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Alexander Polynomials for Projective Hypersurfaces

Alexandru Dimca

In a sequence of papers A. Libgober has obtained interesting results on the Alexander
polynomial AC of a (complex, irreducible) curve C C P2 , following an explicit suggestion
due to D. Mumford, see the Introduction to [4]. _

This polynomial can be identified to the characteristic polynomial of the monodromy
operator acting on the first cohomology group of the associated Milnor fiber, as shown by
R. Randell [R]. Using this identification and results of H. Esnault [E], the Alexander
polynomial AC has been computed in cohomological terms by F. Loeser and M. Vaquié
[LV], without the irreducibility assumption.

The Alexander polynomial Av for an arbitrary dimensional complex hypersurface
V CP® has been defined by A. Libgober in [L3], where some of its properties are stated.

In this paper we develop a new point of view on these Alexander polynomials AV .
First we identify the polynomial Av as the first in a sequence of s+2 polynomials
(s = dim Viin g) defined as characteristic polynomials of the monodromy operator on vari-
ous cohomology groups of the associated Milnor fibers.

Unlike the method used by Randell in the curve case (which uses explicit generators
and relations for the fundamental groups involved [R]), our identification is more geome-
tric, being based on Zariski—Lefschetz type theorems (see Prop. (1.8)). This point of view
offers also a new interpretation of the Alexander polynomial at infinity Pm of V, see Cor.
(1.10).

Next we restrict to the case of isolated singularities (8 = 0) , but without the addi-

tional restriction that V is a Q—manifold which is used throughout in [L3]. In this more
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general setting, we prove stronger versions of the main results in [L3] related to the
Alexander polynomial AV .

Our approach is based on using explicit meromorphic differential forms in studying
the topology of a hypersurface V C P" and this paper is a natural continuation of our
results in [D2].

To prove the computational power of this approach, we end with several explicit
examples (nodal hypersurfaces and Cayley—Bacharach type hypersurfaces).

We like to thank Professor A. Libgober for drawing our attention on relations be-
tween his work and our preprint [D2] and to Professor D. Barlet for explaining to us a
stimulating related result (see [B], Appendice 2) during a pleasant visit to Nancy.

This work was done during a stay at the Max—Planck-Institut fir Mathematik in
Bonn and we take this opportunity to thank once more this Institute and his Director,
Professor F. Hirzebruch for remarkable hospitality.



§ 1. Definition of the Alexander Polynomials

First we fix some notations. Let V:{=0 be our hypersurface in P® and assume that

§=dimV < n-1,i.e. V isreduced. Let F:f-1 =0 be the associated Milnor fiber

sing
which is a smooth hypersurface in €+l Let h:F—F , h(x) = A-x for
A = exp(27i/N) be the monodromy operator, where N = deg(f) = deg(V) .

Let X={x¢€ Cn+1; f(x) = 0} and note that the fibration
(1.1) F—thx L, ¢

is essentially the Milnor fibration of f [M1], having as monodromy operator exactly h .

q-’11+1

Let S be a sphere of sufficiently large radius centered at the origin of and note

that the inclusion S\K —— ¢*+1

\X is a homotopy equivalence, where K=XnNS§S is
the associated link.

Next we give a general definition for the Alexander polynomials, compare with [LV]

(1.2) Definition

Let M be a connected, locally contractible topological space having the same homo-
topy type as a CW—complex of dimension m and let ¢: (M) —— Z be an epimor-
phism. Let 8 —— M be the covering space associated to the normal subgroup ker(y)

and let T: M —— M be a generator for the group of covering transformations.

Then we define the Alexander polynomials
*
AK(M,p)(t) = det(t - 1d— T |HE(SH))

for k = 1,...,m . Here and in the sequel cohomology is considered with C—coefficients and



by convention det(0 ——0)=1.
It is assumed that the vector spaces Hk(ﬁ) have finite dimension and then the

above definition makes sense and moreover Ak(M,<p) €Zft] forall k.

(1.3) Lemma
Let (Ml,gol) and (M2,ga2) be two pairs of objects as above. Let j: M1 —_ M2
be a map which is a p—equivalence and such that @, o arl( j)= ¢ - Then
k k -
65(My,¢;) = 8(My,p,) for any k <p and AP(M,,p,) divides AP(M,p,).

