

where H; C X is the proper transform of Hy, and E is the exceptional surface of a.

We suppose that X satisfies the following generality condition: all singular fibers of the fibra-
tion w satisfy the hypotheses of Lemma 5.5.

Assume that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such that
the log pair (X, AD) is not log canonical for some positive rational number A < 1/2. Then

o +LCS (X, AD) CE,
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because lct(W) = 1/2 by Theorem 7.1. Applying Lemma 2.26, we see that
o+ LCS(X, )\D> CENF,
where F' is a singular fiber of w. Note that F' is a del Pezzo surface of degree 6. Put
D = puF +Q,
where  is an effective Q-divisor such that F' ¢ Supp(€2). Then
o e 2], o
and the surface F'is smooth along the curve ENF. But the log pair (F, AQ|r) is not log canonical
at some point P € E N F by Theorem 2.20, which is impossible by Lemma 5.5. (Il
Remark 9.8. Let us use the notation and assumptions of the proof of Lemma 9.7. Then
o+ LCS(X, AD) CENF,
where F' is a singular fiber of the fibration w. Applying Theorem 2.28 to ¢ and 1), we see that
o #LCS(X, AD) C ENFNM N M,
by Lemma 2.29. Regardless to how singular F' is, if the threefold X is sufficiently general, then
ENFNM NM, =@,
which implies that an alternative generality condition can be used in Lemma 9.7.
Lemma 9.9. Suppose that J(X) = 3.8 and X is general. Then lct(X) = 1/2.
Proof. Let my: Fq x P2 — [y and my: F; x P2 — P2 be natural projections. Then
X €|(aom) (O (1) @ m5(0p(2))].
where a: F; — P? is a blow up of a point. Let H be a surface in |75(Op2(1))|. Then
—-Kx~E+4+2L+H,

where E C X D L are irreducible surfaces such that m1(E) C F; is the exceptional curve of a,
and 71 (L) C Fy is a fiber of the natural projection F; — P2. We have let(X) < 1/2.

The projection m; induces a fibration ¢: X — P! into del Pezzo surfaces of degree 5.

We suppose that X satisfies the following generality condition: for every fiber F' of ¢, the sur-
face F' has at most one singular point that is an ordinary double point of the surface F'.

Assume that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such that
the log pair (X, AD) is not log canonical for some positive rational number A < 1/2.

Applying Lemma 2.26 to the morphism ¢, we obtain a contradiction with Example 5.3. [J

Lemma 9.10. Suppose that J(X) = 3.9. Then lct(X) = 1/3.
Proof. Let O; € Vi = V5 3 O9 be singular points of V; = Vo 2 P(1,1,1,2), respectively, let
O1 ¢ 51 € ‘OP(1,1,1,2)(2>’

be a smooth surface, and let C; C S; =2 P? be a smooth quartic curve. Then the diagram

X




commutes, where 1); is a natural projection, «; is a blow up of the point O; with weights (1,1, 1),
the morphism ~; is a P-bundle, and 3; is a birational morphism that contracts a surface

]P’l xC12G;, X
to a smooth curve C1 = C; C U;.
Let E; C X be the proper transform of the exceptional divisor of «;. Then
S1=a10p1(Ey) CVi=P(1,1,1,2) =V, D ag o fo(E)

are surfaces in |Op(1,1,1,2)(2)| that contain the curves C7 and Cy, respectively. On the other
hand,

a1 0B1(Ge) C Vi =P(1,1,1,2) 2 V3 D azo f2(Gy)
are surfaces in [Op(q,1,1,2)(4)| that contain O; U Cy and Oz U Cy, respectively.
Let H C X be the proper transform of a general surface in |Op(1,1,1,2)(1)]- Then

—Kx ~3H+ E, + Ey,
which gives let(X) < 1/3.
Suppose that lct(X) < 1/3. Then there is an effective Q-divisor
D ~g —Kx ~g g(Gl +Go) = 5(By+ B)
such that the log pair (X, AD) is not log canonical for some A\ < 1/3. Put
D = E) + peEs + Q,
where () is an effective Q-divisor on X such that
g Supp(Q) D Es.
Let T" be a general fiber of the conic bundle v o 8;. Then
2=0I-D=T- (M1E1+M2EQ+Q> = +p2+T-Q > g+ po,

and without loss of generality we may assume that p; < pe. Then puy < 1.
Suppose that there is a surface S € LCS(X,AD). Then S # E; and S # Gj, because
ag 0 B2(G1) € |Op1,1,1,2)(4)] and ag o B2(D) € [Op(1,1,1,2)(5)]- Hence SN Ey # @. But

1
and F; = P2, which is impossible by Theorem 2.20, because A < 1/3 = lct(IP?).

We see that the set LCS(X,AD) contains no surfaces. Let P € LCS(X,AD) be a point.
Suppose that P ¢ G1. Let Z be a fiber of 77 such that 51 (P) € Z. Then

2

Ey Ey

z c1es(th, A8 (D)

)

by Theorem 2.20, which is impossible by Lemma 2.8, because p1 < 1. Hence LCS(X, AD) € Gj.
Suppose that LCS(X,AD) C G1 N Gy. Then

by Theorem 2.28. Put E; = 31(F1). Then we have
ZN0Ey € LCS(Ey, AQ

)LCS (X, AD)’ —1
by Lemma 2.14 and Theorem 2.7. One has
LCS(X, AD) UH CLCS (X, AD + %(Eg + EQ) n H) c LCS(X, )\D) UHUE, UE,,
which contradicts Theorem 2.7, because H is a general surface in |(81 o y1)*(Op2(1))| and

1 _
AD + g(EQ“‘EQ) + H ~Q ()\— 1/3)K)(.
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Thus, we see that G1 2 LCS(X,AD) € G1 N G3. Then
o #1LCS(Uz, A3 (D)) € Ba(Gh),
and it follows from Theorems 2.7 and 2.28 that there is a fibre L of the fibration «5 such that
LCS(Uz, AB:(D)) = L.
Let B be a general surface in |o5(Op(1.11,2)(2))|. Then f2(D)|p ~g Op2(5) and B = P2. But
LCS(B. A% (D)| ) = LB

and |L N B| = 1, which is impossible by Lemma 2.8, because A < 1/3. O
Lemma 9.11. Suppose that J(X) = 3.10. Then lct(X) = 1/2.

Proof. Let Q@ C P* be a smooth quadric hypersurface. Let C; C Q D Oy be disjoint (irreducible)
conics. Then there is a commutative diagram

X
o1 $2
B2 B1
P1 N @1 @ a2 Y2 2
where the morphism «; is a blow up along the conic C;, the morphism [3; is a blow up along
the proper transform of the conic C;, the morphism ¢); is a natural fibration into quadric surfaces,
and ¢; is fibration, whose general fiber is isomorphic to a smooth del Pezzo surfaces of degree 6.

Let E; be the exceptional divisor of the morphism §;, and let H; be a sufficiently general
hyperplane section of the quadric ) that passes through the conic C;. Then

—Kx Nﬁ1+2ﬁ2+E2,

where H; C X is the proper transform of the surface H;. We see that let(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2.
Using Example 1.18 and applying Lemma 2.28, we see that

o # Lcs(X, AD) C 5, NS,

P! P!

where S; is a singular fiber of ¢;. Hence, the set LCS(X, AD) contains no surfaces.
It follows from Theorem 2.7 that either LCS(X, AD) is a point in Ej U Ey, or

LCS(X, AD) N (X\ (B U B) ) # 2,

which implies that we may assume that LCS(X, AD) is a point in E; by Lemma 2.10.
Since [ is an isomorphism on X \ Es, we see that

PeLCs(Yi, A (D)) € PU B (E»)

for some point P € E;. Then LCS(Y1, AG2(D)) = P by Theorem 2.7, because P ¢ (2(Es).
Let H be a general hyperplane section of the quadric ). Then

—Ky, ~ I{I1 +2H ~Q /BQ(D),
where H C Y; D H, are proper transforms of H and Hj, respectively. But
1/~ . -
LCS <Y1 A3 (D) + 5(Hl n 2H)) — PUH,
which is impossible by Theorem 2.7, because A < 1/2. O

Lemma 9.12. Suppose that J(X) = 3.11. Then lct(X) = 1/2.
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Proof. Let O € P3 be a point, let §: V7 — P3 be a blow up of the point O, and let E be the
exceptional divisor of §. Then

Ve 2 P(0p @ Op2(1) ),

there is a natural Pl-bundle n: Vs — P2, and F is a section of 1. There is a linearly normal
elliptic curve O € C|subsetP? such that the diagram

\
/

\/2

Pl x P2

commutes, where 1 and 7o are natural projections, the morphism + contracts a surface
CxP'2GcU

to the curve C, the morphism « is a blow up of the fiber of the morphism 7 over the point O € P3,
the morphism [ is a blow up of the proper transform of C', the morphism w is a fibration into
quadric surfaces, the morphism ¢ is a fibration into del Pezzo surfaces of degree 7, and v
contracts a surface

CxPlFcX

to an elliptic curve Z C P! x P? such that —Kpiyp2 - Z = 13 and Z = C.
Let H; be a general fiber of ¢, and let Hy be a general surface in (7o 3)*(Op2(1))|. Then

_KX ~ Hl + 2H2a

which implies that let(X) < 1/2.

We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2. Note
that

2 £ LCS (X, AD) CE,

where E is the exceptional divisor of a, because lct(U) = 1/2 by Lemma 8.11.
Let T' = P? be the general fiber of my o v. Then

2=-Kx-I'=D-I'=2E-T,
which implies that E ¢ LCS(X,AD). Applying Lemma 2.26 to the log pair

(v, A8(D))
we see that LCS(X,AD) C ENG. Applying Lemma 2.29 to the log pair
(P* x P2, Av(D))
we see that LCS(X,A\D) = EN F NG, where |[ENF NG| = 1. Hence
LCS (X, AD + HQ) — LCS (X, )\D) U Ho,

and Ho N LCS(X,AD) = @. But the divisor

—(KX+/\D+H2> — <)\—2> KX+2H1

is ample, which is impossible by Theorem 2.7. U

Lemma 9.13. Suppose that J(X) = 3.12. Then lct(X) = 1/2.
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Proof. Let €: V. — P3 be a blow up of a line L C P3. There is a natural P>-bundle n: V — P!,
there is a smooth rational cubic curve C' C P3 such that L N C' = @, and the diagram

P! P! x P2

commutes, where o and [ are blow ups of the curve C and its proper transform, respectively,
the morphism 7 is a blow up of the proper transform of the line L, the morphism ¢ is a P'-bundle,
the morphism w is a birational contraction of a surface ' C X to a curve such that

CUL Caovy(F) CP?,

and a o v(F) consists of secant lines of C' C P3 that intersect L, the morphism ¢ is a fibration
into del Pezzo surfaces of degree 6, the morphisms 7y and 7o are natural projections.

Let E and G be exceptional divisors of 3 and 7, respectively, let Q C P3 be a general quadric
surface that passes through C, let H C P3 be a general plane that passes through L. Then

—Kx ~Q+2H +G,

where Q C X D H are proper transforms of Q C P? O H, respectively. In particular,
let(X) < 1/2.

We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2. Note
that

o+ LCS (X, )\D) ca,
since lct(Y) = 1/2 by Lemma 8.13. Applying Theorem 2.28 to ¢ we see that
o + LCS(X, AD) CGNS,,
where Sy is a singular fiber of the del Pezzo fibration ¢ (see Example 1.18). Then we see that
o # LCS(X, AD) CGNSyNF,

by applying Theorem 2.28 to the log pair (P! x P2, \w(D)) and to the P!-bundle .
Let Z; = P! be a section of the natural projection

P! x P!~ G — L=P!
such that Z; - Z1 = 0, and let Zs a fiber of this projection. Then
F‘ ~ 7y + 32,
G
and Sy|a ~ Z1. The curve F'N G is irreducible. Thus, we see that
GNFNS,| <+,

which implies that the set LCS(X, AD) consists of a single point P € G by Theorem 2.7.
The log pair (V, AB(D)) is not log canonical. Since (3 is an isomorphism on X \ F, we see that

8(P) e LS (V; A3(D)) € B(P) UB(E),
which implies that LCS(V, A\3(D)) = B3(P) by Theorem 2.7. Let H C P3 be a general plane. Then
LCS (V, A3(D) + %(ﬁl + 3151)) — B(P)UH,
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where H C V D H; are proper transforms of H C P3 > Hy, respectively. But

~Ky ~ Hy +3H ~q 8(D),
which contradicts Theorem 2.7, because A < 1/2. g
Lemma 9.14. Suppose that J(X) = 3.14. Then lct(X) = 1/2.

