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Abstract

It i1s shown that the equations of discrete symmetry of the four-
dimensional self-dual theory may be solved in the determinantal form
for arbitrary semisimple gauge algebra similar to the known case of
Al algebra. The essential difference compare with A; case consists
in the fact that in the general case it arises the r independent linear
systems of equations in terms of which the solution of the self-dual
system may be expressed (r is the rank of the semisimple algebra).

1 Introduction

The first attempt to apply the concept of Backlund transformations to the
problem of self-dual Yang-Mills equations was made about twenty years ago
in the well known paper of Corrigan, Fairlie, Goddard and Yates {1}, (see
also [2]). In the case of the A' gauge algebra they constructed a hierarchy of
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explicit solutions in determinantal form in terms of a known solution of free
four-dimensional d’Alembert equation.

Now it has become clear that this situation is generic to all integrable
systems [3]. The equations of all such systems are invariant with respect to
a specific form of nonlinear transformation which permits the construction
of new solutions from previously known ones. In a sense the transformation
employed may be considered as particular case of a Bicklund transformation
in the usual interpretation of this term. But in contradiction to the Backlund
case this transformation does not contain any adjustable parameters and so
the number of arbitrary parameters (functions) are the same for the whole
hierarchy of solutions as the given initial one.

To emphasize this property we use the term discrete transformation (dis-
crete substitution) in spite of its obvious connection with the idea of Backlund.
The discrete transformation is always invertible and so from an algebraic
point of view may be considered as an element of the infinite-dimensional
cyclic group (Z) which of course possesses some additional properties [4].

The importance of the investigation of discrete transformations in the case
of the four-dimensional self-dual system is connected with the conjecture of
R.S. Ward [5] that all integrable systems may be obtained as a reduction
of this self-dual system on to spaces of lower dimensions. If this hypothesis
is true, in whole or in part, then it will be possible to obtain the discrete
transformation for all such integrable systems ( which satisfy Ward’s con-
jecture ) by the corresponding reduction from the discrete transformation of
the self-dual one.

The general form of the discrete transformation for the self-dual system
with an arbitrary semisimple gauge algebra was established in paper [6].
In the case of A! a solution of the equation of discrete transformation was
obtained which generalized that of the paper quoted above [1]. The gen-
eralization to the case of N-extended supersymmetric self-duality equations
was presented in [7], where the reader can find all the necessary background
information for understanding the material of the present paper.

It is remarkable that all results concerning the A' case admit generaliza-
tion to the case of an arbitrary semisimple gauge algebra from which it is
possible to obtain a solution of the equations of the discrete transformation
in explicit determinantal form using some appropriate boundary conditions
similar to the A' case. The goal of the present paper is to make known to
the reader the results of corresponding calculations.
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Now we describe briefly the strategy of our calculations. In section 2 we
present notations and explicit form of discrete transformation in terms of
equations on unknown algebra and group-valued functions. In section 3 we
remind the reader about some universal A! algebra embedding into arbitrary
semi-simple one. The gradation of semisimple algebras arising in this way
will be intensively used in our calculations. In section 4 the equation for
group valued function is solved in explicit form. In section 5 this problem is
solved for the algebra-valued function.

In both cases the solution is represented algebraicaly in terms of an arbi-
trary known solution of the self-dual system and its 3 nonlocal integrals. In
section 6 we represent the final form of direct and inverse discrete transfor-
mations, show its symmetry with respect to group multiplication from left
and right and discuss briefly possibilities arising after its many-times appli-
cation to some given solution of the self-dual system. In section 7 a reduced
self-dual system is introduced and its additional symmetry (auto-Béacklund
transformation) is represented in the form of infinite chain of equations. This
is the main point because solution of initial self-dual system will be possi-
ble to represent by help of discrete transformation via solution of reduced
system interrupted by appropriate boundary conditions. In section 8 further
necessary properties of “maximal root” embedding of section 3 are investi-
gated. This material will be necessary for understanding the representation
of discrete transformation in invariant form. In section 9 two steps of the
programme above are realised in explicit form. Solution of self-dual system is
represented in explicit form in terms of solution of reduced self-dual system
To,T1,T2, Po, P1 on the first step and rg, 7,79, 73,74, Po, P1, P2 ON the second
one via rational functions of variables enumerated above. In section 10 the
concrete example of the A™*! algebra is considered. In component form all
formulae of the previous section may be represented in determinantal form.
In section 11 solution of reduced self-dual system represented in explicit form.
Possible way of interrupting of infinite reduced self-dual chain by appropriate
boundary conditions are discuused in section 12.



