
SPECTRAL CONSERVATION LAWS FOR PERIODIC
NONLINEAR EQUATIONS OF THE MELNIKOV TYPE

P.G. GRINEVICH AND I.A. TAIMANOV

We dedicate this article to our teacher S.P. Novikov
on the occasion of his 70th birthday

In the seminal paper [24] in 1974 S.P. Novikov, in particular, established
that the spectral curve of the one-dimensional periodic Schrödinger operator

H = − d2

dx2
+ u(x)

is preserved when the real-valued potential u(x, t) evolves via the Korteweg–
de Vries (KdV) equation and that for finite-zone (finite gap) potentials the
classical conservation laws, i.e. the Kruskal–Miura integrals, are described in
terms of branch points for this curve. The spectral curve Γ is a hyperelliptic

λ2 = Q(E)

where
Q(E) = (E − E0) . . . (E − E2N )

is a polynomial of degree 2N+1 for N -zone potentials. It was proved in [24]
that finite-zone potentials are exactly solutions of the Novikov equations,
i.e., stationary points of higher KdV flows and their linear combinations,
and that the KdV flow on the set of N -zone potentials reduces to a com-
pletely integrable finite-dimensional Hamiltonian system for which the ends
of the stability zones, i.e., E0, . . . , E2N , supply the necessary family of first
integrals.

The article [24] was the starting point for the development of the finite
gap integration theory in which the spectral curves play the main role.

In this article we consider the deformation of the spectral curve via the
periodic equations of the Melnikov type and we show that although the
spectral curve is not preserved it is deformed in such a manner that it still
gives many conservation laws for the system.

1. Introduction

We recall that the KdV equation

ut = 6uux − uxxx
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has the Lax form

(1) Ht = [H,A]

and as the spectral curve of H parameterizes the Bloch (–Floquet) functions
which are formal eigenfunctions of H (here we do not mean that they lie in
some nice functional space) and the monodromy operator T̂ f(x) = f(x+T )
where T is the period of u(x):

(2) Hψ = Eψ, T̂ψ(x) = eiµTψ(x)

where µ is the quasimomentum which is defined on the spectral curve: µ =
µ(λ,E). The t-deformation of u results in the deformation of ψ via the flow

ψt = Aψ.

Another form of soliton equations instead of the Lax form is the Manakov
triple:

(3) Ht = [H,A] +BH

where A and B are differential operators. The main example is given by
the Novikov–Veselov (NV) equations [27] for which H is a two-dimensional
Schrödinger operator: H = ∂∂̄ + u. The spectral curve of H on the zero
energy level Γ parameterizes only Floquet functions corresponding to the
zero energy level:

Hψ = 0,

ψ(x+ T1, y) = eiµ1T1ψ(x, y),

ψ(x, y + T2) = eiµ2T2ψ(x, y)

(4)

where T1 and T2 are the periods of u. This curve was first introduced by
Dubrovin, Krichever, and Novikov in [4] where the inverse problem at one
energy level for two-dimensional Schrödinger operators was posed and solved
for finite-zone operators (the spectral data for potential operators, i.e. with
no magnetic field, were later distinguished in [26]). Therewith the Floquet
functions are deformed again via ψt = Aψ and hence the spectral curve is
again preserved and may be considered itself as a conservation law. Another
equation of such triple form is the modified Novikov–Veselov equation for
which H is a two-dimensional Dirac operator and which being introduced
by Bogdanov found applications in the surface theory [29].

Another generalizations of the Lax equations was proposed by Melnikov
[18] and later was also derived by Kuznetsov and Zakharov [32]. The general
form of these equations is the following extension of the Lax form:

Ht = [H,A] + C

where

C =
N∑
n=1

Cn
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is the sum of differential operators Ci with coefficients depending on solu-
tions φi1, . . . , φiki

of the auxiliary linear problems

Hψik = λiψik, k = 1, . . . , ki.