Proof
We recall first that j is said to be a p—equivalence if rk( j) are isomorphisms for

k<p and xp(j) is an epimorphism, see [Sp], p. 404. The map j has a lifting

7: Ml —_ ﬁ2 (use its second property) and one has T2 o]J=T0 Tl . Moreover, by
the fibration homotopy exact sequence it follows that ] is again a p—equivalence. Next by
Whitehead Theorem [Sp], p. 399 it follows that Hk(']') are isomorphisms for k < p and

is a monomorphism for k = p, which clearly implies the result.

(1.4) Remark
One can define another (infinite) series of Alexander polynomials for (M,p) by
setting

AK(M,p)(t) = det(t Id — 7, (T) ® INENCIET)

forall k21.

If M is g—connected for some q 2 1, it follows by Hurewicz Theorem [Sp], p. 398 that

A (M,p) = 4T (M)



i.e. the first (possibly) nontrivial polynomials in the two series considered coincide.
To define the Alexander polynomials of the hypersurface V , we take in the above
definition My, = €n+1\X and

oy = m(D) : 7 (My) — x(C)=1 .

The corresponding covering MV —— My, can then be described explicitly as follows.
Let exp: € —— C* be the standard universal covering of C* . Then MV — M, is
the pull-back of the covering ¢ —— C* via the map f. It follows that ﬁv ~Fx(
and the action of the covering transformation T on IVIV corresponds to the action of the
monodromy operator h on F . Hence one can restate Definition (1.2) in this case as

follows.

(1.5) Definition
The Alexander polynomials of a hypersurface V C P" with s = dim Vsing are de-

fined by the next formulas
k —2+k
Ay(t) = A" ST (M0 =
* _
= det(t1d—h" |E S 2FK(R))

for k=1,.,842.

The shift k —— n—s—2+k is due to the fact that F being (n—8—2)—connected
[KM], A‘l', is the first polynomial which may be different from 1. Moreover F isa
CW—complex of dimension n [M2] and hence H(F) =0 forall m > n and k = 842

is thus the last interesting value.
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These (s+2) Alexander polynomials are not completely independent.
(1.6) Proposition

et N |

k t -1
| | Ay(Y) = | =
k=1,842 v

where x(F) is the Euler characteristic of F. When V has only isolated singularities

al,...,ap one has

x(F) =1+ (D [(N-)"TE =N ¥ (V)]
i=1,p

where p(V,a;) denotes the Milnor number.

Proof

This is just a restatement of Prop. (3.13) and Remark (3.14) in [D1]. See also [O1].
In general x(F) is a much easier to compute invariant and hence we are left with the

problem of computing s+1 Alexander polynomials.

(1.7) Example
(i) V smooth (s =-1):
The using (1.6) above we get

aLe) = (N0 N0t



i

(ii) An example with nonisolated singularities: Let V : x%z + y° + xyt = 0 be the
cubic surface in P3 considered in (4.3) [D1]. Then it follows from the computations done
there that

AAt) =1, A2(t) =% + t+1 and AJ(1) =1 .

In fact Theorem A stated in the Introduction to [D1] offers a purely algebraic way to
compute all the Alexander polynomials A{‘, , but this method is quite difficult to work out

in practice, as the above example already shows.

Now we intend to relate our definition (1.5) to the definition given by Libgober in
[L3].Let H: £ =0 a hyperplane in P® andlet B be the corresponding affine
hyperplane in ¢+l given by the equation € =1 (f is well—defined up to translation !).

The obvious identification P™\H = gives an identification of Ny = P\(H U V)
to the hyperplane section f n MV . Hence we get an inclusion

jy:Ny=HnoM,—M,.

(1.8) Lemma

For a generic hyperplane H , the map jV is an n—equivalence.

Proof

Use the Zariski Theorem of Lefschetz type in [HL] or the Affine Lefschetz Theorem
in [H] (Thm. 2 plus the following comments).

It follows from (1.3) that the Alexander polynomials

A¥(Ny, 7 (f0 jy/)) and A¥(My,0y)
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coincide for k < n and according to the remarks above this covers all the interesting cases.
From now on the first Alexander polynomial Ay, will be denoted simply by Ay, and
using Remark (1.4) it follows that our definition of Ay, coincide with Libgober definition

( Ay, is in his notation simply P ).

We have the next result similar to (1.8) (same proof).

(1.9) Proposition

For a generic hyperplane H in ¢t

passing through the origin, the inclusion

jp: FNH——F isan (n—1)—equivalence.