2 Notations and discrete transformation of
four-dimensional self-dual system

Let us write the self-duality equations for the elements G, f with values in a
semisimple Lie group and algebra respectively in the form:

GZG_I = fy: GﬁG_l = —f;

(2.1)
G_le = fy, G_le = —fz

where y, ¢, 2z are the four independent variables of the problem. As a direct
consequence of (2.1) we obtain from one side the single equation for the
element G in usual Yang's formalism

(GiG—l)z + (Gic_l)y =0, (G_le)E + (G_IGy)ﬁ =0
and on the other side equations for algebra valued functions f and f

fy,ﬂ+fz,2 = [fy:fz]z fr_;,ﬂ‘*'fz,i =[.f£: fﬁ] (22)

Equation (2.2) may be rewritten in the divergence (“conservation law”) form
[8].[9] X )
(s = 31 £y + s = 5l 1) = 0 (23)
which will be used in further calculations.
The following holds [6],[7}:

There exists such an element S taking the values in the gauge group such
that

s 1., df, 0,1

—l_= = s T oYY+
S 8y 3 ‘XM! ay + 8E(f_))&‘”’
8s 1 af. 9,1
-1 _ = i I SR T o
575, = 71X 5,0 — 5 (X (2.4)

Here X3, is the element of the algebra corresponding to its mazimal root,
divided by its norm, t.e.
[X;J’XJ\_J] = H, [H, XI:\EJ] = :i:?Xf,,,



f- is the coefficient in the decomposition of f of the element Xy, corre-
sponding to the mazimal negative root of the algebra. Now define the element
F taking values in the algebra by the following relations:

OF o a5 oF a oS
—=S—fS_1+ S — =S5 fS_l—-

gt — hCE il ~1
oy "oy o3 5z~ "0 5o - (29

then the algebra-valued function F' satisfy the same equations (2.2) as f.
The corresponding discrete transformation of the group and algebra-valued
functions G and f are the following:

GX5G -
f M +f

The proof of this proposition can be found in the papers cited above. Our
goal here is the explicit solution of (2.4).

G=8G, F= (2.6)

3 A, algebra embedding of maximal root and
its properties

We will begin with a brief description of the properties of a universal A,
algebra embedding into an arbitrary semisimple one. Let us consider three-
dimensional subalgebra constructed from generators of maximal root Xy, H
( henceforth we omit the index M in definition of the generators of the
maximal root). In this embedding the structure constants of H commuted
with the generators of the semisimple algebra take only values s = 0, &1, £2:
[H, XF] = £sXZ. This means that the semisimple algebra may be considered
as a graded one. The spaces with s = &2 are one-dimensional and consist of
the single elements X< - the generators of the highest root of the algebra. The
generators of the divisors of the highest roots X&: [XZ, X7] = &0 m X
belong to subspaces with degree s = £1. All other generators are contained
in the subspace with degree zero.

In other words with respect to such an emnbedding all generators of the
algebra are decomposed into multiplets with "orbital quantum numbers”
equal to 0, % and 1. The multiplet with { = 1 represents the generators of the
Al subalgebra. The spinor multiplets are constructed from the divisors of the
maximal root: XF, {XF, X~|. All the generators of the space with the zero
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degree are singlets. In connection with this grading an arbitrary algebra-
valued function (e.g. the solution of the equation (2.1)) may be represented
as the sum of components with different degree

f=f X"+ L+ fo+fi+ X7 (3.1)

In what follows symbols “and " will mean differentiation with respect to two
pairs of the independent arguments (y, Z) and (z, —7) and consequently each
equation in this notations is really the pair of equations after corresponding
substitution.

In this notation the system of self-dual equations in the ”conservation
law” form is the following

Ro=J v ol SN X Ry = = o (L FIX)
PL= (1Y +[fL f)+ X0, fl Ph = (£ +(FL £+ FelXs, £1] (3.2)
Ro= o+ 317 S SUL A+ 5 = £ f)H o+ 5

The values R.., Ry, P!+ introduced above we will call nonlocal integrals of
the corresponding graded space,

It is not difficult to check that system (3.2) is invariant with respect to
the following change of unknown functions

f-l-_)—f—) f—}-_)[X+vfl]: fl—)_[Xk7f-:-]:
(3.3)

w w

fomg -5 wo-w, g
This symmetry is a direct consequence of an inner authomorphism of the
semisimple algebra connected with Weyl reflection of its maximal root. We

conserve this notation for symmetry (3.3).

4 Explicit expression for the group-valued func-
tion S

Now let us return to equation (2.4) and note that its algebra-valued right
hand side contains the generators of maximal positive root X, all its divisors
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and the Cartan element H. This 2§ + 2 (25 is the number of the divisors
of the maximal root) generators realise a solvable algebra, the ”diagonal”
part of which coincides with the generator H, the nilpotent part coincides
with the Heisenberg algebra in j-dimensional space, where the roles of the
generalised coordinates X7 and momenta Xj;_, are taken by the divisors
of the maximal root:[ X}, X ri—x) = X3 (= X); the generator X}, plays the
role of the ideal of the Helsenberg algebra which commutes with all its other
elements. An arbitrary element of such an algebra may be written in the
form
F=ffH+X+P+ f. X"

where ”position” X and "momentum” P subspaces are each commutative.
As it follows from (2.4) the group-valued element S belongs to the corre-
sponding solvable group and hence may be represented in the form:

S =expTHexp Aexp BexpaX™ (4.1)

The commutation relations between the different elements taking part in the
last equality are as follows:

[H,Aj= A, [H,B]=B, [X*,B]=[X"B}=0,
[B,B]=[4,4] =0, [A B]=X"%or0
In the notations of the end of the last section equation (2.4) takes the form
S'S=7(H+A+B—[B,Al+2aX*)+ A+ B~ [B, Al +aX* =
(4.2)

1 . .