Very frequently these equations are called the equations with self-consistent
sources, each of them has a soliton predecessor of the form Ht = [H,A] and,
for example, the KdV equation with self-consistent force takes the form

(5) ut =
1
4
uxxx −

3
2
uux + 2∂x

N∑
k=1

ψk(x, t)ψ∗k(x, t)

where ψk(x, t), ψ∗k(x, t) are some solutions of the auxiliary linear problem

(−∂2
x + u)ψk = Ekψk,

(−∂2
x + u)ψ∗k = Ekψ

∗
k.

To obtain a well-defined dynamics it is natural to assume that the products
of the eigenfunctions in (5) are bounded. The simplest choice for the periodic
problem is the following: ψk(x) is a Bloch eigenfunction and ψ∗k(x) is the
Bloch eigenfunction with the inverse Bloch multipliers.

The theory of such equations was developed in series of papers by Mel-
nikov [19, 20, 21, 22, 23] and others mostly for the case of functions fast
decaying at infinity.

In this article we show that in difference with soliton equations the spec-
tral curve is not preserved by these systems however it still gives many
conservation laws.

2. The spectral curve

The systems (2) and (4) do not have solutions for all possible values of
constants, i.e. for all E and µ in the former case and for all µ1, µ2 in the
latter case. In fact, such solutions exist if and only if these constants satisfy
some analytical condition (“the dispersion laws”):

F (E,µ) = 0, G(µ1, µ2) = 0.

Each equation describes a complex curve Γ ⊂ C2 and to each point of Γ
there corresponds a linear space of solutions to the corresponding equation,
(2) or (4). This picture was drawn in physical terms in [25] and two different
methods for the justification of it were proposed by Krichever and the second
author (I.A.T.) (see [15, 31, 8]).

Now to obtain the spectral curve Γψ we have to consider the ψ-bundles
formed by solutions to (2) or (4) and normalize Γ at such a manner that the
pull-back of the ψ-bundle onto Γψ under the projection

Γψ → Γ

form a bundle with fibers of constant dimension. We refer for details to [31]
and here demonstrate this procedure by an important original example.
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Example. [24] For the one-dimensional Schrödinger operator with a
real-valued potential the multipliers of T̂ are defined on a Riemann surface
(a complex curve) Γ

λ2 = Q̂(E)

where Q̂(E) is an entire function with infinitely many zeroes. All zeroes
lie on the real line. To every point P = (E, λ) ∈ Γ where Q̂ 6= 0 there
corresponds a one-dimensional space of solutions to (2). Let E′ ∈ R satisfy
the following conditions

(1) Q̂ has a zero at E′ of multiplicity two;
(2) to the point (E′, 0) there corresponds a two-dimensional space of

solutions to (2). (This, in particular, implies that this is a double
point on Γ.)

Let us unglue this double point and obtain another Riemann surface Γ′.
Then the ψ-bundle over Γ is pulled back to a bundle ψ′ over Γ′ with one-
dimensional fibers at the preimages of (E′, 0). Moreover this bundle is holo-
morphic near these points. We have

• if all zeroes of Q̂ except finitely many satisfy conditions 1 and 2
above, then after ungluing all corresponding double points we obtain
a Riemann surface Γψ of finite genus and the one-dimensional ψ-
bundle over it. The surface Γψ is defined by the equation

λ2 = Q(E)

where Q is a polynomial of odd degree, say 2N + 1.
It is said that this operator is finite-zone (or finite gap), and it all

zeroes of Q are simple it is said that it has N zones (gaps). There
is a function ψ(P, x) meromorphic in P ∈ Γψ with the following
asymptotic

(6) ψ ≈ ei
√
Ex as E →∞.

Therewith the complex curve Γψ is compactified to an algebraic
curve by adding the point E = ∞ and ψ becomes a meromorphic
function on Γψ \ {E = ∞} with the essential singularity (6) at
E =∞.

