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(0.1)

MIXED HOnGE STRUCTURES OF CONFIGURATION SPACES

E. GETZLER

Let X be a SIuooth projective variety ovcr C. The configuration space F(X, n) of X is

the cOIupleIuent of the diagonals in T(X ,n) = Xn :

F(X, n) = {(Zll ... ,Zn) E Xn I z;. # Zj for i # j}.

The symmetrie group §n acts frccly on F(X, n)i in this paper, we study the induced

action of the symmetrie group §n on HP,q(F(X, n)). As an application of our results, we

calculate the Sn-equivariant Hodge polynonlial of the Fulton-MaePherson eonlpactifieation

of F(X, n).
In a sequel to this paper, we extend our results to thc relative setting: this is techni­

cally more difficult, requiring Saito's thcory of Illixcd Hodge IIlodules. As an application

of the relative theory, we will calculatc the §n-equivariant Hodge polynonüals of the pro­

jcetive varicties M 1,n0 (We have calculat.ed thc §n-cquivariant Hoelge polynOIuials of the

projective varieties Mo,n in [6].)
Let X be a cOIuplex quasi-projective variety. The Serre polynomial e(X) of X is thc

polynomial in variables u aud v, satisfying (and indeed characteril,ed by) the following

axIoms:

i) if X is projective anel snlOoth, e(X) is the Hodge polynomiall

00

e(X) = .L. (-u)P(-v)qdimHP,q(XIC);
p,qE:O

ii) if Z is a closed subvariety of X, then e(X) = e(X \ Z) + e(Z).

A fonuula for thc Serre polynOIuial followH from nüxed Hodge thcory (Deligne [4]):
00

e(X) = .L. upvqX(H~(X, C)P,q),
p,q=O

where if (VI f, W) is a Iuixed Hodgc strueturc over C,

vp,q = fPgrw Vn Fq grW Vp+q p+q ,

allel x(V) denotes the Euler characteristic of the finite-dinlensional graded vector spacc V.

This formula was introduced by Danilov and Khovanskii, although they da not give it a

name: earlier, Serre hael observed that the Wcil cOllject.ures, together with resolution of

singularities, inlplicd thc existence of sllch a polynomial.

The Serre polyuOInial represents thc dass of H~ (X, C) in the Grothendieck group of

lnixed Hadge structures over C. It is a "clmraeter" on varictics, sinee it satisfics thc

K ünneth forlllula:

e(X x Y) = e(X) e(Y).

We borrow frOlli Manin [15] t.he notat.ion L for the Serre polynomial uv of C(-1) =
H2 (ClP 1, Cl.

I Here, we have modificd the usual convcntious, rcplacing u amI v by -u and -v. This will lead to

cleaner formulas later.



Denote by snX the nth synlnlctrie power of t.he variety X, that is, the quotient of Xn by

the sYlnmetrie group sn. It follows from thc fOl'l11ula of Macdonald (14] that thc generating

funetion crdX) for thc Sene polynomials €(sn X) has the fonnula

00

crt(X) = I. t n e(SnX) = rr (1 - tupvq)-x(H~[X,C)p,q).

n=O p,q

(This is the Hodge allalogue of thc zeta function of a variety over a finite fidd.)

If a finite group G acts Oll X, define the equivariallt Sene polynomial by the formula
00

eg(X) = I. upvq I.(-1)iTr(gIH~(X,C)P,q).

p,q=O i

Let F(C, n) bc the eonfiguration space of n ol'dereel points in C. By a formula of Lehrer

and Solomon [12] (sec (2.5)), we sec that if (J" E Sn ha.<:; nj cydes of lellgth j, then

00

€cr(F{C, n)) = rr (Xj (CXj - jti ) ... ((Xj - (nj -l)jt
j
),

j=l

w here <Xj = L dlj J.-l( j / d) Ld. (For allother proof of this fOrIllula, see [6].) In this paper, we

prove the following generalization of this formula.

Theorem. Let X be a quasi-projeetive variety, and let IXj (X) = Ldlj J.-l(j/ d) e(X; ud, vd).

If cr E Sn is apermutation with nj cycles 01 length j, then

00

ecr(F(X I n)) = rr etdX) ((Xj (X) - j) ... ((Xj (X) - (nj - l)j).
j=l

Given a Sn-module V, eOllsicler the loeal system V = F(X, n) xS n V over F(X, n)/Sn.

This local system has a Serre polYllomial
00

e(X,V)= I. upvqX(H~(X,V)P,q),

p,q=O

related to the Sn-equivariant Serre polynOlnial of F(X, n) by the formula

1
e(X, V) = ,. I. Tr(crIV) ecr(F(X, n)).

n.
crESn

A special case of this is the trivial represclltation TI I for whieh e(F (X, n), TI ) = e (F(X ,n) /§n):

we will prove that

~ xne(F(X1n)/Sn) = (J"t(X) = rr(l -t2uPVq)X(H~(X,C)P,q).
L cr t 2 (X) 1 - tupvq
n=O p,q

The analogue of t.his formuhl. for X = spec{Z) is the Dirichlet series

~ = f.. ~(n)2
((25) n=l n S

I

where ~(n)2 is the arit.lnnetic funct.ion which is 1 if n is sqllare-fn~ allel 0 otherwise: thc

analogy with configurat.ion spaces is dear.

Although the above formula..., involve de Rham cohOInology, thcy rnay be proved with

110 greater difficulty for motivie eohomology, using the reeent results of Gillet and Soule

[8]. Let Met bc t.he eat.cgory of (pure effectivc rational) Chow motives, wit.h Grothendieck

group Ko(Met). Given a quasi-projective varicty X over C, let e(X) E Ko(Mot) be the
2



virtual nlOtive associated to X by Gillct anel Soule. Then Ko(Mot) is a i\-ring, with 0'­

operations satisfying

allel i\-operations satisfying

i\n(e(X)) = e(F(X, nL cL

where c is the sigll representation of Sn. For each irreducible representation VA of Sn1 we
will construct a natural transfonnation cD A of the eategory of i\-rings such that

cDA(e(X)) = e(F(X, nL VAL

where V;.. is thc irrecluciblc Sn-module associated to the partition A. Here is a table of cD;..

for sInall A:

cD3 0'3 - (J2 - (J1 2

cDZ1 (JZl - (J2 - (J1 2 + (Jl

cD13 0'13

cD4 (J4 - (J3 - O'Z1 + O'F

cD31 (J31 - 0'3 - 20'21 - (Jp + 20'z + (JF - (Jl

cD 22 0'22 - (J3 - (J21 + (T2 + 2(J12

cD Z1 2 (J212 - O'Zl - 0'13 + O'z + (T12 - (Tl

cD 14 0'1 4

(Here, 0';.. denotes the operation on i\-rings associated to the Schur polynomial 5;...) For
thc generating funetion of the operations cD;.., see (2.6).