Proof. Let P € P? be a point, and let a: V7 — P3 be a blow up of the point P. Then there is a
natural P!-bundle 7: V7 — P2.
Let (: Z — P(1,1,1,2) be a blow up of the singular point of P(1,1,1,2). Then

2= P(0p ® 0p:(2)),

and there is a natural P'-bundle ¢: Z — P2,
There is a plane IT C P? and a smooth cubic curve C C II such that P ¢ II and the diagram

U~ P(1,1,1,1,2)

Y Y Y Y

commutes (see [176, Example 3.6]), where we have the following notation:

e the morphism ¢ is a blow up of the curve C;

the threefold U is a cubic hypersurface in P(1,1,1, 1, 2);

the rational map £ is a projection from the point P;

the morphism « is a blow up of the point that dominates P;

the morphism [ is a blow up of the proper transform of the curve C;

the morphism 7 contracts the proper transform of II to the point Sing(U),
the morphism w contracts a surface R C X to a curve such that

Booz(R) cp3

is a cone over the curve C' whose vertex is the point P;
e the rational maps 1 and v are natural projections;
e the rational map v is a linear projection from a point.

Let E and G be exceptional divisors of v and (3, respectively, and let H C X be a proper
transform of a general plane in P? that passes through the point P. Then

—KXwﬁ+3g+G,

where IT C X is the proper transform of the plane II. Thus, we see that let(X) < 1/3.

We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number \ < 1/3.

Let L C X be a proper transform of a general line in P? that intersects the curve C. Then

D-L=11-L+3H-L+G-L=3H-L=3,

which implies that LCS(X, AD) contains no surfaces except possibly II and E.
Let I" be a general fiber of w o 3. Then

D-T=I0-T+3H-T+G-IT'=0I0-T+G-T' =2,
which implies that LCS(X, AD) does not contain II and E. Thus, by Lemma 2.9, we have

o+ LCS(X, AD) C EUG.
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Suppose that LCS(X,\D) C E. Then

o #1CS(Ve, AB(D)) < 8(E),

which contradicts Theorem 2.28, because 3(E) is a section of m. We see that LCS(X,\D) C G.
Applying Theorem 2.28 to (Z, \w(D)) and ¢ and Theorem 2.7 to (X, AD), we see that

o+ LCS(X, AD) CF
where F' is a fiber of the natural projection G — ((G). Then
o # LS (Y, M(D)) SH(F),

where v(F') is a fiber of the blow up € over a point in the curve C.
Let S C P3 be a general cone over the curve C, and let O € C be an inflection point such
that

€o 'y(F ) # 0.
Let L C S be a line that passes through the point O, and let H C P? be a plane that is tangent
to the cone S along the line L. Since O is an inflection point of the curve C, the equality

multL<S . H) =3
holds. Let S , H and L be the proper transforms of S, H and L on the threefold Y. Then
2/ ¥ o
LCS <Y, (D) + 5 (8 + H)) =10S(Y, M(D)) Ul

due to generality in the choice of S. But —Ky ~ S+ H, which is impossible by Theorem 2.7. [
Lemma 9.15. Suppose that J(X) = 3.15. Then lct(X) = 1/2.

Proof. Let Q C P* be a smooth quadric hypersurface, let C C @Q be a smooth conic, and let
£: V — @ be a blow up of the conic C C @. Then there is a natural morphism n: V — P!
induced by the projection @ --» P! from the two-dimensional linear subspace in P* that contains
the conic C' C Q. Then a general fiber of 7 is a smooth quadric surface in P3.

Take a line L C ) such that L N C' = &; then there is a commutative diagram

P! P! x P2

\/
/

/\/

where o and (8 are blow ups of the line L C @ and its proper transform, respectively, the mor-
phism « is a blow up of the proper transform of the conic C, the morphism % is a P'-bundle,
the morphism w is a birational contraction of a surface F' C X to a curve such that

CULCaoy(F) CQ,

and aoy(F) consists of all lines in @ C P* that intersect L and C, the morphism ¢ is a fibration
into del Pezzo surfaces of degree 7, the morphisms 71 and 7o are natural projections.

Let Fy and FE> be exceptional surfaces of 3 and ~, respectively, let Hi, Ho C ) be general
hyperplane sections that pass through the curves L and C, respectively. We have

~Kx ~ Hy +2Hy + By ~ Hy +2H; + Ey,
where H; C X O Hy are proper transforms of H; C Q O Ho, respectively. In particular,

let(X) < 1/2.
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We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~gp —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2.
Let S be an irreducible surface on the threefold X. Put

D =puS+9Q,
where Q is an effective Q-divisor such that S ¢ Supp(€2). Then
LCS HQ 1<,uS+Q> CElm_HQ
T2 H>

by Lemma 5.9. Thus, if u < 2, then either S = Ey, or S is a fiber of ¢.
Let T 2 P! be a general fiber of the conic bundle v o v. Then

2=D-T'=pS-T+Q-T'>uS- T,

which implies that p < 2 in the case when either S = Fy, or S is a fiber of ¢.
Therefore, we see that LCS(X, AD) does not contain surfaces.
Applying Theorem 2.28 to the log pair (Y, Ay(D)) and 1, we see that

o+ LCS(X, )\D) C B UL

where P! 2 L C X is a curve such that v(L) is a fiber of the conic bundle 1.
Suppose that L ¢ F; and L C LCS(X,AD). Then

aoy(L) CLCS(Q, Aaor(D)) Caor(L)UCUL,

which is impossible by Lemma 2.10. Hence by Theorem 2.7 we see that

e cither LCS(X,AD) C E3,
e or LCS(X,AD) C L and L C Ej.

We may assume that L C F;. Note that F; = F;. One has L - L = —1 on the surface Fj.
Applying Lemma 2.29 to the log pair (P! x P2, A\w(D)), we see that LCS(X, AD) C F, because

w(D) ~Q _KIF’1><IF’2
and A < 1/2. Applying Lemma 2.26 to the log pair (V;A3(D)) and the fibration 7, we see that
o # LCS(X, )\D) C E US,,

where Sy is a singular fiber of ¢, because lct(P' x P') = 1/2 (see Example 1.18).
We have FFN L =@ and |F NSy N Ey| < +o00. Thus, there is point P € Ey such that

LCS(X, AD) —Pec b
by Theorem 2.7. But (E;) N B(P) = @. Thus, it follows from Theorem 2.7 that
LCS(V, AB(D)) = B(P).
Let H; C V D H, be the proper transforms of H; C Q D Hs, respectively. Then

—Ky ~ ﬁg + 2[’]1 ~Q ﬂ(D),
but it follows from the generality of Hy and Hs that

LCS (V, A3(D) + %(HQ + 2ﬁ1)> = B(P) U Hy,

which is impossible by Theorem 2.7, because A < 1/2. O

Lemma 9.16. Suppose that J(X) = 3.16. Then lct(X) = 1/2.
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Proof. Let P! = C' C P2 be a twisted cubic curve, let O € C be a point. There is a commutative
diagram

P(£) —— v p3 5 Ve ——P(0p: © Opa (1))
w\x / HL"
NN
P? w

1

where £ is a stable rank two vector bundle on P? (see the proof of Lemma 8.13), and we have
the following notation:

the morphism 4 is a blow up of the point O;

the morphism ~ contracts a surface G C U to the curve C' C P3;

the morphism « contracts a surface F = F; to the fiber of v over the point O € P3;
the morphism g is a blow up of the proper transform of the curve C;

the variety W is a smooth divisor on P2 x P? of bi-degree (1,1);

the morphisms 7, and w9 are natural projections;

the morphisms w and 7 are natural P!-bundles;

the morphism v contracts a surface F' C X to a curve

PlZcw
such that w o a(F) = m(Z) and no B(G) = ma(Z).
Take general surfaces Hy € |(wo a)*(Op2(1))| and Hz € [(no 3)*(Op2(1))]. Then
“Kx ~ Hy + 2Hs,

which implies that let(X) < 1/2.

We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2. Note
that

xz%I(E(X,AD)Ql?mF,

because lct(U) = 1/2 by Lemma 8.11 and lct(W) = 1/2 by Theorem 7.1.
Applying Lemma 2.12 to the log pair (V7, A\3(D)), we see that

LC%XJD):EOFOG
where |[ENF NG| =1. Then
LCS(X,AL%+Eh>::LCS(X,ALOLJ£&,

where Hy N LCS(X,AD) = &. But the divisor

1 1
—(Kx—i-)\D—i-HQ) ~Q (/\— 2) KX+§H1

is ample, which is impossible by Theorem 2.7. [l

Lemma 9.17. Suppose that J(X) = 3.17. Then lct(X) = 1/2.

Proof. The threefold X is a divisor in P! x P! x P? of tri-degree (1,1,1). Take general surfaces
Hi € |wi(0p(1))], Ha € |m3(0p (1))], Hs € |30z (1)) .

where ; is a natural projection of the threefold X onto the i-th factor of P! x P! x P2. Then

—Kx ~ Hy+ Hy + 2Hj5,
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which implies that let(X) < 1/2. There is a commutative diagram

U1 v2
Plxpl — > pl

\TC/

Pl

m X n2
T3
Pl x P2 P2 P! x P2

w1 w2

where w;, n; and v; are natural projections, ¢ is a P!-bundle, and «; is a birational morphism
that contracts a surface E; C X to a smooth curve C; C P! x P2 such that w;(C1) = wa(Cy) is
a (irreducible) conic.

Note that Fy ~ Hy + H3 — Hy and Ey ~ Hy + H3 — H;.

We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number \ < 1/2.

Suppose that the set LCS(X, AD) contains a (irreducible) surface S C X. Put

D =puS+9Q,
where > 1/ and 2 is an effective Q-divisor such that S ¢ Supp(Q2). Then
2=D-T'=pS-I'+Q-T'>uS- T,
where I' = P! is a general fiber of (. Hence S -T' = 0, which implies that Ey # S # E;. One
also has
2=D -A=pS - A+Q-A>puS-A,
where A = P! is a general fiber of the conic bundle my. Hence S - A = 0, which implies that
s € |3 (02 (m) )|
for some m € Z~q, because Ey # S # E1 and S is an irreducible surface. Then
0=5-T'=m#0,

which is a contradiction. Thus, we see that the set LCS(X, AD) contains no surfaces.
Applying Theorem 2.28 to ¢ and using Theorem 2.7, we see that

LCS (X, AD) —F~P.

where F is a fiber of the P!-bundle ¢. Applying Theorem 2.28 to the conic bundle 73, we see that
every fiber of the conic bundle 73 that intersects F' must be reducible. This means that

7T3(F) Cwi (Cl) = CUQ(CQ) C ]P)Q,
which is impossible, because m3(F') is a line, and w1 (C}) = w2(Cs) is an irreducible conic. O

Lemma 9.18. Suppose that J(X) = 3.18. Then lct(X) = 1/3.

Proof. Let Q C P* be a smooth quadric hypersurface, C' C @ an irreducible conic, and O € C a
point. Then there is a commutative diagram

Y n
\
<]
X 1% = Pl
7
//A
vy P
; i“//qﬁ/
U . //Q 7
e Ve
|
pl_ -



where ( is a blow up of the point O, the morphisms a and « are blow ups of the conic C' and its
proper transform, respectively, 8 is a blow up of the fiber of the morphism « over the point O,
the map ¢ is a projection from O, the map ¢ is induced by the projection from the two-dimen-
sional linear subspace that contains the conic C, the morphism 7 is a blow up of the line ¢(C),
the morphism v is a blow up of an irreducible conic Z C P3 such that

V(C)YNZ # 2,

and Z and ¢(C) are not contained in one plane, the morphism o is a blow up of the proper
transform of the conic Z, the map ¢ is a projection from (C), the morphism 7 is a P!-bundle,
and w is a fibration into quadric surfaces.

Let H be a general fiber of wo 3. Then H is a del Pezzo surface such that K%—I =7, and

—Kx ~3H +2E + G,

where G and E are the exceptional divisors of 3 and -, respectively. In particular, let(X) < 1/3.

We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/3. Note
that

o+ LCS(X, AD) caq,

since lct(V') = 1/3 by Lemma 8.15 and (D) ~g —Ky.
Applying Lemma 2.26 to the del Pezzo fibration w o § and using Theorem 2.7, we see that
there is a unique singular fiber S of the fibration w o § such that

o #LCS(X,AD) cans,

because the equality lct(H) = 1/3 holds (see Example 1.18).
Let P € GN S be an arbitrary point of the locus LCS(X,A\D). Put

D = uS + €,
where  is an effective Q-divisor such that S ¢ Supp(€2). Then
PeLcs(s, x| )
S

by Theorem 2.20.

We can identify the surface 5(S) with an irreducible quadric cone in P2. Note that GN S is an
exceptional curve on S, so that there is a unique ruling of the cone 3(S) intersecting the curve
B(G). Let L C S be a proper transform of this ruling. Then LNG # @ (moreover, |LNGNS| = 1),
while LN E = @. Hence P = L NG by Lemma 5.10. We see that LCS(X,\D) = P. One has

HUPCLCS (X, /\D+ET+§E) CHUPUE,
because H is a general fiber of the fibration w o 3. Therefore, the locus
@ # LCS <X, )\D+H+§E> cX
must be disconnected, because P ¢ H and P ¢ E. But
. <KX+)\D+FI+§E> ~g FI+§(E+G> + (A= 1/3)Kx
is an ample divisor, which is impossible by Theorem 2.7. U

The proof of Lemma 9.18 implies the following corollary.
Corollary 9.19. Suppose that J(X) = 4.4 or J(X) = 5.1. Then lct(X) = 1/3.