Here we remark that Γψ itself may have singularities and, in fact, there
is a tower of projections

Γnorm → Γψ → Γ
where Γnorm is the normalization of Γ. The multiplier mapping which cor-
responds to a point the set of “multipliers”:

M : Γ→ C2, M(E, λ) = (E,µ)

is naturally ascends to this tower.
Above we explain how the spectral curve arises from the spectral theory

of differential operators.
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However the strongest method for constructing exact periodic (and also
quasi-periodic) solutions of solitons equation, i.e. the Baker–Akhiezer func-
tion method [13], starts with an introduction of an algebraic curve Γ and of
a function ψ (which may be a vector or even matrix function) with asymp-
totics of the kind of (6) at several points of Γ. It is assumed that ψ is
defined by some additional data uniquely. The function ψ is a formal eigen-
function of some operator H which is uniquely reconstructed in terms of of
algebraic functions corresponding to Γ from ψ. Such a function ψ is called
the Baker–Akhiezer function of H, and the soliton dynamics (1) or (3) is
linearized in terms some data coming in the definition of ψ and this leads
to explicit algebra-geometrical formulas for so-called finite gap solutions of
soliton equations. The spectral curve Γ is preserved by the flow, i.e. the
flow is isospectral.

Therewith for operators H with periodic coefficients and with a nice spec-
tral theory (i.e. for which the existence of the dispersion laws may be es-
tablished) Γ = Γψ and ψ is the section of the ψ-bundle.

In this article we show that
• in contrast with soliton equations the periodic equations of the Mel-

nikov type may be almost isospectral, i.e. it may preserve M(Γψ)
and deform Γψ.

The first example of this effect was found by us in [8] and we expose it in
the next section.

3. The conformal flow for the (Weierstrass) potentials of tori in
R3 and R4

The author’s interest to the study of the Melnikov-type equations was
partially motivated by the problem of conformal invariance of the higher
Willmore functionals.

By the generalized Weierstrass method, any torus in R3 is described in
terms of the zero-eigenfunction ψ:

Dψ = 0,

of a two-dimensional periodic operator

D =
(

0 ∂
−∂̄ 0

)
+
(
U 0
0 U

)
where the potential U is real-valued and any torus in R3 is described in
terms of two solutions ϕ,ψ to the equations

Dψ = 0, D∨ϕ = 0

where

D =
(

0 ∂
−∂̄ 0

)
+
(
U 0
0 Ū

)
, D∨ =

(
0 ∂
−∂̄ 0

)
+
(
Ū 0
0 U

)
are to conjugate periodic operators (see, for instance, [31]). The spectral
curve Γψ of D is naturally defined (see (4 and §2) and contains in itself
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the information of the Willmore functional which is defined for all closed
surfaces immersed in R4 as follows

W(M) =
∫
M
|H|2dµ

where H is the mean curvature vector and dµ is the induced volume.
This functional is invariant with respect to conformal transformations of

the ambient space, i.e. if we have a conformal transformation f : R̄4 → R̄4

which maps a compact surface without boundary M into a compact surface,
then

W(M) =W(f(M)).
This follows from the conformal invariance of the form (|H|2−K)dµ where K
is the Gaussian curvature and the Gauss–Bonnet theorem by which

∫
Kdµ

equals 2πχ(M), i.e. the topological quantity.
The soliton local deformations of surfaces in R3 and R4 via the modified

Novikov–Veselov (mNV) equation and the Davey–Stewartson (DS) equation
were introduced by Konopelchenko [9, 10]. It appears that they preserve the
tori globally and therewith preserve the Willmore functional as well as the
spectral curve [29, 31]. hence it is natural to treat higher conservation laws
of these hierarchies as higher Willmore functionals.

The conformal invariance of the Willmore functional led the second author
(I.A.T.) to the conjecture that these higher Willmore functionals and the
spectral curve for tori in R3 themselves are conformally invariant [30].

It was rather soon established by the first author (P.G.G.) and M.U.
Schmidt [7] who considered the conformal flow, i.e. the Melnikov type flow,
induced on the potential U by continuous conformal transformations:

Uτ = |ψ2|2 − |ψ1|2

where the torus is defined via the Weierstrass formulas by ψ = (ψ1, ψ2)>.
Under this deformation the ψ-function on the spectral curve evolves in such
a manner that the quasimomenta are preserved.