The organizat.ion of this paper is as follows. In Section 1, we reeall sOllle of the thcory of

synuuetric functions in an infinite number of variables, anel its relationship to the theory
of i\-rings. In ScetiOII 2, we introduee the eOlupletion of a i\-ring: this is used in the proof
of our main result, where we work with gcnerating (symmetrie) funetions, whieh lie in
such a cOInpletion. We also introduee t.he cD-opera.tions, whieh enter into the statement of

our formula for e(F(X, nL V;..).
In Section 3, we introcluee a. dass of ea.tegories, Karoubian rrings (sie), whieh havc

many of the properties of the eategory of modnIes over a ring. In particular1 we prove
the Petcr-Weyl TheorCIu: any representation of a finite group in a Karoubian rring ovcr a

field of characteristic zero is completely redueible. Similar result.s have been obtained by

del Bano Rollin [1]. In Sectiorl 4, we apply this result to eonstruct a i\-ring structllre on
the Grothendieek grollp of a Karoubian rring (ovcr a ficlel of characteristic zero). SectiOII
5 contains our main result, Theorem (5.6), which is a t.heorem abollt Serre functorsj this

is thc llaIlle wc give to a scqucncc {X H En(X) In;::: O} of functors frolll the eategory of

quasi-projectivc varieties to a Karollbian rring ~, satisfying appropriate analogues of the
Meyer-Vietoris and the Kiinneth t.hcorCIllS. Exantplcs of Serrc funct.ors a.re thc de Rhanl

cohOlnoIogy and thc cohomology of thc weight complcx of Gillet and Sonle [8].

In Scction 6, we give a simple application of these results, to the calculation of thc

Sn-equivariant. Hodge polynornial of the Fulton-Macphcrson compaetification of the con­
figuration space F(X, n).
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1. SYMMETRIC FUNCTIONS AND A-RINGS

(1.1). Symmetrie funetions. In this seet.ioH, wo recall some results on symmetrie func­

tions anel representations of Sn whieh we need later. For the proofs of these results, we

refer to Macdonald [13].
The ring of symmetrie flllletions is the inverse litnit

A = ~Z[Xl, ... I Xk]Sk.

It is is a polynOInial ring in the eOIuplete synlluetrie functions

hn = L. Xi] ..• Xin •

il ~···~in

The power sums (also known as Newton polynomials)

form a set of generators of the polynomial ring AQ = A 0 Q. This is shown by lIIeans of

the elementary fornllIla

(1.2)

where

d
Pt = t-IogH tl

dt

00

H t = L. tnhn = Il (1 - txd-1

n=O

00

anel Pt = L. tnpn = L. (1 - txd-1
.

n=O

WritteH out explieitly, we obtain Newton's fOl'mula relat.ing the two sets of generat.ors:

nhn = Pn + hlPn-1 +... +hn-1Pl.

We mayaiso invert (1.2), obtaining the formula

(1.3)

A partition A is a decreasing sequence (Al ~ ... ~ At) of posit.ive integers; we write

Ar n, where n = Al +... +Atl and denote the lengtll of A by i(A). Identifying A with the

ring of charactcrs of the Lie algebra g[oo = ßg! g[kJ we see that partitions correspond to

donünant weight.s, and tlms A has a basis of consisting of the charaeters of the irreducible

reprcsent.atiolls of g[oo. These charactcrs, given by the Weyl character forumla

I ( Aj+k- j )_ r (ct Xi l<i,j<k
S" - 1m k j l

k--.oo det(xi - )l~i,;~k

are known as t.he Schur functions. In ternlS cf the polYllOInial generat.ors h,., they are

given by the Jacobi-Trudy formula. SA = clet (hAi - i + j ) 1~i,j:5e(Ar

There is a nOll-clegellerate integral bi li near form on A, denoted (f 1 g) 1 for whieh t he

Schur funetions s" form an orthonormal basis. (This is sometimes called the Hall inner

product.) Thc adjoint of multiplicatioll by f E A with respect to this inner proeluct is
4



dClloted D(f). Writtcn in tenus of thc power sunlS Pn, t.he operator D(f) has the fonnula

D(Pn) = niJ/iJpn, while the inner product {f, g) has the formula

{f, g) = D(f)gl .
Pn=O,n2: 1

(1.4). Pre-i\-rings. A pre-i\-ring is a cOllunutative ring R, together with amorphisIll of

commutative rings O"t : R ~ Rh] such that. Cft(o) = 1 + to + 0(t2 ). Expanding Cft in a

power series
00

O"d a) = L. tnCfn (oL
n=O

wo obtain endOlnorphislllS O"n of R such that. 0"0 ( Q) = 1, 0"1 (Q) = a, and

n

O"n(Q + b) = L. O"n-k(a)O"k(b).
k=O

There are also operations i\k ( Q) = (-1)k O"k (- Q) 1 with generating function

(1.5)
00

i\do) = L. tni\n(a) = O"_do)-l.
n=>O

Thc i\-opcrations are polYllomials in the Cf-operations with integral eoefficients, and vice

versa. In this paper, we take t.hc O"-operat.ions to be more fundamental; nevcrtheless,

following custom, the structure they define is callcd a pre-i\-ring.

Given a pre-i\-ring R, there is a. bilinear map A 0 R~ R, which wc denote f 00, defined

by the fonnula

The image of the power sum Pn under this map is the operation on Rknown as t.he Adanis

operation Wn. We dünote the operation correspollding to thc Schur function s;\ by 0";\.

Note that (1.3) implies the relation

The following formula (1.4.2 of [13)) is known as Cauchy's formula:

From it, the füllowing result is iInmediate.

Proposition (1.7). If Rand S are pre-i\ -rings, th eir tensor prodtiet RCi) S is a pre-i\ -ring,

with O"-operations

(Tn ( 0 Ci) b) = L. (TA ( Q) Ci) O"~d bL
AI-n

and Adams ope1ntions Wn(a C9 b) = Wn(o) C9 Wn(b).

