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MIXED HODGE STRUCTURES OF CONFIGURATION SPACES

E. GETZLER

Let X be a smooth projective variety over C. The configuration space F(X, ) of X iy
the complement of the diagonals in T(X,n) = X™

FX,n) ={(z1,...,2n) € X" | 2y # 2 for i #j}.

The symmetric group Sn acts freely on F(X,n); in this paper, we study the induced
action of the symmetric group Sy, on H?9(F(X,n}). As an application of our results, we
calculate the Sy-equivariant Hodge polynomial of the Fulton-MacPherson compactification
of F(X,n).

In a sequel to this paper, we extend our results to the relative setting: this is techni-
cally more difficult, requiring Saito’s theory of mixed Hodge modules. As an application
of the relative theory, we will calculate the Sp-equivariant Hodge polynomials of the pro-
jective varicties ﬁ;'n. (We have calculated the Sy-equivariant Hodge polynomials of the
projective varieties Mo, in [6).)

Let X be a complex quasi-projective variety. The Serre polynomial e(X) of X is the
polynomial in variables u and v, satisfying (and indeed characterized by) the following
axioms:

i) if X is projective and smooth, e(X) is the Hodge polynomiall

8.9
e(X) = Z (—u)P{—v)Tdim H? (X, C);
p,q=0
i1} if Z is a closed subvariety of X, then e(X) =e(X\ Z) +e(Z).

A formula for the Serre polynomial follows from mixed Hodge theory (Deligne [4]):

o
(0.1) e(X)= ) uPvix(HIX,C)P9),
p.q=0
where if (V,F, W) is a mixed Hodge structure over C,

VP4 =FP grg‘;q vNFa gr"x_q V,

and x{V) denotes the Euler characteristic of the finite-dimensional graded vector space V.
This formula was introduced by Danilov and Khovanskii, although they do not give it a
name: carlier, Serre had observed that the Weil conjectures, together with resolution of
singularities, implied the existence of such a polynomial.

The Serre polynomial represents the class of H (X, C} in the Grothendieck group of
mixed Hodge structures over C. It is a “character” on varicties, since it satisfies the
Kiinneth forinula:

e(XxY)=e(X)e(Y).
We borrow from Manin [15] the notation L for the Serre polynomial uv of C(—~1) =

H2(CP', C).

'Here, we have modified the usnal conventions, replacing 1t and v by ~u and —v. This will lead to
cleaner formulas later.
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Denote by S™X the nth symmetric power of the variety X, that is, the quotient of X™ by
the symmetric group S™. It follows from the formula of Macdonald {14] that the generating
function g (X) for the Serre polynomials €(S™X) has the formula

o0
X) = Z t"e(S™X) = H(l — tuPy9)XHEXOP D)
P.q
(This is the Hodge analogue of the zeta function of a variety over a finite field.)
If a finite group G acts on X, define the equivariant Serre polynomial by the formula

o0

eg(X)= ) upqu(—l (gIHL(X,C)P9).

p.q=0
Let F(C,n) be the configuration space of n ordered points in C. By a formula of Lehrer
and Solomon [12] (see (2.5)), we sce that if ¢ € Sy, has ny cycles of length j, then

ch, o —ith)... (o5 — (my — Nit),

where o = Zdl) (j/d)L9. (For another proof of this formula, see [6].) In this paper, we
prove the following generalization of this formula.

Theorem. Let X be a quasi-projective variety, and let o(X) = Zdlj n(i/d)e(X;ud, vdy,
If 0 € Sy, is a permutation with 0y cycles of length j, then

«(F(X,n)) =H (X) (o5(X) —3). .. ((X) = (nj — 1)j}.

Given a Sy-module V, consider the local system ¥V = F(X,n) xg, V over F{(X,n}/S,.
This local system has a Serre polynomial
o0
e(X, V)= )  wPvix(H(X,V)P9),
p,q=0

related to the S,-equivariant Serre polynomial of F(X,n) by the formula

e(X,V) Z Tr(olV) es(F(X,n)).
T =
A special case of this is the trivial representation 1, for which e(F{X,n), 1} = e(F(X,n)/S,}:
we will prove that

Zx e(F(X,n)/Sy) = o¢(X) ZH(L:M)X(H;(X_QD.::].

— tuPva
= g2(X) b.a 1 —tupPv

The analogue of this formula for X = spec(Z) is the Dirichlet series
ts) _ w p(n)?
2s) ;

where p(n)? is the arithmetic function which is 1 if n is square-free and 0 otherwise: the
analogy with configuration spaces is clear.

Although the above formulas involve de Rham cohomology, they may be proved with
no greater difficulty for motivic cohomology, using the recent results of Gillet and Soulé
(8]. Let Mot be the category of (pure effective rational) Chow motives, with Grothendieck

group Ko(Mot). Given a quasi-projective varicty X over C, let e(X) € Kg{Mot) be the
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virtual motive associated to X by Gillet and Soulé. Then Kg(Mot) is a A-ring, with o-
operations satisfying

on(e(X)) =e(X"/Sn),
and A-operations satisfying

An(e(X)) = e(F(X,n), ),

where € is the sign representation of §y,. For each irreducible representation V; of S, we
will construct a natural transformation @) of the category of A-rings such that

Ox(e(X)) = e(F(X,n}, Vi),

where V, is the irreducible S,-module associated to the partition A. Here is a table of @,
for small A:

@, 01
@, 0~ 0]
(1)12 U]Z

(D3 03— 02 — 02

D21 [ 021 — 02— 02 + 0y

(OFE 03

Dy 04 — 03— 0721 + 02

(OFY 031 — 03 — 2021 — 033 + 207 + 042 — 0
D)2 || 0,2 — 03 — 021+ 02 + 2072

D;2 || 0292 ~ 021 — O3 + 02+ 02 — O}

(I)]a T4

(Here, oy denotes the operation on A-rings associated to the Schur polynomial sy.) For
the generating function of the operations @, see (2.6).