— (Xt i1+ f-H) -
(X 1+ o) = (4 5
where (X1, fo] = —wX*, w = Sp(H fo) . From (3.1) comparing the genera-
tors of the same graded subspaces we obtain

)X+

T=Inf., (A+B)f-=I[X" /]

(o S BY X = (B, A) - 1B,A) = (@ + £)x*



Using the Weyl formula exp Aexp B = exp(4 + B + 3[A, B]) (in the case
when [A, B] commutes with both operators A and B) we can represent S
(4.1) in the form

§ = exprH exp(A + B) expla+ 3 (X4, B)X* (4.4)

Conserving for the sum « + 3(X~[A, B]) the same notation & ( only this
combination will be necessary for further calculations) we rewrite equation
(4.3) finally in the form

(@f2) + 52 FIX) = ~(@f + 1) (45

So we see that in order to obtain an explicit expression for element S it is
necessary to solve the pair of equations (4.5), which are self-consistent (as it
will be seen from the further consideration).

By the same technique we obtain

S57 = (@) - SO YN+ LA+ B + ZH (40
5 Explicit solution of the discrete transfor-
mation for algebra-valued function F

Now we substitute (3.1) , (4.4) and (4.6) into equation of the discrete trans-
formation (2.5) and compare the algebra-valued functions in the subspaces
with equal degree.

The space s = —2 is one-dimensional and we obtain immediately
1
Fo=—-—— 5.1
- (5.1)
In the case of subspace s = —1 the following equality arises:
w1 X LX)
Fl=—(fl+>—="—1f_
- = f)

Keeping in mind that
(X=, f1=0, (X" X7]=H, [Hfl]=-f1
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we obtain finally

!
Fo== 5.2
7 (52
In the case zero-graded subspace it is necessary to take into account the
input from terms $’S~!. We obtain successively { for simplicity we introduce
notation (X, f1] = 6)

([9 f-]) 1[X+[f_ I fL
f- /-

So for all generators of the zero-graded subspace which are ortogonal to H
we obtain

=fot+z +(af-+)H (5.3)

Q 16, f1]
Fo——H f0_§H+§-f—_. (54)
The projection of (5.3) on H gives
Q _ w X fL

Comparing the last equation with (4.5) we come to the conclusion that

Q
a=— 2+ Y (@ = Sp(FHy)) (5.6)
f-
Substituting this expression in (5.5) we obtain
O+ w , . 1 : :
(=) =LL+of + 55 X7 = R (5.7)

where is R_ is the nonlocal integral of the degree —2 subspace of equation
(2.3). After this (5.7) can be rewritten also in the form

Q“L“’)f_ R, a=—% (5.8)

Notice that in the case f! = 0 the equation (5.5) is the same as in the
previously known case of the A, algebra [6],{7].
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The subspace of unit degree gives the equation

1/

= 57 81616, X‘]]]—i- L1018, £111+16, foraf Hl+f}f-+faf +( f_) f-

(5.9)
The further evolution of this equality is connected with the following obvi-
ous identities which are the direct consequence of the determination of the
grading operator H given above and some purely algebraic operations:

0, X7 = fL, (6,06, f11} = 306,16, f1]] + 3(f1,0)8

Substituting all these expressions into the last equality in (5.9) we obtain

20 f

o 106,08,10, Xz
F+—“§( f_

Y+ (Baf )+ fLf+ 0 +wf+]0,fo]  (5.10)

The equation for algebra-valued function § may be obtained on commuting
the degree —1 component of equation (2.1) with the generator of the maximal
positive root of the algebra and has the form

Oyg + 022 = (f—)z(f-lf)y (f-)y (f+) + wyb; — w,by + [9z:f3] - [Hy:fg]

This equation may be written in the divergence form, which can be partially
resolved by introduction nonlocal conserved quantities p;

(P1)y = (f3)uf- + 0z + w0 + 6, f;]
(P1): = (f1)ef- = 05 + w0+ 6, f7]

Bearing all this in mind we obtain finally

) 110,(0,16,X7]]] R-6
Fi=—— -

3! f- f-
It only remains to calculate the function £ of the one-dimensional +2 graded
space. We have

1/
412

-+ (5.11)

By = L= j61616, £21) + 5 [0lele, /1)) + [9[9 foll + 1-16, £+

3' i
(5.12)
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XH(fifs+oXfif —aflo+df2)+ %(flé))

Let us use the following notation f_ = Ry, B_ = R;. Remembering the deter-
mination of R; with help of equation (5.7) we can calculate the d’Alembertian
of it and the represent this result in the form of a conservation law. We obtain
in this way

. o 1, . A T
Ry =Ry +whRy + §(flp) +R3fy - é'f—(fifi) (5.13)
Substituting (5.7),(5.10) and (5.13) into (5.12) we obtain finally

RrY 1 ([0, /1000, F1])

F+ = —R2 + R,O 41 120

(5.14)

6 The final form of direct and inverse discrete
transformation

As it is possible to see from the explicit form of the discrete transformation
of the last section, its double application to a given solution f returns to
the same solution excluding possible trivial additional terms to f depending
only on arguments 7, Z (constants of integration). By this reason if we want
to obtain new solutions from a given one by help of multiple application of
our discrete transformation it is necessary first to perform some point like
transformation on f with respect to which self-dual system (3.2) is invariant.
As such kind of transformation we will use reflection of maximal root of alge-
bra (3.3). As a result of consecutive application of these two transformations
to the solution f of self-dual system the corresponding formulas of the last
section take the form