Für example, 0"2(00 b) = 0"2(0) 0 (J2(b) + i\2(a) 0 i\2(b) .
.5



(1.8). i\-rings. Thc polynomial ring Z[x] is a prc-i\-ring, with O"-opcrations characterized
by t he formula 0"n (xi) = xni. Taking tensor powers of this pre-i\-ring with itself, we sec

that the polynOlnial ring Z[Xl , ... I Xk] is a pre-i\-ring. The i\-operations on this ring are

equivariant. with respect to thc permutation action of thc symmetrie group §k on thc
generators, hence the ring of symlnetric functions Z[Xh ... ,Xk]Sk is a pre-i\-ring. Taking

the limit k ---i 00, we obtain a pre-i\-ring st.ructure on A.

Definition (1.9). A i\-ring is pre-i\-ring slIch that if f, 9 E A and x E R,

(1.10) f 0 (g 0 x) = (f 0 g) 0 x.

By definition, thc pre-i\-ring A is a i\-riug; in particular, the operation fog, called

plethysm, is associative.
The following result (see Knutson, [10]) is the chief result in the theory of i\-rings.

Theorem (1.11). A is the 'Universal i\-ring on a single generator hl'

This theorem lnakes it straighforward to vcrify identit.ies in i\-rings: it suffices to verify
them in A. As an application, wc have the following corollary.

Corollary (1.12). The tensor' product 0/ two i\-rings is a i\-ring.

Proof. We necd only verify this for R = A. A torsion-frce pre-i\-ring whose Adarns opera­

tions are ring homomorphisms which satisfy Wm(Wn(a)) = Wmn(a) is a i\-ring. It is easy

to verify these conditions for A 0 A, since Wn( a 0 b) = Wn( a) 0 Wn(b). D

In the definition of a i\-ring, it is usual to adjoin the axiom

O"n(XY) = L O"}.( a) 0 o"}. (y).
,.\f-n

Howcver, this formula follows from our definit.ion of a i\-ring: by universality, it. suffices to

check it for R = A 0 A, x = hl 0 1 and Y = 1 0 h" for which it is evident.

2. COMPLETE i\-RINGS

A filtered i\-ring R is a i\-ring with decreasing filtration

R = FO R =:J F1R =:J . . . I

such that

i) nk FkR = 0 (t hc filtration is discrete);
ii) FmR· FnR C pn+nR (the filtration is compatible with t.he product);

iii) 0"m (rn R) C Fmn R (t hc filtrat ion is COlllpa.tible with the i\- ri ng structure).

The cOlupletion of a filtered i\-ring is again a i\-ring; define a cOInplet.e i\-ring to be a i\-ring

equal to its complction. For example, the universal i\-rillg A is filtered by the subspaces

Fn A of polynonüals vanishillg to order n - 1, and i ts complction is the i\-ring of sYlnmetric

power series, whose underlying ring is the power series ring Z[hl, h21 h31" .].

Thc tensor product of two filtered i\-rings is again a. filtcred i\-ring, when furnished with

the filtration
n

Fn(R 0 S) = L Fn-kR 0 FkS.
k=O

If R auel S are filtered i\-rings, dcnote by R0S the cOlnpletion of R0 S.
6



Let :R. be a Karoubian rring over a field of characteriRtic zero, and consider the COlll­

piete A-ring A0Ko(:R.L where Ko(:R.) has the discrete filtration. This A-ring has a natural

realization, as the Grothendieck group of thc Karollbian rring

co

[§ ,:R.l = rr [Sn, :R.L
n=O

whose objects are thc S-modules in~. In thiR rring, thc SUln and product are given by

the same fonnulas as in the rring [§,:R.] of bOtlllded S-modules.
Withollt. assUIning the existence of infinite sums in :R., plethysm does not extend to a

lllonoidal structure on [§,::Rl However, X o}j is well-defined in [S,::R] under eit.hcr of t.he

following two hypotheses:

i) :x is bounded, 01' ii) lJ(O) = O.

The first of these sitllatiollR allows 11S to construct a A-ring structure on the Grothendieck

group of [§ I ::R], by the sarne method a." for [8 I~}, while the second will be needed in the

proof of our main theorem. Introducing the notation k[S,~] for the subcatcgory of [S,:R.]
consisting of §-modulcs X such that X(n) = 0 for n < k, we see that. plethysm extends to

a sYlnmetric lllOnoidai structure on 1[S,:R.].
Denote the Grothendieck group of the full subcat.cgory 1[S,:R.] c [S,:R] by K~(::R). Since

K~(:R.) is a (non-unital) A-ring, we lnay definc a bilillear operation

o : K~(Proj) 0 K~(:R) ---1 Ks(:R),

satisfying (1.10). This operation may be extended to abilinear operation (which we denote

by the same symbol),

o : K~(::R) 0 K~ (::R) ---1 Ks (:R. )I

using the Peter-Weyl TheorCln: t.o dcfine x 0 11, we expand x in ascries x = L;\ x", . s;\,

and define

x 0 y = .L x;\ . 0\ (y).
;\

The intercst of this operation lies in thc following lelnma, which is a Rilnple cOllsequence

of the definition of x 0 y.

Lemma (2.1). 11 X and 1J are objects 01 (8,:R.l and 1!§,:R.l reS1Jectively, [X o}j] = [X] 0 (1J).

Ir R is a cmnplete A-ring, the operation

00

Exp(a) = .L Cfn(a) : R ---1 1+ Fl R
n=O

is an analogue of exponentiatioll, whose logarithm is given by a formula of Cadogan [2].

Proposition (2.2). On a complete filtc1'ed A-1'ing R, the operation Exp : R -7 1+Ft R has

inverse
~ J.l(n)

Log(l + 0) = L -Iog(l +1Vn(O)).
n

n=l

Proof. Expanding Log(l + a), we obtaiu

00 1 00

Log(l + a) = - .L n.L J.l(d)1.IJd(-a)n/d = .L Logn(a).
n=l dln n=l

7



Let Xn be thc character of the cyclic group Cn equalling e21ri/n Oll the generator of Cn .

The characteristic of the Sn-module Ind~: Xn equals

n-l
~ '" 21rik/n n/(k,n) _ ~ '" (d) n/d

L e P(kn) - LJ.l Pd 'n 'n
k=O dln

while the characteristic of the S n-nlOdule Ind~: Xn 0 En , where En is the sign reprcsentation

of Sn, equals

~ L J.l(d)((_l)d-l pd)n/d = (_~)n L J.l(d)(-Pd)n/d.

dln dln

It follows that (-1 )n-l Logn is thc operation a..ssociated to the Sn-module Ind~: Xn 0 Ln,

and henee deRnes a map from F1R to FnR.

To prove that Log is the inverse of Exp, it suffiees to check this for R = A and x = hl­

We must prove that

(~ J.l(n) )Exp ~ nlog(l +Pn) = 1 +hl.

