
Alexander Polynomials for Projective Hypersurfaces

Alexandru Dimca

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Federal Republic cf Germany

MPI/89-42





Alexander Polynomials for Projective Hypersurfaces

Alexandru Dimca

In a sequence of papers A. Libgober has obtained interesting results on the Alexander

polynomial AC of a (eomplex, irreducible) eurve C ( 1P2 , following an explicit suggestion

due to D. Mumford, see the Introduction to [4].

This polynomial can be identified to the characteristie polynomial of the monodromy

operator aeting on the first cohomology group of the aS80ciated Milnor fiber, as shown by

R. Randell [R]. Using thia identification and results of H. Esnault [E], the Alexander

polynomial 4C has been computed in cohomological terms by F. Loeser and M. Yaquie

[LV], without the irreducibility assumption.

The Alexander polynomial 4y for an arbitrary dimensional complex hypersurface

Y c!pu has been defined by A. Libgober in [L3] , where some of ita properties are stated.

In this paper we develop a new point of view on these Alexander polynomials 4y .

First we identify the polynomial 4y as the first in a sequence of 8+2 polynomials

(8 = dim Vsing) defined as characteristic polynomials of the monodromy operator on van­
ous cohomology groups of the associated Milnor fibers.

Unlike the method used by Randell in the curve case (which uses explicit generators

and relations for the fundamental groups involved [R]), our identification ia more geome­

tric, being based on Zariski-Lefschetz type theorems (see Prop. (1.8)). This point of view

oHers also a new interpretation of the Alexander polynomial at infinity P of V , see Cor.
Q)

(1.10).

Next we restrict to the case of isolated singularities (8 = 0) , but without the addi­

tional restrietion that V is a Q-manifold which is used throughout in [L3]. In ibis more
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general setting, we prove stronger versions of the main results in [L3] related to the

Alexander polynomial !J.y '

Our approach is based on using explicit meromorphic differential forms in studying

the topology of a hypersurface Y C IPn and this paper is a natural continuation of our

results in [D2].

To prove the computational power of this approach, we end with several explicit

examples (nodal hypersurfaces and Cayley-Bacharach type hypersurfaces).

We like to thank Professor A. Libgober for drawing our attention on relations be­

tween his work and our preprint [D2] an~ to Professor D. Barlet for explaining to us a

stimulating related result (see [B], Appendice 2) during a pleasant visit to Nancy.

This work was done during a stay at the Max-Planck-Institut für Mathematik in

Bonn and we take this opportunity to thank once more this Institute and bis Director,

Professor F. Hirzebruch for remarkable hospitality.



-3-

§ 1. Definition oI the Alexander Polynomials

First we fix some notations. Let V: I = 0 be our hypersurlace in IPn and assume that

s = dim Vsing < n-I , i.eo V is reduced. Let F: I-I = 0 be the associated Milnor fiber

which is a sIDooth hypersurlace in (n+l. Let h: F -----+ F t h(x) = ~. x for

~ = exp(2ri/N) be the monodromy operator, where N = deg(f) = deg(V) .

Let X = {x E (n+l; f(x) = O} and note that the fibration

(1.1)

is essentially the Milnor fibration of f [MI], having as monodromy operator exacily h.

Let S be 3 aphere of aufficiently large radius centered 3t the origin of (n+l and note

that the inclusion S\K -----+ (n+l\X is 3 homotopy equivalence, where K = X n S is

the associated linle

Next we give 3 general definition for the Alexander polynomials, compare with [LV]

(1.2) Definition

Let M be a connected, locally contractible topological space having the same homo­

topy type as a CW-eomplex of dimension m and let '{J: "'1(M) -----+ 7l. be an epimor­

phism. Let Et -----+ M be the covering space aBsociated to the normal subgroup ker(cp)

and let T::&t ----+:&t be a generator for the group of covering transformations.

Then we define the Alexander polynomials

~k(M,'{J)(t) =det(t · Id - T*IHk(~))

{or k = 1,.. o,m 0 Here and in the sequel cohomology is considered with (-eoefficients and
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by conyention det (0 ----+ 0) = 1 .

It is assumed that the vector Space8 Hk(~) have finite dimension and then the

above definition makes sense and moreover äI(M,VJ) E 1l. [t] for all k.