In [8] we analyzed carefully this situation for the more general case of tori
in R4. It appears that the conformal flow on U which corresponds to the
following generator of the conformal group

∂τx
1 = 2x1x3, ∂τx

2 = 2x2x3,

∂τx
3 = (x3)2 − (x1)2 − (x2)2 − (x4)2,

∂τx
4 = 2x4x3

has the Melnikov form:
∂τU = ϕ1ψ̄1 − ϕ̄2ψ2,

∂τ Ū = ϕ̄1ψ1 − ϕ2ψ̄2

(7)

where ψ = (ψ1, ψ2)> and ϕ = (ϕ1, ϕ2)> define a torus in R4 via the gener-
alized Weierstrass formulas. It appears to be isospectral in the sense that
all multipliers are preserved. However we knew about several explicitly
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computed examples of the Weierstrass representations of tori which are the
Clifford torus in S3:

x2
1 + x2

2 = x2
3 + x2

4 =
1
2

and its stereographic projection into R3 [31]. In these cases the spectral
curves Γψ are different: the complex projective line CP 1 in the former case
and CP 1 with two pairs of points glued into two double points. However
both tori are connected by a continuous conformal transformation of R̄4. A
detailed analysis led us to the following conclusion:

• the conformal flow (7), i.e. a particular case of Melnikov deforma-
tions of periodic operators, is only almost isospectral, i.e. preserve
the multipliers — the complex curveM(Γψ) — and deform the spec-
tral curve Γψ. In this particular case the deformation of Γψ consists
in gluing and ungluing double points.
• since the higher integrals of the mNV and the DS hierarchies are

described in terms ofM(Γψ), these integrals are preserved and give
us spectral conservation laws of the conformal flow.

4. The Baker–Akhiezer function and kernel and the (ψ,ψ∗)-
representation of equations

Let us recall the definition of the Baker–Akhiezer function for the KP
equation [13].

Let Γ be a smooth Riemann surface of genus g with the following data:

(1) a divisor of poles D = γ1 + . . .+ γg;
(2) a distinguished point P with a local parameter z = 1/λ.

The Baker–Akhiezer function ψ(γ,~t) depends on the spectral parameter
γ ∈ Γ and of infinite set of real variables x = t1, y = t2, t = t3, t4, t5, . . . ,
~t = (x, y, t, t4, t5, . . .). To avoid analytic problems it is convenient to assume
that ~t has only finite number of nonzero entries.

For generic ~t there exists an unique function of γ ∈ Γ such, that:

(1) ψ(γ,~t) is meromorphic in γ outside P with simple poles at γ1,. . . ,γg.

(2) ψ(γ,~t) = exp
[∑
k>0

λktk

](
1 +

∑
k>0

χk(~t)
λk

)
as γ ∼ P .

Let us define the potential u(~t) by

(8) u(~t) = 2∂xχ1(~t).

Then u(~t) satisfy the KP hierarchy, and ψ(γ,~t) is the common eigenfunction
for all auxiliary linear problems. In particular,

(9) −ψxx(λ,~t) + ψy(λ,~t) + u(~t)ψ(λ,~t) = 0.

If u is periodic in x and y, then Γ is the spectral curve (on the zero energy
level) of the operator ∂y − ∂2

x + u(x, y) [15].
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Let us assume that Γ is a hyperelliptic surface such that λ2 is a global
meromorphic function on Γ with exactly one second-order pole at P . Then

ψ(γ,~t) = exp

[∑
k>0

λ2kt2k

]
ψ̃(γ, x, t, t5, t7, . . .)

and ψ̃(γ, t̃), t̃ = (x, t, t5, t7, . . .) is the Baker–Akhiezer function of the KdV
hierarchy [5]. We shall omit the tilde sign in the KdV formulas. In the KdV
case we have

(10) −ψxx(λ,~t) + u(~t)ψ(λ,~t) = −λ2ψ(λ,~t)

instead of (9).
In [3] Cherednik has shown that all flows from the KdV hierarchy are

obtained as the expansion coefficients in λ−1 near λ−1 = 0 for the following
λ-dependent nonlocal equation:

(11) uτ = 2∂x(ψk(λ, x)ψk(−λ, x)).

