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Introduction

The basie topologieal invariants for dassifying smooth complex projeetive sur­

faees are the Kodaira dimension 1'\" ehern numbers c~ and C2, and the first Betti

number bl • From these one can compute many other invariants, such M: the Eu­

ler eharaeteristics, both topological and of the structure sheaf, the topological and

geometrie genus, and all the Betti numbers and Hodge numbers. An invariant de­

pending on the algebraie structure of the surfaee is the Pieard number, the rank of

the Neron-Severi group, or subgroup of the seeond integral homology group gener­

ated by algebraie cydes.

Surfaees with I'\, = -00,0,1 have been thoroughly investigated and their ehern

numbers and Betti numbers are well-understood (B-P-V]. For the large remaining

dass with K = 2, surfaces of "general type," relatively little is known about which

ehern numbers and Betti numbers oceur, aside from the famous result due to

Miyaoka [My] and Yau [Y], which states that for these surfaces

and equality holds if and only if the surface is uniformized by the unit ball [Y].

In this paper we foeus on surfaces introduced by Hirzebruch [Hz], whieh are

minimal smooth models X of eertain abelian eoverings X of p2 branched along

eonfigurations of lines r... The branched eoverings X are eompletions over p2 of the

':lnhranched covering over p2 - .c deßned by the canonical map

for some integer n ~ 2. We will call X the Hirzebruch covering associated to r.. and

n. The coverings, see [B-H-H], are also referred to as Kummer coverings. When

.c contains tripie or higher intersection points, X is singular, hut Xitself can often

be realized as a smooth abelian branched covering of a blowup of p2.



Hirzebruch's construction produces many examples of surfaces of general type,

with the advantage that their ehern numbers are easy to calculate in terms of the

simple combioatorics of the lioe configuration and the degree of the covering. In

addition to these formulas, Hirzebruch also gives the Enriques-Kodaira classification

of these surfaces. His results lead hirn to exhibit three examples of surfaces of general

type satisfying ci = 3C2, the extremal case of the Miyaoka-Yau inequality. As yet,

however, there is no simple formula for the first Betti number or the Picarcl number

of these surfaces.

The main result of this paper is an algorithm for computing the first Betti number

of Hirzebruch coverings associated to configurations of reallines. We have developed

a computer implementation of our algorithm and applied it to a large number of

examples.

The study of the first Betti number for branched coverings goes back to work

of Zariski for cyclic coverings [Zal], [Za2]. Arecent extension of his work was

achievecl by Libgober [Lil]. Our basic approach is similar to that of Zariski and

Libgober, in that we focus on the topology of the complement of the branch locus

and the relation between the branched and unbranchecl parts.

In [I] Ishida outlines an algebraic method for computing the first Betti numbers,

which works for any configuration of lines (not necessarily real). The method is

described in a more general setting by Esnault in [Es]. Ishida develops an effective

algorithm for the case when there are at most 12 tripie intersections and none of

higher order, and using this he explicitly computes bI for the three known Hirzebruch

coverings satisfying ci = 3C2. Our computation agrees with his on the example

which is associated to a real line configuration.

Our algorithm has two main steps: the first is to find the first Betti number of

the unbranched part of the covering and the second is to find the nullity of the

intersection matrix of the curves above the brauch locus. It can be shown (see

Proposition 1.6.3) that the difference between these two numbers equals bI •

The first step in the algorithm uses classical methods which depend only on the
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topology of the embedding of the branch locus in p2 and the action of the group

G of covering automorphisms. First, by constructing a fibration, computing its

monodromy (see 111.2, 111.3) and using techniques developed by Zariski and van

Kampen {K] (see also (Cl), we find a presentation for the fundamental group of the

complement of the brauch locus in p2. Then using Fox calculus [Fol] we construct

a presentation matrix for the first homology group H I (X j Z) as a Z[G]-module.

Computing the rank of this group over Z is facilitated by a result of Libgober [Li4].

The second step relles on new techniques which we develop in Chapter 11. Given

a smooth abelian branched covering p : X -4 Y and smooth curves C in the base

space Y with normal crossings and certain other conditions, we give an intersection

formula for the curves in the preimage of C. The formula requires some basic lifting

data for the curves above each irreducible component of C. We show how to find

such data for the branch loci of Hirzebruch coverings(III.4). Computing the rank

of the resulting intersection matrix finishes the algorithm.

As an added bonus the rank of the intersection matrix gives a lower bound for

another interesting invariant of smooth surfaces: the Picard number. This is the

rank of the Neron-Severi group, i.e., the image of the divisors on X in H2(Xj Z).

The Picard number has a natural upper bound, the Hodge number hl,l, which

can be computed from the first Betti number and the Chern numbers. Sometimes

the two bounds agree, allowing us to find the Picard number exactly (see Chapter

V for examples).

This paper is organised as follows. Chapter I -contains background material on

branchecl coverings. The key result of this paper is in Chapter 11, which is concerned

with intersection formulas for curves on smooth abelian covering surfaces. These

are applied in Chapter III to give techniques for an algorithm to compute the first

Betti number of Hirzebruch coverings associated to configurations of reallines. The

actual steps ofthe algorithm are set down in Chapter IV. The final Chapter contains

specific examples of Hirzebruch coverings. The numerical invariants were calculated

using a computer program implementing the algorithm of Chapter IV.

3



It has recently been shown in [Ho], in answer to a question posed by Sarnak [Sa],

that the first Betti number of Hirzebruch surfaces is "polynomial periodic". That

is, if Xn is the branched covering associated to

then there exist polynomials Pb'" ,PN so that

whenever n =i(modN).

Put tagether with Zuo's results in [Zu], one sees that the polynomials Pi must all

be of degree equal to one minus the maximum number of lines coming together.

Furthermore, the polynomials only differ by at most a constant.

This suggests that the sequence of polynomials thus associated to L could be use~

ful as isotopy invariants of the embedding of L in p2. In fact, the results mentioned

above hold in slightly more generality than just for lines in p2. It seems possible

that polynomial periodicity holds for arbitrary hypersurfaces on a smooth variety.

The current problem is that the polynomials, even for the case of lines in p2 are

difficult to compute.

This paper is based on my Ph.D. thesis at Brown Urnversity. I would like to thank

Bill Fulton, who introduced me to the subject of branched coverings, my advisor

Alan Landman, Anatoly Libgober, Curt McMullen and Dave Roberts for helpful

comments and suggestions. Final editing of this paper and some new computations

of examples were carried out at the Max-Planck-Institute in Bonn. During my stay

there, this paper has benefited greatly from helpful conversations with Prof. F.

Hirzebruch and others as weH as from the exceHent computer facilities.
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Chapter I. Preliminaries

In this chapter we discuss some basic properties of branched coverings that are

applied in the later chapters. The main objects we deal with in this thesis are

abelian branched coverings of the complex projective plane and its blowups. Our

emphasis is on the topology and combinatorics of these coverings. Because most

related expositions on hranched coverings are either algebraic and don't directly

describe the basic topology, or are purely topological and don't deal specifically

with branched coverings of complex varieties, some results which are essentially

well known are restated and reproven here.

Section 1.1 contains adefinition of branched coverings of smooth varieties and an

explanation of how to construct new branched coverings from old ones by blowing

up the base space and pulling back. 1.2 deals with basic topological properties of

branched coverings, the unbranched part of the covering and fundamental groups.