1 (X, f3]
F =— Fpl=5=04
fol T f+
O, _w, ALY
Fo— gl = fo= JH + o=
Q R . , . 1 S R
5=§+f—:, Bi=fi-ofo+ 5L X, a=-F5
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(6.1)

pr= UVl XN Rfs b o per g, 4 e,

* 3! f+ [+
R2 1 1 X_ 2
F+:R2_Et+%([f+1[f;—z; ]D
. 1 . . :
Fo = Ry = oy + L IRPD) + -+ LA
1 (X, £i]
F.=— pl=—"'+
7T f+
1 1 g
%—%H:h—%H+¥£%§EH
Q o D R
E=g+f__:1 R1=f+ _wf++§([f-}-1f-}~]-‘x—)a Q’:"'—£
(6.2)
1 13 1 X- R 1 . . .
F—Il- — —gli[f+,[f+,}_{+’ ”] + }—{-}- —P1, P = [X+,fl]f++fj|_1+[f_}_,f0]

B L((fL UL XD
Ry 4 Ry

Ra = R =Ry + SOCIRPD) + 214 L)

Very complicated at first sight, the expressions for the graded components of
the discrete transformation become simpler after rewriting (6.2) in the form

Fy=FRy -

F= [~ Pu+ RoXy + Ry exp(Ri Xy — Po) X exp —(Rn Xy — Fy) (6.3)

From the last expession it is clear that discrete transformation for algebra-
valued function f determined at whole by non negative components of initial
solution fi = Ry, f1 = Py, f* and nonlocal integrals Ry, Ry of +2 graded
subspace and P; of the +1 graded ones. If the reader remembers that (6.3)
describe discrete transformation for the case of arbitrary simisimple algebra
then he must agree that the form of the final result (6.3) is astonishingly
simple.
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The discrete transformation (6.3) is invertible. As a result of resolving
(6.3) the "old” solution f may be represented in terms of the "new” one F
as

f=F'— P+ Ro X, +(Ry) " exp(—R1 X_+Py) Xy exp(R_1 X_—Py) (6.4)

where Fy, Ry = F_, Py are nonpositive degree components of solution F,
R_y,R_y, P_y are the conserved quantities introduced above (up to a sign
change). Equations for them may be obtained from equations for conserved
values with positive indexes (6.2) by means of changing the "old” function f
by the new one F.

It may seem that the discrete transformation for the self-dual system
is asymmetrical with respect to multiplication of its unknown group-valued
function only from left G = S¢. But this is not so. The same trick it is
possible to repeat with the pair g, f as it was done before with pair g, f. All
formulae for this case may be obtained from corresponding formulae of this
section by operation of complex cojugation with simultaneously changing of
independent arguments y — ¥,z — Z and visa versa. To distinguish these
kinds of discrete transformation we will usc terms left (S;) and right (S,) ones
for them in what follows. So by help of multiple application of direct (6.3) or
inverse (6.4) discrete transformation it is possible to construct a new solution
from an arbitrary given one. There are some obvious possibilities which may
be arise in this process. It may happen that this process is unlimited in both
directions and we will obtain infinite number ”new”solutions all of which
are in some sense equivalent to the initial one. For instance if we have
deal with general solution of Cauchy problem for self-dual system that it
is obvious that after discrete transformation we will have the same solution
only with possible change of the initial function of the Cauchy problem. The
other possibility consists in assuming that after a definite number of discrete
transformation we will come back to the initial solution or to a solution
connected with it by some other transformation (not a discrete one). In this
case we will have some periodicity in the infinite chain of "new” solutions.
Finally it may happen that after a definite number of steps we will come
to a solution to which further application of the discrete transformation is
meaningless (f+ = 0 in the case under consideration). Precisely this case
will be the subject of our further consideration. In the case of integrable
systems in (14 1) and (1 + 2) such a situation always arose in consideration
of multi-soliton solutions [4]. So it is possible to postulate that in the case
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of the four-dimensional self-dual system this last possibility may in future be
connected with instanton and monopole problems

7 The self-dual system in the case of ”solv-
able” algebra

Now let us assume that the terms from degree -1 and -2 subspaces are ab-
sent in the solution of the self-dual system (3.2). In other words we assume
that the algebra-valued functions f may be decomposed on the elements of
0,41, +2 graded subspaces only. In this sense we have used the term ”solv-
able” in the tittle of this section. The arising system of equations for unknown
functions of degree +2,+1 and zero spaces takes the form (in conservation
law form)

b= Iy = 0f4 4 5((Fh fA1X0)
pr=(f}) + 1. 10 (7.1)
(fO)W + (fO)zf = [(fO)y’ (fO)z]

We see that the equation for the degree zero subspace is the usual self-dual
system with gauge group G™*/SL(2, R). As a direct consequence of (7.1) it
follows that the function w satisfies the free d’Alembert equation

(W)yg + @)z =0

The remarkable property of the reduced self-dual system (7.1) (we use small-
case letters for its nonlocal conserved quantities) consists in the fact that it
possess some additional symmetry compared with the initial self-dual system
(3.2). Namely each set of functions r3,, p,, fo taking values in the subspaces
with graded indexes +2,+1 and 0 respectively from the following infinite-
dimensional system

H

' _ 1, ) ) . 1, .
Ton = Top_q — Wlan—1+ 5()& [Pa-1,Pal);  Tonsr =75, —wren + §(X [Pa; Pa))

Pnt1 = Py + [Pn; fo] (7.2)
are the solutions of system (7.1). The validity of this proposition can be
verified by directly. In terms of the solution of infinite-dimensional system it
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will be possible to represent in explicit form result of multiple application of
discrete transformation (6.2) to initial solution of reduced self-dual system
(7.1) which in its turn satisfy the self-dual system (3.2).