The organization of this paper is as follows. In Section 1, we recall somne of the theory of
symmetric functions in an infinite number of variables, and its relationship to the theory
of A-rings. In Section 2, we introduce the completion of a A-ring: this is used in the proof
of our main result, where we work with generating (symmetric) functions, which lie in
such a completion. We also introduce the ®-operations, which enter into the statement of
our formula for e(F(X,n), V,).

In Section 3, we introduce a class of categories, Karoubian rrings (sic), which have
many of the properties of the category of modules over a ring. In particular, we prove
the Peter-Weyl Theorem: any representation of a finite group in a Karoubian rring over a
field of characteristic zero is completely reducible. Similar results have been obtained by
del Bafio Rollin [1]. In Section 4, we apply this result to construct a A-ring structure on
the Grothendieck group of a Karoubian rring {over a field of characteristic zero). Scction
5 contains our main result, Theorem (5.6), which is a theorem about Serre functors; this
is the name we give to a sequence {X — E™(X) | n > 0} of functors from the category of
quasi-projective varieties to a Karoubian rring R, satisfying appropriate analogues of the
Meyer-Vietoris and the Kiinneth theorems. Examples of Serrc functors are the de Rham
cohomology and the cohomology of the weight complex of Gillet and Soulé [8].

In Section 6, we give a simple application of these results, to the calculation of the
Sn-equivariant Hodge polynomial of the Fulton-Macpherson compactification of the con-
figuration space F(X,n}.
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1. SYMMETRIC FUNCTIONS AND A-RINGS

(1.1}. Symmetric functions. In this section, we recall some results on symmetric func-
tions and representations of S, which we need later. For the proofs of these results, we
refer to Macdonald [13].

The ring of symmetric functions is the inverse limit

= @Z[X], . ,Xk]sk.

It is is a polynomial ring in the complete symmetric functions

h, = E Xig oo Xip -

'-l] SSI“

The power sums (also known as Newton polynomials)
=y
i

form a set of generators of the polynomial ring Ag = A ® Q. This is shown by means of
the clementary formula

d
(12) Py = ta ]OgHt,

where

H, = it“hn = H(l —tx;)”! and P, = Zt“pn = Z (T—tx)
n=0 i i

Written out explicitly, we obtain Newton’s formula relating the two sets of generators:

nhy =pn+hiPnor +--- +hogpr

We may also invert (1.2}, obtaining the formula

(1.3) H x)(i tnp“)
. =ec .
t I n
n=l1
A partition A is a decreasing sequence (A} > --- > Ap) of positive integers; we write

AFn, where n = Ay +- - + A, and denote the length of A by €(A). Identifying A with the
ring of characters of the Lie algebra gl = liLng[k, we see that partitions correspond to
dominant weights, and thus A has a basis of consisting of the characters of the irreducible
representations of gl,. These characters, given by the Weyl character formula

Aj+k—j
det(x;’ J1<ij<k

k=oo det(x; ™ )1<i <k

Sy =

b

are known as the Schur functions. In terms of the polynomial gencrators h,, they arc
given by the Jacobi-Trudy formula s = det(h).i—i'Fi)]Si'jSe[A].

There is a non-degenerate integral bilinear form on A, denoted (f,g), for which the
Schur functions s form an orthonormal basis. (This is sometimes called the Hall inner

product.) The adjoint of multiplication by f € A with respect to this inner product is
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denoted D{f). Written in terms of the power sums py, the operator D(f) has the formula
D{pn) = n0/0pn, while the inner product (f, g) has the formula

(f,g9) =D(f)g

prn=0,n2>1 ’

(1.4). Pre-A-rings. A pre-A-ring is a commutative ring R, together with a morphism of
commutative rings oy : R — R[t] such that o(a) =1+ ta+ 0(t?). Expanding oy in a
power series

= it“an(a}
n=0

we obtain endomorphisms ¢, of R such that og{a) =1, oy{a) = a, and
n
onla+ b) = Z Un—k(a)Uk(b)-

There are also operations A{a) = (—1)*oy(—a), with generating function

o0

(1.5) Mla) =) t"An(a) =0 y(a)™".

n=0

The A-operations are polynomials in the o-operations with integral coefficients, and vice
versa. In this papcr, we take the g-operations to be more fundamental; nevertheless,
following customn, the structure they define is called a pre-A-ring.

Given a pre-A-ring R, there is a bilinear map A® R — R, which we denote f o a, defined
by the formula

(hn, ...hp Joa=o0n{a)...on (a).

The image of the power sum p;, under this map is the operation on R known as the Adams
operation {,,. We denote the opcration corresponding to the Schur function sy by oa.
Note that (1.3) implies the relation

oi(a) = exp(i tji;ﬂ)

n=1

The following formula (1.4.2 of [13]) is known as Cauchy’s formula:

(1.6) Hel...,xiy,...) :H(] —txiy; )~ ZSA[X ® saly —-exp(z M—l)

k
D] Abn k=1
From it, the following result is immediate.