(1.3) Lemma

Let (M1,VJl) and (M2,VJ2) be two pairs of objects as above. Let j: MI ----+ M2

be a map which is a ~quivalence and such that VJ2 0 r 1(j) =<PI . Then

&k(Ml'~I) = äk(M2'~2) for any k < p and &P(M2,ep2) divides äP(Ml'epl)'

We recall first that j is said to be a p-equivalence if rk{j) are isomorphisms for

k < P and t"p{j) is an epimorphism, see [Sp], p. 404. The map j has a lifting

1:~l ----+ ~2 (use its second property) and one has 'r2 0 1= 10 'r1 . Moreover, by

the fibration homotopy exact sequence it follows that 1 ia again a p-equivalence. Next by

Whitehead Theorem [Sp] , p. 399 it follows that Hk(j) are iSOIDOrphisIDS for k < p and

is a monomorphism for k = p , which clearly implies the resu1t.

(1.4) Remark

One can define another (infinite) series of Alexander polynomials for (M,ep) by

setting

for all k ~ 1 .

If M is q-eonnected for some q ~ I , it follows by Hurewicz Theorem [Sp], p. 398 that



-5-

Le. the first (possibly) nontrivial polynomials in the two series considered coincide.

To define the Alexander polynomials of the hypersurface Y , we take in the above

definition My = (n+l\X and

The corresponding covering Ety ------i My can then be described explicitly as follows.

* *Let exp: ( ------i (: be the standard universal covering of (: . Then ~y --t My ia

*the pull-back of the covering (: ------i (: via the map f. It follows that ~y ~ F )( (:

and the action of the covering transformation T on Ety corresponds to the action of the

monodromyoperator h on F. Rence one can restate Definition (1.2) in this case as

folIows.

(1.5) Definition

The Alexander polynomials of a hypersurface Y C IPn with s = dim Y . are de-slng

fined by the next fonnulas

= det(t Id - h*IHn
-S-

2+ k(F))

for k = 1,... ,s+2 .

The shirt k --t n-ti-2+k is due to the fact that F being (n--B-2~nnected

[KM], A~ is the first polynomial which may be different from 1. Moreover F is a

CW-romplex of dimension n [M2] and hence HID(F) = 0 for all m > n and k = s+2

is thus the last interesting value.
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These (8+2) Alexander polynomials are not completely independent.

(1.6) Proposition

where X(F) ia the Euler characteristic or F. When V has only isolated singularities

X(F) = 1 + (_l)n [(N_1)n+1 - N l Jl(Y,ai)]

i=1,p

where Jl(Y)~) denotes the Milnor number.

This ia just arestatement or Prop. (3.13) and Remark (3.14) in [D1]. See also [01].

In general X(F) ia a much easier to compute invariant and hence we are left with the

problem of computing s+l Alexander polynomiala.

(1. 7) Example

(i) Y smooth (s = -1) :

The using (1.6) above we gei
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(ii) An example with nonisolated singularities: Let Y: x2z + y3 + xyt = 0 be the

cubic surface in 1P3 considered in (4.3) [DI]. Then it follows from the computations done

there that

122 3
A\r<t) = I) Ay(t) = t + i+l and äy(i) = 1 .

In fact Theorem Astated in the Introduction to [DI] oHers a purely algebraic way to

compute an the Alexander polynomials ät, but tbis method is quite difficult to work out

in practice, aa the above example already shows.

Now we intend to relate our definition (1.5) to the definition given by Libgober in

[L3] . Let H: t =0 a hYPerplane in IPn and let ft be the corresponding affine

hyperplane in (n+1 given by the equation t = 1 (ft is well-defined up to translation I).

The obvious identification IPn\H = tt gives an identification of Ny = IPn\(H UY)

to the hyperplane section il n My . Hence we get an indusion

jy : Ny = ft n My ------+ My .

(1.8) Lemma

For a generic hyperplane H, the map jy is an n-equivalence.

Use the Zariski Theorem of Lefschetz type in [HL] or the Affine LeIschetz Theorem

in [H] (Thm. 2 plus the following comments).

It follows from (1.3) that the Alexander polynomials
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eoineide for k < n and aceording to the remarks above this covers all the interesting cases.

From now on the first Alexander polynomial &~ will be denoted simply by 4y and

using Remark (1.4) it follows that our definition of Ay ooincide with Libgober definition

(l:1y is in bis notation simply P).

We have the next result similar to (1.8) (same proof).

(1.9) Proposition

For a generie hyperplane H in (n+1 passing through the origjn, the indusion

jF : F nH~ F is an (n-1)-equivalence.