Lemma 9.20. Suppose that J(X) = 3.19. Then lct(X) = 1/3.
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Proof. Let Q C P* be a smooth quadric, and let L C P4 be a line such that
LNQ =P UP;,
where P, and P are different points. Let n: Q --» P2 be the projection from L. The diagram
X

commutes, where «; is a blow up of the point P;, the morphism 3; contracts a surface
PP>E, CX

to the point that dominates P; € @), the map &; is a projection from P;, the map (; is a projection
from the image of P;, the morphism J; is a contraction of a surface

Fo2G;,CU;

to a conic C; C P3, the morphism 7; is a blow up of the image of P;, the morphism ~; contracts
the proper transform of G; to the proper transform of Cj, and wj; is a natural projection.
The map 71 07, * is an elementary transformation of a conic bundle (see [166]), and

510 B2(Er) C P D 65061 (Es)

are planes that contain the conics C7 and Cs, respectively.
Let H be a general hyperplane section of () such that P, € H 5 P». Then

—KXw3g+E1+E2,

where H is the proper transform of H on the threefold X. We see that let(X) < 1/3.
We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, A\D) is not log canonical for some A < 1/3. Note that

o+ LCS (X, /\D) C By UE;,
because lct(Q)) = 1/3. By Theorem 2.7, we may assume that
2 # LCS (X, )\D) C B

Let Gia C X be a proper transform of G5. Then GoNE; = @, because az(G2) C Q is a quadric
cone whose vertex is the point P, and the line L is not contained in (). Hence

& # 1CS(P(Op2 @ Opa(1) ), A12(D)) € 72 (B1),
where v2(F1) is a section of wi. Applying Theorem 2.28 to wy, we obtain a contradiction. O
Lemma 9.21. Suppose that J(X) = 3.20. Then lct(X) = 1/3.
Proof. Let Q C P* be a smooth quadric threefold, and let

W c P? x P?
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be a smooth divisor of bi-degree (1,1). Let L1 C @ D Ly be lines such that L; N Ly = &; then
there exists a commutative diagram

where the morphisms «; and (; are blow ups of the line L; and its proper transform, respectively,
the morphism w is a blow up of a smooth curve C' C W of bi-degree (1,1), the morphisms v;
and 7; are natural P'-bundles, and the map 1; is a linear projection from the line L;.

Let H be the exceptional divisor of w, and let E; be the exceptional divisor of 3;. Then

—~Kx ~3H + 2E; + 2E»,

because ag o 31(H) C Q is a hyperplane section that contains L; and Ls. Hence let(X) < 1/3.

We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/3. Note
that

@#LCS(X, AD) CENENH=0,

because let(Vy) = let(Va) = 1/3 by Lemma 8.17 and lct (W) = 1/2 by Theorem 7.1, which gives
a contradiction. O

Lemma 9.22. Suppose that J(X) = 3.21. Then lct(X) = 1/3.
Proof. Let m1: P! x P2 — P! and my: P! x P2 — P? be natural projections. There is a morphism
a: X — P x P?

that contracts a surface E to a curve C such that 77 (Op1(1)) - C' = 2 and 75(Op2(1)) - C = 1.
The curve m2(C) C P? is a line. Therefore, there is a unique surface

H; € |m5(0e (1))
such that C C Hy. Let Hy be a fiber of the P?-bundle 7;. Then
—Kx ~2H, +3H, + 2F,

where H; C X is a proper transform of the surface H;. In particular, let(X) < 1/3.
We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some rational A < 1/3. Note that

LCS (X, )\D) CE,

because lct(P! x P?) = 1/3 by Lemma 2.22. There is a commutative diagram

v
v
U, B1 ¥ B2 Uy
w1 l « l iWQ

IP)I é ]P)l % ]P>2 L) P2
where V' is a Fano threefold of index 2 with one ordinary double point O € V such that

-K ‘?} = 40, the birational morphism 3; is a contraction of the surface Hy = P! x P! to a smooth
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rational curve, the morphism §; contracts the curve 3;(Hs) to the point O € V such that the
rational map

S 007 Uy = Uy

is a standard flop in (4 (Hy) = P!, the morphism w is a fibration whose general fiber is P! x P!,
the morphism ws is a P'-bundle, and + is a birational morphism such that y(Hy) = O € V.
The variety V is a section of Gr(2,5) C PY by a linear subspace of codimension 3. One has

~Kv ~2(y(Hh) +1(E)),

and the divisor v(H1) + v(E) is very ample. There is a commutative diagram

X - Ve—(— P
|
al K3
Y
P! x P2C P>

n

such that the embedding ( is given by the linear system |y(Hi) + v(E)|, the map £ is a linear
projection from the point O, the embedding 7 is given by the linear system |H; + Ha].
It follows from [85, Theorem 3.6] (see [86, Theorem 3.13]) that Uy = P(&), where where £ is

a stable rank two vector bundle on P? such that the sequence
0— OPQ —>8®0p2(1) —>I®O]p>2(1) —0

is exact, where 7 is an ideal sheaf of two general points on P2, One has ¢;(€) = —1 and ¢;(€) = 2,
and & is a Hulsbergen bundle (see [80]). It follows from [85, Theorem 3.5] that

Uy ¢ P(Op @ Op1 (1) © Opr (1) @ O (1)),

and Uy € |21 — F|, where T is a tautological bundle on P(Op1 @ Op1(1) & Op1(1) & Op1 (1)), and
F is a fiber of the projection P(Op1 & Op1(1) & Opi (1) & Op1 (1)) — PL.
Either H; is a smooth del Pezzo surface such that Kl%h =7, or

|HinC|=1,
because H; - C' = 2. Applying Lemma 2.26 to the morphism w o 3 and the surface Hi, we see
that
e cither |[H1 NC| =1,
e or HiNLCS(X,AD) = &,
because let(Hp) = 1/3 if Hy is smooth. So, there is a fiber L of the projection E — C such that

LOS(X, AD) C L
by Theorem 2.7. Put C = Hy N E and P = L N C. Applying Theorem 2.28 to wo and

(U2 AB2(D) ),

we see that either LCS(X,AD) = P or LCS(X,AD) = L by Theorem 2.7.
Suppose that LCS(X,\D) = L. Then

LCS(V, Ay(D)) = (L) c V C P,

where (L) ¢ V C PY is a line, because —Ky - (L) = 2 and —Ky ~g (D). We have
Sing(V) = O € ~(L).

Let S C V be a general hyperplane section of V' C P% such that (L) C S. Then
the surface S is a del Pezzo surface such that Kg =9,
the point O is an ordinary double point of the surface S,
the surface S is smooth outside of the point O € (L),
the equivalence Kg ~ Ops(1)|g holds,
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which implies that S contains finitely many lines that intersect the line v(L).
Let H C V be a general hyperplane section of V' C PS. Put Q = ~(L) N H. Then

LCS(H, M(D)Lj) —Q,

by Remark 2.3, which contradicts Lemma 5.2, because A <1 /3.
Thus, we see that LCS(X,AD) = P € C. Let F} be a general fiber of 7. Then

FiNC=PUP, #a(P),
where P} # Py are two points of the curve C'. One has
PLUP, C HyN F,
because C' C Hs. Let Z be a general line in F} = P2 such that P; € Z. Then there is a surface
Fy € |v5(0r (1))
such that Z C F,. Let Iy C X D F, be the proper transforms of Fy and I, respectively. Then
P¢ FUF,.
Let Z C X be the proper transform of the curve Z. Then —Kx - Z = 2 and
7 C FyNE,,
but Z N Hy = @. Thus, the curve v(Z) is a line on V C P% such that Sing(V) = O & v(Z).
Let T be a general hyperplane section of the threefold V' C P® such that «(Z) C T. Then
T~2Hy+H +E~2Hy+Fy+E~2F+F, — E,
where T is the proper transform of the surface T on the threefold X. Hence
Fi+F+T~3F+2F —FE ~2Hy+2H, +2E ~ —Kx,
and applying Theorem 2.7, we see that the locus

_ 2, _  _
PUZ=1LCS <X, )\D+3(F1+F2+T)>

must be connected. But P ¢ Z, which is a contradiction. (I

Lemma 9.23. Suppose that IJ(X) = 3.22. Then lct(X) = 1/3.

Proof. Let 1 : P! x P2 — P! and my: P! x P2 — P? be natural projections. There is a morphism
a: X — P! x P?

that contracts a surface E to a curve C' contained in a fiber H of m; such that m(C) is a conic.
We have E = Fy. Let Hs be a general surface in |75 (Op2(1))|. The equivalence

—Kx ~2H,+3Hy+ E

holds, where H; C X is a proper transform of the surface H;. Hence lct(X) < 1/3.
We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some rational A < 1/3. Note that

LCS(X, )\D> CE,

since lct(P! x P?) = 1/3 by Lemma 2.22. B
Let @ be the unique surface in |75(Op2(2))| such that C' C @, and let () C X be the proper
transform of the surface Q). Then Q N Hy = &, and there is a commutative diagram

P(0z @ Op2(2) )

| i




such that 3 is a contraction of Q to a curve, v is a contraction of the surface 3(H1) to a point,
the morphism ¢ is a natural P'-bundle, and the map ¢ is a natural projection. One has

5y o ﬁ(E)

v o0 B(D) ~q 5 ~q —Kp(1,1,1,2) ~Q O]P’(I,LI,Q)(5)a

which implies that £ € LCS(X, AD), because A < 1/3.
Applying Theorem 2.28 to ¢, we see that there is a fiber F' of the projection F — C' such that

@#LCS(X, AD) C (EmQ) UF,

including the possibility that LCS(X,AD) C EN Q.
Suppose that LCS(X,AD) C ENQ. Let M C P! x P? be a general surface in |Hy + Hs|, and
let M C X be the proper transform of the surface M. Then

MnNH, = L,
where L is a line on H; = P?. Let R be the unique surface in |75(Opz2(1))| such that o(L) C R,
and let R be a proper transform of the surface R on the threefold X. Then

LCS(X, AD) UL CLCS (X, AD + %(MJFEH +R+H2)> C LCS(X, AD) ULUH,

but LNENQ=QNH, =@ and —Kx ~ M + H; + R+ H», which contradicts Theorem 2.7.
Therefore, we see that F' C LCS(X,\D). Put F' =~ o (F) and D =y o (D). Then
Pc LCS(IP’(I, 1,1,2), )\D) cCUFR,

where C' =~ 0 3(Q) c P(1,1,1,2) is a curve such that (C) = m(C).
Let S be a general surface in [Op(; 1,1,2)(2)|. Then S = P? and

Fnsc LCS(S, /\D‘S) C (CUF) N S:
but 3D|s ~g —5Kg, which is impossible by Lemma 2.8. O
Lemma 9.24. Suppose that J(X) = 3.23. Then lct(X) = 1/4.

Proof. Let O € P? be a point, let C' C P3 be a conic such that O € C, let II C P? be a unique
plane such that C' C II, and let Q@ C P* be a smooth quadric threefold. Then the diagram

commutes, where we have the following notation:

the morphism « is a blow up of the point O with an exceptional divisor F;

the morphism 7 is a natural P'-bundle;

the morphisms 8 and ¢ are blow ups of C' and its proper transform, respectively;
the morphism ~ contracts the proper transform of the plane Il to a point;

the morphism ¢ contracts the proper transform of the plane II to a curve;

the morphism 7 contracts the proper transform of E to a curve L C Y such that

yI@) ey(L) cQc P!

and (L) is a line in P4;
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e the morphism w is a natural P'-bundle;
e the morphism v is a blow up of the line vy(L);
e the maps 1, £ and ( are projections from O, v(II) and (L), respectively.

Note that E' is a section of 7.
Let II C X be a proper transform of IT C P3. Then lct(X) < 1/4, because

Ky ~ 4T + 2F + 3G,

where £ and G are exceptional surfaces of 1 and §, respectively.

We suppose that lct(X) < 1/4. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/4. Note
that

o ;éLcs(X, AD) CENMING,

because lct(V7) = 1/4 by Lemma 9.26, lct(Y) = 1/4 by Lemma 8.16 and lct(U) = 1/3 by
Lemma 8.17.

Let R C IP? be a general cone over C whose vertex is P € P3, let H; C P? be a general plane
such that O € Hy 5 P, and let Hy C P? be a general plane such that P € Hy. Then

R~ (aod)"(R)—E—G, Hy~(aod) (H)) — B, Hy~ (a0d) (H),
where R, Hy, Hy are proper transforms of R, Hy, Hs on the threefold X, respectively. One has
—Kx ~Q+ Hy + Ho,
but it follows from the generality of R, H;, Hs that the locus
3/, _ _
LCS <X, D+ 5 (Q +H H2)> —L.CS (X, AD) UP,

is disconnected, which is impossible by Theorem 2.7. O
Lemma 9.25. Suppose that J(X) = 3.24. Then lct(X) = 1/3.