Here we assume that all times except x are equal to 0.

Theorem 1. Let the source functions ψk and ψ∗k in the right-hand side of
(5) be the restrictions of the Baker–Akhiezer function at some points of Γ:

ψk = ψ(λk), ψ∗k = ψ(−λk).
Then (5) can be represented as the following linear combination of the flows
(11):

uτ = 2∂x

[
−res

∣∣∣
γ=P

(λ3ψ(λ, x, τ)ψ(−λ, x, τ)dλ)+

+
N∑
k=1

ψ(λk, x, τ)ψ(−λk, x, τ)

]
All the higher KdV flows are isospectral and form a commutative algebra.

Typically the complete algebra of symmetries for soliton equations is non-
commutative and contains both isospectral and non-isospectral flows (see
[28] for further references).

Orlov and Schulman suggested a generic approach for studying the sym-
metry algebra based on the so-called infinitesimal dressing [28]. It particular,
in [28] it was shown that generators Kmn[u] of the algebra of all KdV and
KP symmetries is obtained by expanding the flow

(12) uτ = 2∂x(ψk(λ,~t)ψ∗k(µ,~t))

near the diagonal λ = µ:

2∂x(ψk(λ,~t)ψ∗k(µ,~t)) =
∑
m,n

Kmn[u]
(

1
λ

)m( 1
λ
− 1
µ

)n
at the point P where λ = µ = ∞ . For n = 0 we have the standard KP
(KdV) hierarchy. The n = 1 coefficients generate the Virasoro algebra of
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non-sospectral symmetries, the n > 2 symmetries are not compatible with
the KdV reduction.

Here ψ(λ,~t) is the wave function for all auxiliary linear operators of the
KP (KdV) hierarchy, ~t = (x = t1, t = t3, t5, . . .) or ~t = (x = t1, y = t2, t =
t3, t4, . . .) denotes the full set of KdV (KP) times, and ψ∗(λ,~t) satisfy the
formal conjugate linear problems. In the KdV case all auxiliary problems
are self-adjoint, therefore

ψ∗(λ,~t) = ψ(−λ,~t).

An arbitrary source function may be expanded in terms of eigenfunctions
products. Such expansions play a critical role in the perturbations theory for
soliton equations. The periodic perturbation theory for 1-dimensional finite-
gap potentials and for the 2-dimensional finite-gap at one energy potentials
was developed by Krichever [14, 15]. In particular, he pointed out that
it is natural to treat the conjugate Baker–Akhiezer function ψ∗(λ,~t) as a
holomorphic 1-form in the spectral parameter γ on Γ\P . It is defined by
the following analytic properties:

(1) ψ∗(γ,~t) is an 1-form in γ, i.e. in local coordinates it reads as
ψ∗(λ,~t) = ψ̃∗(λ,~t)dλ, where ψ̃∗(λ,~t) is an analytic function.

(2) ψ∗(γ,~t) is holomorphic in γ outside P with simple zeroes at γ1,. . . ,γg.

(3) ψ∗(γ,~t) = exp
[
−
∑
k>0

λktk

]
(1 + o(1))dλ as γ ∼ P .

The action of the Virasoro algebra symmetries on the finite-gap KP solu-
tions (these symmetries generically result in non-trivial deformations of the
complex structures on the spectral curves) was studied by Orlov and the first
author in [6]. In particular, in [6] it was shown, that the infinitesimal de-
formations of the Baker–Akhiezer function corresponding to the generators
(12) (infinitesimal Darboux transformations of the finite-gap KP solutions)
are naturally written in terms of the so-called Cauchy-Baker–Akhiezer kernel
ω(λ, µ,~t):

δψ(γ,~t) = −ω(γ, µ,~t)
dµ

ψ(λ,~t).

The kernel ω(λ, µ,~t) is defined by the following analytic properties:

(1) ω(λ, µ,~t) is a meromorphic function in λ and a meromorphic 1-form
in µ on Γ\P .

(2) For a fixed µ the function ω(λ, µ,~t) has simple poles at the points µ
γ1,. . . ,γg.