(1.10) Corollary (Lefschetz Theorem for Alexander polynomials)
If H is a generic hyperplane in Pt , then A{‘mH = A\l; for all k <s and the poly--
nomial a5t divides the polynomial A5t E .

Note that in the case s = 0 the polynomial AVnH can be identified to the so called
Alexander polynomial at infinity considered in [L3] (where is denoted by P ) and hence
(1.10) gives a proof of Theorem 2, (2) in [L3]. Indeed, if T(H) is a small tubular neigh-
bourhood of H in P" one can identify its border #T(H) with the sphere Sy in C"
centered at the origin and with a large enough radius R . And the space JT(H)\V has
the same homotopy type as MVﬂH , where in this case V N H is smooth. This remark
combined with (1.7i) gives the explicit formulas for P which appear in [L2] (8.4) and
[L3], bottom of p. 50. Using inductively (1.10) one gets the next

(1.11) Corollary

With the above notations

Ay, =A

\'4 VnHln...an



where H, are generic hyperplanes in P .
Note that in this case V n H/on..n Hs has only isolated singularities and hence the

computation of the first Alexander polynomial AV can be reduced to the case s =0.

(1.12) Example
Consider the cubic surface V from (1.7.ii). A general plane section VN H is a no-

dal cubicin H P? and hence we get again in this way

Ay(t) = Aypg(H) = 1

since all the nodal curves in P2 have trivial Alexander polynomials by Deligne—Fulton
result [De], [F].
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§2. L Al r polynomi heirr ion

Let Y:g =0 bean isolated hypersurface singularity at the origin of C", let Fy
denote the corresponding Milnor fiber and hY : FY FY the monodromy operator
[M1]. We assume throughout that n 2 2. Let AY,O be the characteristic polynomial
det(t Id — h:, | Hn_l(FY)) which may (in an obvious way) be regarded as an Alexander
polynomial as defined in (1.2).

However we will be more interested in a divisor of AY,O , namely the reduced Ale-

xander polynomial of the singularity (Y,0) defined as follows
(2.1) By o(t) = 1?' (t=2)2A)

*  n—
Here the product is over all the eigenvalues A of hy| A" 1(FY) -and the multiplicities
a(A) are defined as

(2.2) a(A) = dim ker(hy — A4 |[H*TN(F)) .

Note that indeeg KY,O is a factor of AY,O and moreover one has equality KY,O = AY,O
if and only if hY is diagonalizable. We give next a more geometric description of these

multiplicities a(A) .

(2.3) Lemma
Let B0 be a small open ball centered at the origin of €* . Then
a(1) = dim H"(B,\Y) .
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Proof
Let §)= 4 B'O be the corresponding small sphere and Ky =85, NY the corres-
ponding link. The Wang sequence associated to the Milnor fibration [M1] reads as follows

h~Id
-1 _ \a _
0 — B H(5\Ky) — B*}(Fy) L — B} (Fy) — BY(S,\Ky) — 0 .

Since Sy)\Ky, is homotopy equivalent to BO\Y [M1] this ends the proof.
To interpret the multiplicity a(A) for A # 1 one may proceed as follows. Write
A =exp [ 21?1—b] for some integer b € [1,d—1] . Let G be the multiplicative group

*
{a€C; ad = 1} and note that the dual group of characters
*
G’ = {y: G—— C ; x homomorphism}
may be identified to Z/dZ via the correspondence

I/dL 3 c—— x € G’ defined by x.(a)= a®.
c C

d

Let ¥: g+t =0 in ¢+l be the d—suspension of the singularity (Y,0) . Then

(Y,0) is again an isolated singularity.

d:11+1

Let BO denote a small ball centered at the origin in and note that G acts

on the set BO\? by the formula a - (x,t) = (x,at) . Then there is an induced action of
G on Hn+1(§0\?) and hence a direct sum decomposition

(2.4) B"tB\Y) = ? B H(H \¥)

For any G—module E , we define the eigenspace EX corresponding to the character
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x €G’ by
EX = {e EE; a-e = y(a)e forall a €G}) .
(2.5) Lemma
i X
a(exp[ [ 22 ]]) = dim BOFI(B\Y)™
Proof

According to the Thom—Sebastiani formula [TS], the cohomology Hn(F?) of the
Milnor fiber for ¥ can be identified to the tensor product Hn—l(FY) o Hor ) » Where
Fy: 1910 s regarded as the Milnor fiber of a 0—dimensional singularity. The corres-
ponding monodromy operator h; acting on ﬁo(Fd) is diagonalizable and has as charac-
teristic polynomial the polynomial

d_y

-1 -

-

*
Moreover the monodromy operator h ¢ corresponds to the tensor product TY ®T d

[TS], while the action of the generator A, = exp [ 2%"—] of G on HY(F ?) corresponds

to 1®Td.