The logarithm of thc expression on the lcft-hand siele equals

( ~ Pk) (~J.l(n) ) ~ '" log(l +Pn)
exp L k 0 L n log(l +Pn) = LLJ.l(d) n =log(l +pd,

k=l n=l n=l dln

anel thc forml1la folIows. D

Example (2.3). If 0 E F1R is a line bunelle in the cOlllplete 7\-ring R (that is, O"n(o) = an

for all n 2:: 0), we see that
1

Exp(a) = -1-'
-Q

In partieular, this shows that Exp(tn ) = (1 - t n )-l, and that

2 Exp(t) 1 - t 2
Exp(t - t ) = E (2) = -1- = 1 + t.xp t -t

It follows that Log( 1 - t) = t alld timt Log( 1 + t) = t - t 2.

We now introduce the operations Oll 7\-rillgs which will arisc in thc calculation of the

SelTe polynomials of the loeal systems F(X, n) XSn VA- We start by considerillg the c..ase

X=C.

Proposition (2.4).
00

L SA ® e(F(C, nL VA) = IT(l + Pkrt Ldlk J.1(k/d)L
d

E !\0Z[L]
A k=l

Prooj. It is proved in Lehrer-Solomon [12] that

00 00 00

(2.5) L L (_x)i chn(Hi(F(C, nL C)) = IT (1 + XkPk)"t Ldlk ~l(k/d)x-d ,

n=Oi=O k=l

where Hi(F(C, n), C) is the §n-Illodule associatcd to the de Rham COhOIllology of degrce

i. By Poincare duality, wc see that
00 00 00

LL(-X)iChn(H~(F(C,nLC))= IT(l +Pk)tL. d lkJ.1(k/d)x
d

•

n=O i=O k=l
8



But the mixed Hodge structure Oll thc COhOIllology group H~ (F(C, n), C) is pure of weight
2i, and indeed H~(F(C,nLC) = H~(F(C, nLC)i,i, proving thc result. 0

Motivatcd by this proposition, we define operations <DA in Cl A-ring R, parametrized by

part.itions A, by means of the generating function

00

(2.6) <D( x) == L SA @ <D >Jx) = TI (1 +Pk) t Ldlk: l-l(k/d)Wd(X) E A0R.
A k=l

Theorem (2. 7) . Wehave the Jorrnul(J, <D (x) = Exp(Log (1 + P1)x) . In particular, the

operations <DA are defined on any A-ring.

Proof. Applying Log to the definition of <D(x), we obtain

00

= L
n,d,c=1

~(n)~(e)
d tVnd(x)log(l +Pndc)

n e

~ ~(e)= L -log(l + Pc)x,
e

c=1

by Möbius inversion. On applying Exp, we obtain the desired fornuila.

Using this theorenl, wo can provc more cxplieit formulas for <1>n and <D1 n.

Corollary (2.8).

o

Proof. We obtain L~=o tnCDnhJ) from CD(x) by replacing Pn by t n . By ThcoreIll (2.7), it
follows that

~ 2 (Jt(x)
L tneDn('y) = Exp(Log(l + t)x) = Exp((t - t )x) = -(-) ,

(Jt2 X
n=O

since Log (1 + t) = t - t 2 by Exampie (2.3). The proof of the second fornlll1a is similar,

except that wc replace Pn by (-t)n, and apply the formula Log(l - tJ = -t. 0

3. REPRESENTATIONS OF FINITE GROUPS IN KAROUBIAN RRINGS

Let (1<,0,11 J be a symInetric monoidal category with coproducts, clenotecl X EI) Y. We

say that 1< is a rring (this is our abbreviation for thc usual term ring category) if there
are natural isomorphisIllS

(X EB Y) 0 Z ~ (X 0 ZJ EB (Y 0 Z) and X 0 0 ~ 0

which describe the distributivity of the tensor product over the SUIll, satisfying the coher­

ence axioms of Laplaza [11]. Ir 0 is thc categorical product, we say that 1< is a Cartesian
rring.

9



The Grothendieck group Ko(-) is a funetor from rrings to comnlutative rings. Given

an object X of a rring ~, denote by [X] its isomorphism dassj then Ko(~) is generated as

an abelian group by the ismnorphism classcs of objects, with the relation

[X] + [V] = [X ffi V].

The product on Ko(9() is givell by t.hc formula [X] . [V] = [X 0 V]. (Here, we suppose that

t.he isomorphislll dasses of objects of 1{ form a set; this hypothesis will always be fulfilled

in this paper.)

If 1{ anel S are two rrings, 1{ 0 S is a rring whose objects are fOrInal sums of tensor

prod uets X 0 Y, where X and Y are objects of 1( and S respectivcly; note t hat Ko (9( 0 S) ==
Ko{~) 0 Ko(S).

Recall timt an additive category over a cOIllInlltative ring R is a category ::R such that

the set of morphisms 1{(X, Y) is aR-module for a1l objects X alld Y, the composition maps

1{{Y, Z) 01< ::R(X, Y) ---7 ::R(X, Z) are R-linear, and every finite set of objcct.s has a dircct

surn. A Karoubian category over a ring R is an additive category over R such that

every idempot.ent has an iInagc, denoted IIu(p). (Karoubian categories are also sometilnes

known as pseudo-abelian categories.)

Definition (3.1). A Karoubian rring ::R is a rring which is a Karollbian category, and

whose SUlll X EI) Y is the direct surn.

An example of a Karoubian rring is the category Proj of finitely generated projcctivc

R-nlodules.

If 1{ is a Karoubian rring and G is a group, let [G ,1{] be the Karoubian rring of G­

1llOduics in ::R, that is, functors from G to 1(. If X auel Y are objects of [G,:Rl, the R­

Inoel ule of lllorphisms :R(X, Y) carries a natural R[G]-moelule structure, giyen by the forllnIla
fg = 9-, . f . g.

Thcre is a natural bifunctor V i8J X, the external tensor product, fr01n .[G, Proj] x (G,:R]
to [G,::RJ, characterized by thc identity of R[G]-moelules

::R(V [gJ X, Y) == V 01{(X, V).

For the finitely generated free module R[G]n, we have

R[Gl n ~ X = EB XEBn.
gEG

For general V, wc realhm V a..., thc image of an idclIlpot.ellt p in a free module R[G]n, anel

elefine V i8J X to be the ilnagc of thc corrcsponding idcmpotent in R[G]n i8J X. Using the

external tensor procluct, we nmy eInbed [G, Proj] int.o [G ,1(] by the fUllctor V rl V i8J 11.