Proof. Let W is a divisor of bi-degree (1,1) on P? x P2, There is a commutative diagram

w

P! : Fq P2

where w; is a natural P'-bundle, the morphism « contracts a smooth surface
E~P! xP!
to a fiber L of wy, 7 is a blow up of the point wy (L), the morphism ¢ is a P'-bundle, and ( is a
F1-bundle.
Let wy: X — P? be a natural Pl-bundle that is different from w;. Then there is a surface
G € |w3(0p(1)))|
such that L C G, because wy(L) is a line. Let G C X be a proper transform of G. Then
—Kx ~2F +2G + 3E,

where E' is the exceptional divisor of «, and F' is a fiber of (. We see that lct(X) < 1/3.

We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/3. Note
that

2 +LCS (X, AD) CE,

since lct(W) = 1/2 by Theorem 7.1. We may assume that F' N LCS(X,AD) # @. Then
F, %’FQLCS(X,AD) C ExP! x P!

by Lemma 2.26, because lct(F') = 1/3 (see Example 1.18), which is a contradiction. O
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Lemma 9.26. Suppose that J(X) = 3.25. Then lct(X) = 1/3.
Proof. Let Ly C P2 O Ly be lines such that L1 N Ly = @. Then there is a commutative diagram

IP)?)
Vi B2 Y B1 Vs
w1 l w l J/UJQ

Pl <————P! x Pl ——— P!

71 72

where the morphisms «; and (; are blow ups of the line L; and its proper transform, respectively,
the morphism w; is a natural P2-bundle, the morphisms w and «; are P'-bundles. Note that

Vi 2V, 2 P(Op @ Ops @ Opi (1))
Let H; and Hs be proper transforms on X of planes in P? such that L; C a(H;). Then
—Kx ~2H1+2Hs+ E1+ FEy ~3H1 + Hy+ 2E1 ~ H| +3Hy + 2E>,

where E; is an exceptional divisors of ;. Hence lct(X) < 1/3.
We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/3.
Applying Lemma 2.26 to the Fi-fibrations wy o 61 and w; o B2, we obtain a contradiction,
because the equality lct(F;) = 1/3 holds (see Example 1.18). O

Remark 9.27. Actually, the result of Lemma 9.26 is contained in Corollary 6.4, but we still prefer
to give a detailed proof that may have further applications.

Lemma 9.28. Suppose that J(X) = 3.30. Then lct(X) = 1/4.

Proof. Let O € P3 be a point, and let v: V7 — P3 be a blow up of the point O. Then there is a
Pl-bundle 7: V7 — PL. Take a line O € L C P3; then the diagram

e
\/\/
\/

= —_PS_,_

commutes, where o and & are blow ups of the line L and its proper transforms, respectively, the
morphism 7 is is a natural P2-bundle, the morphism 3 is a blow up of the curve

Pl Oy P(OPI @ Op1 @ OP1(1))

—

such that 8(C) = O, the morphisms ¢ and v are P!-bundles, the maps ¢ and 1 are linear
projections from L and O, respectively, and 7 is a blow up of the point ¥(L) € P2.

Let T be the proper transform on X of a general plane in P? that passes through L C P3,
and let G be the exceptional divisor of the blow up 8. Then

—Kx ~4T 4+ 3FE + 2G,

where E is the proper transform on X of the exceptional divisor of a. In particular, let(X) < 1/4.
We suppose that lct(X) < 1/4. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some rational number A < 1/4. Note that

o+ LCS(X, AD) caq,
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because lct(V) = 1/4 by Lemma 7.2. However, every fiber of the morphism 7 o g is isomor-
phic to Fy, which is impossible by Lemma 2.26, because lct(F;) = 1/3 by Example 1.18. O

The proof of Lemma 9.28 implies the following corollary (cf. [176, Example 3.3]).
Corollary 9.29. Suppose that J(X) = 4.12. Then lct(X) = 1/4.

Remark 9.30. Actually, the results of Lemma 9.28 and Corollary 9.29 are contained in Corol-
lary 6.4, but we still prefer to give a detailed proof that may have further applications.

10. FANO THREEFOLDS WITH p > 4

We use the assumptions and notation introduced in section 1.
Lemma 10.1. Suppose that J(X) = 4.1. Then lct(X) = 1/2.
Proof. The threefold X is a divisor on P! x P! x P! x P! of multidegree (1,1,1,1). Let

[(331 33/1)7 (552 : yz), (fU3 : 3/3), (96‘4 : y4)}
be coordinates on P! x P! x P! x P'. Then X is given by the equation

F (21,91, 22, y2, 3, Y3, T4, Y1) = 0,

where F' is a of multidegree (1,1,1,1).
Let m1: X — P! x P! x P! be a projection given by

[(951 1), (z2:92), (w3:93), (24 y4)} — [(1‘2 cy2), (z3:y3), (24: y4)} e P' x P! x P!,
and let 7o, 73 and m4: X — P! x P! x P! be projections defined in a similar way. Put

F= le(x27y2a x3,Y3, T4, y4) + ylH(x27y23l‘37y3a :E4ay4)a

where G(x2,y2,23,Ys3, T4,ys) and H(xa,y2, 3, Y3, T4, y4) are multi-linear forms that do not de-
pend on z1 and y;. Then 7 is a blow up of a curve C; C P! x P! x P! given by the equations

G (22, y2, 3, Y3, T4, ys) = H (22,y2, 23, y3, T4, Y1) = 0,
which define a surface F; C P! x P! x P! x P! that is contracted by 7;. The equations
x1 = H(x2,y2,23,Y3,24,y4) =0

define a divisor H; C X such that —Kx ~ 2H; + Ej, which implies that lct(X) < 1/2.

We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2.

Let Es, E3, E4 be surfaces in X defined in a way similar to £1. Then

o+ LCS(X, )\D) CEiNEyN EsN Ey,
because Ict(P! x P! x P!) = 1/2 by Lemma 2.22. But E; C P! x P! x P! x P! is given by

OF (x1,y1, 22, Y2, T3, Y3, L4, ya)  OF (21,91, 22, Y2, T3, Y3, T4, Ya)

Ox; 0y; =0
which implies that the intersection F1 N Ee N E3 N Ey is given by the equations
OF _OF _OF _OF _OF _OF _OF _OF _
Ory  Oyr Oxg  Oy2  Oxs  Odys Oxy Oy
Hence Ey N Ey N E3N Ey = Sing(X) = @, and LCS(X, A\D) = @. O

Lemma 10.2. Suppose that 3(X) = 4.2. Then lct(X) = 1/2.
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Proof. Let Q1 C P* D Q2 be quadric cones, whose vertices are O1 € P* 3 Oy, respectively. Let
O, Q S C Ql C P4
be a hyperplane section of @1, and let C; C |—Kg, | be a smooth elliptic curve. Then the diagram

yd AN
ya Ux Us AN
- y
n @1 Q2
P! — P! x P! — P!

commutes, where m; # 79 are natural projections, the map v is a projection from O; € Q; C P,
the morphism «; is a blow up of the vertex O;, the morphism (3; contracts a surface

IP’GC’l%GZ-CX

to a curve C = C; C U;, the morphism 7; is an Fi-bundle, v; is a P'-bundle, and ; is a fibration
into del Pezzo surfaces of degree 6 that has 4 singular fibers.
Let E; C X be the proper transform of the exceptional divisor of a;. Then

Si=ai0p1(E:) CQ1 CP'D Q2D azofa(Er)
are hyperplane sections that contain C7 and Cs, respectively. It is also easy to see that
a10B1(G2) C Q1 CP' D Q2D azoBa(Gr)

are the cones in P* over the curves C; and Co, respectively.
Let H C X be the proper transform of a hyperplane section of Q; C P* that contains O;. Then

—Kx ~2H + E> + Ej,
which gives let(X) < 1/2. Suppose that let(X) < 1/2. Then there is an effective Q-divisor
D~g —Kx ~ Ei + By + Gy + Ga
such that the log pair (X, AD) is not log canonical for some A\ < 1/2. Put
D = Ey + peEs + Q,
where () is an effective Q-divisor on X such that
E ¢ Supp(Q) 2 Es.
Let ' be a general fiber of the conic bundle ~; o 3;. Then
2=0I-D=T- (M1E1+M2EQ+Q> = +pu2+T-Q > g+ po,

and without loss of generality we may assume that p; < pe. Then uy < 1.
Suppose that there is a surface S € LCS(X,AD). Then S # E;. Moreover, we have S # G,

because ag o f2(G1) is a quadric surface and A < 1/2. Hence SN E; # &. But
1 21

S Kp, ~ D’ ~o —M K 40

g B TR, TR T A + o)

and E; = P! x P!, which is impossible by Theorem 2.20 and Lemma 2.24.
We see that the set LCS(X, AD) contains no surfaces. Let P € LCS(X, AD) be a point.
Suppose that P € G1. Let Z be a fiber of 71 such that 51(P) € Z. Then

z c1es(Ur, AGi(D))

)

9

by Theorem 2.28. Put £y = ($1(E1). Then we have

ZNE, € LCS(El, AQ
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by Theorem 2.20, which is impossible by Lemma 2.24, because u; < 1.
Thus, we see that P € G1. Let F} C X D F5 be fibers of (1 and (s passing through the point
P. Then either F} or Fj is smooth, because a;(P) € Cy. But

let(F;) = 1/2
in the case when Fj is smooth (see Example 1.18), which contradicts Lemma 2.26. |
Lemma 10.3. Suppose that J(X) = 4.3. Then lct(X) = 1/2.

Proof. Let Fy =2 Fy = [y 22 P! x P! be fibers of three different projections

P! x P! x P! — P!,
respectively. There is a contraction a: X — P! x P! x P! of a surface E C X to a curve

CCP' xP'xP!
such that C' - F}, =C - F, =1 and C - F3 = 2. There is a smooth surface
P! xP' =G € |F + B

such that C' C G. In particular, we see that

—Kx ~2G + E + F3,

where F3 and G are proper transforms of F3 and G, respectively. Hence lct(X) < 1/2.

We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2. Note
that

o +LCS (X, AD) CE,
because lct(P! x P x PY) = 1/2 and a(D) ~g —Kp1 xpt xp1-

There is a smooth surface H € [3F; + F3| such that C = GNH. Let H be a proper transform
of the surface H on the threefold X. Then H NG = @ and there is a commutative diagram

U ! X o v

Ao )

Pl xPl<—PLx Pl x P! P! x P!

such that 3 and v are contractions of the surfaces G and H to smooth curves, the morphisms
7 and ¢ are Pl-bundles, the morphisms ¢ and ¢ are projections that are given by the linear
systems |F} + F5| and |F} + F3|, respectively.

It follows from H NG = @ that

e cither the log pair (V,A\3(D)) is not log canonical,
e or the log pair (U, \y(D)) is not log canonical.

Applying Theorem 2.28 to the log pairs (V,A\3(D)) or (U, Ay(D)) (and the fibrations 7 or ¢,
respectively) and using Theorem 2.7, we see that

LCS (X, )\D) _T,

where I is a fiber of the natural projection £ — C.
We may assume that a(I") € F3. Let F3 C X be the proper transform of the surface F3. Put
D= ,LLF3 =+ Q,
where Q is an effective Q-divisor on X such that F3 ¢ Supp(Q2). Then

pFs + a(Q) ~g 2(F1 + F +F3>,

which gives u < 2. Hence the log pair (F3, A F;) is not log canonical along I' C F3 by
Theorem 2.20. But
Q) ~o — Kz,
. P Q Fy
and F3 is a del Pezzo surface such that KI%E =6 and
88



e either Fj is smooth and |C'N F3| = 2;
e or F3 has one ordinary double point and |C' N F3| = 1.

We have Ict(F3) < A\. Then F3 is singular by Example 1.18. It follows from Lemma 5.5 that
LCS( Py, AQp, ) = Sing(F3),

but the log pair (F3, AQ)| F,) is not log canonical along the whole curve I' C F3, which is a
contradiction. U

Lemma 10.4. Suppose that J(X) = 4.5. Then lct(X) = 3/7.