(1.10) Corollary (Lefschetz Theorem for Alexander polynomials)

If H is a generie hyperplane in [pn , then ~tnH = At for all k ~ s and the poly-­

nomial A~+1 divides the {Xllynomial A~~ä.

Note that in the case s = 0 the {Xllynomial AVnH ean be identified to the so ealled

Alexander polynomial at infinity eonsidered in [L3] (where is denoted by P ) and henee
CD

(1.10) gjves a proof of Theorem 2, (2) in [L3]. Indeed, if T(H) is a smaIl tubular neigh-

bourhood of H in [pn one can identify its border Dr(H) with the sphere SR in (n

centered at the origin and with a large enough radius R. And the space OT(R)\V has

the same homotopy type aB MynH ' where in this ease Y n H is smooth. This remark

combined with (1. 7i) gives the explicit fonnulas for P whieh appear in [L2] (3.4) and
CD

[L3] , bottom of p. 50. Using induetive1y (1.10) one gets the next

(1.11) Corollary

With the above notations
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where H. are generic hyperplanes in IPn .
1

Note that in this case V n H1 n ... n Hs has only isolated singularities and hence the

computation of the first Alexander polynomial !y can be reduced to the case s = 0 .

(1.12) Example

Consider the cubic aurface Y from (1.7.ü). A general plane section Y n H ia a no­

da! cubic in H ~ 1»2 and hence we get again in this way

since all the nodal curves in 1»2 have trivial Alexander polynomials by Deligne-Fulton

result [De]) [F].
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§ 2. Loca! Alexander polynomials and their reduced yersions

Let Y: g = 0 be an isolated hypersurface singularity at the origin of (.n ,let Fy

denote the corresponding Milnor fiber and hy : Fy -------t FY the monodromy operator

[MI] . We assume throughout that n ~ 2 . Let f!y 0 be the characteristic polynomial

det (t Id - h; IHn- 1(Fy )) whieh may (in an obvio~8 way) be regarded as an Alexander

polynomial as defined in (1.2).

However we will be more interested in a divisor of f!y 0 ' namely the reduced Ale-,
xander polynomial of the singularity (Y,O) defined aB fOUOW8

(2.1)

Here the product is over all the eigenvalues ..\ of h~ IHn
-

1(Fy) ,and the multiplicities

a( ..\ ) are defined as

(2.2)

Note that indeed ~y 0 ie a factor of &y 0 and moreover one has equality ~y 0 = &y 0
* 'J , ,

if and only if hy ie diagonalizable. We give next a more geometrie description of these

multiplicities a(..\).

(2.3) Lemma

Let BO be a emaIl open ball centered at the origin of (n . Then

a(l) = dim Hn(BO\ Y) .
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Let So = 8 B'a be the corresponding smallsphere and Ky = So n y the corres­

ponding link. The Wang sequence aBsociated to the Milnor fibration [MI] reads as follows

Since So\Ky is homotopy equivalent to BO\ Y [MI] this ends the proof.

To interpret the multiplicity a('\) for ,\:/= 1 one may proceed aB follows. Write

A =exp [~ ] for some integer b E [l,d-l] . Let G be the multiplicative group

{a E (* i ad = I} and note that the dual group of characters

*G' = {X : G ---+ (: iX homomorphism}

may be identified to ll/dll via the correspondence

ll/dll 3 c .....--+1 Xc E G' defined by xc(a) = aC
•

Let f:j: g + td = 0 in (n+l be the d-fiuspension of the singularity (Y,O). Then

(r,O) is again an isolated singularity.

Let tio denote a small ball centered at the origin in (n+l and note that G acta

on the set 110\ f:l by the formula a • (X,t) = (x,at) . Then there is an induced action of

G on Hn+1(tiO\ f:l) and hence a direct sum decomposition

(2.4) Hn+lO~to \ V) = EB Hn+1(tiO\ f:l)X
X

For any G-module E, we define the eigenspace EX corresponding to the character
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X EG' by

EX = {e EE; a-e = x(a}e for all a E G}} .

(2.5) Lemma

According to the Thom-Sebastiani formula [TS] , the cohomology Hn(Fr} of the

Milnor fiber for -V can be identified to the tensor product Hn- 1(Fy} ~ ttO(Fd} , where

Fd : td-1 =° is regarded as the Milnor fiher of a O-dimensional singularity. The corres­

ponding monodromy operator h; acting on 1't°(Fd) is diagonalizable and has as charac­

teristic polynomial the polynomial

*Moreover the monodromy operator h
r

corresponds to the tensor product Ty ~ Td

[TS] , while the action of the generator ~1 = exp [~ ] of G on Hn(F~) corresponds

to 1~ Td .