The most important result ·of this section is Proposition 1.2.11: a homotopy lift­

ing theorem for branched coverings. This result is applied in III.3 to find crucial

combinatorial data about the preimage of the brauch locus.

In 1.3 we describe the stabilizer and inertia subgroups of the Galois group associ­

ated to subvarieties of the base space of regular coverings. These are the main tools

for studying the geometry of the branched covering in terms of the geometry of the

base space. In 1.4 we show how to find generators for these subgroups. We give

a criterion for the existence of singularities on the branched covering of a smooth

surface in terms of the inertia and stabilizer subgroups in 1.5. Finally, in 1.6, we dis­

cuss some basic properties of the first Betti number and Picard number of a smooth

surface. The key result, Proposition 1.6.3, states that the difference between the

first Betti number of the branched and unbranched parts of a covering equals the

nullity of the intersection matrix of curves above the brauch locus (assuming that

the brauch curves support an ample divisor.)
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Most of the material in this section is weIl known and cau be found in the liter­

ature. Possible exceptions are Proposition 1.2.11 and Proposition 1.6.3. The latter

was communicated to me by Anatoly Libgober and Alan Landman. Some general

sources on branched coverings of algebraic varieties are [A], [Gr2], [Na], [Se] and

Chapter XIII and its appendix in [Za4]. We also use [Mu] and [Ha] for basic re­

sults from algebraic geometry. In describing the topology of branchecl coverings we

use some of Fox's formulations [Fo3] and, for facts about topological unbranched

coverings, we often refer to [Ma].

Before beginning, here is sorne basic terminology. In this thesis a variety 18

irreducible and complex projectivej curve" and "ur/ace" are varieties of dimensions

1 and 2. Hyper"urface" are 8ubvarieties of codimension 1. Varietie8 are given the

Jtrong, or analytic, topology.

1.1 Branched coverings of smooth varieties

This section gives the algebreo-geometric definition of branched coverings and

associated definitions and results.

1.1.1 Definition. A branched covering p : X -+ Y is a finite surjective morphism

between normal varieties. Let G be the group of isomorphisms a : X -+ X so that

p(a(x)) = p(x) for all x in X. G is called the group of covering automorphi"ms of

the covering. H G acts transitivelyon all fibers of p : X -+ Y, then the covering

is called Galoi.! or regular. In this case G is also referred to as the Galoi.! group of

the covering. An abelian covering is a branched covering which is Galois and has

abelian Galois group. A branched covering p : X -+ Y is called smooth if X is

srnooth.

1.1.2 Remark. For any branched covering

p:X-+Y

there is a finite extension of function fields

p. : C(Y) '-t C(X)
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given by p·(f) = f 0 p for f E C(Y).

Conversely, given a smooth variety Y with function field K = C(Y) and a finite

field extension

there is a branched covering (unique up to an isomorphism commuting with the

covering maps)

p:X-tY

so that p. = i.

The surface X is the normalization (see [Ha], p. 23, for definition) of Y in L and

p is its projection to Y.

1.1.3 Definition. Let p : X -t Y be a branched covering and let u : Y -+ Y be

abirational morphism. This induces an isomorphism u· : C(Y) -+ C(Y). Let

p: X -+ Y be the branched covering associated to the field extension

C(Y) (tT=:)· C(Y) ~ C(X).

We call p : X -+ Y the pullback branched c01Jering of the branched covering p :

X -t Y over u : Y -t Y) since it is the minimal branched covering of Y making the

following diagram commute:
......

X tT
IX

;J pI
...... tT
Y I Y.

1.2 The topology of branched coverings

In this section we give a topological definition of branched coverings and give some

. properties. We conclude by showing how the algebraic and topological definitions

given in LI and this section are related.

Throughout this section assume that all topological spaces are locally path con­

nected) semi-Iocally simply connected and Hausdorff and all maps between topo­

logical spaces are continuous.
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We start with a topological definition of finite branched coverings following Fox

[Fo3].

1.2.1 Definition. Let p : X -+ Y be a surjective map between topological spaces

and suppose that the following properties hold:

(1) the topology on X is generated by connected components of preimages of

open sets in Y;

(2) there is a dense open subset y u c Y so that X" = p-l(y u ) ia connected

and dense in X and for pu = plxu

is a finite unbranched coveringj

(3) the topology on Y has a basis of open sets whose intersections with Y" are

path connected (in other words, yu is locally~connected in Y);

(4) for any point p E Y, there is a fundamental system of neighborhoods V of P

so that each component of p-l(V) contains a single point in the fiber p-l(p)j

(5) X" is locally-connected in X.

Then p : X -+ Y is called a finite topological branched covering over Y. H Y" is

chosen to be maximal, then B = Y - yu is called the branch loc'U3 of the covering

and pU : XU ~ Y" is called the unbranched part of the covering. A topological

covering automorphi3m is a homeomorphism of X to itself preserving fibers of p.

Note that if p : X -+ Y is a finite topological branched covering U is an open

subset of Y and V C p-l(U) is a connected component, then plv : V ~ U is also

a. finite topological branched covering.

1.2.2 LEMMA. For any p : X -+ Y satisfying properties (1), (2), (3) and (4) o[

branched coverings, Y has a basis o[ open sets V so that, tor any connected com­

po?ent U oE p-l(V), p(U) = V and the connected components o[ p-l(V) fonn a

basis for the topology oE X.
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Proof. By property (3) we can choose a basis of open sets V for Y so that V nY"

are path connected for all V. Property (1) implies that the connected components

of p-I(V) form a basis for the topology of X.

Take any connected component U of p-I (V). Since, by property (2), X" is

dense in X, there is a point ql in p(U n X"). Let PI = p(ql). Take any P'J in

V n Y". Then there is a path , from PI to 1>2 in V n yu. By property (2) and the

path lifting theorem for unbranched coverings ,lifts to any connected component

of p-I(V n Y"). Since V n Y" is contained in V, any connected component of

p-I(V n Y") must be either contained in U or disjoint from U. Since ql E U, there

is a path lift of , with endpoint ql which is contained in U. Therefore, there is a

point q2 in U so that p(q2) = P2. Thus, p(U n XU) maps onto V n Y". Since Y" is

dense in Y, p(U) contains a dense subset of V.

To show that p(U) = V, take any point P E V. For any neighborhood Vp of P in

V, p-I(Vp ) has a connected component Up which intersects U. Therefore, Up must

be contained U. By property (4) Up must contain at least one point in p-I(p). I

1.2.3 COROLLARY. Any map p : X ~ Y satisfying properties (1), (2), (3) and (4)

oE branched coverings is open and proper.

Proof. By property (1) and Lemma 1.2.2 there is a basis of open sets V for Y so

that the connected components U of p-I (V) form a basis of open sets for X and

p(U) = Y. Therefore, p is open.

By properties (2) and (4) Y has a basis of open sets V so that the number of

connected components of p-I (Y) is finite. To see that pis proper, take any compact

subset F of Y. We need to show that p-I(F) is compact. By Lemma 1.2.2 for any

open covering of p-I(F) there is a refinernent {Uo } so that for each a there is an

open set V in Y so that Uo is a connected component of p-I(V) and p(Uo ) = Y.