Proposition (1.7). IfR and S are pre-A-rings, their tensor product R®S is a pre-A-ring,
with o-operations

~(a®b) ZU}\ } ® oa(b),
AFn

and Adams operations Yn(a ® b) =P, (a) @ Pa(b).

For example, 02(a ® b) = 02(a) @ 02(b) + A2(a) @ Az(b).
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(1.8). A-rings. The polynomial ring Z[x] is a pre-A-ring, with o-operations characterized
by the formula on(x!) = x™. Taking tensor powers of this pre-A-ring with itself, we sce
that the polynomial ring Z{x,,...,xy] is a pre-A-ring. The A-operations on this ring are
equivariant with respect to the permutation action of the symmetric group Sy on the
generators, hence the ring of symmetric functions Z[xy, ... ,xk]Sk is a pre-A-ring. Taking
the limit k — oo, we obtain a pre-A-ring structure on A.

Definition (1.9). A A-ring is pre-A-ring such that if f, g € A and x € R,
(1.10) fo{gox)={(fog)ox.

By definition, the pre-A-ring A is a A-ring; in particular, the operation f o g, called
plethysm, is associative.
The following result (sce Knutson, [10]} is the chief result in the theory of A-rings.

Theorem (1.11). A is the universal A-ring on o single generator hy.

This theorem makes it straighforward to verify identitics in A-rings: it suffices to verify
them in A. As an application, we have the following corollary.

Corollary (1.12). The tensor product of two A-rings is a A-ring.

Proof. We need only verify this for R = A. A torsion-frec pre-A-ring whose Adams opera-
tions are ring homomorphisms which satisfy Ym(Pn(a)) = bmn(a) is a A-ring. It is easy
to verify these conditions for A ® A, since Yn{a ® b) =¥, (a) ® Pnr(b). O

In the definition of a A-ring, it is usual to adjoin the axiom

on(xy) =) _orla) @ aaly).

AFn

However, this formula follows from our definition of a A-ring: by universality, it suffices to
check itfor R=A®A, x=h;®1 and y =1® h,y, for which it is evident.

2. COMPLETE A-RINGS
A filtered A-ring R is a A-ring with decreasing filtration
R=FRDOFRD...,

such that

i) Ny F*R = 0 (the filtration is discrete);

ii) FMR . F*R C F™*MR (the filtration is commpatible with the product);
ili) o (F*R) € F™R (the filtration is compatible with the A-ring structure).
The completion of a filtered A-ring is again a A-ring; define a complete A-ring to be a A-ring
equal to its completion. For example, the universal A-ring A is filtered by the subspaces
F'A of polynomials vanishing to order n—1, and its completion is the A-ring of symmetric
power series, whose underlying ring is the power series ring Z[h, hy, hs, ...}

The tensor product of two filtered A-rings is again a filtered A-ring, when furnished with

the filtration

n
FR®S) =) F"*R®FKS.
k=0

If R and § are filtered A-rings, denote by R®S the completion of R® S.
6



Let R be a Karoubian rring over a field of characteristic zero, and consider the com-
plete A-ring A®Kg(R)}, where Ko(R) has the discrete filtration. This A-ring has a natural
realization, as the Grothendieck group of the Karoubian rring

oo
IS, R1= [ [[Sn, R,

n=0
whose objects are the S-modules in R. In this rring, the sum and product are given by
the same formulas as in the rring [S,R] of bounded S-modules.

Without assuming the existence of infinite sums in X, plethysm does not extend to a

monoidal structure on [S,R]. However, X 0o Y is well-defined in [8§,R] under either of the
following two hypotheses:

i) X is bounded, or ii) Y(0) = 0.

The first of these situations allows us to construct a A-ring structure on the Grothendieck
group of [S,R], by the same method as for [S, R, while the second will be needed in the
proof of our main theorem. Introducing the notation ¥[S, R} for the subcategory of [S,R]
consisting of S-modules X such that X(n) =0 for n < k, we see that plethysm extends to
a symmetric monoidal structure on ][S,iR].

Denote the Grothendieck group of the full subcategory '[S, R} C [S, R] by kg(fR]. Since
K8(R) is a (non-unital) A-ring, we may define a bilinear operation

o : K§(Proj) ® K3(R) — Ks(R),

satisfying (1.10). This operation may be extended to a bilinear operation (which we denote
by the same symbol},

0: K3(R) ® K§(R) — Ks(R),

using the Peter-Weyl Theorem: to define x oy, we expand x in a series x = 3, Xa - Sa,

xoy =3 xp-0ox(y)
A

The intercst of this operation lies in the following lemma, which is a simple consequence

and define

of the definition of x o y.
Lemma (2.1). If X and Y are objects of [S,R] and 'IS, R] respectively, [XoY] = [X]o[Y].

If R is a complete A-ring, the operation
Exp(a ch :R— 1+FR

is an analogue of exponentiation, whose logarithm is given by a formula of Cadogan [2].

Proposition (2.2). On a complete filtered A-ring R, the operation Exp : R — 1+ F{R has
inverse

Log(1 + a) Z MT?) log(1 + Yn(a)).
n=1

Proof. Expanding Log(1 + a), we obtain
— 1
L ~| _ n./d.
og(T+a)==3 —3 wudbal- ZLogn(a)

n=| din
7



Let Xn be the character of the cyclic group Cp equalling e*™/™

The characteristic of the $,-module Ind?:“ Xn equals

on the generator of Cy.