8 Universal A%-algebra embedding into arbi-
trary semisimple one

In this section we investigate the further remarkable properties of A! em-
bedding of the maximal root of the third section. Let us consider arbitrary
element of +1 graded subspace p and construct by help of it the following
algebra-valued elements belonging to subspaces with degrees +1, 0 and —1

p, v=Iplplp, X1l s=[plp.X-], [ X-) [lp, X-]lplp, X-]]

These five elements together with the generators of the highest root X4, H re-
alize the closed eight-dimensional algebra which is isomorphic to A, (SU(3, R))
algebra (if (s?) # 0).

To prove this assertion let us consider the following obvious equality

plplplp, X = cXs

Indeed the algebra-valued function from the left side of the last equality
belongs to 42 graded subspace which is one-dimensional and so may differ
from X, only my numerous multiplicator ¢. 'The values of it may determined
by multiplication of the last equality on X_ and taking the trace from both
sides. The result is ¢ = (s,8) = Trs? = N?(s). Commuting the same
equality with the generator X_ we obtain two equal terms and as a corollary
important for further calculations relation

X Jplply, X1 = [pllo, XNl X = 22 (g)

With the help of (8.1) one can convinced that the set of the following six
generators
V6

\/E.s, s}

h,1+h2=H, hg—h,1= b

15



3 3
Xt =0 I, X =0y Noe), 00BN <1

X! = 02(—\/§N[p, X_]+[nX2]), X2= w@l(\/gN[p, X_)+[v, X))

satisfy the system of commutation relations for generators of the simple roots
and corresponding Cartan elements of A? algebra. The remaining generators
of the maximal root coincide with X4:

XP=[X,, X=X, XP?=[X2X]=X_
All usual conditions of normalization
N(H)=2, N(hi=hy)=6, (X, X7)=0bup

are also satisfied.
As a direct corollary of the above consideration we have the following:
If the "norm” of element p of +1 subspace Tr{[plp, X7]])?) = 416 is not
equal to zero identically then it by itself and element v = ’3,‘):;_ constructed

from it and also belongs to +1 graded subspace may be represented in the form
p =tgo(X{ ~ XFgo, ¥ =1tgo(Xi + X )0 (8.2)

where Xffz are the simple roots of A? algebra, t some constant and go the
element of the group algebra of which coincides with the subspace of zero
graded index.

9 Explicit expressions for solution of discrete
transformation

We now want to choose as the initial solution of reduced self-dual system
(7.1) and obtain the explicit expression for solution of self-dual system after
multi-time application of discrete transformation (6.3). We introduce also
the following notation for the coefficient functions f, = 7, fj_ = pp of the
initial solution.
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9.1 The zero step

We represent here the explicit expressions for algebra f, f and group go valued
functions of self-dual system (2.1)

f=r0Xy +po+ o

f—:01 fizoi f0:¢0) f-t:p(h f+=T0
go = exp(r_1 Xy +p_1)©

where r_; and p_, are solution of infinite chain (7.2); ©'©~! = ¢,.
f_ = d_)o + 9_1(7'_2X+ +p_2)®

where 710 = 50.

9.2 The first step

1 N, ls
e e o
To To 2?’0
1 ""1 — &
f+=—3,—+—P0—P1= fo=r9— ——,
70

50 = lolpo, X_1J, 0 = [polpolpo X_JJl, 80 = g7 (mofpo, X-]P).

o 1 X 1s_
Fegroiix - Pty ey
To 70 7o 27
lvy, 1 ri =01,
(p-2 — TR p-1) + (T2 - o )X+)©

s.1=[pafp-1, X_]l, v =[palpalp-1, X-Jl], 6= "“([P ilp—1, X_1%).
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9.3 The second step

At first we represent the explicit expressions for integrals of the motions of
self-dual system Hj, R4, Pp in terms of corresponding expressions of reduced
self-dual chain (7.2) rg, 71,72, 73,74, Do, P1, P2. We use the notation le R
with the purpose to emphasize that this quatities coincide with nonlocal
conserved values after m steps of discrete transformation.

T%+5)+plrl 2y _1_[P1,So]
o To 3! rk 2 7

R =ry= L 2 ([po,pi], X)) - "ra - 1;050) L ([Vo,f;]x_)

PP =—py+ _(7"2 -

1(s , 8 ) )A— T2 + 9 1 r
Réz _ Z( 0 l) + ([pﬂ pl] )(7.2 _ 1 . 0) 1([V0,p1]X )
To To 4

2 2
To T ik
+

), X-
5% = ([pn_j(:j )(72 —7r371) + ——([vo,P1]A )—
vy, | X - 1 T i 17
313! (b T;] )_ 1(['/1,170]:\ )+ 3;—2—(30,31).