Recalling the Wang sequence from the proof of (2.3) (but applied this time to the singula-

rity (~,O)), we get that Hn+l(tlo\ ~{d-b js spanned by elements of the form Vj 0 w ,

where {vi} ia a basis for ker(h~ - ~ Id} and w is the unique eigenvector in ttO(Fd}

corresponding to the eigenvalue ~~-b .
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Since all of our representations are real, it follows that

since Xb = Xd-b ' and this clearly ends of the proof. The nen result ia a stronger version

of Thm. 2 (1) in [L3].

(2.6) Theorem

Let Y (!pn be a hypersurface which is singular exactly at the points al' ... ,ap .

Then the Alexander polynomial lly of V divides the product TI ay of all the
i=l, p ,ai

reduced Iocal Alexander polynomials.

We know already by (1.10) and (1.7.i) that any root A of lly is an element in the

* Ngroup GN = {a E( ; a = 1} . Let A( A) be the multiplicity of A as a root in !J.V .

There are again two cases to discuss

Case 1 (A = 1)

Let U = !pn\y and note that U is just the quotient FfG N ' where GN acts on F

via the monodromy transformation h.

It follows easily that

*
A(l} = dim Hn- 1(F)Fix(h ) = dim Hn- 1(U) = Hg(y} ,

where H~(V) = coker(Hn(Jln}

liyg n-eohomology of V .

*
j _Hn(V)) j: Y _-----t_!Pn may be called the primi-
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Next consider the basic exa.ct sequence

(2.7)

where Ba is a smail ball around the point & in pD. , S = Vsing = {&l'... ,ap} and () is

induced by the obvious inclusions, see for details [D2]. By (2.3) it follows that the multi­

plicity of ~ = 1 as a root in !V,a is exactly dim Hn(Ba\ V) and (2.7) implies that the

sum of these multiplicities is greater or eqnal to A(l) .

Gase 2 (~* 1)

Assume that ,\ = exp [~J and let V be the hypersurface defined by

1'(x,t) = f(x) + tN = 0 in IPn+1 . It is clear that 1:: t1' --+ IPn J"{x,t) = x is the

unique covering of IPn ramified along V and of order N (with normal total space).

Let t1 = IPn+1\ tt and note that the group GN acts on all the cohomology groups

H·(tf), H·(tt), H·(tta\ tt) which appear in the exact sequence (2.7) corresponding to V.

It follows that for each character X E GNwe get an exact sequence

(2.8)

Using again a result of Thom--8ebastiani type for 1(x,t) (if necessary have a look in

[Dl] I Section 1) it follows that

Using Lemma (2.5), the result folIows.
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(2.9) Remark

Libgober in [L3] put the restriction on Y of being a ft-manifold (equiva1ently 1 is

not a root of the polynomial n ~Y a ) since he works there essentially with coverings of
äES '

!pn a10ng Y (of various orders) and in tbis way one cannot keep track of the multiplicities

A(1) and a(1) for the various (Y,a) .

The next result shows that in general !y is just a small factor of n ~Y and
aES ,a

can be regarded as a generalization of the M. Oka result in [02].

(2.10) Proposition

Let Y (IPn be a noda! hypersurface (i.e. Y haB only isolated singularities of type

Al ) with

(i)

(ii)

deg Y = N . Then

dy(t) = 1 if nN is oddj

def( etI)
dy(t) = [t + (_l)n+l] if nN ia even, where def( (f/) is the de-

feet of the linear system r!/, defined aB folIows.

Let Sk denote the vector space of homogeneous polynomials of degree k in

([xO'''''xn] and Jet

r!/ = {h ESnj hiV. = O} for n =nN/2-n-l.slng

Then def( riI) = # S--<:odim etI, where the codimension is taken in Sn' (It is clear

that the number def( etI) meaSUIe& the degree of the independancy of the singular points

of V with respect to polynomials in Sn)'

This is exactly a restatement of our reault (3.6) in [n2] (to which we refer for the

details), in view of the next remark.
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In the case n odd and N even, the only possible root for t:aV ia -1 by our Theorem

(2.6) above, since we have t:aV,a(t) = t+1 for all a EVaing in thia case.

We also remark that the main idea in the proof of (3.6) in [D2] ia used also with more

details in the proof of the result in the nen section.
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§ 3. Cayley-Bacharach Hypersurlaces

The result in tbis section was suggested by (and is a strong generalization of) the

Corollary in [L3], p. 5I.