If G is a group whosc order is invcrtiblc iu R, the functor {_)G of G-invariants from

[G,:R] to :R is defined by taking the image of the idClupotent alltOITlOrphislll of 1(

1
p = !Gi L. g.

gEG

From now on, we rcstrict. attention to bJ"fOUPS satisfying this couditioll.

If H is a subgrollp of G, the iud uction fllllctor Ind~ : [H,~] ---7 [G,::R] is elefined by the

formlIla

Ind~ X = (R[G] i8J X)H.

Here, we use the G x H-moduic structnrc of R[G], where G act.s Oll t.he left and H aets on

the right.
10



The following is a generalization of t.he Pcter-Weyl t.heorCIll to Karoubiau categories.

Theorem (3.2) (Peter-Weyl). 1J'J( is a Karotibian rring ouer a commtitative ring Rand

G is a group whose order is invertible in R, the c01nposition

[G, Proj) 0 'J(~ [G, Proj) 0 [G,:R] ~ [G,:R]

is an equivalence oJ categories.

ProoJ. Since the order of G is invertible in R, the group algebra R[G) is semi-simple, and

Illay be written

R[G] ~ EB End(Vo ) ~ EB VQ 0 V~,
Q Q

where wo surn over the isomorphisIll classes of irreducible representations {Va} of G. This

pcrmits lIS to rcwrite the induct.ion functor as

Q

Taking H = G, and recalling that Indg is equivalent to the identity functor, we obtain the

desircd equivalcnce botween [G I Proj) 0::R and [G I::R). D

4. §-MODULES IN KAROUBIAN RRINGS

Let § be the catcgory of permutations U~=OSn anel let 'J( be a rring. A boundcd
S-Illodule in 'J( is an object X of

00

[§ ,'J(] = EB [Sn, 'Jt] J

n=O

in other words, a sequence {X(n) In;::: O} of §n-modules in 'J( such that X(n) = 0 for

n » O. Let 11 n denote the §- IUOelulc such that 11 n (n) is the trivial §n-Iuodu10, wh ilo

TIn(k) = 0 for k #- n.
The category [SI 'J(] is itself a rring:

i) the sum of two §-modules is (X EB ljHn) = X(n) EB ll(n)j
ii) the product of two §-IlloduleH is defined llsing induet.ion:

(X 0llHn) = EB Ind~~xsk X 0?J;
j+k=n

iii) the uni t of t he prodlict is TI o.

Denote the Grot.hendieck group of thc rring [S,::R] by K~(::R).

There is another Inonoidal structure X 0 Y on [§,::R) I called plcthYSlll. Ir"A is a pa.rti tion

of n , let S" = S"1 X ... x S"rl')') C Sn, and let N(S,,) be the nonnalizer of S" in Sn. The

quotient W(§,J = N(S")/§,, may bc idclltified with

{er E SC(") I "Acr(i) = Ai für 1 ~ i ~ e("A)} C §f(")'

GiVOll boundcd §-Inodulos X and lj, we obtain an action of N(§,J on the tensor product

X(f("A)) 0 ® ?J("Ad.
1::;i.::;f(A)

Plethysm is the lilonoidal structure (not symmetrie) defilled by the forrnllia

and with unit 11 1•

11



Lemma (4.1). Let::R be a K arotibian mng over a field of characteristic zero. The Gro­

thendieck grotip K~(::R) is a pre-'A-ring) with O'-operlLtions charaeterized by tILe formula

where X is a bounded § -module.

Proof. We lUllSt prove that for boundcd §-modulcs X and ~,

(4.2)
11.

(jn([Xl + [}j]) = L O'd[X]) . O'n-i([?J]).
i=O

Observe that TI 11. 0 (X EB ~) cquals

EB E9 E9 EB Illd~(S')XN(S") ( 0 X(;\tl0 X(O)0i 0 0 )j(lltl0 )j(O)0
kt XSk

i=O ;\H J.LJ-n-i j,k=O 1::;i$((A) 1:-:;i$(( IJ.)

Since

Ind~{Sil.)xN (S>l) V 0 W = Ind~~xSn_i (Ind~\s),} V ® Ind~(S~) W),
it follows timt

11.

TIn 0 (X EB zn == E9(TIi 0 X) 0 (TIn-i o?JL
i=O

proving (4.2) for eleluents of K~(~) of the fonn [X] and [~]. Thc definition of thc siglua

operations on virtual elements (Xo] - [Xd is now forced by (1.5):
00

O'11.([XO] - [Xl]) = L L (-1 )kO'i ([Xo]) O'j1 ([Xl]) ... O'h. ([Xl]). D
k=O j~>O

i+i 1+·+j~=11.

Lemma (4.3). There is an isomorphism 01 A-rings K~(Proj) :: A.

Proof. The pre-'A-riug K~(Proj) is the smll of abclia.n groups K~(::R) = EB~=o R(§11.L where
R(§11.) = Ko([Sn, Proj) is t.he abclian group underlying the virtual representation ring of Sn'
The identification of K~(Proj) with A is via t.he FrobeniHS characterist ic ch : R(§) -7 A,

which sends the irreducible representation VA associated to thc partition 'A to thc Schur

functiou S;\. The Frobenius characteristic is given by the explicit fünllula

1
chn(V) = r L Trv( rr)pcr,

n.
crESn

where Pcr is the monmuial in the power sums obt.ained by takillg üne factor Pk für each

cycle üf 0' üf length k. For thc prüüf that ch( ... ) is a map of 'A-rings, see Knutson [10) Of

Appendix A of Macdonald [13]. D

Using these lenllIlas anel the Peter-Weyl Theorem, we will show that K~(::R) is a 'A-ring

für any Karoubian rring ovcr a field of characteristic zero. First, we prüve SOHle SilUplc

lemnlas which are of interest in their own right.

Plethyslll is distributive on thc left with rcspect to sumo

Lemma (4.4). (Xl EB X2) 0 ~ ~ (Xl 0 ?i) EB (X2 o?i)

Proof. Clear.

It is also distributive on thc lcft with rcspcet to product.

Lemma (4.5). (Xl ® X2 ) o?i 2:: (Xl o~) (8) (X2 o?i)
12
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P1YJOj. By LeIlllna (4.4), it sufficcs to check this fürmula whcn X10) = Xl, X2(k) = X2,
Xl (i) = 0, i =I- j and Xl (i) = 0, i =I- k. We have

((Xl ® Xl) o~) (n)

= EB EB Ind~(SA) (Illd~:;t (X1 0 Xz) 0 ® 'a (Ad 0 'a (O)0Qt·
q=O Af-n 1<i<f(A)

f(A)+q=j+k - -

But we have

( )

Sq q n

EB Ind~:~~k (Xl ® Xl) ® ® ~(Ail ® ~(O)®q == EB EB
Af-n 1<i<f(A) p=O i=O

f(A)+q=j+k - -

EB (X 1 0 ® 'a(Ad0'a(Ol0prQ0 EB (XZ0 ® 'a(Ad0'a(Ol0QrQ,
I-ll-i 1<i<f( ~l ,\f-n-i 1<i<t('\)

e(~)+p=j - - e('\)+q-p=k - -

{rom which thc lemnul folIows.