-1

1 'C omik/non/(kn) n/d
— ) el = ZP[d »
k=0 dln

while the characteristic of the S,-module Indsc'r“ Xn®E€En, where €, is the sign representation
of §5, equals

Ly wa((-0+pe) ™ = CL S waypaye

dln din

It follows that (—1)"~! Log,, is the operation associated to the S,-module Inds(’:':1 Xn ® €n,
and hence defines a map from FyR to FR.

To prove that Log is the inverse of Exp, it suffices to check this for R = A and x = hy.
We must prove that

— p(n)
Exp( “n IOg(l+pn))=1+h1.

The logarithm of the expression on the left-hand side equals

exp(Z P (Z” og(1+ ) = 3 3 (@) ELEP) ot gy,

k=1 n=1 djn

and the formula follows. O

Example (2.3). If a € F'R is a line bundle in the complete A-ring R (that is, on(a) = a™

for all n > 0}, we see that
1

1—a’

Exp(a) =
In particular, this shows that Exp(t™) = (1 —t™)~', and that

Exp(t) 1 —t?
Exp(t?)  1-—t

1t follows that Log(1 —t) =t and that Log(1 +t) = t — t2.

Exp(t — t%) = =1+t

We now introduce the operations on A-rings which will arise in the calculation of the

Serre polynomials of the local systeins F(X,n} xg, Va. We start by considering the case
X=C.

Proposition (2.4).

Zs;\®e(F(€Cn V) = H(]—i—pk]‘?z“"‘“(k/d“' € ABZIL]
k=1

Proof. 1t is proved in Lehrer-Solomon [12] that

(2.5) Z Z Jcha(HHF(C, 1), C)) = [ (1 + x5pi) ¥ Tane wik/ax=,

n=01i=0 k=1

where H'(F(C,n),C) is the Sp-module associated to the de Rham cohomology of degree
i. By Poincaré duality, we see that

o0
Z Z —x)! chy (HE(F(C, 1), €)) = [ (1 + pi) & Zem vk,
n=0 {=0 k=1

8



But the mixed Hodge structure on the cohomology group H:‘:(F(C,n] ,C) is pure of weight
2i, and indeed H}(F(C,n),C) = H{(F(C, n),C)", proving the result. |

Motivated by this proposition, we define operations @, in a A-ring R, parametrized by
partitions A, by means of the generating function

[ o]
(2.6) O(x) = Z $2 ® Da(x) = H(] +py)t Zann/dbat) ¢ AgR
k=1

Theorem (2.7). We have the formula ®©(x) = Exp(Log(1 + p1)x). In particular, the
operations @), are defined on any A-ring.

Proof. Applying Log to the definition of ®(x), we obtain

Log({®(x)) = Z @ﬂ’n log(®(x))

n=1

I
M8

B =
:‘g
MB

Zu(k/d log(1 + pi)balx)
dlk

-y Mﬂwnd(x)log{1+pnde)

Il
I\’IS:
m;‘;—‘

— log(1 + pe)x,

by Moébius inversion. On applying Exp, we obtain the desired formula. O
Using this theorem, we can prove more explicit formulas for O, and @ qn.

Corollary (2.8).

Zt“@ )= 20t 01 (y) = Anlw)

Proof. We obtain § 00, t"®,(y) from ®(x) by replacing pn by t™. By Theorem (2.7), it
follows that

oy(x)

Z t" 0L (y) = Exp(Log(1 + t)x) = Exp((t — th)x) = T2 (x)

n=0

since Log(1 4+ t) = t — t? by Example (2.3). The proof of the second formula is similar,
except that we replace pn, by (—t)", and apply the formula Log(1 — t) = —t. (]

3. REPRESENTATIONS OF FINITE GROUPS IN KAROUBIAN RRINGS

Let (R,®, 1) be a symmetric monoidal category with coproducts, denoted X &Y. We
say that R is a rring (this is our abbreviation for the usual term ring category) if there
are natural isomorphisms

(XeY)I®Z=(XZ)8(Y®Z) and X®0=0

which describe the distributivity of the tensor product over the sum, satisfying the coher-
ence axioms of Laplaza [11]. If @ is the categorical product, we say that R is a Cartesian
rring.



The Grothendieck group Kp(—) is a functor from rrings to commutative rings. Given
an object X of a rring R, denote by [X] its isomorphisim class; then Ko{R) is generated as
an abelian group by the isomorphism classes of objects, with the relation

XI+[YI=XaY]

The product on Kg(R) is given by the formula [X] - [Y] = [X® Y]. (Here, we suppose that
the isomorphism classes of objects of R form a set; this hypothesis will always be fulfilled
in this paper.)

If R and § are two rrings, R ® § is a rring whose objects are formal sums of tensor
products X® Y, where X and Y are objects of R and 8 respectively; note that Ko(R@ 8) =
Ko(R) & Ko(8).

Recall that an additive category over a commutative ring R is a category R such that
the set of morphisims R(X,Y) is a R-module for all objects X and Y, the composition maps
RY,Z)®x R(X,Y) = R(X,Z) are R-linear, and every finite set of objects has a direct
sum. A Karoubian category over a ring R is an additive category over R such that
every idempotent has an image, denoted Im(p). (Karoubian categories are also sometimes
known as pseudo-abelian categories.)