Recalling the Wang sequence from the proof of (2.3) (but applied this time to the singula-

X4—
rity (¥,0) ), we get that Hn+1(ﬁo\?) d-b 4 spanned by elements of the form v, ® w,

where {v;} is a basis for ker(hy —A1d) and w is the unique eigenvector in HO(F)

corresponding to the eigenvalue Acll_b .
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Since all of our representations are real, it follows that

dim H“+1(ﬁ0\?)xb = dim H““(EU\?)xd‘b

since Eb = X4—p and this clearly ends of the proof. The next result is a stronger version
of Thm. 2 (1) in [L3].

(2.6) Theorem
Let VCP" bea hypersurface which is singular exactly at the points a.l,...,ap .
Then the Alexander polynomial AV of V divides the product [ ] KV a of all the

i=l,p 4

reduced local Alexander polynomials.

Proof

We know already by (1.10) and (1.7.i) that any root A of Ay, is an element in the
group Gy = {a € C*; N = 1} . Let A(}) be the multiplicity of A asarootin Ay, .
There are again two cases to discuss

Casel (A=1)
Let U =P™\V and note that U is just the quotient F/Gy , where Gy actson F
via the monodromy transformation h .

It follows easily that
. *
A1) = dim B¥LE)FIXE ) = gim 5 Y(U) = EY(V) |

%
where Hg(V) = coker(H*(P") —L— H™(V)) j: V———P" may be called the primi-
tive n—cohomology of V.
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Next consider the basic exact sequence

(2.7) ) - o BY(B,\V) — H(V) — 0

where B, isa small ball around the point a in P®,S = Vsing = {al,...,ap} and @ is
induced by the obvious inclusions, see for details [D2]. By (2.3) it follows that the multi-
plicity of A =1 asarootin &y, isexactly dim H'(B,\V) and (2.7) implies that the

sum of these multiplicities is greater or equal to A(1) .

Case2 (A#1)

Assume that A = exp [zﬁlﬁ] and let ¥ be the hypersurface defined by
T(xt) = f(x) + N — 0 in P! Itis clear that x: ¥ —— P® x(x,t) = x is the
unique covering of P" ramified along V and of order N (with normal total space).

Let U= IPn'H\V and note that the group GN acts on all the cohomology groups
g (%, gV, H‘(ﬁa\V) which appear in the exact sequence (2.7) corresponding to ¥ .

It follows that for each character y € GI,\T we get an exact sequence

(2.8) Bty — e B\ — B Y —0

Using again a result of Thom—Sebastiani type for T(x,t) (if necessary have a look in
[D1], Section 1) it follows that

AQA) = dim B8P = dim HBH(V)xb .

Using Lemma (2.5), the result follows.
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(2.9) Remark
Libgober in [L3] put the restriction on V of being a Q—manifold (equivalently 1 is

not a root of the polynomial T_g KV a ) since he works there essentially with coverings of
a€ !

P" along V (of various orders) and in this way one cannot keep track of the multiplicities
A(1) and a(1) for the various (V,a).
The next result shows that in general 4y, is just a small factor of g KV,a and

can be regarded as a generalization of the M. Oka result in [02].

(2.10) Proposition
Let V CP" be a nodal hypersurface (i.e. V has only isolated singularities of type
A, ) with deg V=N . Then

i) Ay(t) = 1 if nN is odd;

41, def( &)
(ii) Ay(t) = [t+ (1) "] if nN is even, where def( o’ ) is the de-

fect of the linear system ¢/, defined as follows.
Let S, denote the vector space of homogeneous polynomials of degree k in
Clxg,-x,] and let

¢ ={h €Sy |V, =0} for D=nN/2-n-1.

sing
Then def( &) = # S—codim o , where the codimension is taken in Sp, . (It is clear
that the number def( ¢’ ) measures the degree of the independancy of the singular points
of V with respect to polynomials in Sp ).