Lernma (4.6). IJ V is a bounded § -module in Proj and X is a bounded § -1nodule in ::R,

ch(V) 0 [XJ = [Vo Xl.

o

Proof. By Lelnma (4.4), we Illay assunlc that V is an irredllcible Sn-nlodule VA' It remains

to show that (fA([X]) = [VA 0 Xl for all partitions A.

By LeUUlla (4.5), wc see that für any part.ition IJ. with e= e( IJ.), wc have

(11 ~1 ® ... ® 11 ~t) 0 X == (11 ~1 (9 X) ® ... @ (11 ~t 0 X).
Taking thc dass in K~(9() of both sides, we sec that

[(11 ~1 ® ... (9 11 ~~) 0 X] = er~l ([X]) ... er~~ ([X]).

The irreducible reprcsentation VA is a linear combination of reprcsentations 11 ~1 0 ... 0

11 ~t with integral coefficients, and by Lemma (4.3), the Schur function SA is a linear

cOlllbination of symnlctric functions h ll1 @ •.. @ h~t with the sarne cocfficicnts; the proof

is completed by application of Lemma (4.4). 0

Theorem (4.7). The Grothendieck group K~(9() oJ a Karotibian rnng 9( over a field oJ

charactenstic zero is a A-ring.

Prooj. If f = ch(V) and 9 = ch(W), whcre V and Ware bounded §-ulOdules in Proj, and

x = [XL wherc X is a bounded §-module in 9(, it follows frOln Lelluna (4.6) that

f 0 (g 0 x) = ch(V 0 (W 0 Xl) = ch((V 0 W) 0 X) = ch(V 0 iN) 0 x.

Since eh is a morphism of A-rings , wc sec t.hat ch(Vo W) = f 0 g, and from which wc obtain

the formula (1.10) eharacterizing ..\-rings in this case:

fo(gox}=(fog)ox.

It only remains to extend (1.10) to virtual cleruellts 9 = ch(Wo) - ch(W1) anel x =

[Xc] - [Xl]. Both sieles of (1.10) are POlyuOluial fUllctions of 9 E !\ and x E K~(9() allel

heuce must coincide, since they are equal on a cone with non-empty interior. 0

I t follows that the Grothendieck group Ko(9() is a ..\-ring 1 namely the SUb-A-ring of K~ (:R)
consisting of virtual objccts such that X(n) = 0, n > 0. The Peter-Weyl Theorerll IlOW

has the follüwing conscquence.
13



Theorem (4.8). I/:R is a K aroubian rring over a field 0/ characteristic zero, there is an

isomorphism K~(:R) == A ® Ko(:R) 0/ l\-rings.

Pro0/. The Peter-Weyl Theorem gives isomorphisIllS of rings

i\ ® Ko(:R)~K~(Proj) ® Ko(:R) ~ K~(:R).

The first of theRe arrows is an iROIllorphisIIl of l\-rings by Lenuna (4.3). As rings, both

K~(Proj) ® Ko (:R) allel K~ (:R) are gellerated by Ko (:R) and [11 nL n ~ 1, and [8J respects the

cr-operations of these element.s, proving that it is a map of l\-rings. 0

5. THE MAIN RESULT

1f:R is a Karoubian rring, denote by :R[N] the Karollbian ring of bOlluded sequences

(A°,A1
, A2

I ••• I An = 0 for n » 0).

The Sllm on ::R[N] is clefined by (A EB zon = An EB ?Jn 1 while the product is defined by

(A0BJ11.= EB Ai@Bj.
i+j=n

Definition (5.1). A Künneth functor with values in the Karoubiau rring ::R is a rring

functor E frOl11 the Cartesian rring Var of quasi-projective varicties anel opcn embeddings

to :R[N].

In other worcls, a functor E : Var -4 :R[N] is a Künucth fuuctor if there are natural

isomorphisnls

Ei(X U Y) == Ei(X) EB Ei(yl,

En(X x Y) == EB Ei(X) 0 Ej(y).
n=i+j

If E = {En
} is a Künneth functor, denot.e by e(X) the associated Euler characteristic

00

e(X) = L (-l)lt[En (X)]

n=O

in the Grothcndieck group Ko(:R).

Definition (5.2). A Serre functor with valucs in :R is a Kiinneth functor E such that.

for any closcd sub-variety Z of X,

e(X) = e(X \ Z) + e(Z).

If E is a Serre functor aud X = XO C Xl C X2 C ... is a filtered quasi-projective variety

such timt Xn = 0 for n » 0, we have

(5.3) e(gr X) == L e(grn X) = e(X).
1t

Here are two exaInples of Sene functors:

i) The eategory of mixed Hodge ~t.rllcturcs ovcr C is a rriug, whose Grothendieck group

Illay be idcntified with the polynomial ring Z[u l v] by means of the Serre polynonüal

(a.I). Thc funct.or En(X) which t.akes a quasi-project.ive variety X to thc Inixed Bodge

s trueture (Hi (X l C). Fl W) over C is a Serre fu Bctor. The associated characteristic e (X)

lllay be identificd with the Serre polyuomial.
14



ii) Gillet and Soule [8] have constructed a. functor to the homotopy category of chain

complexes of (pure effective rational) Cltow motives; let En(X) be the nth cohomology

of this complex.

If ::R is a rring, let. T : ::R --t [§,::R] be the rring funetor with T (X In) = Xn . (More

precisely, T(X ,n) is defined by induction: T(X,O) = TI, anel T(X, n) = T(X ,n-l )0X.) The

following result is a gcneralization of Macdonald's fonllula [14] for the Poincare polynomial

of the sYlllnlCt.ric power snX = Xn ISn'

P roposi t ion (5.4). 11 X is a quasi-projective variety,

e(T(X)) = EXP(Pl e(X)) E Kg(::R).

Here J e(T(X)) denotes the class n H e(T(X , n)) in the Grothendieck groHp K~(::R).