Thus, we may assume that for sorne open covering {Yp} of F, {Ucr } consists of all

the connected components of p-I (Vp) where Vp range over sets in this covering.

The {Vp} form an open covering of F so there is a finite subcovering. By taking
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the connected components of the preimages of these sets we get a finite subcovering

of p-l(F). I

If we remove property (5) from Definition 1.2.1, topological branched coverings

have the following functorial property. This lemma will be used later in Proposition

1.2.11, to prove the homotopy lifting theorem for branched coverings.

1.2.4 LEMMA. Let p : X --t Y be a continuous surjective map between topological

spaces satisfying properties (1), (2), (3) and (4) of branched coverings, witb branch

locus B and let

f:Z-+Y

be a continuous map from aspace Z so that J( Z) - B is dense and locally-connected

in feZ). Let X z be the topological fiber product of Z and X over Y and pz the

projection ofXz on Z. Then PZ satisnes properties (1), (2), (3) and (4) of brancbed

covenngs.

Proof. First, recall that

Xz = {(x,z) E X x Zlp(x) = fez)}.

Property (3) for pz follows from the hypothesis.

To prove (1), recall also that the topology on Xz is the one induced by the

product topology on X x Z. Thus, given auy point (x,z) E Xz and neighborhood

U', there is a smaller neighborhood U C U' so that U is the intersection of V x W

with Xz, where V is a neighborhood of x in X and W is a neighborhood of z in

Z. Since, by Corollary 1.2.3, p is an open map, we can assume that p(V) is open.

FUrtherrnore, since

(V x W)nXz = (V x W')nXz ,

where W' is the largest subspace of W so that f(W') C p(V), we can asslllIle

without lass of generality that f(W) C p(V) and pz(U) = W.
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Finally, since the topology on X is generated by connected components of preim­

ages of open sets in Y, we can assume V is a connected component of

p-l(p(V)).

Let VI, V2 , •• • , VA: be the connected components of p-I(p(V)). Then p:zI(W) is

contained in the disjoint union of intersections of VI x W, ... , VA: X W with X z. Since

U ia connected and equals one of these sets, U fiUSt be a connected component of

p:zI(W). This proves property (1) for pz.

By property (4) for p, by choosing V small enough we can assume each of the

connected components V}, . .. , VA: contains only one point in the fiber p-I (x). Thus,

pZI(W) is a disjoint union of open sets each containing a single point in the fiber

p-I(z). This proves property (4) for pz.

To prove property (2) we need to show that pz restricted to Xz n (XU x Z) is an

unbranehed covering. For this it suffiees to show that pz is a loeal homeomorprusm.

Let (x, z) be any point and U a neighborhood in Xz n (XU x Z). Assume without

loss of generality that U is the intersection X z n (V x Z) where V is an open set in

X and p is a homeomorphism when restricted to V. Then pz is a homeomorphism

when restricted to U. I

In his paper [Fo3] , Fox shows that unbranched eoverings can be eanonically

completed to branched coverings.

1.2.5 THEOREM. Given a finite unbrancbed covering

with X U connected, and an imbedding y u
C-..-J. Y whose image is dense, there is a

unique brancbed covering in the topological sense

p:X-+Y

wbose unbrancbed part is pU : XU -+ yu.

Note that without property (3) the uniqueness would not hold.
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Let us recall some facts about topological unbranched coverings. Let yu be a

connected, locally pathwise connected, semi-Iocally simply connected space. Then

there is a bijection between unbranched coverings of yu and conjugacy classes of

subgroups of 1rl (yu , y) which takes pU : X U
--. yu to the conjugacy dass of the

subgroup P.(1rl(XU, x)) in 1rl(YU,y) ([Mal, Theorem 10.2, p. 175). The covering

is regular if and only if p.(1rl (XU, x)) is anormal subgroup of 1rl (Yu, y) ([Ma],

Lemma 8.1, p. 164.) In trus case there is a canonical surjective map

where G is the group of covering automorphisms. Under this map a loop 'Y E

1rl(YU, y) goes to the unique covering automorphism taking any point x E p-l(y)

to the endpoint of the lift of 'Y at x ([Ma], Theorem 7.2, p. 162.) The kernel of the

map tP equals P:(11'"l(XU, x)) ([Ma], Corollary 7.4, p. 163.) It follows that abelian

regular unbranched coverings lie in one-to-one correspondence with surjective maps

where G is an abelian group, since tf; must factor through the Hurewicz map

taking loops to their homology dasses, whose kernel is the commutator subgroup

of 11'"1(Y U , y).

1.2.6 Definition. We call ~ : H1(yu, Z) --+ G the defining map of the unbranched

covering and canonically associated branchecl covering.

The next two lemmas hold generally for topological branched coverings.

1.2.7 LEMMA. Hp: X --+ Y is a topological brancbed covering witb unbrancbed

part pU: XU --+ yu, then the natural map !rom the group oE covering automor­

pmsms oE p to tbat oE pU, given by restrietion, is an isomorphism onto. .

Proof. Let G be the group of topological configurations of pU. Any 9 E G extends

to a covering automorphism on X as follows. Let p E Y and q E p-l(p). Let V be
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a neighborhood of p in Y so that the connected components of p-l(V) each contain

a single point in p-l(p). Let W be the connected component of p-l(V) containing

q whose intersection with XU is connected. Let Wg be the connected component of

p-l(V) containing g(WnXU) and define g(q) to be the intersection of Wg with the

fiber p-l (p).

By this definition, the extension of 9 is fiber preserving. To see that the extension

is a homeomorphism, it suffices to show that 9 is an open map at each point q EX.

This follows from Corollary 1.2.3. I

1.2.8 COROLLARY. If tbe group G oE covering automorpmsms oE a topological

brancbed covering p : X -4 Y acts transitivelyon Ebers in the unbrancbed part,

tben it acts transitively on aJl Ebers.

Proof. Let p be any point in Y. To see that G acts transitivelyon the fiber p-l(p),

let V be a neighborhood of p so that the connected components of p-l (V) each

contain a single point in the fiber p-l (p). Since G acts transitivelyon fibers in the

unbranched part XU of the covering, which is dense in X, G must act transitively

on the connected components of p-l(V). Since each of these components contains a

single point in the fiber p-l (p), G must also act transitivelyon the fiber p-l (p). I

We conclude this section with a result analogous to the homotopy lifting theorem

for unbranched coverings.

1.2.9 Definition. Given a topological branched covering p : X -4 Y and a map

f : r -+ Y, a continuous map

h : {O, 1] x r -4 Y,

such that (setting ht(r) = h(t,r)) ho(,) = !(,) and ht(r) E Y - B for all t > 0 is

called a homotopy of r off B.

1.2.10 Definition. Let f : r -4 Y be a continuous map and let

f':r-4X

13



be any map so that p(/'(,)) = 1(,) for all, in r. We call I' a lifting map for f.

Recall the following basic result from the theory of unbranched coverings. (See

[Mal, Theorem 5.1, p. 156.) Let f : r --+ Y be a map between topological spaces

(recall they must be locally connected) and suppose p : X --+ Y is a topological

unbranched covering. H

both considered as subgroups of 1l'1 (Y, *), then there is a lifting I' : r --+ X. We

generalize this to branched coverings in the following proposition.