Proof. Let Q@ C P* be a quadric cone, let V C PS be a a section of Gr(2,5) C P? by a linear
subspace of dimension 6 such that V' has one ordinary double point. Then the diagram

¢ -~ _
_ _ X 0 v L E\Q
) . - \ \ \‘E
- - ¥y
Vv P! x F, P! x P! —
vy 2
a 3
3
o1 : Fq X P!
B A
v ¢ |
|
U, o U o Us K
“ P! = P! x P2 = P
\_ /

commutes (cf. [66, Lemma 2.6]), where we have the following notation:

e the morphisms m;, v;, £ and x are natural projections;
e the morphism « contracts a surface F3 = E C U to a curve C such that

1 (02(1)) - C =2 (0 (1)) -C =14

e the morphism 3 contracts a surface P! X P! >~ H, C U to the singular point of V;
e the morphism f3; contracts the surface Ha to a smooth rational curve;
e the morphism §; contracts the curve (3;(Hz) to the singular point of V' so that the map

S 007 : Uy — Uy

is a standard flop in the curve £ (Hs) = P,

the morphism w; is a fibration whose general fiber is P' x P!

the morphisms ws, m, &, o, T are Pl-bundles;

the morphism ¢ is a blow up of a point O € P? such that O ¢ m5(C);

the map 1) is a linear projection from the point O € P?;

the morphism v contracts a surface G = P! x P! to a curve L such that mo(L) = O;
the morphism v contracts a surface G to a curve L such that

(L) =L C P x P
and the curve 3(L) is a line in V' C PS such that 3(L) N Sing(V) = @;

v

e the morphism 7 contracts a surface E to a curve such that v on(E) = C C P! x P?;
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e the morphism 6 contracts a surface R C X to a curve such that R #+ F and
7'00(]:2) —aon( ) c P! x P
e the morphism g is a fibration into del Pezzo surfaces of degree 6;
e the morphism ¢ contracts the surface §(Hz) to the singular point of the quadric Q;
e the map ¢ is a linear projection from the line (L) ¢ V C PS,
The curve mo(C) C P? is a line. Then a(Hz) € |75(Op2(1))] and C C o Hy).
The morphism 7 induces a double cover C' — P! branched in two points Q1 € C 3 Q». Let

i (00)

be the unique surface such that Q; € T;. Let T; C U be the proper transform of T;. Then

e the surface 1:“1 has one ordinary double point, B
e the surface T; is tangent to the surface £ along the curve £ NT;,
e the surface T; is a del Pezzo surface such that K% =T.

T, €

Let Z; C P? be the unique line such that O € Z 3 m 0 a(Q;). Then there is a unique surface

Ri S ’(7‘(2 o a)* <0P2(1)> ’
such that Z; C my 0 04(]5%). One has L C R; and
—Ky ~2Hy + R; +2T; + E.
Let I'; be a fiber of the projection E — C over the point ;. Then I'; = ENT; and

I; C LCS <U, §(2H2+Ri+2ﬁ+E)> .

Let Rz and Tz be the proper transforms of R; and T} on the threefold X, respectively. Then
~Kx ~2Hy + R; + 2T} + E,
because L C R;. Let I'; C X be the proper transform of the curve I';. Then the log pair

<X, %(2}“[2 + R; + 2T} +E)>

is log canonical but not log terminal. Thus, we see that lct(X) < 3/7.

We suppose that lct(X) < 3/7. Then there exists an effective Q-divisor D ~g —Kx such
that the log palr (X, )\D) is not log canonical for some rational A < 3/7.

The surfaces T} and 75 are the only singular fibers of the fibration jt: X — P!. Then

T, ¢ LCS(X, AD) CTiUTh,

by Lemma 2.26, because D - Z = Ty = 2, where Z is a general fiber of m 0 avo7.
We may assume that LCS(X, AD) C T1 by Theorem 2.7.
Applying Theorem 2.28 to the log pair (P! x F1, An(D)), we see that

o # LCS(X, )\D) £TNG,

because G = n(G) is a section of the P'-bundle o.
Applying Theorem 2.28 to the log pair (P! x P2, Aa o (D)), we see that

@;«ALCS(X, )\D) chinE=T,

by Theorem 2.7, because GNE =@ and T} is a section of 7.
Applying Theorem 2.28 to the log pairs (Y, A\0(D)) and (Uz, A\B2 o y(D)) (and the fibrations
7 and w9) we see that

o+ LCS <X, )\D) ~ 1,
because RN Hy = @. Put D = (D). Then LCS(U, \D) =I';. Put

D= é‘ﬁg + Q,
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where  is an effective Q-divisor such that Hy € Supp(£2). Then

(1+¢)
g, QT g TH»

Q

and the log pair (Ha, AQ|g,) is not log canonical by Theorem 2.20. The latter implies that
§ 1+¢ 1+4+¢

A
7 2 T

by Lemma 2.24, and hence € > 4/3. B B B
We may assume that either E' ¢ Supp(D) or T1 € Supp(D) by Remark 2.23.
Suppose that £ Z Supp(D). Let Z be a general fiber of the projection £ — C. Then

l=-Ky - Z=D -Z=e+0-Z>¢,

which is a contradiction, because € > 4/3. Thus, we see that Ty Z Supp(D).
Let A C T} be a proper transform of a general line in 7} = P? that passes through @Q;. Then

2=-Ky-A=D-A>multr, (D) >1/X>7/3,
because A ¢ Supp(D) and ANT; # @. The obtained contradiction completes the proof. O
Lemma 10.5. Suppose that J(X) = 4.6. Then lct(X) = 1/2.

>1/2

Proof. There is a birational morphism «: X — P3 that blows up three disjoint lines Ly, Lo, L.
Let H; be the proper transform on X of a general plane in P? such that L; C a(H;). Then

—Kx ~2H+E\+ Hy+ Hy ~2Ho+ Eo + Hy + Hs ~ 2H3 + Es + Hy + Ho,
where E; is the exceptional divisor of a such that «(E;) = L;. In particular, we see that
let(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~gp —Kx such

that the log pair (X, AD) is not log canonical for some positive rational number \ < 1/2.
The surface H; is a smooth del Pezzo surface such that K%IZ =7, the linear system |H;| has

no base points and induces a smooth morphism ¢;: X — P!, whose fibers are isomorphic to H;.
Suppose that [LCS(X,A\D)| < +o0o. We may assume that LCS(X,AD) € E;. Then the set

LCS <X, AD + Hy + ;El)

is disconnected, which is impossible by Theorem 2.7, because Hy + Hs + (A — 1/2)Kx is ample.
We may assume that H; N LCS(X,A\D) # @. Then
)

@ + H, NLCS (X, AD) C LCS (Hl, AD

by Remark 2.3. Put Cy = Es|py, and C5 = Es|g,. Then
Cy-Cy=C5-C3=-1,
and there is a unique curve P! 2 C' C H; such that C-Cy =C -C3=1and C-C = —1. Note

that
LCS(Hl, AD ) —C
H;
by Lemma 5.9.
There is a unique smooth quadric Q C P that contains L;, Ly, L3. Note that
Q N Hl = 07

where Q C X is a proper transform of the surface Q. B
There is a morphism o: X — P! x P! x P! contracting Q to a curve of tri-degree (1,1,1).
Since @ N H; = C, one obtains (see Remark 2.3) that

LCS (X, )\D) 50,
and hence LCS(X,A\D) = Q, because lct(P! x P! x P!) = 1/2. Put

D =puQ+Q,
91



where ;1 > 1/A > 2, and § is an effective Q-divisor such that Q ¢ Supp(€2). Then

a(D) = pQ + (),
which is impossible, because a(D) ~q 2Q ~ —Kps and p > 2. O
Lemma 10.6. Suppose that J(X) = 4.7. Then lct(X) = 1/2.

Proof. There is a birational morphism a: X — W such that

e the variety W is a smooth divisor of bi-degree (1,1) on P? x P?;

e the morphism « contracts two (irreducible) surfaces E1 # Fo to two disjoint curves Lq
and Lo;

e the curves L; are fibers of one natural P'-bundle W — P2.

There is a surface H C W such that —Kx ~ 2H and L; C H D Ly. Then
—Kx ~ 2H—|—E1 + Es,

where H is a proper transform of H on the threefold X. In particular, lct(X) < 1/2.
We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some A < 1/2. Then

o+ LCS(X, )\D) C By UE;,
since lct(W) = 1/2 by Theorem 7.1 and a(D) ~g —Kw.
We may assume that LCS(X,\D) N E; # @. Let : X — Y be a contraction of Ey. Then
LCS(Y, AB(D)) # 2
and 3(D) ~q —Ky, which contradicts Lemma 9.25. O
Lemma 10.7. Suppose that J(X) = 4.8. Then lct(X) = 1/3.

Proof. There is blow up a: X — P! x P! x P! of a curve C C P! x P! x P! such that C' C F} and
C-Fo,=C-F3=1,
where Fj is a fiber of the projection of P! x P! x P! to its i-th factor. There is a surface
P! x P! = G € |Fy + F|
such that C' C G. Let E be the exceptional divisor of o. Then
—Kx ~2F, +2G + 3E,

where [} and G are proper transforms of Fy and G, respectively. In particular, let(X) < 1/3.

We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/3. Note
that

o +LCS (X, AD) CE,

because let(P! x P x PY) = 1/2 and a(D) ~g —Kpt xp1 xp1 -
Let @Q be a quadric cone in P*. Then there is a commutative diagram

where we have the following notations:
e V is a variety with J(V') = 3.31; B
e the morphism ( is a contraction of the surface G to a curve;

e the morphism ~ is a contraction of F; =2 P! x P! to an ordinary double point;
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the morphism 6 is a blow up of the vertex of the quadric cone Q C P4;

the morphism ¢ is a blow up of a smooth conic in Q;

the map 1 is a projection from the vertex of the cone Q);

the morphism ¢ is a projection that is given by |Fo+ F3|, i. e. the projection of P! x P x P!
onto the product of the last two factors;

e the morphism 7 is a natural P!-bundle.

It follows from Corollary 6.4 that lct(V) = 1/3. On the other hand, lct(U) = 1/3 by
Lemma 2.27. Hence

@#LCS(X, AD) CENGNE =0
which is a contradiction. g
Lemma 10.8. Suppose that IJ(X) = 4.9. Then lct(X) = 1/3.

Proof. There exists a point O € P3, and there exist lines L; C P? O Ly such that L1 N Ly = @
the line Ly passes through the point O, and there is a commutative diagram

@
IFI1 ]P)2 L1
\ \
Z Vz 2 x P!
P €1
Cl / \\
/v \“ v
. Uy 2 X 1 U,
v (51 Y 62 o
B2 B1
12
t Vi Va
/ a1
P! -
P! x P! IP3
’Y2 1

that uses the following notation:

the morphism o is a blow up of the point O;

the morphism 7 is a natural P!-bundle;

the morphism «; is a blow up of the line L;;

the morphisms (3;, v; and €; are blow ups of the proper transforms of the line L;;

the morphisms 7 and §; are blow ups of curves that are the preimages of the point O;
the morphism ds is a blow up of the point that dominates the point O;

the morphisms w; and wy are natural P2-bundles, where

ViV P(Opl ® Op1 @ Opl(l));

e the morphisms ¢1, t2, 71 and o are natural projections;
e the morphism ¢ is a blow up of the point 7(L;), where L1 C V7 is a proper transform of
Lq;
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e the morphisms p and (; contract the proper transforms of the plane IT C P? such that
Ly CII 3 O

e the morphisms 7, v, &, X, 71, 72 and 1o are natural P'-bundles.
Let H; C X be the proper transform of a general plane in P? that contains L;. Then

—Kx ~3H1 + Hy 4+ 2F; + G,

where E; and G be the exceptional divisor of v; and 7, respectively. Thus, we have lct(X) < 1/3.

We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/3. Note
that

o # LCS(X, AD) ca,
since lct(Y) = 1/3 by Lemma 9.26. But the surface G is not a fiber of the smooth morphism
wiofByor: X — P,
so we obtain a contradiction applying Lemma 2.26 to the morphism wy o B2 0 7. U
The proof of Lemma 10.8 implies the following.
Corollary 10.9. Suppose that J(X) = 5.2. Then lct(X) = 1/3.

Remark 10.10. Actually, the results of Lemma 10.8 and Corollary 10.9 are contained in Corol-
lary 6.4, but we still prefer to give a detailed proof that may have further applications.

The following result is implied by Corollaries 9.19 and 10.9, Lemma 2.30 and Example 1.18.
Corollary 10.11. Suppose that p > 5. Then
{ 1/3 whenever 1(X) € {5.1,5.2},

let(X) = 1/2 in the remaining cases.
Lemma 10.12. Suppose that J(X) = 4.13 and X is general. Then lct(X) = 1/2.
Proof. Let Fy =2 Fy = [y =2 P! x P! be fibers of three different projections
P! x P! x P! — P!,
respectively. There is a contraction a: X — P! x P! x P! of a surface E C X to a curve
C CP' xP xP!

such that C' - F} =C - F, =1 and C - F3 = 3. Then there is a smooth surface

P! xP' =G € |F + F
such that C' C G. In particular, we see that

—Kx ~2G + E + 2F3,

where F3 and G are proper transforms of F3 and G, respectively. Hence let(X) < 1/2.

We suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical for some positive rational number A < 1/2. Note
that

o+ LCS(X, )\D) CE~F,,

because let(P! x P! x P1) = 1/2 and a(D) ~g —Kp1 yp1 xp1 -
There are smooth surfaces H; € [3F; + F3| and Hs € |3F, + Fg‘ such that
C=G-H =G Hs,
and H; = Hy, =2 P! x PL. Let H; be a proper transform of H; on the threefold X. Then

HNG=HNG=wo.
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There is a commutative diagram

X
/ \
Uy f a U,
1% P! x P! x P!
é1 / C . ¢2
e
P! x P! P! x P! P! x P!

such that 3 and +; are contractions of the surfaces G and H; to a smooth curves, the morphisms
7 and ¢; are P'-bundles, the morphisms ¢ and &; are projections that are given by the linear
systems |Fy + F»| and |F; 4+ F3|, respectively.

It follows from H; NG = @ that

e either the log pair (V, A\3(D)) is not log canonical,
e of the log pair (U, Ay1(D)) is not log canonical.

Applying Theorem 2.28 to (V,A\3(D)) or (U1, Ay1(D)) (and the fibration 7w or ¢1) and using
Theorem 2.7, we see that

LCS(X, AD) ~T,

where I is a fiber of the natural projection £ — C.
We may assume that a(I") € F3. Let F3 C X be the proper transform of the surface F3. Put

D= ,lLFg + Q,
where ) is an effective Q-divisor on X such that F3 ¢ Supp(Q2). Then
pFs 4+ a () ~g 2<F1 + Fy + F3>,

which gives ;1 < 2. The log pair (F3, AQ|z,) is not log canonical along I' C F3 by Theorem 2.20.
One has

Q

~o —K =
Fg Q F37
and F3 is a del Pezzo surface such that K%S = 5. Note that I3 may be singular. Namely, we
have

Sing(Fg) =g <= ‘CﬂFg‘ =F3-C =3,
and Sing(F3) C I'. The following cases are possible:

e the surface ]?3 is smooth and |C' N F3| = 3;
e the surface F3 has one ordinary double point and |C'N F3| = 2;
e the surface F3 has a singular point of type Ag and |C' N F3| = 1.

We have lct(F3) < A < 1/2. Thus, it follows from Examples 1.18 and 5.3 that |C N F3| = 1,
which is impossible if the threefold X is sufficiently general. O
11. UPPER BOUNDS

We use the assumptions and notation introduced in section 1. The purpose of this section is
to find upper bounds for the global log canonical thresholds of the varieties X with

1(X) € {1.1,1.2,...,1.17,2.1,...,2.36,3.1,...,3.31,4.1,...,4.13,5.1,...,5.7,5.8}.

Lemma 11.1. Suppose that J(X) = 1.8. Then lct(X) < 6/7.
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Proof. The linear system | — K x| does not have base points and induces an embedding X C P10,
and the threefold X contains a line L C X (see [168], [178]).
It follows from [98, Theorem 4.3.3] (see [45], [178]) that there is a commutative diagram

U---"-- -

al iﬁ
,,,,, > ™3

X Y P

where « is a blow up of the line L, the map p is a composition of flops, the morphism 3 is a
blow up of a smooth curve of degree 7 and genus 3, and v is a double projection from L.
Let S C X be the proper transform of the exceptional surface of 3. Then

multL(S) =7
and S ~ —3K x, which implies that lct(X) < 6/7. O
Lemma 11.2. Suppose that J(X) = 1.9. Then lct(X) < 4/5.

Proof. The linear system | — K x| does not have base points and induces an embedding X C P!
and the threefold X contains a line L C X (see [168], [178]).
It follows from [98, Theorem 4.3.3] (see [45], [178]) that there is a commutative diagram

U---"-- - W
al lﬁ
X----=Q

where Q C P* is a smooth quadric threefold, « is a blow up of the line L, the map p is a com-
position of flops, the morphism 3 is a blow up along a smooth curve of degree 7 and genus 2,
and v is a double projection from the line L.

Let S C X be the proper transform of the exceptional surface of 3. Then

multL(S) =5
and S ~ —2Kx, which implies that lct(X) < 4/5. O
Lemma 11.3. Suppose that J(X) = 1.10. Then lct(X) < 2/3.

Proof. The linear system | — K x| does not have base points and induces an embedding X C P'3,
and the threefold X contains a line L C X (see [168], [178]).
It follows from [98, Theorem 4.3.3] (see [45], [178]) that the diagram

U---"-- - W
al \Lﬁ
R

commutes, where V5 is a smooth section of Gr(2,5) C P? by a linear subspace of dimension 6,

the morphism « is a blow up of the line L, the map p is a composition of flops, the morphism

[ is a blow up of a smooth rational curve of degree 5, and v is a double projection from L.
Let S C X be the proper transform of the exceptional surface of 3. Then

multy, (S) =3
and S ~ —Kx, which implies that lct(X) < 2/3. O

Lemma 11.4. Suppose that J(X) = 2.2. Then lct(X) < 13/14.
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Proof. There is a smooth divisor B C P! x P? of bi-degree (2,4) such that the diagram

AT

1 pl 2
P —— P! x P2 —

P2

commutes, where 7 is a double cover branched along B, the morphisms m; and 7y are natural
projections, ¢ is a fibration into del Pezzo surfaces of degree 2, and ¢9 is a conic bundle.
Let Hj be a general fiber of ¢1. Put Hy = w(H;). Then the intersection

CzﬁlﬂBCngPQ

is a smooth quartic curve.
There is a point P € C' such that

mult p (C . L) >3,

where L C H; = P? is a line that is tangent to C at the point P.
The curve mo(L) is a line. Thus, there is a unique surface

e (o0 0)

such that ¢o(Hz) = m2(L). Hence —Kx ~ Hy + Ha.
Let us show that lct(X, Hy + H2) < 13/14. Put Hy = w(Hsz). Then

13 Lo, 1o 13/
LCS <X, M(H1+H2>> 4@ «— LCS <IP’ « P2, 2B+14<H1+H2)> oy

by [105, Proposition 3.16]. Let a: V — P! x P? be a blow up of the curve C. Then
13

1. o\ 3 1 13,
Ky +-B —(H H) °Erga (K °B —(H H) ,
V+2 +14 1+ 12 +7 QO ( ]}D1X]11>2+2 +14 1+ 2

where B, Hy, H, C V are proper transforms of B, Hy, Hy, respectively. But the log pair
13 - 3
V, —Hs + -F
< ) 14 2+ 7 )

is not log terminal along the fiber I" of the morphism « such that «(I') = P, because
multp (ﬁg . E) = multp (C . _FIQ) > multp (C’ . L) >3

due to the choice of the fiber H;. We see that
13 - 3 1~ 13/~ ~ 3
rcL 2+ 2E)CL =y —(H H) °E),
CS<V 11 2+7>CS<V2 +14 1+ 2—!—7)

which implies that let(X, H; + Hs) < 13/14. Hence the inequality let(X) < 13/14 holds. O
Remark 11.5. Tt follows from Lemmas 2.26 and 5.1 that lct(X) > 2/3 if J(X) = 2.2 and the
threefold X satisfies the following generality condition: any fiber of ¢; satisfies the hypotheses
of Lemma 5.1.

Lemma 11.6. Suppose that J(X) = 2.7. Then lct(X) < 2/3.

Proof. There is a commutative diagram

where Q C P* is a smooth quadric threefold, « is a blow up of a smooth curve that is a complete

intersection of two divisors
)

1,8 € ’OP“@)‘Q
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the morphism ( is a fibration into del Pezzo surfaces of degree 4, and 1) is a rational map that
is induced by the pencil generated by the surfaces S; and Ss. Then let(X) < 2/3, because

3. 1
—Kx ~p=51+=-F
X ~Q 501 + 5
where S; C X is a proper transform of the surface S, and F is the exceptional divisor of . O

Lemma 11.7. Suppose that J(X) = 2.9. Then lct(X) < 3/4.

Proof. There is a commutative diagram

o N
]P)v?) —————— >]P)2

where « is a blow up of a smooth curve C' C P3 of degree 7 and genus 5 that is a scheme-theoretic
intersection of cubic surfaces in P3, the morphism £ is a conic bundle, and v is a rational map
that is given by the linear system of cubic surfaces that contain C. One has

4 1

where S € |5*(Op2(1))], and E is the exceptional divisor of a. We see that let(X) <3/4. O
Lemma 11.8. Suppose that J(X) = 2.12. Then lct(X) < 3/4.

Proof. There is a commutative diagram

7N
Pi--=o - ~P?

where v and 3 are blow ups of smooth curves C C P3 and Z C P? of degree 6 and genus 3 that
are scheme-theoretic intersections of cubic surfaces in P3, and 1 is a birational map that is given
by the linear system of cubic surfaces that contain C. Then

4 1
Ky r~g-S+-E
X~0 g + 3
where S € |5*(Ops(1))], and E is the exceptional divisor of a. We see that let(X) < 3/4. O
Lemma 11.9. Suppose that IJ(X) = 2.13. Then lct(X) < 2/3.

Proof. There is a commutative diagram

where Q C P? is a smooth quadric threefold, « is a blow up of a smooth curve C' C @ of degree 6
and genus 2, the morphism £ is a conic bundle, and 1 is a rational map that is given by the linear
system of surfaces in |Ops(2)|g| that contain the curve C. One has

3 1
Ky ~g oS+ -E
X ~Q 25 + Rk
where S € |5*(Op2(1))], and E is the exceptional divisor of a. We see that let(X) <2/3. O

Lemma 11.10. Suppose that J(X) = 2.16. Then lct(X) < 1/2.
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Proof. There is a commutative diagram

where V; C P5 is a smooth complete intersection of two quadric hypersurfaces, « is a blow up
of an irreducible conic C' C Vj, the morphism (3 is a conic bundle, and %) is a rational map that
is given by the linear system of surfaces in |Ops(1)|y,| that contain C. One has

—KX ~ 25 + E,
where S € |3*(Op2(1))|, and FE is the exceptional divisor of a. We see that lct(X) < 1/2. O
Lemma 11.11. Suppose that J(X) = 2.17. Then lct(X) < 2/3.

Proof. There is a commutative diagram

where Q C P* is a smooth quadric threefold, the morphisms a and 3 are blow ups of smooth
elliptic curves C' C Q and Z C P3 of degree 5, respectively, and the map 1 is given by the linear
system of surfaces in |Opa(2)|g| that contain the curve C. One has
3 1
—Kx ~p = -F
where S € |3*(Ops(1))|, and FE is the exceptional divisor of a. We see that let(X) <2/3. O
Lemma 11.12. Suppose that J(X) = 2.20. Then lct(X) < 1/2.

Proof. There is a commutative diagram

X
N
Vo= —-o---p?

where V5 C P9 is a smooth intersection of Gr(2,5) C P? with a linear subspace of dimension 6,

the morphism « is a blow up of a cubic curve P! 22 C' C V5, the morphism §3 is a conic bundle,

and 1 is given by the linear system of surfaces in |Ops(1)]y;| that contain the curve C. One has
_Kx ~2S+E,

where S € |3*(Op2(1))], and E is the exceptional divisor of a. We see that let(X) < 1/2. O

Lemma 11.13. Suppose that J(X) = 2.21. Then lct(X) < 2/3.

Proof. There is a commutative diagram

where @ C P* is a smooth quadric threefold, the morphisms a and /3 are blow ups of smooth
rational curves C' C @ and Z C @ of degree 4, and ¢ is a birational map that is given by
the linear system of surfaces in |Op4(2)|g| that contain the curve C. One has

3 1
—Kx ~p =S+ -FE

where S € |3*(Opa(1))|gl|, and E is the exceptional divisor of . We see that let(X) <2/3. O
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Lemma 11.14. Suppose that J(X) = 2.22. Then lct(X) < 1/2.

Proof. There is a commutative diagram

X
o N
Vi———o-—-p

where V5 C P? is a smooth intersection of Gr(2,5) C PY with a linear subspace of dimension 6,
the morphisms « and 3 are blow ups of a conic C' C V; and a rational (not linearly normal)
quartic Z C P3, respectively, and 1) is given by the linear system of surfaces in |Ops(1)|ys| that
contain the curve C'. One has

—Kx ~25+F,

where S € |5*(Ops3(1))], and E is the exceptional divisor of a. We see that let(X) < 1/2. O
Lemma 11.15. Suppose that J(X) = 3.13. Then lct(X) < 1/2.
Proof. There is a commutative diagram

PQ
B3

2

/

¢

™ 3

///////////

B

B2

1

WA
\

Wi

such that W; C P? x IP? is a divisor of bi-degree (1, 1), the morphisms a; and 3; are P!-bundles,
m; is a blow up of a smooth curve C; C W; of bi-degree (2,2) such that

(67 (CZ) C PZ D) ,31 (CZ)
are irreducible conics, and ¢; is a conic bundle. Let E; be the exceptional divisor of ;. Then
—Kx ~2H, + Ey ~2Hy + Eo ~ 2H3 + E3 ~ By + Eo + E3,
where H; € |¢F(Op2(1))|. We see that let(X) < 1/2. O
Remark 11.16. Let us use the notation of the proof of Lemma 11.15 and assume that let(X) <
1/2. Then there is an effective Q-divisor D ~g —Kx such that the log pair (X, AD) is not log
canonical for some A < 1/2. Since lct(W;) = 1/2 by Theorem 7.1, one has
o+ LCS(X, /\D) C E1NEynN Es.