Proof
This is exactly a restatement of our result (3.6) in [D2] (to which we refer for the

details), in view of the next remark.
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In the case n odd and N even, the only possible root for Av is —1 by our Theorem

(2.6) above, since we have 4y, .(t) =t+1 forall a€V in this case.

sing
We also remark that the main idea in the proof of (3.6) in [D2] is used also with more

details in the proof of the result in the next section.
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§ 3. Cayley—Bacharach Hypersurfaces

The result in this section was suggested by (and is a strong generalization of) the
Corollary in [L3], p. 51.

First we define the class of hypersurfaces we are interested in here.

Let £ € C[xo,...,xn] be a homogeneous polynomial of degree d, 21 fori=1,.,n
and let N be a common multiple of the degrees d, such that:

(1) §/ = {x € P, f,(x)=..=1 (x) =0} consists of exactly d..d points;
(i) e =N-d'>1 forall i=1,.;n
e (]
iii the hypersurface V = V(f,,...f ;N) definedby F=f 2+ ..+{%=0 in
(iii) ype n 1 n
P® has only isolated singularities (clearly S = Vying ? Y

We say that the hypersurface V defined above is of Cayley—Bacharach type.

d. d.
It is easy to see that such hypersurfaces exist (take for instance f= xol + x il and note

that v n {XO = 0} is smooth!)
For any point a € S’ , the germ (V,a) is a hypersurface singularity of Brieskorn—Pham
type given in local coordinates by

€1 n
(3.1) (Via):g=u;y +...+u  =0.

Our interest in this class of hypersurfaces comes from the next result.

(3.2) Proposition
Any hypersurface V of Cayley—Bacharach type has a nontrivial Alexander polyno-
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mial AV.

Proof
There i8 a unique pair of positive integers (k,8) such that k = sN — dy~...—dj
and k < N . Again there are two cases to consider.

Casel (k=0)
Then in each cohomology group H"(B a\V) for a €S ’ one has a nonzero element

given in the local coordinates (u,,...,u ) used in (3.1) by the meromorphic form

see [D1] (3.6).
To show the map @ in (2.7) is not surjective (which would imply that 1 is a root for

Ay ), it is enough to show that the map

HYU) — © BB, \V)— ® H'B.\V)— © (C<uw >
© a€s (Ba\V) a€s’ a a€s’ a

is not surjective (the second and the third map being the obvious projections).

It is known that € <u,> = Fﬁ‘““ﬂ“

(B,\V) where Fp denotes the Hodge filtration
on Hn(Ba\V) (see [D1], [D2], [D3]) and hence it remains to show that the induced

mapping

Y. PR EHIEN ) — ©  C<w >
H aesl a

is not surjective.
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But using Thm. (2.2) in [D1], any element in Fﬁ‘“"‘lnn(U) can be written in the form

h/F® where R= Y (<1)'xdxyA..Adx A..Adx, and h is a homogeneous poly-
i=0,n
nomial in S, . . It follows that im(¥) is contained in im(E) where E is the gvalua-

tion map

/
B Sy pg — 8, €<u> = S, E() = (b(a)), g -

Since sN=d; +..+d_,it follows from the generalized version of Cayley—Bacharach
Theorem (see [GH], p. 671) that E is not surjective.

Case 2 (k#0)
Then we consider again the hypersurface ¥ : F(x) + tN =0 in P**L . Note that for

any point a € S’ , the germ (V,a) is given in suitable local coordinates by an equation

(3.3) (Va): glup) = uil +. 4 u:n +tN

=0 .
Consider the element 2';8_ in Hn'l'l(ﬁa\V) given by

tk_ldul A ... Adu Adt
~ n
Wy = ~B

g

Using a similar argument as above, one can again apply the generalized Cayley—Bacharach

Theorem and deduce that the Alexander polynomial AV is divisible by the product

[mem (5% ]) [1-ew [25=0]]
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Hence in any case Ay, # 1, which proves our statement.

(3.4) Remark

Let V CP" be a hypersurface with isolated singularities and let = : V——V bea
resolution of singularities. Since H"(V) has a pure Hodge structure of weight n[S] , it
follows that H"(x) is injective (in general ker H"(x) = Wn__IHn(V) as explained in
[D1]).

Hence one gets in this way
WP YE(V)) > bPYHY(V)) forall p+q=n .

In the above proof we have shown that for a hypersurface V of Cayley—Bacharach type
one has either W2 *F181(v) $0 (case k=0) or B**+25L(¥) £ 0 (case k#0).

In this way one may get nonvanishing (or lower bounds) results for the Hodge numbers

bP9(V) or hPYY) similar to Theorem 3 in [L3].
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