(3) For a fixed λ the 1-form ω(λ, µ,~t) has simple zeroes at γ1,. . . ,γg and
a simple pole at λ.

(4) ω(λ, µ,~t) = dµ
µ−λ +O(1) near the diagonal λ = µ.

(5) For a fixed µ the function ω(λ, µ,~t)λ exp
[
−
∑
k>0

λktk

]
is regular in λ

at the point λ = P .
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(6) For a fixed λ the 1-form ω(λ, µ,~t)µ−1 exp
[∑
k>0

µktk

]
is regular in µ

at the point µ = P .
For ~t = ~0 this kernel coincides with the Cauchy kernel on Riemann surfaces
used by Koppelman [11]. For data generating regular potentials u(~t) the
following explicit formula was suggested in [6]:

ω(λ, µ, x, y, t3, t4, . . .) =

=

±∞∫
x

ψ(λ, x′, y, t3, t4, . . .)ψ∗(µ, x′, y, t3, t4, . . .)dx′.

The upper limit of the integral depends on the quasimomenta at the points
λ, µ and is chosen to make the integral convergent. An analogous represen-
tation for the Cauchy kernels on Riemann surfaces for systems with discrete
x was suggested earlier by I.M.Krichever and S.P.Novikov in [16].

5. The periodic Kadomstev–Petviashvili equation with a self-
consistent source

To integrate the KP equation with the self-consistent sources we have to
consider spectral curves with additional double points. Such curves corre-
spond to the solitons on the finite-gap background [12]. We assume that
we have the same spectral data as in the Section 4 plus 2N marked points
Rk+, Rk−, k = 1, . . . , N . Denote the local parameters near these points by
λ. The Baker–Akhiezer depends on N extra real parameters τ1, . . . , τN ,
~τ = (τ1, . . . , τN ) and has the following analytic properties:

(1) ψ(γ,~t, ~τ) is meromorphic in γ outside P with g +N simple poles at
γ1,. . . ,γg, R1

+,. . . , RN+ .
(2) res

∣∣∣
λ=Rk

+

Ψ(λ,~t, ~τ)dλ = τkΨ(Rk−,~t, ~τ).

(3) ψ(γ,~t, ~τ) = exp
[∑
k>0

λktk

]
(1 + o(1)) as γ ∼ P .

The properties of the conjugate Baker–Akhiezer 1-form are the following:
(1) ψ∗(γ,~t, ~τ) is meromorphic in γ outside P with simple zeroes at

γ1,. . . ,γg and simple poles at R1
−,. . . , RN− .

(2) res
∣∣∣
λ=Rk

−

Ψ∗(λ,~t, ~τ) = −τkΨ∗(λ,~t, ~τ)/dλ
∣∣∣
λ=Rk

+

.

(3) ψ∗(γ,~t, ~τ) = exp
[
−
∑
k>0

λktk

]
(1 + o(1))dλ as γ ∼ P .

The corresponding potential u(~t, ~τ) is defined by the formula (8)

Theorem 2. Let Γ be a Riemann surface of algebraic genus g with the
following KP data:

(1) a divisor of poles D = γ1 + . . .+ γg;
(2) a distinguished point P with a local parameter z = 1/λ;
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(3) an additional collection of 2N points Rk+, Rk−, k = 1, . . . , N . Denote
the local parameters near Rk+, Rk− by λ.

Then potential u(~t, ~τ) defined above satisfy the following equations with self-
consistent sources:

(13)
∂u(~t, ~τ)
∂τk

= 2∂x
ψ(Rk−,~t, ~τ)ψ∗(λ,~t, ~τ)

dλ

∣∣∣∣
λ=Rk

+

.

Proof. The Cauchy–Baker–Akhiezer kernel ω(λ, µ,~t, ~τ) corresponding
to this spectral data has the following analytic properties:

(1) ω(λ, µ,~t, ~τ) is a meromorphic function in λ and a meromorphic 1-
form in µ on Γ\P .