In particular, by Theorem 2.7 the locus LCS(X, AD) consists of a single point P; note that P is
an intersection P = F} N Fy N F3 of three curves F; such that Fy U F3 (resp., F1 U F3, F1 U F3)
is a reducible fiber of the conic bundle ¢ (resp., ¢2, ¢3).

APPENDIX A. By JEAN-PIERRE DEMAILLY. ON TIAN’S INVARIANT AND LOG CANONICAL
THRESHOLDS

The goal of this appendix is to relate log canonical thresholds with the a-invariant introduced
by G.Tian [179] for the study of the existence of Kdhler—Einstein metrics. The approximation
technique of closed positive (1, 1)-currents introduced in [48] is used to show that the a-invariant
actually coincides with the log canonical threshold.
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Algebraic geometers have been aware of this fact after [49] appeared, and several papers
have used it consistently in the latter years (see e.g. [81], [12]). However, it turns out that the
required result is stated only in a local analytic form in [49], in a language which may not be
easily recognizable by algebraically minded people. Therefore, we will repair here the lack of a
proper reference by stating and proving the statements required for the applications to projective
varieties, e.g. existence of Kéahler—Einstein metrics on Fano varieties and Fano orbifolds.

Usually, in these applications, only the case of the anticanonical line bundle L = —Kx is
considered. Here we will consider more generally the case of an arbitrary line bundle L (or Q-
line bundle L) on a complex manifold X, with some additional restrictions which will be stated
later.

Assume that L is equipped with a singular hermitian metric h (see e.g. [47]). Locally, L
admits trivializations 6 : Lj; >~ U x C, and on U the metric h is given by a weight function ¢
such that

€117 = |§|26_2“’(z) forall z e U, € L,

when ¢ € L, is identified with a complex number. We are interested in the case where ¢ is (at
the very least) a locally integrable function for the Lebesgue measure, since it is then possible
to compute the curvature form

Orn= 13580
™

in the sense of distributions. We have O, > 0 as a (1,1)-current if and only if the weights ¢
are plurisubharmonic functions. In the sequel we will be interested only in that case.

Let us first introduce the concept of complex singularity exponent for singular hermitian
metrics, following e.g. [184], [185], [4] and [49].

Definition A.1. If K is a compact subset of X, we define the complex singularity exponent
ci (h) of the metric h, written locally as h = e~2%, to be the supremum of all positive numbers
c such that h¢ = e72% is integrable in a neighborhood of every point zg € K, with respect to
the Lebesgue measure in holomorphic coordinates centered at zj.

Now, we introduce a generalized version of Tian’s invariant «, as defined in [179] (see

also [173]).

Definition A.2. Assume that X is a compact manifold and that L is a pseudo-effective line
bundle, i.e. L admits a singular hermitian metric hg with O, > 0. If K is a compact subset
of X, we put

L) = inf h
ag(L) {h,@f@o}cﬂ )

where h runs over all singular hermitian metrics on L such that ©r,; > 0.
In algebraic geometry, it is more usual to look instead at linear systems defined by a family of

linearly independent sections g, o1, ...,on € H°(X, L®™). We denote by ¥ the vector subspace
generated by these sections and by

13| ;= P(X) C |mL| := P(H'(X,L®™))

the corresponding linear system. Such an (N + 1)-tuple of sections o = (0;)ogjcn defines a
singular hermitian metric h on L by putting in any trivialization

el = € _ o leP
LSl e

for £ € L,,

hence h(z) = |o(2)|~%/™ with

ol2) = loglo ()] = 5 -log Y loy(2)]?

as the associated weight function. Therefore, we are interested in the number cx (|o|~%/™). In
the case of a single section o (corresponding to a linear system containing a single divisor), this

is the same as the log canonical threshold let g (X, %D) of the where D is a divisor corresponding
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to 0g. We will also use the formal notation letx (X, - |X|) in the case of a higher dimensional
linear system |X| C |mL]|.

Now, recall that the line bundle L is said to be big if the Kodaira-Titaka dimension (L)
equals n = dim¢(X). The main result of this appendix is

Theorem A.3. Let L be a big line bundle on a compact complex manifold X. Then for every
compact set K in X we have

1
L)=  inf h)= inf inf letgx(X,—D).
ax (L) {hvel?,h>o} e (h) m1€nZ>o Dg|lmL| ¢ K( "m >

Observe that the inequality
inf  inf lctg (X D) inf  cx(h)
meEZso DE|mL]| {h,©1,n=0}

is trivial, since any divisor D € |mL| gives rise to a singular hermitian metric h. The converse
inequality will follow from the approximation technique of [48] and some elementary analysis.
The proof is parallel to the proof of [49, Theorem 4.2], although the language used there was
somewhat different. In any case, we use again the crucial concept of multiplier ideal sheaves:
if h is a singular hermitian metric with local plurisubharmonic weights ¢, the multiplier ideal
sheaf Z(h) C Ox (also denoted by Z(¢)) is the ideal sheaf defined by

Z(h), = { f € Ox,. | there exists a neighborhood V' > z,

{ such that / |F(2)Pe™ 2@ dx(z) < +oo},
1%

where A\ is the Lebesgue measure. By Nadel (see [132]), this is a coherent analytic sheaf on X.
Theorem A.3 has a more precise version which can be stated as follows.

Theorem A.4. Let L be a line bundle on a compact complex manifold X possessing a singular
hermitian metric h with ©p,j, > ew for some € > 0 and some smooth positive definite hermitian
(1,1)-form w on X. For every real number m > 0, consider the space H,, = H(X, L*"®Z(h™))
of holomorphic sections o of L®™ on X such that

/ |o|FmdV, :/ lo|?e ™2™V, < +oo0,
X X

where dV, = ,w is the hermitian volume form. Then for m > 1, H,, is a non zero finite
dimensional Hllbert space and we consider the closed positive (1, 1)-current

i 1 i1
T = (—1 2) = (—1 2)
m= 5.9\, Og%:mm”“' 29\ 5m Og;mmﬂh +Orn

where (gm,k)1<k<n(m) s an orthonormal basis of H,,. The following statements hold.

(i) For every trivialization Lj;; ~ U x C on a cordinate open set U of X and every compact set
K C U, there are constants C, Co > 0 independent of m and ¢ such that

1. C
P(2) = — < ¥m(z -*7log2‘gmk 2 < sup o(z) + *logf2

le—z|<r

for every z € K and r < %d(K ,OU). In particular, v, converges to ¢ pointwise and in L}
topology on €2 when m — 400, hence T}, converges weakly to T' = Oy, j,.

(ii) The Lelong numbers v(T, z) = v(y, z) and v(T),, z) = v(1m, 2) are related by
v(T, z) — % <v(Tm,2) <v(T,z) forevery z € X.

loc

(iii) For every compact set K C X, the complex singularity exponents of the metrics given
locally by h = e™2? and h,, = e~ 2% satisfy

_ 1 _ _
CK(h) L E S CK(hm) 1 § CK(h) 1.

102



Proof. The major part of the proof is a small variation of the arguments already explained in [48]
(see also [49, Theorem 4.2]). We give them here in some detail for the convenience of the reader.

(i) We note that Y |gm x(2)|? is the square of the norm of the evaluation linear form o — o(2)
on H,,, hence
1
Ym(z) = sup — log|o(z)]
ceB(1) T
where B(1) is the unit ball of H,,. For r < %d(K , 0€2), the mean value inequality applied to the
plurisubharmonic function |o|? implies

< ey [ lo@PaE) <

= np2n /n)

exp <2m sup @(m))[)]0|26_2m‘”d)\.

X
2
wnr2n /n) lo—z|<r

If we take the supremum over all o € B(1) we get
1

1 log ———
om 8 7nr2n /n)

Ym(2) < sup (@) + 5

|lz—z|<r
and the right hand inequality in (i) is proved. Conversely, the Ohsawa—Takegoshi extension
theorem [134], [135] applied to the 0-dimensional subvariety {z} C U shows that for any a € C
there is a holomorphic function f on U such that f(z) = a and

/ ’f‘Ze—ngod)\ < Cg‘a|2e—2m<p(z)7
U

where C5 only depends on n and diam(U'). Now, provided a remains in a compact set K C U, we
can use a cut-off function # with support in U and equal to 1 in a neighborhood of a, and solve
the d-equation dg = 9(0f) in the L? space associated with the weight 2mep +2(n + 1) log |z — al,
that is, the singular hermitian metric h(z)™|z — a|~2(**1) on L®™. For this, we apply the
standard Andreotti—Vesentini-Hérmander L? estimates (see e.g. [46] for the required version).
This is possible for m > mg thanks to the hypothesis that O > ew > 0, even if X is non
Kéhler (X is in any event a Moishezon variety from our assumptions). The bound mg depends
only on ¢ and the geometry of a finite covering of X by compact sets K; C Uj;, where U; are
coordinate balls (say); it is independent of the point a and even of the metric h. It follows that
g(a) = 0 and therefore 0 = f — g is a holomorphic section of L®™ such that

/ |o|2mdV, = / lo|?e™2mPdV, < Cy / |f12e™2m2dV,, < Csla)?e 2m#(?),
X X U

in particular, o € H,, = H°(X,L®™ @ Z(h™)). We fix a such that the right hand side of the
latter inequality is 1. This gives the inequality

log Cs

1
Um(2) > —loglal = o(2) — <o

which is the left hand part of statement (i).
(ii) The first inequality in (i) implies v (¢, 2) < v(p, z). In the opposite direction, we find

1
SWp (1) < sup_plx) + - log

le—z|<r |x—z|<2r e
Divide by logr < 0 and take the limit as r tends to 0. The quotient by logr of the supremum
of a psh function over B(z,r) tends to the Lelong number at z. Thus we obtain
n
V(¢mam) > Z/(QO,CB) - %
(iii) Again, the first inequality in (i) immediately yields h,, < Cgh, hence cx (hy,) > cx(h). For
the converse inequality, since we have cyg; (h) = min; CK; (h), we can assume without loss of
generality that K is contained in a trivializing open patch U of L. Let us take ¢ < ¢x (1y,). Then,
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by definition, if V C X is a sufficiently small open neighborhood of K, the Holder inequality for
the conjugate exponents p = 1 +mc™! and ¢ = 1 + m~!c implies, thanks to equality % =<

%7
1/ —c/m
/6—2(m/p)gode:/ ( Z |gm,k’2e_2m¢> p( Z ‘gm,kP) quw g
v V' 1<k<N(m) 1<k<N(m)
1/p y 1/q
—Cc/m
< / Z ’gm,k‘Qe_Qmdew / < Z ‘gm,k‘2> de -
X 1 <k<N(m) Vo 1<k<N(m)
1/q
1/p 9 —c/m
= N(m) ( > gml ) dv, < +00.
Vo 1<k<N(m)

From this we infer cx(h) > m/p, ie., cx(h)™' < p/m = 1/m +c™ . As ¢ < cx(¢,) was
arbitrary, we get cx(h)~' < 1/m + cx(hm) ! and the inequalities of (iii) are proved. O

Proof of Theorem A.3. Given a big line bundle L on X, there exists a modification p : XX
of X such that X is projective and w*L = O(A + FE) where A is an ample divisor and E an
effective divisor with rational coefficients. By pushing forward by p a smooth metric h4 with
positive curvature on A, we get a singular hermitian metric h; on L such that

OLh, = 1sOap, = cw

on X. Then for any 6 > 0 and any singular hermitian metric h on L with ©pj; > 0, the
interpolated metric hs = h‘fhl_‘S satisfies O, = dew. Since h; is bounded away from 0, it
follows that cx(h) > (1 — §)ck(hs) by monotonicity. By Theorem A.4 (iii) applied to hgs, we
infer

ck(hs) = 1—1>I£oo ck(hsm),

m

and we also have .
CK(hd,m) = et <7D6,m)
m

for any divisor Dy, associated with a section o € H(X, L™ @ Z(h{")), since the metric hg»,
is given by hsm = (34 [gmxl?) /™ for an orthornormal basis of such sections. This clearly
implies

1 |
cx(h) = liminf liminf lctK(—D&m) > inf i lctK<—D). O
—0 m—+oo m meZso De|mL)| m

In the applications, it is frequent to have a finite or compact group G of automorphisms
of X and to look at G-invariant objects, namely G-equivariant metrics on G-equivariant line
bundles L; in the case of a reductive algebraic group G we simply consider a compact real form
G® instead of G itself.