Proo/. Since E is a rring-functor, E·T = T· E. By the Peter-Weyl Theorclll,

E(T(X ,n)) = T[E(X)](n) = EB VA [8J (V~ 0 E(X)«m)Sn.
AI-n

Descending to the Grothendieck grollp, we see that

e(T(X, n)) = EB SA 0 a;de(X)) E An 0 Ko(:R) C K~(::R).
AI-n

Summillg over n ~ 0, anel applying Ca.uchy's forIllllla (1.6), we see that

e(T(X)) = exp(I: Pk <:9 tk e(X)) E K~(:J().
k=l

The proposition now follows by thc definition of Exp( ... ). o

Consider the following decreasing filtration Oll the §-module T(X), where X is a qllasi­

projective variety:

Ti(X)(n) = {(z], ... ,Zn) E Xn I{Zl"" IZn} has cardinality at most n - i}.

Let gri T(X) = Ti(X) \ T i+1(X) be the associated graded S-modulc.

Lemma (5.5). Let Z be the objeet 011 [§I Var]

{
AP

Z(n) = I

0,
n> 0,

n=O.

Then gr T(X) = F(X) 0 Z; in particular, grOT(X) = F(X).

Proo/. This lenuna refleets the fact that an element of gr i T(X ,n) dctermines, anel is

eletermined by, a partition of the set {lI' .. In} inta n - i disjoint subsets, togethcr a point

in F(X, n - i). 0

We naw arrive at the lnain theorem of this paper.

Theorem (5.6). Let X be a quasi-projective vanety over C. 11 E is a BerTe Iu.netor and

VA is an irreducible representation 01 Sn,

e(F(X,nL VA) = cDA(e(X)).

15



Proof. Ir E is SeHe funct.or, (5.3) and Leillma (5.5) show that

e(T(X)) = e(gr T(X)) = e{ F{X)) 0 e(Z).

To calculatc e{F{X)), wo invert thc operation -oe{Z) on K~(:R). Indeed, e{Z) = EXp{Pl )-1

and by Lemma {2.2L

( ~ ~(n) )e{F(X)) = e{F{X)) 0 (EXP{Pl) - 1) 0 L ~ log( 1 + Pn)
n=l

( ~ ~(n) )
=e(T(X))o L ~log{l +Vn) .

n=l

By Proposition (5.4), this equals

( ~ Pk '1Vk e{X)) (~J.l(e) ) (f?- ~ J.l{e) )exp L k 0 L -e- 1og{1 +Ptl = exp L L ke 10g(1 +PktltVke(X)
k=l t=l k=l f=l

(
~ '\ J.l(n/d) )

= exp L L n 10g{1 + Pn)1Vd e(X) ,
n=1 dln

from which the theorem follows by extracting the coefficiellt of the Schur function 5;\ on

both sides. D

The cOllcisc formulation

e(F(X)) = Exp{Log(l + pd e(X))

of this result makcs the resenlblance with thc fonllllia e{T(X)) = EXp(Pl e(X)) dearer.

In the special cases A = (n) 01' A = (1 n), W hen <D;\ is given by the cxplicit fonllula of

Corollary (2.8), we obtain the following corollary.

Corollary (5.7). 1J e(X) = Lp,q hpquPyq is the Ser1'c polynomial oJ X, then

00 (X ) 00 ( 1 2 pq) h p
qL tne(F(X,n)/Sn) =~ = II -t u y ,

ertl (X) 1 - tuPyq
n=O p,q=O

00 00

L tne(F(X,n),E) = O"_t(X)-l = II (1 +tuDyq)hpq •

n=O P.q=O

Für exanlple, if X = C, F(C, n)/SSn is the cla..'3sifying space K(B n , 1) of the braid group

Bn on n strands. Our formula bcconlcs in this case

L
oo

1 - t
2

UY 2 2 3 3 2
t n e(F{C, n)/Sn) = 1 = 1 + tL + t (L - L) + t (L - L ) + ... I

-tUY
n=O

reflectillg thc isomorphism of rat.ional coholllolügy groups H· (B n 1 Q) == H· (Gm 1 Q) as

mixed Hüdge struct.urcs.

6. THE FULTON-MACPHERSON COMPACTIFICATION

F\llton and MacPhcrsoll [5] have introduced a sequence of funetors X t---7 X[n] fronl Var
tü [§n, Var], with thc following propert.ics.

i) If X is prüjectiv8, then so is X[n].

ii) Thcre is natural transformation of functors F(X, n) Y X[n], whieh is an 8mbedding.

iii) Thc cümplemellt. X[n] \ F{X) is a divisor with normal crossings.
IG



In this sect.ion, wc calclllate the equivariant Scrre polynomial e(X[n]). Denote by FM(X)
the functor X H (n H X[n]) from Var ta [§, Var],

(6.1). Trees and S-modules. Let r(n), n 2:: 2, be the set of isomorphism classes of

labelIed rooted trees with n leaves, such that each vertex has at least two branches. It is

easily seen that r(n) is finite: in fact, thc generating funct.iou

(6.2)

is thc inverse uuder cOluposition of x - xl - x3 - x4 - ....

Given a tree T E r(n), denote by Vert(T) the set of vertices of T; givell a vertex

v E Vert(T), denote by n(v) thc valellce of v (its llnmber of branches). Given a tree

T E r (n) and an §-nlOdnIe V iu the rring ~, let V(T) bc the obj ect

(6.3) V(T) = ® V(n(v)).
vEVert(T)

and let 1I'V(n) bc thc §n-Inodulc

1I'V(n) = EB V(T).
TEr(n)

Thus11I' is a functor frmn 2[S,~] to itself. (Rccall that 2[5,~] is the full subcategory of

S-modules such timt X(O) = X(l) = 0.)

A proof of the following fonnula for ~ = Proj lnay be fonnd in [7]; however, the salne

praaf warks in general. Obscrve that this theareln lllay be used to provc (6.2).

Theorem (6.4). The elernents

00

and 9 = hl +L. [1I'V]
n=l

of Kg(~) satisfy the form'Ula fog = gof = hl.

o
(6.5). The varieties Pk(n). The algebraic groups Ck alld Gm act on the affine space

Ck by translation anel dilatation respectivclYi by funct.orialit.y, these actions extend to
o

F(Ck ,n). Denote by Gk = Ck ~ Gm the scntidircct product of these groupsl allel by Pdn),

n > 1, the quotient of the configuratioll space F(Ck , n) by the free Gk-actioll. This act.ion
o

is §n-equivariaut1 aud Pk (n) is a snlOoth §n-variety of dilnension nk - k - 1. Für cxarnplc,
o

Pd2) is naturally iSOlllorphic to the projective space ClP'k-l, with trivial §z-actiün.