1.2.11 PROPOSITION. Let 1 : r --+ Y be a continuous map from any connected

space r into Y and suppose tbere exists a homotopy

h : [0, 1] x r --+ y

of r off B so that

as subgroups of 1l'1 (yu, *). Then there is a continuous lifting map

I' : r --+ X

for f.

Before proving this we prove a lemma.

1.2.12 LEMMA. Let Z be a connected space and f : Z --+ Y be any map so tbat

f(Z) - B is locally connected in I(Z). Suppose there is a dense open connected

subspace U C Z whicb is locally connected in Z so that tbe restrietion of 1 to U

has a lift I' : U --+ X. Then we can extend /' to a lifting on all of Z.

Proof. Consider the topological fiber product X z = X Xy Z. Then by Lemma

1.2.4 the projection pz : X z --+ Z satisfies properties (1),(2),(3) and (4) ofbranched

covenngs.
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Let Z' be the closure of the preimage U' of the graph of f' in X z . We claim that

pz restricted to Z' is a homeomorphism onto Z. Since, by Proposition 1.2.3, pz is

an proper mapping, it suffices to show that pz is a bijection from Z' to Z. Since

pz sends closed sets to closed sets pz(Z') contains the closure of U in Z, which is

all of Z, so pz is onto. To see that it is one- to-one, take any p E Z. By Lemma.

1.2.2, there is a connected open neighborhood Vp of p in Z so that any connected

component of pZ1(Vp) maps onto Vp and contains a single point in the fiber pZ1(p).

Suppose there are two points q1 and q2 in p-l (p) n Z'. Then there are two distinct

connected components W1 and W2 in pZl(Vp) which intersect Z'. But, since U' is

dense in Z', W1 and W2 must also intersect U'. This contradicts the fact that pz

is one-to-one on U'.

Now, by composing the inverse of pz restricted to Z' with projection to X we

obtain a lift of f on all of Z. I

Proof of Proposition 1.2.11. We have

h.7rl«0,1] x r,*) = (h1).71"1(r,*)

c (pU ).71"1 (X", *),

so there is a lifting map

h' : (0,1] x r -+ x u

so that p(h'(t,I)) = h(t,l) for t E (0,1] and 1 E r.
Let Z = [0,1] x r, U = (0,1] x r and f = h. Then the rest follows from Lemma

1.2.12. I

w~ now end this section by describing the relation between topological and alge­

braic branched coverings.

The following theorems were proven by Zariski in the 1930's.

1.2.13 THEOREM. Let p : X -+ Y be a finite surjective morphism between normal

varieties. Then, considered as a map between topological spaces, p is a topological

branched covering.
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1.2.14 THEOREM. Tbe brancb locus oE a branched covering p : X ~ Y is eitber

empty or a su bvariety oE Y oE pure codimension one.

The properties in Definition 1.2.1 follow from the "fundamental openness theo­

rem" (see for exampie [Mu], p. 43) and the unibranch property of normal surface,

sometimes known as Zariski's main theorem. Zariski's paper on the "purity of the

branch locus" [Za3] gives a proof of Theorem 1.2.14.

Property (5) of topological branched coverings is analogous to the condition that

branched coverings of varieties must be normal.

The following theorem is analogous to Lemma 1.2.5.

1.2.15 TH EOREM. Let Y be anormal variety and B a finite umon oE proper

subvariety of pure codimension one. Given a topological unbrancbed covering

pU : XU ~ Y - B, with X U connected, there erists an irreducible normal va­

riety X witb a finite surjective morphism p : X ~ Y and a bomeomorphism

s : X U~ p-l(y - B) such that p(x) = pU(s(x)) for a11 x E X U.

This is a generalization of the Riemann-Enriques Existence Theorem [En], proved

by Grauert and Remmert [G-R]. See Grothendieck's work [Grl] for further gen­

eralizations. The statement given here is taken from Serre's introduction to his

survey [Se]. Since normalizations are unique, there is only one branched covering

p : X ~ Y over Y associated to an unbranched covering pU : X U ~ yu, where yu

is the complement of a finite union of subvarieties of codimension 1 in Y.

1.2.16 LEMMA. Any topological covering automorphism of p : X ~ Y is an iso­

morphism Erom X to itself considered aS a variety.

Proof. Let q be a topological eovering automorphism. Sinee p is a Ioeal isomor­

phism on the unbranehed part X U
, q is an isomorphism from X U to itself. The fact

that q extends to an isomorphism of X to itself follows from a weaker version of

the Theorem 1.2.15. I
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1.3 Inertia and stabilizer subgroups

In order to translate from eombinatorial data of branehed eoverings to geometrie

data about the eovering spaee it is useful to study the aetions of special subgroups

of the group of eovering automorphisms. Let p : X --+ Y be any branehed eovering

with braneh loeus B and with group of eovering automorphisms G.

1.3.1 Definition. For any subvariety W of X, the subgroup Iw of G defined by

Iw = {g E G I g(x) = x for all x E W}

is ealled the inertia ~ub9roup of W and the subgroup defined by

Hw = {g E G g( x) E W for all x E W}

is ealled the Jtabilizer ~ubgroup of W.

1.3.2 Remark. If the covering is regular, then the inertia subgroups (respectively,

stabilizer subgroups) for different components of p-l (Z), where Z is a subvariety of

Y, are conjugate. If the covering is also abelian, then conjugate subgroups are equal

and we ean define Iz and Hz for subvarieties of Y to be the inertia and stabilizer

subgroup for any irreducible component of p-l(Z). In this case a subvariety Z of

X is in the branch loeus if and only if Iz is nontrivial.

Hereafter, Msume p : X --+ Y is abelian.

1.3.3 LEMMA. For any subvariety Z in Y, Iz is the subgroup oE G generated by

elements oE Iw for all irreducible components W of B containing V.

Proof. Let S be the subgroup of G generated by I w for all hypersurfaces W

containing V, where WeB. Whenever Z is eontained in W, anyautomorphism

whieh fixes all points in p-l(W) roust fix points in p-l(Z), so we have Iw C Iz

and hence S C I z .

Conversely, suppose we take the quotient of the covering space X by S. The

quotient eovering

p:X/S--+Y
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is a branchecl covering and GIS equals its group of covering automorphisms. The

new inertia subgroup Iw for W is the image of the original inertia subgroup Iw

in GIS for any subvariety W of Y. Since Iw is trivial for all hypersurfaces W of

Y with V C W, X IS is not branched over any hypersurface W containing Z. By

Zariski's "purity of the brauch locus," this implies that XI S is not branched over Z

itself and therefore the image of Iz in GIS is trivial. In other words, Iz is contained

in S. I

1.4 Generators ror inertia and stabilizer subgroups

In this section we use some simple loeal topology to find special elements oI the

inertia and stabilizer subgroups of a curve C in the branch locus of an abelian

branched covering over a smooth surface Y. These generate Ie and He when C is

simply connected.

First, we study the more general case when Y can have any dimension.

1.4.1 Definition. Let B be a finite union of codimension-1 subvarieties of Y and let

V be any irreducible component of B. For any smooth point p oI B contained in

V, let D be the tmit complex disk and let

j:D'-+Y

be an analytic embedding intersecting B transversally at p with j(O) = p. Note

that for fixed p this is weIl defined up to homotopy. Let J-lp be the path defined by

(} 1-+ j(e i8 ), for 0 ~ (} :::; 211'".