One then gets an « invariant ag k(L) by looking only at G-equivariant metrics in Defini-
tion A.2. All contructions made are then G-equivariant, especially H,, C |mL| is a G-invariant
linear system. For every G-invariant compact set K in X, we thus infer

1

A5 Q@ L)= inf cx(h) = inf inf let (— by )

( ) G’K( ) {h is G—equivariant, ©p, ;, >0} K( ) meEZ>o |X|C|lmL|, Z¢=% K m| ‘
When G is a finite group, one can pick for m large enough a G-invariant divisor Ds ,, associated
with a G-invariant section o, possibly after multiplying m by the order of G. One then gets the
slightly simpler equality

1

A6 @ L) = inf inf et (—D).

(A4.6) G7K( ) me€Zso DE|mL|C K\m

In a similar manner, one can work on an orbifold X rather than on a non singular variety. The
L? techniques work in this setting with almost no change (L? estimates are essentially insensitive
to singularities, since one can just use an orbifold metric on the open set of regular points). O
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APPENDIX B. THE BiG TABLE

This appendix contains the list of nonsingular Fano threefolds. We follow the notation and

the numeration of these in [98], [126], [127]. We also assume the following conventions
e the symbol V; denotes a smooth Fano threefold such that —Kx ~ 2H and

Pic(V;) = Z[H],

where H is a Cartier divisor on V;, and H® = 8 € {8,16,...,40},
e the symbol W denotes a divisor on P? x P2 of bidegree (1,1) (or, that is the same, the
variety P(Tp2)),
e the symbol V7 denotes a blow up of P? at a point (or, that is the same, the variety
P(Op2 @ Op2(1))),
e the symbol @ denotes a smooth quadric hypersurface in P*,
e the symbol S; denotes a smooth del Pezzo surface such that

Kg =ie{l,...,8},

where Sg 2 P! x P

The fourth column of Table 1 contains the values of global log canonical thresholds of the
corresponding Fano varieties. The symbol * near a number means that lct(X) is calculated for
a general X with a given deformation type. If we know only the upper bound let(X) < «, we
write < « instead of the exact value of let(X), and the symbol ? means that we don’t know
any reasonable upper bound (apart from a trivial let(X) < 1).

Table 1: Smooth Fano threefolds

J(X) | =K% | Brief description let(X)
1.1 2 a hypersurface in P(1,1,1, 1, 3) of degree 6 1x
1.2 4 a hypersurface in P* of degree 4 or ?

a double cover of smooth quadric in P* branched over a surface of degree 8
1.3 6 a complete intersection of a quadric and a cubic in P? ?
1.4 8 a complete intersection of three quadrics P® ?
1.5 10 | a section of Gr(2,5) C PY by quadric and linear subspace of dimension 7 ?
1.6 12 | a section of the Hermitian symmetric space M = G/P C P ?
of type DIII by a linear subspace of dimension 8
1.7 14 | a section of Gr(2,6) C P! by a linear subspace of codimension 5 ?
1.8 16 | a section of the Hermitian symmetric space M = G/P C P <6/7
of type CI by a linear subspace of dimension 10
1.9 18 a section of the 5-dimensional rational homogeneous contact <4/5
manifold G5/P C P*? by a linear subspace of dimension 11
1.10 22 a zero locus of three sections of the rank 3 vector bundle /\2 Q, < 2/3
where Q is the universal quotient bundle on Gr(7, 3)

1.11 8 V1 that is a hypersurface in P(1,1, 1,2, 3) of degree 6 1/2
1.12 16 | V; that is a hypersurface in P(1,1,1,1,2) of degree 4 1/2
1.13 24 | V3 that is a hypersurface in P* of degree 3 1/2
1.14 32 V, that is a complete intersection of two quadrics in P? 1/2
1.15 | 40 | Vs that is a section of Gr(2,5) C P? by linear subspace of codimension 3 1/2
1.16 54 | @ that is a hypersurface in P* of degree 2 1/3
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117 | 64 | P3 1/4
2.1 4 a blow up of the Fano threefold V; along an elliptic curve 1/2
that is an intersection of two divisors from | — $ Ky, |
2.2 6 a double cover of P* x P? whose branch locus is a divisor of bidegree (2,4) <13/14
2.3 8 the blow up of the Fano threefold V5 along an elliptic curve 1/2
that is an intersection of two divisors from | — 3Ky, |
24 10 | the blow up of P3 along an intersection of two cubics 3/4x
2.5 12 | the blow up of the threefold V3 C P* along a plane cubic 1/2x
2.6 12 | a divisor on P? x P? of bidegree (2,2) or ?
a double cover of W whose branch locus is a surface in | — K|
2.7 14 | the blow up of @ along the intersection of two divisors from |Og(2)] <2/3
2.8 14 | a double cover of V7 whose branch locus is a surface in | — Ky, | 1/2x
2.9 16 | the blow up of P3 along a curve of degree 7 and genus 5 <3/4
which is an intersection of cubics
2.10 | 16 | the blow up of V4 C P° along an elliptic curve 1/2%
which is an intersection of two hyperplane sections
2.11 18 | the blow up of V3 along a line 1/2%
2.12 20 | the blow up of P? along a curve of degree 6 and genus 3 < 3/4
which is an intersection of cubics
2.13 20 | the blow up of Q C P* along a curve of degree 6 and genus 2 <2/3
2.14 20 | the blow up of V5 C IPS along an elliptic curve 1/2%
which is an intersection of two hyperplane sections
2.15 22 the blow up of P? along the intersection of a quadric and a cubic surfaces 1/2%
2.16 22 | the blow up of V4 C P° along a conic <1/2
2.17 24 | the blow up of @ C P* along an elliptic curve of degree 5 <2/3
2.18 24 | a double cover of P! x P? whose branch locus is a divisor of bidegree (2,2) 1/2
2.19 | 26 | the blow up of V; C P° along a line 1/2%
2.20 26 the blow up of V5 C P% along a twisted cubic <1/2
2.21 28 | the blow up of @ C P* along a twisted quartic <2/3
2.22 | 30 | the blow up of V5 C PY along a conic <1/2
2.23 30 | the blow up of Q C P* along a curve of degree 4 that is an intersection of a 1/3%
surface in |Ops(1)|g| and a surface in |Opa(2)|g|
2.24 | 30 | adivisor on P? x P? of bidegree (1,2) 1/2%
2.25 32 | the blow up of P? along an elliptic curve which is an intersection of two quadrics 1/2
2.26 34 | the blow up of the threefold V5 C P along a line 1/2%
2.27 38 | the blow up of P? along a twisted cubic 1/2
2.28 40 | the blow up of P? along a plane cubic 1/4
2.29 40 | the blow up of Q C P* along a conic 1/3
2.30 46 | the blow up of P? along a conic 1/4
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2.31 46 | the blow up of Q C P* along a line 1/3

2.32 | 48 | W that is a divisor on P? x P? of bidegree (1,1) 1/2

2.33 | 54 | the blow up of P? along a line 1/4

234 | 54 |PlxP? 1/3

2.35 56 Vi 2 P(Op2 @ Op2(1)) 1/4

236 | 62 | P(Ope @ Opa(2)) 1/5

3.1 12 | a double cover of P! x P! x P! branched in a divisor of tridegree (2,2, 2) 3/4%

3.2 14 | a divisor on a P2-bundle P(Op1 yp1 & Op1 yp1(—1, —1) @ Op1 yp1(—1,—1)) 1/2x
such that X € |L%? ® Op1yp1(2,3)|, where L is the tautological line bundle

3.3 18 | a divisor on P! x P! x P? of tridegree (1,1,2) 2/3%

3.4 18 | the blow up of the Fano threefold Y with J(Y') = 2.18 along a smooth fiber 1/2
of the composition Y — P! x P? — P? of the double cover with the projection

3.5 20 | the blow up of P! x P? along a curve C of bidegree (5,2) 1/2%
such that the composition C' < P! x P? — P? is an embedding

3.6 22 | the blow up of P? along a disjoint union of a line and an elliptic curve of degree 4 1/2%

3.7 24 | the blow up of the threefold W along an elliptic curve 1/2x
that is an intersection of two divisors from | — 3 Ky |

3.8 24 | adivisor in (o m)*(Op2(1)) ® 75 (Op2(2))|, where 71 : Fy x P2 — Fy 1/2%
and 75 : F; x P2 — P? are projections, and a: F; — P2 is a blow up of a point

3.9 26 the blow up of a cone Wy C P% over the Veronese surface Ry C P? 1/3
with center in a disjoint union of the vertex and a quartic on R, = P?

3.10 26 | the blow up of @ C P* along a disjoint union of two conics 1/2

3.11 28 | the blow up of the threefold V7 along an elliptic curve 1/2
that is an intersection of two divisors from | — 3Ky, |

3.12 28 | the blow up of P? along a disjoint union of a line and a twisted cubic 1/2

3.13 | 30 | the blow up of W C P? x P? along a curve C of bidegree (2,2) <1/2
such that 71 (C) C P? and m2(C) C P? are irreducible conics,
where m1: W — P? and 7y: W — P? are natural projections

3.14 32 | the blow up of P? along a disjoint union of a plane cubic curve that 1/2
is contained in a plane II C P? and a point that is not contained in II

3.15 32 | the blow up of Q C P* along a disjoint union of a line and a conic 1/2

3.16 34 | the blow up of V7 along a proper transform via the blow up a: V7 — P3 1/2
of a twisted cubic passing through the center of the blow up «

3.17 | 36 | adivisor on P! x P! x P? of tridegree (1,1,1) 1/2

3.18 36 | the blow up of P? along a disjoint union of a line and a conic 1/3

3.19 38 | the blow up of @ C P* at two non-collinear points 1/3

3.20 38 | the blow up of Q C P* along a disjoint union of two lines 1/3

3.21 38 | the blow up of P! x P? along a curve of bidegree (2, 1) 1/3

3.22 | 40 | the blow up of P! x P2 along a conic in a fiber of the projection P! x P? — P! 1/3
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3.23 42 | the blow up of V7 along a proper transform via the blow up a: V7 — P3 1/4
of an irreducible conic passing through the center of the blow up «

3.24 42 W xp2 Fi, where W — P? is a P'-bundle and F; — P? is the blow up 1/3

3.25 44 | the blow up of P? along a disjoint union of two lines 1/3

3.26 46 | the blow up of P? with center in a disjoint union of a point and a line 1/4

3.27 | 48 [Pl xP!xP! 1/2

3.28 48 | P! x T, 1/3

3.29 | 50 | the blow up of the Fano threefold V7 along a line in E = P2, 1/5
where E is the exceptional divisor of the blow up V; — P3

3.30 50 | the blow up of V along a proper transform via the blow up a: V7 — P3 1/4
of a line that passes through the center of the blow up «

3.31 52 | the blow up of a cone over a smooth quadric in P? at the vertex 1/3

4.1 24 | divisor on P! x P! x P! x P! of multidegree (1,1,1,1) 1/2

4.2 28 | the blow up of the cone over a smooth quadric S C P3 1/2
along a disjoint union of the vertex and an elliptic curve on S

4.3 30 | the blow up of P! x P! x P! along a curve of tridegree (1,1,2) 1/2

4.4 32 | the blow up of the smooth Fano threefold Y with J(Y) = 3.19 1/3
along the proper transform of a conic on the quadric Q C P*
that passes through the both centers of the blow up ¥ — @

4.5 32 | the blow up of P! x P? along a disjoint union of 3/7
two irreducible curves of bidegree (2,1) and (1,0)

4.6 34 | the blow up of P? along a disjoint union of three lines 1/2

4.7 36 | the blow up of W C P? x P? along a disjoint union of 1/2
two curves of bidegree (0,1) and (1, 0)

4.8 38 | the blow up of P! x P* x P! along a curve of tridegree (0,1,1) 1/3

4.9 40 | the blow up of the smooth Fano threefold Y with J(Y) = 3.25 1/3
along a curve that is contracted by the blow up ¥ — P3

4.10 42 | P! x S; 1/3

4.11 44 | the blow up of P! x F; along a curve C = P! such that C is contained 1/3
in a fiber F =2 F; of the projection P! xF; = P! and C-C =—-1on F

4.12 46 | the blow up of the smooth Fano threefold Y with 1(Y) = 2.33 1/4
along two curves that are contracted by the blow up ¥ — P3

4.13 26 | the blow up of P! x P! x P! along a curve of tridegree (1,1, 3) 1/2x

5.1 28 | the blow up of the smooth Fano threefold Y with 3(Y) = 2.29 1/3
along three curves that are contracted by the blow up ¥ — @

5.2 36 | the blow up of the smooth Fano threefold Y with J(Y") = 3.25 along 1/3
two curves C; # Cy that are contracted by the blow up ¢: Y — P3
and that are contained in the same exceptional divisor of the blow up ¢

53 | 36 | P!xSg 1/2

5.4 30 | P! xS 1/2

5.5 24 | P'x S, 1/2

108




5.6 18 | P! x S; 1/2

5.7 12 | P! xSy 1/2

5.8 6 Pl x S 1/2
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