Proposition (6.6).

e(F(Ck
, n), Sn)

Lk(L -1)

Proof. We start with a lemma.

Lemma (6.7). Let G be an algebraic grotLp and P be a G- torsOT with base X = P/ G. If
the projeetion P -1 X is locally trivial in thc Zariski topologYJ e( P) = e( G) e(X).
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Praof. We stratify X by locally closed subvarieties Xi of coelimension i over whieh the torsol'

P is trivial. The strat.a are chosen induct.ively: X- 1 is cmpt.y, while Xi is a Zariski-open

subset of X \ Xi-lover which P is trivial. The fOflllula folIows, since

e(P) = L e(Pd = L e(G) e(Xd. D

The action of Ck on F(Ck
I n) is not just locally, but. globally, trivial: aglobaI section

is given by (Zl,." I Zn) rl (Zl - z, ... ,Zn - z), where z = ~ L~=l Zi. On the other hand,
any free action of Gm on a variety is locally trivial in the Zariski topology: free actions

with qnot icnt. X are classified by H1(Xtll Gm ), locally t.rivial ffee actions with quotient X

are classified by H 1(X, Gm), and these two groups are isomorphie by B ilbert's Theorem

90 (see Proposition XI.5.1 of Grot.hcndieck [9]). D

o

(6.8). Stratification of FM(X). The §-variety Pk ha..,; a natural cOInpactification to a

smooth projective §-variety Pk , which has a natural stratification. The strata are labelIed
o

by trecs T E r(n), and the stratum associat.ed to T is iSOlllorphie to Pk(TL in the notation

of (6.3). It follows from Theorelll (6.4) that e(Pk ) is thc inverse of

o n~=l (1 + Pn)~ Ldln ~J.(n/d)Lkrl -1 - Lk P1
hl- e (Pk) =Pl- Lk(L-1)

Lk+1pl + 1- n~=l(l +Pn)~L.dlnJl-(n/d)Lkd

Lk(L-1)

under plethysm.

Thc importancc of thc spaccs pk(n) comes from the following rcsult. of FUltOIl anel

MacPherson.

Proposition (6.9). The §-module FM(X) has a filt1ntian stich that

gr FM (X) ~ F(X) 0 Pk .

Since X{n] is a projective Q-variety (it. has singularities which are quotients of affine

space by a finite group), e (FM (X))(n) equals the §n-equivariallt Bodge polynomial of X(n].

The above proposition shows that e(FM (X)) = e(F (X)) 0 e(Pk), and leads to a practical
algori thnl for the calclllation of the S n-equivariant Bodge llllInbers of X[n] .

On forgetting the action of the symmetrie groups Sn, we recover thc formula of Fulton
and Macpherson for the Poillcare polynomials of FM (X, n), in a form stated by Manin

[16]. On replacing hn by xnIn!, we obtaiIl

00 (Lk+1 1 (1 )Lk)-ll+~xne(X[n])=(l+xr(X)o x+ - +x
L Lk(L-l)
n=l

In this formula, we lnay take the limit L ---7 1 using L'Höpital's rule, obtaining a formula

for thc Euler charaeteristie of FM(X, n):
00

1 + L xnx(X[n]) = (1 + x)x(X) 0 ((k + l)x - k(l + x) 10g(1 + xl) -1.

n=l

o

Thc Olle cl iInensional case ha.s special illterest , since the spaces P1(n) aud P1 (n) are

naturally isomorphie to the moduli spaces Mo,n+1 and MO,n+1; this isomorphism comes

about because thc translations anel dilatat.ions in one diIneusion gcnerat.c thc isotropy

group of thc point 00 E ClP' 1 with respect to thc act.ion of the group PSL(2, C). This
18



identification nlCans that the action of Sn on these spaces is the restriction of an action of

Sn+l. We havc calculated thc §n+l-cquivariant Serre polynomials of these spaces in [6];
in a seql1el to this paper, we calculat.e the §n-equivariant SClTe polynomial of M 1,no

REFERENCES

[1) S. dei Bano Rollill, The motive 0/ some moduli spaces 0/ vector bundles over a cUnJC,

alg-geom/9501013.

[2] C.C. Cadogall, The möbius /unetion and connected graphs, J. Combin. Thcory BIt (1971), 193-200.

[3) V.I. Danilov and A.G. Khovanskii, Newton polyhedra and an algorithm /or eomputing Hodge-Deligne

numbers, Math. USSR Izvestiya, 29 (1987), 279-298.

[4] P. Dcligne, Theorie de Rodge II, Publ. Math. IHES 40 (1971), 5-58.

[5] \V. Fulton and R. MacPhersoll, A compactification 0/ configuration spaecs, Ann. Math., 139 (1994),

183-225.

[6] E. Gctzler, Operads and moduli spaces 0/ genus 0 Riemann sur/aecs, in ~Thc moduli space of curves,n

Progr. Math. 129 (1995).

[7] E. Gctzler anel M. Kaprallov, Modular o]Jcrads, MPIM-Bonll preprint 94/78, dg-ga/940B003.

[8] H. Gillet and C. SouIe, Deseent, motives and K-theory, alg-geom./9507013.

[9] A. Grotbendieck, Reve.tements etales et graupe /ondamentale (SGA 1), Lect. Notes Matb. 224 (1971).

[10] D. Kllutson, "A-rings and the rc.presentntion theory 0/ tllC symmetrie graup, Lect. Notes Math. 308
(1973).

[11] M. Laplaza, Coherenee /or distributivity, Lect. Notes Math. 281 (1972), 29-65.

[12] G.I. Lehrer ,md L. So!olUon, On the action 0/ ihr: symmetrie group on the euhomology 0/ the eomple­

ment 0/ its refleeting hyperplanes, J. Algehra 104 (1986), 410-424.

[13] I.G. Macdonald, (ISynuuetric FunctioIls and Hall Polynomials,n Clarelldon Press, Oxford l 1979.

[14] I.G. Macdonalcl, The Poineare polynomial 0/ asymmetrie produet, Proc. Camb. Phil. Soc. 58 (1962),

563-568.

[15] Yu.I. Manin) Correspondcnees, motives und monoidal tmns/onnations, Mat.h. USSR Shornik 6 (1968),

439-470.

[16] Yu.I. Manin, Generating /unctions in algebraie gcometry and sums over trees, in ~The mocluli spacc

of curvcs," Progr. Mat.h. 129 (1995).

DEPARTMENT OF MATIIE~lATlCS,MIT, CAMBRIDGE MA 02139 USA
E-mail address: getzler~ath.mi t . edu

19