Definition (3.1). A Karoubian rring R is a rring which is a Karoubian category, and
whose sum X @ Y is the direct sum.

An example of a Karoubian rring is the category Proj of finitely generated projective
R-modules.

If R is a Karoubian rring and G is a group, let [G,R] be the Karoubian rring of G-
modules in R, that is, functors from G to R. If X and Y are objects of [G,R], the R-
module of morphisms R(X, Y) carries a natural R[G]-module structure, given by the formula
f9=g71.f.g.

There is a natural bifunctor V& X, the external tensor product, from [G, Proj] x [G, R]
to [G, R], characterized by the identity of R[G]-modules

RIVRX,Y)=VRR(XY).
For the finitely generated free module R{G]™, we have
RIGI"®X = X"
geG
For general V, we realize V as the image of an idempotent p in a free module R{G]™, and
define V ® X to be the image of the corresponding idempotent in R[G]™ B X. Using the
external tensor product, we may embed (G, Proj] into [G, R] by the functor V.— VR 1.

If G is a group whose order is invertible in R, the functor (=)} of G-invariants from
[G,R] to R is defined by taking the image of the idempotent automorphism of R

]
P=@ZQ-

geG
From now on, we restrict attention to groups satisfying this condition.
If H is a subgroup of G, the induction functor Indﬁ 1 [H,R] - [G,R] is defined by the
formula
Ind§ X = (RG] ® X)H.

Here, we usc the G x H-module structure of R[G], where G acts on the left and H acts on

the right.
i0



The following is a generalization of the Peter-Weyl theorem to Karoubian categories.

Theorem (3.2) (Peter-Weyl). If R is ¢ Karoubian rring over a commutative ring R and
G is a group whose order is invertible in R, the composition

[G, Proj] ® R — [G, Projl ® [G, R] = [G, R]
is an equivalence of categories.

Proof. Since the order of G is invertible in R, the group algebra R[G] is semi-simple, and
may be written

RIG) = @End(\/a) = @v ® Vi,

where we sum over the isomorphlsm classes of 1rreduc1ble representations {V,} of G. This
permits us to rewrite the induction functor as

Indg X = (RIGI@ X)" =P Va® (Vi X)™.
a

Taking H = G, and recalling that IndG is equivalent to the identity functor, we obtain the
desired equivalence between [G, Proj] ® R and [G, R]. O

4. S-MODULES IN KAROUBIAN RRINGS

Let S be the category of permutations [ [o>,Sn and let R be a rring. A bounded
S-module in X is an object X of

oo

S, R =P 1Sn, R,

n=0
in other words, a sequence {X(n) | n > 0} of S-modules in R such that X(n) = 0 for
n > 0. Let T, denote the S-module such that T,(n) is the trivial S;;-module, while
Tn(k) =0 for k #n.
The category [S,R] is itself a rring:
1) the sum of two S-modules is (X & Y)(n) = X(n) & Y(n);
i} the product of two S-modules is defined using induction:

(X@Y)n @ IndS,xSkl®H;
j+k=n
iii) the unit of the product is Tg.

Denote the Grothendieck group of the rring [S,R] by K§(R).

There is another monoidal structure X oY on [S, R}, called plethysm. If A is a partition
of n, let §) =8y, x -+ x 8y,,, C Sn, and let N(§,) be the normalizer of § in §,. The
quotient W(S,) = N(8,)/S, may be identified with

{0 € Seiay [ Ay = At for 1 <1< UAY} C Sy
Given bounded S-modules X and Y, we obtain an action of N(§,) on the tensor product
Me @ Y.
1<i<e(A)

Plethysm is the monoidal structure (not symmetric) defined by the formula

Sk
(X o Y)( @@Indi’(‘s)( ® & YA)eyo)® ) ,

AFn k=0 1<i<E(A)

and with unit 1;.
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Lemma (4.1). Let R be a Karoubian rring over a field of characteristic zero. The Gro-
thendieck group Kg(iR) is a pre-A-tTing, with ¢-operations characterized by the formula

an((X]) = [Tln o x];

where X is a bounded S-module.

Proof. We must prove that for bounded S-modules X and Y,

(4.2) on (X + Y1) = )~ 0i((X]) - ons (Y1)
i=0 _
Observe that T, o (X @ Y) cquals

stk
DD O B 1t ® 10 ® e y0t)

i=0 AFi pFn—ijk=C 1<i<E(A) 1<i<e(p)

Since

S
IndN(S,\)xN(S )V®W— IndS S (Ind !

Nisy V@ Indligt W),

N{§,)

it follows that
T

Tho(X@Y)=EPMioX)®(TaoiolY),
i=0
proving (4.2) for elements of K3(R) of the form [X] and [Y]. The definition of the sigma
operations on virtual elements {Xp] — [X;] is now forced by (1.5):

o (1Xo] — [X1]) ); > (=D*e[Xol)oy, ([G]) . 03, ([G]). O

jex>0
1+J|+ “Fie=n

Lemma (4.3). There is an isomorphism of A-rings Kg(Proj} =A

Proof. The pre-A-ring KS(PrOJ) is the sum of abelian groups KS(ZR) Dro R(Sy), where
R(Syn) = Kg([Sy, Proj) is the abelian group underlying the virtual representation ring of S,,.
The identification of K‘g(Proj) with A is via the Frobenius characteristic ch : R(§) — A,
which sends the irreducible representation Vy associated to the partition A to the Schur
function sp. The Frobenius characteristic is given by the explicit formula

chn(V ol Z O)Pa,

" oESn
where py is the monomial in the power sums obtained by taking one factor py for each
cycle of @ of length k. For the proof that ch(...) is a map of A-rings, see Knutson [10] or
Appendix A of Macdonald [13]. g

Using these lemmas and the Peter-Weyl Theorem, we will show that Kg(ﬂ%) is a A-ring
for any Karoubian rring over a field of characteristic zero. First, we prove some simnple
lemmas which are of interest in their own right.