We will call J-lp the po~itively-orientedmeridianal loop, or just pOJitive loop around

V at p.

1.4.2 PROPOSITION. Any two positive loops J-lp and J-lq around an irreducible com­

ponent V oE B at smooth points p and q oE B on V are bomologica1ly equivalent in

Y-B.

Proof. For the case p = q see Definition 1.4.1. Assume P 1= q. Let E be the singular

points oI B and let 1 be a path from p to q on V - E. (One exists since E is a proper
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subvariety of V, hence codimension one in an irreducible variety, so its complement

is path connected.) Since V - E is a smooth submanifold of B and I is contained

in V - E, , has a tubular neighborhood T(,) in Y. That is, there is a (real disk

bundle) T(,) -+ , and an embedding T(I) c-....+ Y so that the zero section maps to

'Y, the rest lies in in Y - B and the fibers over the endpoints p and q of'Y equal the

loops Jlp and Jlq. The boundary of the image of the SI bundle sitting inside the

image of T('Y) equals the difference between Jlp and Jlq. I

We will hereafter denote by Jlv the dass in H l (Y - B; Z) of a positively-oriented

meridianalloop around V.

The following is a standard fact about topological unbranched covering (see, for

example, [Mal, Proposition II.1, p. 177).

1.4.3 PROPOSITION. Let p : X -+ Y be any topological unbranched covering, V C

Y a connected subset and W a connected component oEp-l(V). Then the restrietion

oE p. to W is an unbrancbed covering map and tor tbe inc1usion map i : V c-....+ Y

and any w E W we have

botb considered as subgroups o{ 7rl (V, p(w)).

1.4.4 COROLLARY. H V c Y is any bypersurface not contained in the brancb locus

B, then tbe stabilizer subgroup Hv equals

4>(i. H1(V - Bj Z))

wbere i. is induced by the inc1usion i : V - B ~ Y - B and 4> : H1(Y - B; Z) -+ G

is tbe defining map {or the covering.

Proof. Let 1jJ : 7rl (Y - B, v) -+ G be the defining map for the covering (taking v to

be in V - B). Then tf; = 4> 0 h, where h is the Hurewicz map.

Let W be any irreducible component of p-l(V). We need to show that the kernel

of 1jJ 0 i. equals 7rl (W - p-l(B), *). Since tf; is the defining map for p : X -+ Y,
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the kernel of'ljJ equals P.(1rl(X - p-l(B), w), where we may take the basepoint w

to be in W - p-l (B) intersected with the fiber p-l (v). Thus, the kernel of 4> 0 i.

equals i;l(p.(7rl (X - p-l(B), w))), which equals 7rl(W - p-l(B), w), by Proposition

1.4.3. I

1.4.5 PROPOSITION. Given any irreducible component 'V C B, Iv is generated by

gv = cP(p,v).

Proof. By Lemma 1.3.3, if p E V - (B - V), then Ip == Iv. For a small enough

ball U centered at p, 7rl (U - B) is generated by a loop whose image under the

Hurewicz map is homologically equivalent to Jl v. Thus, gV generates the subgroup

of G wmch stabilizes U - B. Since U can be taken to be arbitrarily small and G

acts continuously, I p roust be generated by gv. I

1.4.6 PROPOSITION. For any point p E B, Ip is generated by gV for all irreducible

components V in B passing througb p.

Proof. By Lemma 1.3.3, Ip is generated by elements of Iv where V ranges over

all irredueible components of B containing p. The rest follows from Proposition

1.4.5. I

We now eoncentrate on the case that Y is a smooth surface. Let C C Y be a

eurve not eontained in the brauch locus B. Let p E C nB and let U C Y be a small

ball around p in Y so that p is the only singular ·point on U n(C U B). We will find

special elements of He given as the images of the composition of maps

where j. is induced by the inclusion j : une - p -4 C - B.

Consider au n C, where au, the boundary of U, is isomorphie to a 3-sphere 8 3
•

Then Cnau is a finite union of homeomorphic images of the circ1e 8 1 oriented by the

eomplex structure, so the inc1usion of Cnau in au clefines an oriented link Le with

components K l , • •• ,Kt • These eomponents lie in one-tü-one correspondence with
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connected components of (U - p) n C. The dosures bl, . .. , bt of these components

are called the branches of C at p.

The following theorem can be found in [Br], Theorem 14, pp. 440-441.

1.4.7 THEOREM. Let C and D be two analytic curves (not necessarily irreducible)

defined in a complex clisk U witb origin p, and assume p is the only singular point

oE Cu D. Let Lc and LD be tbe intersections oE C and D with 8U thougbt oE as

oriented links on a 3-spbere. Then the intersection multiplicity [p( C, D) equals the

linking number lk(Lc, LD).

1.4.8 COROLLARY. The image oE the composition of maps

H1(U n (C - B); Z) Ä H1(C - B; Z) .s H1(Y - B; Z) .!.. G

is generated by elements oE G oE tbe form

where b ranges over branches oE C at p and tbe sum is over curves D in B.

Proof. We have a commutative diagram

H1(U n (e - B); Z)

nl
H1(U n (Y - B); Z)

where all maps are induced by indusion. We will find the image of ß 0 a. Let LB

be the oriented link in au given by au n B. Then the pair

(8U n (e - B),8U n (Y - B)) = (Lc ,8U - L B )

is adeformation retract of

(U n (e - B),U n (Y - B))
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(see [Mi], Theorem 2.10, p. 18). Therefore, we have a commutative diagrarn

HI(Le; Z)

1
HI(U n (C - B); Z)) ---+1 HI (U n (Y - B); Z)

where all maps are induced by inclusions and vertical maps are isomorphisms. We

will find the image of ß 0 a.

Let K), ... ,K t be the oriented connected components of La. For each i, the

image of K t in H1(aU - L B; Z) equals, by definition of linking number (see [R], p.

132),

L lk(Kt,LD)JLD.
DcBnU

By Theorem 1.4.7, ß 0 a(Kt ) equals

Applying the map 4J we have

(ljJ 0 ß0 o)(Kd = L Ip(bt , D)9D.
DeB

Since ](1, ... ,Kt generate HI (Lc ;Z), the elements described above generate their

image under 4J 0 ß 0 a. I

1.4.9 PROPOSITION. If C is a curve in Y not in tbe branch locus B, then He

contams tbe elements oE G of the form

wbere p ranges over points in C nB and b ranges over brancbes of C at p. H C is

smooth and rational, then tbese elements generate He.

Proof. By Corollary 1.4.8, the elements (*) are in the image of

ljJ(i.(HI(C - B;Z)).
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By Corollary 1.4.4, they are elements of He. H C is smooth and rational then

H} (C - Bj Z) is generated by the images of the maps

induced by inclusions, where Up are small balls around points p E CnB. Therefore,

the elements of the form (*) generate He. I

1.4.10 PROPOSITION. H C is a curve in B, then He contains 9c and elements in

G ofthe form

"E Ip(b, D)gv,
VC(B-e)

where p ranges over points in C n (B - C) and b ranges over brancbes of C at p. H

C is smooth and rational then these generate He.