Now we represent the explicit expressions for solution of self-dual system
after substitution of the last expressions for nonlocal integrals into general

farmulae (6.3)

_ To fl — %[VO,X_] — leJg,X_] + TO[])I,X_]

roro — 7% + 8o ToTy — T3 + 8

fo= o+ r3rg — T1T2 + %7‘1([170;?31]5{-) - T;E,?([VO,IJllX-)H+
Tore — 77 + do

1 5072 + 8170 + g ([vo[p1, X-]] + [ps[vo, X-}) — r1({polpr, X-]] + [p1[po, X_]]
2 ToTy — 75 + &g

Y 1
(rore — ’-"1 + 50)f = po(rore — 7‘1 + o) + r3(ripo — Topr — E(,l) - -Tl[Po, $1)+

= ralp, s0] 470+ 51T, 1]~ Bord 41 (= ([, i1 X)) 5 (0,211 X))
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1
fi{raro —Tf +3o) = r4(rore —Tf) —""3 —T§To+27“17‘27"3 +diro+ 3(3031)T2+50T4+

a7 (oI (1, Bl X7 (X[, i (8 = ) = g (1, )X

10 The gauge algebras of A" series

In the case of A! algebra all components of the self-dual field may be ex-
pressed as a fractions of principle minors of sotne definite infinite-dimensional
matrix constructed via known solution of reduced self-dual system [6]. To
observe this dependence from the solution of the previous section is not very
simple for the general case and so to have some experience we consider at first
the gauge algebras of Unitary series A" which as always the most simplest
for concrete calculations.

10.1 The case of A? algebra

In this case the £1 graded subspaces are two-dimensional. Basis vectors
of them are XF, XF. The basis of zero-graded subspace are two Cartan
elements of A? algebra hy,hy. +2 graded subspaces are as always one-
dimensional. We choose solution of the zero step in component form as

FO = 7hy + phy + BoX{ + 1o X5 +roXT

Substituting this expression into formulae of the first step of we obtain

1 X5 — X[ -+ T
f“=—X‘+ﬁ° 2 M0 L+ Dby 4 (p+ )bt
To Ty 7o To
Det(ﬁﬂ ﬁl) Det (7‘0 71) Det(TU Ti'-)
Tg Ti'- ref 7o 7-‘]_— s+ J T]__ T2 s+
A+ Ay + X (10.1)
Ty To To

where rf =r £ 2Boo.

We omit the expressions for negative components of the second step which
can be obtained from the last formulae by help of only algebraic operations
and represent the explicit expressions for nonnegative ones

+ -
Det(:E ;":1_) Det(:i :LL)
G = (r+ 3 3 2 Vhy + (p+ Z 3 Vho+
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Det| ro 7§ 13 Det| rq 17 75
+ + =
fi5 = + X 10.2
+1 A 1 A 2 ( )
7o T‘T 7‘;-
Det |7 7o 7F
2 ry Ty Ta ) o,
ff = — X
A
where

Tit =7+ %ﬂo"/o f-"ai =73k %ﬂl’h
+ — To T"1+‘
r3 =12+ bive, T3 =72— o, AZDCt(T- , )
1 T2
if in the above formulae put §; = v; = 0 we return to known before expres-
sions of A! algebra case.

10.2 The case of arbitrary n

We will use (n + 1)-dimensional representation of A™ algebra - so called its
first fundamental one. The arbitrary element of +1 graded space py may be
represented in matrix form as

0 (478 0
pe=|0 0 &
0 0 0

where a; (n-1)-dimensional row vector, b (n-1)-dimensional column vector.
Without any difficulties for all other values taking part in the formulae of
two first steps of discrete transformation we obtain

(akbk) 0 ) 0 1
se=| 0 =2[[bat ]l 0 |, & =;(axbe)
0 0 (axbe)
where (a.b;) = Y05 aib and || bial |- (n — 1) x (n — 1) matrix with
corresponding matrixes elements.
v 0 — Qg 0
O = 0 0 b,

38 \o 0 o

20



pr=10 0 b, pr=|0 0 o
00 0 0 0 0

As a direct corollary of the above formulae the following relations take place

0 0 0 Oukl])

1 1
5[1’1: so] = (aob1)pg — (arbo)py + 5(50&0)(3@r - D7)

g

%[5,51] = M(PIT +p5) + Vo((boa)pf + (brao)py)

The following functions having two indexes i, j taking values in subspace of
zero graded index will be important for compact form writing of the result
of m-th times application of discrete transformation

17 =iy, X N+ ", X7, 0<4,5 < (m—1)

The substitution of all exppressions above in corresponding formulae of the
previous section leads to the following solution of self-dual system on the first

step
1.._ . [X_, po T 1 [po[po, X ]|
U= X"+ 224 (r+ —)H + (p+ o
fU= X 2B e T (o g B
- - 4 . +
Det(‘?o fL) Det(j:o f‘_) Det(;g 7;1)
L1 S LT3/ x+ (10.3)
To To 7o
Nonnegative components of the second step are the following ones
+ —_
, 1 Det (:E :L) Det (:ﬂ :L)
2 2 3 2 3
- = H
1 .
(p+ -2-Tr(1<2D—1)
where D! is 2 x 2 matrix invertible to matrix
_ To Tl_
b= (TT ) )
Py D1 P2 2 S
Det| ro 17 rf Det| rq v 15
@ _ T2 73 T2 s 10.4
i A + A (10.4)
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70 Tf' 7';-

Det| 7 7o 13

e _ Ty Ty T4
+ A

where 1 1
’I‘it =7 =* §(aob0)a Tsi =73E E(a’]b])’
.\ _ To Ti*-
ry =13+ (abo), 77 =719 — (aohi), A:Det(r_ 7‘2)
1

It is not difficult, not only to generalize the expressions above to an arbitrary
step of the discrete transformation, but by direct calculation also to check
(by use of methods similar those used in {7]) their validity. Corresponding
calculations are not very simple and straightforward. So we present here only
the final result of discrete transformation after the m-th step for nonnegative
components of self-dual field. The main role will play the following infinite-
dimensional matrix constructed from solution of reduced self-dual system

0 p »m P2

+ .t +
Do To 1 T
— + - . t
D= Y4l ™1 9 Ty e (105)
+ - = .
Do ) Tq Tg el

.................