Plethysin is distributive on the left with respect to sum.

Lemma (4.4). (X1 X)oY=(X0Y) @ (X;0Y)
Proof. Clear. 0
It is also distributive on the left with respect to product.

Lemma (4.5). (X1 @X3)0c¥Y=(X10Y)®(X20Y)
12



Proof. By Lemma (4.4), it suffices to check this formula when X;(j) = X5, Xa2(k) = Xz,
X1(1) =0,i#j and Xy(i) =0, i # k. We have

(X1 ®Xz) 0 Y)(n)

n Sq
- B madpy(ndn oo @ ynieyer)

q=0 Arn_ 1<i<E(A)
A)+g=j+k -

But we have

q n
. (Indsi+k XxieX)e &K Y ey )®q) =PPh

Abn 1<i<E(A) p=0 i=0
E(A)+q=j+k

Sq Sq
) (X1® X H(M)@H(O}@’) ® D (Xz® X YA ®B(0®q) :

e 1<i<(p) Abn—i 1<i<t(A)
() +p=j e(AJ+a—p=k

from which the lemma follows. O

Lemma (4.6). IfV is a bounded S-module in Proj and X is a bounded §-module in R,
ch(V) o =[VoX].

Proof. By Lemma (4.4), we may assume that V is an irreducible Sp-module V,. It remains
to show that ox([X]} = [V o X] for all partitions A.
By Lemma (4.5), we see that for any partition p with { = £(p), we have

(1, ®...0T0,)eX=(1,9X)®...® (N, 0X).
Taking the class in K§(R) of both sides, we scc that
(M ® ... ®T) 0 X] = 0, ([X])... 0y ([X]).

The irreducible representation V) is a linear combination of representations 1,, ® ... ®
N, with integral cocfficients, and by Lemma (4.3), the Schur function s, is a linear
combination of symmetric functions hy,, ® ... ® h,,, with the same coefficicnts; the proof
is completed by application of Lemma (4.4). O

Theorem (4.7). The Grothendieck group K3(R) of a Karoubian rring R over a field of
characteristic zero is a A-ring.

Proof. If f = ch(V) and g = ch(W), where V and W are bounded S-modules in Proj, and
x = [X], where X is a bounded S-module in R, it follows from Lemma (4.6) that

fo (g ox) = ch(\?o (Wo x)) = ch((VoW) o X) =c¢h(VoW)ox,

Since ch is a morphism of A-rings, we see that ch(VoW) = fog, and from which we obtain
the formula (1.10) characterizing A-rings in this case:

fo(gox)={(fog)ox.

It only remains to extend (1.10) to virtual elements g = ch{Wp) — ch(W,) and x =
[Xo] = [X;]. Both sides of (1.10) are polynomial functions of g € A and x € Kg(iR) and
hence must coincide, since they are equal on a cone with non-empty interior. O

It follows that the Grothendieck group Ko(R) is a A-ring, namely the sub-A-ring of K(S,[iR]
consisting of virtual objects such that X{(n) = 0, n > 0. The Peter-Weyl Theorem now

has the following consequence.
13



Theorem (4.8). If R is a Karoubian rring over « field of characteristic zero, there is an
isomorphism Kg(IR] = A Q@ Ko(R) of A-rings.

Proof. The Peter-Weyl Theorem gives isomorphisms of rings
A ® Ko(R) 8L K8(Proj) ® Ko(R) = K$(R).

The first of these arrows is an isomorphism of A-rings by Lemma (4.3). As rings, both
Kg{Proj] ® Kp(R) and Kg(iR] are generated by Ko(R) and [1,], n > 1, and ® respects the
o-operations of these elements, proving that it is a map of A-rings. O

5. THE MAIN RESULT
If R is a Karoubian rring, denote by R[N] the Karoubian ring of bounded sequences
(A% A1 A% ... |A" =0 for n > 0).
The sum on R[N] is defined by (A @ Y)™ = A™ @ Y", while the product is defined by
(A®B)*= P AleB.
i+j=n
Definition (5.1). A Kiinneth functor with values in the Karoubian rring R is a rring
functor E from the Cartesian rring Var of quasi-projective varicties and open embeddings

to R[N].

In other words, a functor E : Var — R[N] is a Kiinneth functor if there are natural
isomorphisms

ENXTIY)=EYX) @ EYY),
EMXxY)= @ EX) @ E(Y).
n=i+j

If E ={E™} is a Kiinneth functor, denote by e(X) the associated Euler characteristic

[= 9]

e(X) =) (—1)"EMX)]

n=0

in the Grothendieck group Ko(R).

Definition (5.2). A Serre functor with values in R is a Kiinneth functor E such that
for any closed sub-variety Z of X,

e(X) =e(X\Z)+e(Z).