Proof. Consider the covering
X/le

pI
y

obtained by taking the quotient of X by the action of Ie. The new branch locus B no

longer contains C and, by Proposition 1.4.9, the stabilizer subgroup He associated

to C in the new covering contains elements in G of the form

"E Ip(b, D)gv'
VC(B-e)

where p ranges over points in C n (B - C), b ranges over branches of C at p and

gD is the image of 9v under the quotient map

G -+ G/le.

These generate He if Cis smooth and rational. Since He is the image of He under

the quotient map and ge generates Je by Proposition 1.4.5, the result follows. I

Finally, we describe the effect of pullbacks of branched coverings of Y over blowups

of Y on the inertia and stabilizer subgroups.
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1.4.11 PROPOSITION. Let (1 : Y- Y be the blowup ofY at a point p E B and let

p: X ~ Y be tbe pullback covering over Y of p : X ~ Y. Tben the brancb locus

of tbe new covering p consists of the proper transforms 8 of curves C in B and

possibly the exceptional set Ep • The inertia and stabilizer subgroups of eacb 8 are

the same as tbose for C. Tbe inertia subgroup for Ep is generated by

wbere m p ( C) is tbe rnultiplicity of C at p and the surn is taken over all curves C in

B containing p. Tbe stabilizer subgroup is generated by ffip('C)ge, where C ranges

over a1l curves in B passing through p.

Proof. The coverings p : X ~ Y and p : X ~ Y agree on their unbranched part

and hence so does the Galois group action.

Let C be any curve in Y, let Co = C - B - C - Sing(C) and let q E Co be chosen

generically. Then, by Lemma 1.3.3, I q = I e . Let qE Y be a point so that (1(q) = q.

Let Cl be the connected component of p-I(CO) containing q. The restriction pe

of p to Cl is a branched covering, since it is a finite morphism and it has Galois

group G/ I e. Since q was chosen generically, pe is unbranched near q. Therefore,

the inertia subgroup of qwith respect to pe is trivial and hence must be I e with

respect to p. Thus, the inertia subgroup Ja equals the inertia subgroup Ie. It

follows that only proper transforms of curves in B and possibly the exceptional

curve, lie in the branch locus of pby Remark 1.3.2.

Let

rP : HI(Y - B; Z) ~ G

be the defining map for p, let B be the total transform of curves in B, and

be the defining map for p, where B is the total transfonn of curves in B. Then

;j = rP 0 (1., where
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is the isomorphism induced by u.

By Corollary 1.4.4, we know He equals

where i : C- fj -4 Y - fj is the inclusion map. This equals

where j : C - B -t Y - B is inclusion and the latter equals He, also by Corollary

1.4.4. Therefore, He equals He.

We now find the stabilizer subgroup of the exceptional set Ep • Let CI, ... ,Ct be

curves in B passing through p. Let 9 be a loop on Y around Ep , with image 'Y in

Y and let /I, .. . ,;t be loops on Y around CI, ... ,Ct, respeetively. We ean assume

that , lies on some !ioe L on Y intersecting Ep at a general point. Projeeting this

line to Y, we obtain a new Hne L passing through p in general position with respeet

to the brauch eurves near p. By assumption , lies on L.

Let U be a neighborhood of p isomorphie to a disk with center p. Assume U is

small enough so that the interseetions of brauch eurves Cl, ... ,Ct with the boundary

au are equal to Lp,Ct , ••• ,Lp,ce and au n L is homotopie to ,. Then in au l , is

25



homotopie to
t t

Llk(Lp,c"i)i.. = LIp(C.. ,C)i..
..=1 ..=1

t

= Lmp(C.. ),...
..=1

The last equality comes from the fact that L is in general position with respect to

the Ci. By Proposition 1.4.5, it follows that IEp is generated by

where the sum is over eurves C in B passing through p.

Applying Corollary 1.4.10 to Ep , which is isomorphie to pI and is simply eon­

neeted, HEp is generated by

where C ranges over curves in B passing through p. I

1.5 Criterion for the smoothness of coverings

In this section we give a eriterion for an abelian eovering p : X ~ Y over a

smooth surface to be smooth in terms of conditions on the branch locus and the

inertia subgroups assoeiated to its irreducible components. Assume that the curves

in the branch loeus B are smooth and intersect in normal crossings. Given any

branched covering one can construct one satisfying this hypothesis by taking a

sequence of pullback eoverings over blowups of the singularities in the branch loeus.

1.5.1 PROPOSITION. The covering surface X is smootb iE and only iE whenever two

curves C and D in tbe branch locus intersect, tbe inertia subgroups Ic and ID

interseet only in the identity element.

Proof. To study smoothness we need to look loeally. Take any p E Y. If p is

not in the branch loeus, then for any q in the fiber p-l (p), p is locally an analytic

isomorphism near q. Since, in particular, Y is smooth at p, q must also be a smooth

point of X.

26



We will now assume pis a point in B. Let U be a small ball around p isomorphie

to a eomplex disk, so that, for any two distinet points qI and q2 in p-1(p), the

eonnected eomponents VI and V2 of p-1 (U) eontaining q1 and q2 don't interseet.

(See property (4) of Definition I.2.1. )

Suppose p lies on a single irreducible eomponent C of B. By ehoosing U smaller

if neeessary, we ean find eomplex coordinates x and y on U so that U nB is given

by the equation x = O. For any q in p-1(p), let Vq be the eonneeted eomponent

of p-1(U). Then the restrietion of p to Vq is a branehed eovering over U branehed

along U n B.

The fundamental group of U - B is isomorphie to Z, so Vq must be a eyelie

branched eovering of U branehed along B. By uniqueness of branehed eoverings,

Vq must also be isomorphie to a eomplex disk and p restrieted to Vq must be of the

form

Suppose p is a point on the interseetion of two eurves C and D in B. We will

show that any point q in p-1 (p) is smooth if and only if I c n I D eontains only the

identity element.

Again, take U small enough so that U n B equals U n (C UD). Choose eomplex

coordinates x and y on U so that une is given by the equation x = 0 and unD

by y = o..
Let Vq be the eonneeted eomponent of p-I(U) eontaining q. Sinee the restrietion

pq of p to Vq is a branched covering (by the remark after Definition 1.2.1) the

isomorphism dass of Vq is determined by the exact sequenee

o-+ 11'"1 (Vq - p-1 (B)) ~ 7r1 (U - B) !.t Gq -+ 0,

where Gq equals eovering automorphisms defined on Vq . From Proposition 1.4.3 it

follows that one ean consider Gq as the subgroup of G generated by 9c and 9D and,

by Proposition 1.3.3, it equals [p.
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Let r, s, t be nonnegative integers so that

rgC + sgD = 0 and tgD = 0

generate the relations in Gq• Since Gq is finite, r, t > O. We can also assume without

loss of generality that s < t.

The numbers r and t are uniquely determined by the above and, if we assume

also that s is minimal, then s is also determined. Note that s = 0 if and only if

Ie n ID = (0).

Now q is a smooth point of X if and only if Vq is isomorphie to a complex

disko (Recall that by Definition 1.2.1 the topology on X, in this case the complex

topology, is generated by components of preimages of open sets in Y.) Thus, we

need to classify all branched coverings of the complex disk to itself branched along

x = 0 and y = O.