(2) For a fixed µ the function ω(λ, µ,~t, ~τ) has simple poles at the points
µ, γ1,. . . ,γg, R1

+,. . . ,RN+ .
(3) res

∣∣∣
λ=Rk

+

ω(λ, µ,~t, ~τ)dλ = τω(Rk−, µ,~t, ~τ).

(4) For a fixed λ the 1-form ω(λ, µ,~t, ~τ) has simple zeroes at γ1,. . . ,γg
and simple poles at λ, R1

−,. . . , RN− .
(5) res

∣∣∣
µ=Rk

−

ω(λ, µ,~t, ~τ) = −τkω(λ,~t, ~τ)/dµ
∣∣∣
µ=Rk

+

.

(6) ω(λ, µ,~t, ~τ) = dµ
µ−λ +O(1) near the diagonal λ = µ.

(7) For a fixed µ the function ω(λ, µ,~t, ~τ)λ exp
[
−
∑
k>0

λktk

]
is regular in

λ at the point λ = P .

(8) For a fixed λ the 1-form ω(λ, µ,~t, ~τ)µ−1 exp
[∑
k>0

µktk

]
is regular in

µ at the point µ = P .
It is easy to check (see[6]):

∂xω(λ, µ,~t, ~τ) = −ψ(λ,~t, τ)ψ∗(µ,~t, ~τ),(14)

∂yω(λ, µ,~t, ~τ) = −ψx(λ,~t, ~τ)ψ∗(µ,~t, ~τ) + ψ(λ,~t, ~τ)ψ∗x(µ,~t, ~τ).

We use the following formula:

(15) ∂τkψ(λ,~t, ~τ) = −ω(λ, µ,~t, ~τ)
dµ

∣∣∣∣
µ=Rk

+

· ψ(Rk−,~t, ~τ).

To prove (15) is sufficient to check that the right-hand side has the correct
analytic properties. In particular, the relation

∂τkres
∣∣∣
λ=Rk

+

ψ(λ,~t, ~τ)dλ = τk∂τkψ(Rk−,~t, ~τ) + ψ(Rk−,~t, ~τ)

follows from the following expansion near the point λ ∼ R+:

ω(λ, µ,~t, ~τ)
dµ

∣∣∣∣
µ=Rk

+

=

[
τ
ω(Rk−, µ,~t, ~τ)

dµ

∣∣∣∣
µ=Rk

+

− 1

]
1

λ−Rk+
+O(1).
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This expansion can be easily derived from the properties 3 and 6 of the
Cauchy–Baker–Akhiezer kernel.

Taking into account, that

(16) ψxx(λ)− ψy(λ)− uψ(λ) = 0, ψ∗xx(µ) + ψ∗y(µ)− uψ∗(µ) = 0

we obtain the following formula for the variation of u = u(~t, ~τ)

(17) uτk =
ψxxτk(λ)− ψyτk(λ)− uψτk(λ)

ψ(λ)
.

Substituting (15), (14) into (17) we obtain (13). We see, that the right-hand
side of (17) turns out to be λ-independent, therefore the deformation (15)
of the Bloch function is admissible.

Corollary 1. Denote by û(x, y, t), ψ̂(γ, x, y, τ), ψ̂∗(γ, x, y, τ) the functions,
obtained from u(~t, ~τ), ψ(γ,~t, ~τ), ψ∗(γ,~t, ~τ) by the following linear substitu-
tion:

t1 = x, t2 = y, tk = ckτ, k = 3, . . . ,M, tk = 0, k > M,(18)
τk = αk + βkτ, k = 1, . . . , N.

Then û(x, y, t) solves the following Melnikov-type equation:

∂û(x, y, τ)
∂τ

==
M∑
k=3

ckKk[û]+

+2∂x
N∑
k=1

βk
ψ̂(Rk−, x, y, τ)ψ̂∗(λ, x, y, τ)

dλ

∣∣∣∣
λ=Rk

+

,

(19)

where Kk[û] denotes the k-th flow from the standard KP hierarchy, the func-
tions in the right-hand side satisfy (16)

Remark. It is easy to notice from the previous formulas that 1

if at τ = 0 the function û is periodic in x and y, ψ is the Floquet eigen-
function of the operator L = ∂y − ∂2

x +u, and for k = 1, . . . , N the products

ψ̂(Rk−, x, y, τ)ψ̂∗(Rk+, x, y, τ) are periodic, then the evolution (19) preserves
the periodicity of u and the multipliers of ψ.