First we define the class of hypersurfaces we are interested in here.

Let fi E ([Xo""'xn] be a homogeneous polynomial of degree di ~ 1 for i = 1,... ,u

and let N be a commou multiple of the degrees di such that:

(i)

(ii)

(iii)

s' = {x E lPu ; f1(x) = ... = fn(x) = O} consista of exactly d1...du points;

ei = N • dj1 > 1 for all i = 1,... jn

e1 enthe hyperaurface V =V(f1,... ,fn ;N) defined by F = f1 + ... + fn =0 in

IPn
has only isolated singularities (clearly S = Vsing ) S' ).

We say that the hypersurface V defined above is of Cayley-Bacharach type.

d. d.
It is easy to see that such hypersurfaces exist (take for instance fi = x0

1 + xi 1 and note

that V n {xo= O} ia smooth!)

For any point a ES' , the germ (V,a) is a hypersurface singularity of Brieskom-Pham

type given in loeal coordinates by

(3.1)
e1 en

(V,a) : g = u1 + ... + un = 0 .

Our interest in tbis dass of hypersurfaces comes !rom the next result.

(3.2) Proposition

Any hypersurface V of Cayley-Bacharach type haB a nontrivial Alexander polyno-



-18-

mial 4y .

There is a unique pair of positive integers (k,s) such that k = sN - d1 - ... - dn

and k < N . Again there are two cases to consider.

Gase 1 (k = 0)

Then in each cohomology group Hn(Ba\ V) for a ES' one has a nonzero element

given in the Ioeal coordinates (u1,,,,,un) used in (3.1) by the meromorphic form

dU I A ... A dUn
wa = s

g

see [Dl] (3.6).

To show the map () in (2.7) is not surjective (which would impIy that 1 is a root for

äV ), it is enough to show that the map

Hn(U) --+ ED Hn(B \ V) --+ ED Hn(B \ V) --+ ED 4: <W >
aES a aES' a aES' a

is not surjective (the second and the third map being the obvious projections).

It is known that (: <wa> = F~-fi+lHn(Ba\ V) where FH denotes the Bodge filtration

on Hn(Ba\ V) (see [Dl], [D2], [D3]) and hence it remains to show that the induced

mapping

~: F
H
n-fi+lBn(U) --+ ED ( <w >

aES' a

is not surjective.
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But using Thm. (2.2) in [Dl] , any element in F~-fi+lHn(U) ca.n be written in the form

h n/Fs where n = l (-l)ixidxo A... Achi A ... Adxn and h is a homogeneous poly­

i=O,n

nomial in SsN-n-l . 1t follows that im(~) is contained in im(E) where E is the eValua-

tim! map

S'
E : S N 1----+ EI ( <w > = ( ) E(h) = (h(a))aES' .

s -n- aES' a

Since sN = d1 + ... + dn ' it follows !rom the generalized version of Cayley-Bacharach

Theorem (see [GB]) p. 671) that E is not surjective.

Case 2 (k f 0)

Then we consider again the hypersurface tt: F(x) + tN = 0 in [Pn+l. Note that for

any point a ES', the germ (tt,a) is given in suitable Ioeal coordinates by an equation

(3.3)
N N el en N

(v,a) : g(u,t) = u1 + ... + un + t = 0 .

Consider the element wa in Bn+ 1(t1a\ tt) given by

k-l
N t du! A ... AdUn Adt
wa = N8

g

Using a similar argument as above, one can again apply the generalized Cayley-Bacharach

Theorem and deduce that the Alexander polynomial fJV is divisible by the product

[ - xp [~]] [t-exp [2rA( k)]] .
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Hence in any case ~V f 1 , which proves our statement.

(3.4) Remark

Let V (IPn be a hypersurface wiih isolated singularities and let ~: V ---+ V be a

resolution of singularities. Since Hn(V) has a pure Hodge structure of weight n [5] , it

follows that Hn(~) is injective (in general ker Hn( r) = Wn_lRn(V) as explained in

[Df] ).

Rence one gets in tbis way

In the above proof we have shown that for a hypersurface V of Cayley-Bacharach type

one haa either hn--il+l,s-l(v) f 0 (case k = 0) or hn-s+2,s-1(t1") f 0 (case k f 0 ).

ln tbis way one may get nonvanishing (or lower bounds) resu1ts for the Hodge numbers
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