All analytic maps from the disk to itself which are unbranched coverings over the

complement of x = 0 and y = 0 can be put in the form

By a change of coordinates, one can write this as

where r, t > 0 and 0 ~ s < t. If we choose s to be minimal then r, s, t are uniquely

detennined. The map defines a branched covering (i.e. is finite) if and only if s = O.

The unbranched part of this map is given by the same exact sequence aB (*).

Thus, q is a smooth point of X if and only if s = O.•

1.6 The first Betti number and the Picard number of a smooth surface

Let p : X ~ Y be a branched covering over a smooth surface Y and let a : X ~ X

be a desingularization. In this section we make a few remarks concerning two

numerical invariants of X: the first Betti number and the Picard number. We show
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that if the brauch loeus supports an ample divisor, the problem of finding the first

Betti number breaks up into two parts. One is finding the first Betti number of the

unbranched part and the other is finding the nullity of the intersection matrix for

curves in X above the branch loeus. The rank of this matrix gives a lower bound

for the Pieard number of X.
The first Betti number b1 is the rank of the first homology group H1(X; Z) of X.

It is not hard to see that the first Betti number (and, in fact, the fundamental group

of a smooth variety) is invariant under blowing up. This follows by van Kampen's

theorem and the faet that, topologically, blowing up consists of replacing a simply

eonneeted set with simply eonneeted boundary in X (a ball around the point to

be blown up) by another simply conneeted set with simply eonneeted boundary

(isomorphie to a 2-disk fiber bundle over P1).

1.6.1 Definition. Two divisors C and D on X are said to be numerically equivalent

if C.H = D.H for all divisors H on X. The Picard number p is the rank of the

group of divisors on X modulo numerical equivalence, or, equivalently, the rank of

the Neron· Severi group of X.

1.6.2 Remark. Any divisor determines a dass in H2 (X; Q), and interseetions of

divisors generalizes to interseetions of homology 2-eycles. The interseetion pairing

on H2(X j Q) is nondegenerate by Poineare duality, sinee X is a compaet 4-manifold.

By the Hodge Index theorem, if a divisor D has the property that D.H = 0 for all

divisors H on X, then considering D as an element of H2(Xj Q), D.Z = 0 for any

homology 2-eycle Z. Therefore, p can also be thought of as the rank of the image

of the group of divisors on X in H2(X; Q).

Sinee the first Betti number of the unbranched part of the eovering b1(XU) can

be eomputed using essentially topological methods (whieh we deseribe in detail in

Chapter 111), our goal here is to find the difference b1(XU) - b1(X). More generally

we will show how the first Betti number of any smooth surface ehanges when one

removes arbitrary unions of eurves that support an ample divisor. The result ap-
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plies to the differenee between the first Betti numbers of branched and unbranched

eoverings 88 long as the braneh loeus supports an ample divisor, sinee then the

preimage of the braneh loeus will also.

The following proposition was suggested to me by A. Libgober and A. Landman.

1.6.3. PROPOSITION. H X is any smootb surface and C is a finite union oE curves

on X so that some linear combination dennes an ample divisor on X, tben

wbere Null(C) is tbe nu11ity of the intersection matrix of C in X.

Praaf. Consider the exaet homology sequence of the pair (X, X - C)

H2 (X) -+ H2(X,X - C)

-+ H1(X - C) -+H1(X) -+ H1(X, X - C)

with rational eoefficients.

Interseetion gives nondegenerate pairings

and

for k = 0, 1, 2, 3, 4.

In partieular, the dual of H1(X, X - C) is isomorphie to Ha(C) whieh is trivial

sinee C is a 2-complex. So, H1(X, X - C) is trivial. Therefore, the differenee

b1(X - C) - b1(X) equals the dimension of the cokernel of the map

or, equivalently, the nullity of the dual map

r· : H2 (X, X - ct -+ H2(X)·.
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Let i : C ~ X be the inclusion map. The intersection pairing also shows that,

since H2 (C) is generated by cycles [Cl representing the irreducible components of

C, H2 (X, X - C)* is generated by [C]*, where

r*[C]*a = [C]*r(a) = [C].r(a) = i",[C].a

for all Q E H 2 (X).

It follows that the kernel of r* consists of [D]*, where D is any linear combination

of curves C in C, such that

i*[D].a = 0,

for all a E H2(X). In particular, for all curves C in C,

i* [D] .i", [Cl = o.

Thus, the rank of ker(r"') is at most the nuUity of the intersection matrix for curves

in C.

To see the equality, suppose D is a linear combination of curves in C, and

i",[D].i",[C] = 0

for aU curves C in C. Then i.[D].i*[D] = 0 and, since C supports an a.mple divisor

H, i",[D].H = O. By the Hodge index theorem this implies i*[D] is numerically

equivalent to zero. Therefore, i*[D].a = 0 for all a E H2(X) and [D]'" E ker(r*). I

31



Chapter 11. Intersections of curves in abelian covering surfaces

In this chapter all branched coverings p : X ~ Y are smooth abelian branched

coverings over a smooth surface Y. The goal here is to describe intersections of

curves on X in terms of intersections in the base space Y and the action of the

Galois group G. The results are applied later in Chapter IU to find the intersection

matrix for the preimage of the brauch locus.

We use topological properties of branched coverings described in section 1.2 and

properties of the intertia and stabilizer subgroups defined in 1.3. Because in our

applications the eurves we deal with are smooth and intersect in normal crossings

and thus distinct eurves lying above the same curve in the base spaee are disjoint

(as we see in Lemma 11.3.2), the problem of finding intersections of distinet eurves

reduees to eounting points. The main diffieulty in setting up the interseetion formula·

is to find a language for relating the intersections of eurves in the eovering space to

those in the base space.

Given a eolleetion of curves C in the base spaee, our key result, Proposition 11.3.1,

gives interseetion formulas for the eurves in the preimage of C in terms of what we

call lifting data for C. Roughly, this has two parts. One is an enumeration of the

curves above C and the other is some simple information determining whieh curves

in p-l(C) and p-l(D) meet in the-fiber of a point p E C n D.

We set up the tenninology in II.l. In 11.2 we show how to apply graphs with

eertain properties imbedded in C to the problem of finding lifting data. H the graph

lifts to the eovering surfaee, then we show that finding the lifting data for C reduees

to a loeal problem.

Finally, in 11.3 we give intersection formulas for eurves in p-l (C) 1n terms of

lifting data, when C is a union of smooth eurves so that cu B has normal erossings.

When C is the branch locus of the eovering, the nullity of the intersection matrix,

whieh one ean eompute from the formulas, gives the difference between the first
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Betti numbers of the branched and unbranched parts of the covering surface (see

Proposition 1.6.3) and the rank of the intersection matrix gives a lower bound for

the Picard number of the surface (see Remark 1.6.2).

11.1 Lifting data for curves in the base space

Let p : X --t Y be an abelian branched covering with branch locus B and Galois

group G. Let C be a finite union of curves in Y. For each C C C, let He be the

stabilizer subgroup of C. Then the curves in p-l (C) are a principal homogeneous

space for G/ He. Thus, choosing a fixed curve C' in p-l (C) determines a one-to-one

correspondence between curves in p-l (C) and cosets G/ He such that

aC' +--+ aBe , for a E G.

11.1.1 Definition. A choice of curves C' C p-l (C) for each curve C in C is called a

choice of lifting~ fOT C, or a C lifting.