For finite n x n matrix ( counting from the left upper corner ) arising from
D after interrupting its , j,.. rows and &, !, .. columns we will use notation
| (D% )n || In this notation we obtain

1Det || (D) || +Det || (D2 |
2 Det || (D) |

p+Tr(I™(| (DD)m )7

fo =(r+ H+

(10.6)
m _ Det || (DY)mer || +Det || (Di)ma ||
! Det || (D)m |l

(m _ Det | (DDt |
Det || (DD)m ||

22



11 Solution of the reduced self-dual system
by the methods of matrix Riemann prob-
lem

It is well known that the general solution of sclf-dual system is equivalent
to the matrix Riemann problem, the equation for which in this case has the
form

exp F(y+ Az, z — Ag, A) = G (A)G_(A) (11.1)

where F(y+AZ, z—Ag, A) is an arbitrary algebra-valued function, G4 ()), G_(})
are limiting values on some contour C' in the complex A plane of two group-
valued functions G (\), G2(A) analytical outside and inside the circle C. We
take the point A = inf to be outside C. The boundary condition for (11.1)
at the point A — inf is the following one

Gi(N) =1+ f+..

where f takes values in the algebra.

The proof is very simple. Let us act on both sides of equation (11.1) by
two operators of differentiation D; = & — A&, D1 = & + Az:. Keeping in
mind that both these operators annihilate the function of the left hand side
of equality (11.1) we come to the following relation on circle C

(D12G+(X)GTH(A) = (D12G-(N)GZH (M) (11.2)

From the latter relation, as usual for Riemann problem methods we conclude
that we have deal with single on analitical function which has no singularities
in the whole complex plane and so by Liouville’s theorem is constant. Using
the boundary conditions we come to equalities in the notations of the section
3 (see (3.1) and below)

GIGT' (V) = Go(NG7' (M) = f (11.3)

And this is exactly equation of self-dual system (compare with (2.1)).
Unfortunely explicit form of solution of matrix Riemann problem is un-
known. But in the case of solvable algebra under additional condition that
solution of Riemann problem is known for its solvable part the whole solu-
tion may be reconstructed in explicit form. This situation is arised as we will
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see below in the case of reduced self-dual system (7.2). In this case using
the grading of section 3 it is possible after some obvious transformation to
rewrite (11.1) in the form

expaX ™ exp Aexp BexpTH exp Fy = G{HA)G_(N) (11.4)

where functions scalar functions «, 7,4, B taking values in the degree +1
subspace, Fy (0 graded subspace, [X*, Fy] = 0)) are arbitrary functions of
three independent, arguments (y + Az, z — Ag, A). The algebraic properties of
functions A, B are described in section 3 (see (4.1) and below).

Now let us assume that solution of the Riemann problem under the choice
of its homogeneous coefficient function as exp Fp is known, i.e.,

exp Fy = t7'(A\)t-(})

Substituting this expression for exp Fp in (11.4) and removing the term 7' (A)
on the first from the left place after some trivial regrouping of terms we will
have

expaXtexpty At; expt Bt exprH = 1, G (NG (A

The next step of transformation of the last equation is as follows: we rep-
resent the function 7 in the form 7 = 7+ — 7= and recalling the necessary
commutation relations remove the term exp 7t H on the first ( from the left
place) with the result

exp(exp —27Ta) X T exp(exp —71t, At7") explexp -7t Bt]') =

exp—1THt GTHA)G_(A\)t- expr™H

The trick of the same kind it is possible to repeat with all others terms of
the last product. Indeed the subspaces A and B commutative and so any
difficulties will not be met this way. Finally we come to equation of the form

1=S1{A)S_(N)

with the single solution S = 1 from which follows the explicit expression for

G1(A)
Gr(Y) = exp —[(cexp —2r* — [B*, A* + 5B, A*]X*
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expT(A + B)T exprt Ht,(\) (11.5)

Asymptotic value of the last group element gives the explicit expressions for
solution of reduced self-dual system in the formn

f= (/ dra()) exp =27+ ()) + /d)\ / d)\'-;-[ﬁlil’_—ﬁy}f-’m)xw

(11.6)
J 80+ o

where the function of +1 graded space ! is defined as 8'()\) = exp —7H¢, (A+
B)t;! and fo is the solution of self-dual system the gauge algebra of which
conicide with the subspace of zero graded index of the initial algebra. the
single solution S = 1 from which follows the explicit expression for G;(A)

G1(A) = exp —[(@exp ~2r* — [B¥, A" + 5[B*, AT]x+

exp7(A+ B)Texprt Hty(N) (11.7)
Asymptotic value of the last group element gives the explicit expressions for
solution of reduced self-dual system in the form
1[BY(A), BN
f= ([ daexp-2rr )+ [ar (zAfg[ﬂW)X++
(11.8)
[ B0 + o

where the function of +1 graded space ' is defined as 81(A\) = exp -7+t (A+
B)t7! and fo is the solution of self-dual system the gauge algebra of which
conicide with the subspace of zero graded index of the initial algebra.