If E is a Serre functor and X = X° ¢ X' € X? C ... is a filtered quasi-projective variety
such that X™ = @ for n > 0, we have

(5.3) e(grX) = Z e(gr™ X) = e(X).

n

Here are two examples of Serre functors:

1) The category of mixed Hodge structurcs over C is a rring, whose Grothendieck group
may be identified with the polynomial ring Z[u,v] by means of the Serre polynomial
(0.1). The functor E™{X} which takes a quasi-projective variety X to the mixed Hodge
structure (HZ{X, C), F, W) over C is a Serre functor. The associated characteristic e(X)

may be identified with the Scrre polynomial.
14



ii) Gillet and Soulé [8] have constructed a functor to the homotopy category of chain
complexes of (pure effective rational) Chow motives; let E™(X) be the nth cohomology
of this complex.

If R is a rring, let T : R — [S,R] be the rring functor with T(X,n) = X". (More
precisely, T(X, n) is defined by induction: T(X,0) =T, and T(X,n) = T(X,n—1)®X.) The
following result is a generalization of Macdonald’s formula [14] for the Poincaré polynomial
of the symmetric power S™"X = X"/S,,.

Proposition (5.4). If X is a quasi-projective variety,

e(T(X)) = Exp(py e(X)) € K§(R).
Here, e(T(X)) denotes the class n — e{T(X,n)) in the Grothendieck group k%(ﬂ%).
Proof. Since E is a rring-functor, E-T = T - E. By the Peter-Weyl Theorern,

E(T(X,n)) = TIE)(M) = @) Va® (Vi ® E(X)°™) 5.
AFn

Descending to the Grothendieck group, we see that

e(T(X,n)) = P sa ® oale(X)) € Ay ® Ko(R) C KE(R).
AFn

Summing over n > 0, and applying Cauchy’s formula (1.6), we see that
x>
® Pxe(X -
e(T(X)) = exp(z 1'1‘::;(1) e K3(R).
k=1

The proposition now follows by the definition of Exp(...). a

Consider the following decreasing filtration on the S-module T(X), where X is a quasi-
projective variety:

THX)(n) ={(z1,...,2zn) € X" |{z1,...,2n} has cardinality at most n — i}.
Let gri T(X} = TH{X) \ TH1(X) be the associated graded S-module.

Lemma (5.5). Let Z be the object of '[S, Varl

A, 0,
Zm) n>
B, n=0
Then gr T(X) = F(X) 0 Z; in particular, gr® T(X) = F(X).

Proof. This lemma reflects the fact that an element of gri T(X,n) determines, and is
determined by, a partition of the set {1,...,n} into n —1 disjoint subsets, together a point
in F{X,n—1). |

We now arrive at the main theorem of this paper.

Theorem (5.6). Let X be a quasi-projective variety over C. If E is a Serre functor and
Va is an irreducible representation of Sy,

e(F(X,n), Va) = ®xa(e(X)).
15



Proof. If E is Serre functor, (5.3) and Lemma (5.5) show that
e(T(X)) = e(gr T(X)} = e(F(X}) o e(Z).

To calculate e(F(X)), we invert the operation —oe(Z) on f(g(fR) Indeed, e(Z) = Exp(pi)—1
and by Lemma (2.2),

C(F(X) = e(FX)) 0 (Bxplpr) = 1) o (3 28 1og(1 +,)

n=1

=e(T(X))o (Z %Tll log(1 +pn]).

n=1

By Proposition (5.4), this equals

em(i Bﬁiﬁﬂx—)) (iﬂée_ log(1 +pe ) —GXD(ii% log(1 + pre) b e(X ])
k=1

£=1 k=1 =1
—exp(3 5 H Y 10g(1 4 pyoaeix)),
n=1 dhn

from which the theorem follows by extracting the coefficient of the Schur function s) on
both sides. O

The concise formulation
e(F(X)) = Exp(Log(1 +p1) e(X))

of this result makes the resemblance with the formula e{T(X)) = Exp(p; e(X)) clearer.
In the special cases A = (n) or A = (1™), when @, is given by the explicit formula of
Corollary (2.8), we obtain the following corollary.

Corollary (5.7). If e(X) = 3_,  hpquPv? is the Serre polynomial of X, then

= n _o(X) O] t2ypya e
Zf e(F(X,n)/Sn) = calX) H (m) )
n=0 p,q=0

> the(F(X,n)e) =0 (X)7 = T (1 + tuPyd)es.

p.q=0
For example, if X = C, F(C,n)/SS,, is the classifying space K(Bn, 1) of the braid group
Bn on n strands. Our formula becomes in this case
t?uv

#—1+tL+t2[L2—L)+t3(L3—L2]+...,

Zt“e[F (C,n)/Sn) =

n=0

reflecting the isomorphism of rational cohomology groups H*(Bn, Q) = H*(Gn,Q) as
mixed Hodge structures.