We conclude that
• In fact, the Baker–Akhiezer function in Theorem 2 is defined on the

spectral curve with double points. The double point (Rk+, R
k
−) is

unglued if and only if τk = 0. For generic τ all double are present,
i.e. , the spectral curve is obtained from Γ by pair-wise gluing points
(R1

+, R
1
−), . . . , (RN+ , R

N
− ), and the k-th double point is unglued when

αk + βkτ = 0. If the initial spectral curve is regular for τ = 0, then
equations with self-consistent sources immediately generate double
points, which remains unglued for almost all times.

1The derivation of the similar fact for the conformal flow (see Section 3) is exposed in
[8].
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Another example of such an effect is given by the conformal flow
(see Section 3).

This observation demonstrates the principal difference between the Mel-
nikov-type equations and the standard hierarchies like KdV, nonliear Schrö-
dinger (NLS), sine-Gordon, or KP. The standard hierarchies are isospectral,
therefore the evolution can not generate double points or unglue the existing
double points in a finite time.

In the case of the self-focusing NLS equation the spectral curves with
double points may correspond to regular space-periodic solutions, associated
with so-called whiskered tori. All double points for such solutions remain
glued for all values of t but become unglued in the limit t→ ±∞. In [1, 2]
it was shown that for a periodic solution corresponding to a smooth curve
the generation of double points after arbitrary small perturbations results
in numerical chaos.

6. An annihilation of a soliton in a finite time

Let us discuss the simplest example – the one-soliton solution of the KdV
equation.

The wave function ψ(λ, x, c) of a one-dimensional Schrödinger operator:

−ψ′′ + uψ = Eψ, u = u(x, c), E = (iλ)2,

has the following form

ψ(λ, x, c) = eλx
(

1 +
χ(x, c)
λ+ κ

)
.

The spectral curve Γ is the Riemann sphere with a double point: λ = −κ
and λ = κ are glued together. We assume that the divisor point is located
at λ = −κ, therefore we have:

res ψ(λ, x, c)
∣∣∣∣
k=−κ

= −cψ(κ, x, c),

(this relation coincides with the property (2) of the Baker–Akhiezer function
from the Section 5) and

χ(x, c) =
−2cκ eκx

2κe−κx + ceκx
,

By (8) we obtain

(20) u(x, c) = 2∂xχ(x, c) =
−16cκ3

(2κe−κx + ceκx)2
.

The c-dynamics corresponds to the following choice of Baker–Akhiezer func-
tion solutions:

ψ1(x, c) = ψ(κ, x, c) =
2κ

2κe−κx + ceκx
.

The conjugate Baker–Akhiezer function is defined by:

ψ∗(λ, x, c) = ψ(−λ, x, c)dk.



14 P.G. GRINEVICH AND I.A. TAIMANOV

A simple straightforward calculation shows, that

(21) ∂cu(x, c) = −2∂xψ2(κ, x, c).

Formula (20) generates regular solitons for c > 0, singular solitons for c < 0
and zero solution for c = 0. If c→ 0, the position of the soliton goes to the
+∞.

The standard KdV evolution of a soliton is given by (21) where c = c(t)
is governed by:

∂tc(t) = κ3c(t).

Let us consider the following Melnikov-type flow:

ut =
1
4
uxxx −

3
2
uux + 2∂xψ2(κ, t)

The corresponding evolution of c(t) is given by

∂tc = κ3c− 1.

We see that
• starting with sufficiently small c we reach the point c = 0 at a finite

time. At this moment the double point on the spectral curve vanishes
and the soliton annihilates.

By inverting the direction of evolution we obtain examples of of such
effects as

• a creation of a soliton (there is no soliton at c = 0 and it exists as
soon as c > 0);
• a capture of a soliton (c→ κ−3 as t→∞),

first observed by Melnikov [19].
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