Some additional explanation is neccessary to understand and use the
final formulas (11.8). In the process of its obtaining we have used the fact
that homogeneous function of Riemann problem is annihilated by the pair
of differential operators D, = 3'?5 - ,\c%, Dy = a% + )\é’—z. So if the parameter
A as function of independent arguments of the problem satisfy the pair of
equations

O OA A A
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then all formulae of the present section will hold without any changes. So
the integral in (11.8) is necessary to understand in the continual sense

fﬁaZE%)

where functions with different s are distinguished from each other and all A,
are distinct solutions of the (in implicit form) exactly integrable system of
the pair Monge equations (11.9). In all concrete applications connected with
solving some problem with given boundary conditions (connected with the
interruption of the infinite chain) there appear only sums instead of integrals.

12 The conditions of interrupting of reduced
self-dual chain

All solutions constructed up to now by help of discrete transformation are
some partial solution of self-dual system. From the point of view of physi-
cal applications the most interesting ones are those which satisfy additional
conditions of "reality” in the form

G=GY, f=f1, =z —ivg=yx, Z=1z¢—1iT3=2%

where z; are real coordinates of four-dimensional space-time and t x are
the signs of Hermitian and complex conjugations. The interest to solution of
this kind arised something about 20 years ago in connection with attempts to
understand situation in field Yang-Mills gauge theories. The circle of these
problems may be called shortly as monopole and instanton problems. It is
obvious that self-dual system (2.1) is invariant with respect to transformation
(inner automorphism)

G=G, [N yop 22 (12.1)

To find .the place of monopole and instanton configurations among those
obtainable by means of discrete transformation, let us consider more carefully
the result of application of discrete transformation from left and right ( see
section 6) to a solution G which is invariant with respect to transformation
(12.1). We have consequently

G = §,G,, GU'=GyS,
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But from the comments of the section it follows that S, = Stif Go = G} and
SO
G = (G(—l)’r

Repeating the same operation m times we come to conclusion that
GHm — (G(—m)’r

where the notation denotes the m-th application on the left (+m) or right
(—m) of the discrete transformation to aan initial solution Gy satisfying the
condition of reality (12.1). So if starting from a solution of the reduced self-
dual system (7.2), after m steps of left and subsequently m steps of right
discrete transformations, we return to a solution of the reduced self-dual
system (for the function f) then in the middle of this chain we will have a
solution for which the condition of reality is satisfied. This means that this
solution allows some physical interpretation.

The result of 2m-th application of the discrete transformation is known
(at least for the Unitary series (10.6)) in explicit form and boundary condition
on the second end of the chain restrict the choice of initial solution of reduced
self-dual system of the last section.

The self-dual system possesses a rich class of inner automorphisms and
with each of them it is possible by means of a discrete transformation to
construct a solution invariant under the corresponding automorphism. The
simplest example of direct solution ( without using the general results of
section 12) of the problem of interrupting of self-dual chain on both sides,
the reader can find in Appendix II.

13 Conclusion

By means of rather complicated calculations we came to the remarkably
simple form of the final result which we conjecture to be true in the case of
arbitrary semisimple algebras (10.6). This means only that methods which
we have used are not adequate for the problem under consideration and inte-
grable substitution by itself must be the subject of independent consideration.
We know now that this is some kind of discrete group with not simple inner
structure and only on having available a representation theory of discrete
groups of such kind will it be possible to know why we have obtaind such a
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simple final result after the comparatively cumbersome calculations in this
paper.

14 Appendix I

Here we represent without comments and proofs some formulas useful for
concrete calculations of section 8 which can be checked using the results of
section 7. We conserve also all notations of this section.

[p,v] =(5,8)X,, [v,8]= 2 (s,8)p, [vv,X_]]= —g(s,s)s

In all relations below " is the differentiation with respect to arbitrary argu-
ment.

i = 8({plplp, X_1J1+(p, 1, X Ip) = 30plolp, X1, -] = 2~ (lp 81, X)

= 2(s.9) s, (.8 X2), 5. = 3(5,9Xs, [p9] = S(si8)X-

1,41 = 5

15 Appendix 11

Here we want to demonstrate briefly on the simplest example how the prob-
lem of interrupting of the chain may be resolved directly. Let us consider the
case when the infinite chain (7.2) is interrupte(l on the first step. In other
words our initial solution is of the form f© = (0,0, fo, po,7¢) and we want to
have the final solution as f(' = ( il f( (1 ,0). To solve this problem it is
necessary to remember the explicit formulas of the first step of the previous
section and arising from its system of equations

(1 Qa % — 82
fri=0-p = ——+ Pa fr=0—2r=

15.1
3' To (5)

and system (7.2) for the case of n = 0,1
1
o =7 —wr + (X [po,pnl), T1=ry—wro+ 5 ( ~[po, o))

P1 = Py + [pos fol (15.2)
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By the series of transformation from the latter systems (15.1) and (?7?) it is
possible to separate the the following system of equations for two functions

B P/ |
u ro’v ro
vt +vo =1, vi+ur=1

which is equivalent to two independent Monge equations for functions wy =
utv
wathy = W (15.3)
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