6. THE FULTON-MACPHERSON COMPACTIFICATION

Fulton and MacPherson (5] have introduced a sequence of functors X — X[n] from Var
to [Sn, Var], with the following propertics.

i) If X is projective, then so is X[n}.
ii) There is natural transformation of functors F(X,n) < X[n], which is an embedding.

iii) The complement X{n] \ F{X) is a divisor with normal crossings.
16



In this section, we calculate the equivariant Serre polynomial e(X[n]). Denote by FM(X)
the functor X — (n — X[n]) from Var to [8S, Var],

(6.1). Trees and S-modules. Let I'(n), n > 2, be the set of isomorphism classes of
labelled rooted trees with n leaves, such that each vertex has at least two branches. It is
easily seen that I'(n} is finite: in fact, the generating function

(6.2) x+Y "—-—-—-n':lf“”
=2 !

is the inverse under composition of x — xZ —x3 —x% — .. ..

Given a tree T € ['(n), denote by Vert(T) the set of vertices of T; given a vertex
v € Vert(T), denote by n(v) the valence of v (its number of branches). Given a tree
T € I'(n) and an S-module V in the rring R, let V(T ) be the object

(6.3) VT = &) VinWb)),

veVert(T)

and let TV(n) be the S;-module

™(n) = @ W(T).

Ter(n)

Thus, T is a functor from 2[S, R} to itself. (Recall that 2fS,R] is the full subcategory of
$-modules such that X(0) = X{1) =0.)

A proof of the following formula for R = Proj mnay be found in (7]; however, the same
proof works in general. Obscrve that this theorem may be used to prove (6.2).

Theorem (6.4). The elements

f=hy—> VI and g=hy+) [TV]

n=2 n=2

of K$(R) satisfy the formula fog=gof=hy.

<
(6.5). The varieties Py(n). The algebraic groups C* and G, act on the affine space
C* by translation and dilatation respectively; by functoriality, these actions extend to

[e]
F(C*,n). Denote by Gy = C* x Gy, the semidirect product of these groups, and by Py(n),
n > 1, the quotient of the configuration space F(Ck,n) by the free Gy-action. This action

is S-equivariant, and Py (n) is a smooth S-variety of dimension nk —k—1. For example,
o
Pk(2) is naturally isomorphic to the projective space CP*™!, with trivial $,-action.

Proposition (6.6).

r kK
e(Pe(n), Sp) = LIS

n] _ e(F(Ckrn)IST‘l)
e(Cr)e(Gn) —  LKL-1)

Proof. We start with a lemma.
Lemma (68.7). Let G be an algebraic group and P be a G-torsor with base X = P/G. If

the projection P — X s locally trivial in the Zariski topology, e(P) = e(G) e(X).
17



Proof. We stratify X by locally closed subvarieties X; of codimension 1 over which the torsor
P is trivial. The strata are chosen inductively: X_; is empty, while X; is a Zariski-open
subset of X \ X;_; over which P is trivial. The formula follows, since

e(P)=) e(P)=) e(Gle(X;). O
1 1
The action of C* on F(CK,n) is not just locally, but globally, trivial: a global section
is given by (21,...,24) — (21 —Z,...,24 — Z), where 2 = % 3, zi. On the other hand,
any free action of Gy, on a variety is locally trivial in the Zariski topology: free actions
with quotient X are classified by H'(Xa, Gy ), locally trivial free actions with quotient X

are classified by H'(X,Gn), and these two groups are isomorphic by Hilbert’s Theorem
90 (see Proposition X1.5.1 of Grothendieck [9]}). O

=]
(6.8). Stratification of FM(X). The S-variety Py has a natural compactification to a
smooth projective S-variety Py, which has a natural stratification. The strata are labelled

o
by trees T € I'(n), and the stratum associated to T is isomorphic to Py (T), in the notation
of (6.3). It follows from Theorem (6.4) that e(Py} is the inverse of

L in, kd
hy —e(P) = p — et (14 pa) 7 Tam KN/ 7k,
_ LRIy 1 T2, (1 + pp) 7 Zam M/
- Lk(L=1) '

under plethysm.
The importance of the spaces P¥{n) comes from the following result of Fulton and
MacPherson.

Proposition (6.9). The S-module FM(X) has o filtration such that
gr FM(X) = F(X) o Py.

Since X[n] is a projective Q-variety (it has singularities which are quotients of affine
space by a finite group), e(FM(X))(n) equals the S-equivariant Hodge polynomial of X[n].
The above proposition shows that e(FM(X)) = e(F(X}) o e(Py), and leads to a practical
algorithm for the calculation of the $,-equivariant Hodge numbers of X[n].

On forgetting the action of the symmetric groups Sy, we recover the formula of Fulton
and Macpherson for the Poincaré polynomials of FM(X,n), in a form stated by Manin
[16). On replacing hy, by x™/n!, we obtain

1+ ) x™e(Xn]) = (14 x)*Xo

n=I1

LRy 1 — (14 %)\ 7!
( Lk(L—1) )

In this formula, we may take the limit L — 1 using L’Hépital’s rule, obtaining a formula
for the Euler characteristic of FM{X, n}:

14+ 3 xmx(Xn)) = (14 %) o ((k + 1)x — k(1 +x) log(1 +x)) .
n=1

Q
The one dimensional case has special interest, since the spaces Py(n) and P;(n) are
naturally isomorphic to the moduli spaces My 1 and ﬁom_ﬂ; this isomorphism comes
about because the translations and dilatations in one dimeusion generate the isotropy

group of the point co € CP' with respect to the action of the group PSL{2,C). This
18



identification means that the action of § on these spaces is the restriction of an action of
Sn+1- We have calculated the S, y-equivariant Serre polynomials of these spaces in [6];
in a sequel to this paper, we calculate the Sy-equivariant Serre polynomial of My .
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