Onee we have liftings, we would like to know, given two curves C and D in C,

with p E enD, for which a, ß E G do the curves a(C') and ß(D') interseet in the

fiber p-l(p).

11.1.2 Definition. Let S be the intersections on C and let :r be the set of pairs (p, C)

where pES, C is a eurve in C and pE C. Given aC lifting, let

be a map so that, for each pES,

(n '1J(p, C)C' ) n p-l(p) # 0.
pEecc

We call the map '1J lifting data for the C lifting.

11.1.3 Remark. For any C lifting there exists lifting data '1J, hut it may be difficult

to determine the map explicitly. One would like to find the simplest lifting data

which can be associated to a choice of liftings of the curves. An interesting problem,
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whieh we have not been able to salve is whether there exists aC lifting so that the

trivial map taking all pairs to the identity element is lifting data for this ehoice. We

eall a C lifting with this property a good lifting.

To eonclude this seetion, we now explain how the lifting data transforms under

blowups and pullback eoverings in the special ease that all pairs of eurves in Cu B

interseet transversally. Let (j : Y~ Y be a blowup of Y at sorne point p in C. Let

W : :r ~ G be lifting data for a C lifting. We will show how to find lifting data

for a choiee of lifting for eurves in the total transform Cin the pull-back eovering

p:X-+Y.
Sinee t7 is an isomorphism outside p, X and X are isomorphie outside of the

fibers above the exeeptional set Ep and p. Therefore, there is a well-deßned eurve

C' eorresponding to C' above the total transform Cof C E C.

By Proposition 1.4.11 the stabilizer subgroup HEJ' is generated by

where C c B ranges over all eurves, passing through p. By assumption m p( C) = 1

for all eurves C C B eontaining p. Therefore, HEJ' = Ip by Proposition 1.4.6.

Therefore, there is one eurve E~ in X mapping to the point p' in X, where p' is

the point in p-l (p) assoeiated to the lifting data and E~ interseets 'l!(p, C)C' . Hp

lies on only one eurve C in C U B, let E~ be any eurve in X mapping to p' whieh

interseets 'l!(p, C)C'.

Let S be the set of interseetions on Cand define

so that ~(q, C) equals ~(t7(q),C) for any q E snc and ~(q,Ep ) equals the identity

for all q E Sn Ep •

11.1.4 PROPOSITION. Tbe map \Ii is lifting data for tbe Clifting.

Proof. Take any q E S. H cr(q) #- p then the fibers p-l(q) and p-l(cr(q» are

eanonieally isomorphie and the isomorphism eommutes with the action of G so the
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result follows. If O"(q) = p, then q E Ep nCfor at most one curve C C Cu B, since,

by assumption, all intersections of pairs of curves in C u B are transversal. Since

E~ intersects w(p, C)C' in at least one point, we are done. I

11.2 Intersection graphs

Let p : X --+ Y be any abelian branched covering with branch locus B and let C

be a finite union of curves on Y. In this section we show how to find lifting data

for C using graphs.

11.2.1 Definition. Let S be the set of interseetions on C, and let f be a graph with

points in S as vertices and edges labelled C connecting vertices in Sn C. Suppose

f : r --+ Y is a continuous map sending vertices to their corresponding points in S

and sending interiors of edges labelled C to paths on C - (B - C). Suppose also

that the subgraph rc off mapping to C under fis connected and nonempty. Then

/ : f --+ Y is called an intersection graph for C.

11.2.2 Definition. Given an intersection graph f : r --+ Y for C, a lifting map for f

in X is a continuous map

f' : r --+ X

so that p(/'(r)) = /(/) for all I E f.

Note that given one lifting f' there are others given by 0" 0 f' where 0" is any

covering transformation.

11.2.3 Remark. Hf: f --+ Y has a lifting map /' : f --+ X so that /' (fc) is

contained in a single curve C' C p-l(C) for all curves C in C, then we have a good

lifting as deseribed in Remark 11.1.3.

Dur aim now is to show that given a lifting map f' : f --+ X for an intersection

graph f : r --+ Y, we can find lifting data by a Ioeal study.

11.2.4 Definition. Let f' : r --+ X be a lifting map for an intersection graph f : r --+

Y for C. Let I be the set of pairs of edges of f labelled by the same curve C C C,
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meeting at a common vertex. Let

t/J:I-+G

be a map so that for each (e), e2) E I, there is a curve C' C p-l eC) such that

,peel, e2 )/' (eI) and 1'(e2) lie on C'. We call t/J the jhijting data for I' : r -+ Y.

The similarity of the notation with the lifting data associated to aC lifting will be

explained in the next lemma. The problem of finding shifting data ?/J is a loeal one

in the following sense. If (eI, e2) E I and el and e2 meet at a vertex eorresponding

to p, then ?/J(el, e2) depends only on the eombinatories of the eovering near the fiber

p-l(p). Using the next lemma, we will show that the loeal information given by the

shifting data leads to finding the global lifting data.

11.2.5 LEMMA. For each eurve C in C, let C' be a choice oEliEting oEC in X so that

for some edge ec labelIed C in r, I' eec) is contained in C'. For any two curves C

and D in C and pE C n D, let

be two sequences oE edges labelIed G and D, respectively, whicb are attached Erom

end to end by common vertices, ee = el, eD = 11, and tbe final endpoint oE these

strings of edges is a vertex associated to p. Define G'e and Q'D in G by

oe = ?/J(el, e2 )1/;(e2, e3) 'l/;(ek-), ek)

GD = t/J(/I,!2)?/Je/2,!3) 'ljJ(ll-l,!l).

Then oe(C') and oD(D') meet at a point in tbe fiber p-l(p).

11.2.6 Remark. It is easiest to visualize the eurve ac(G') as the eurve obtained

from C' by applying 'ljJ(el , e2) l then 1/J(e2 l e3) sueeessively in this order, although

sinee G is abelian, the ordering doesn't matter.
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Proof of Lemma 11.2.5. Since tf;(ei, ei+l )/' (ed and I' (ei+l) lie on the same irre­

ducible component of p-l(C), for i = 1, ... , k - 1,

and I'(es.) lie on the same irreducible component ac(C') of p-l(C). Similarly,

aD(/'(ID)) and 1'(ll) both lie on aD(D'). Since, by definition, I'(p) E f'(fl) n
f'(ek), ac(C') and aD(D') meet above p. (Note that the result is independent of

the choice of sequences e2, . .. ,ek and f2," ., fl.) I

Thus, from a lifting f' : r -+ X and shifting data tf; : I -+ G, we can construct

the lifting data for any C lifting satisfying the hypotheses of Lemma 11.2.5 as folIows.

If C and D are two curves in C meeting at a point p, we can always find sequences

of edges on re and rD as in Lemma 11.2.5, since rc and rD are connected. Then

all we need to do is let 'Ii(p, C) = ae and \I!(p, D) = aD be as defined in Lemma

11.2.5.

11.3 Intersection formulas for covering surfaces

Let p : X -+ Y be a smooth abelian branched covering of a smooth surface

Y with branch locus B. Assume in addition that B is a finite union of smooth

curves intersecting in normal crossings. (Recall the criterion for smoothness given

in Proposition 1.5.1.)

Let C be a finite union of smooth curves in Y so that the intersections in C U B

are normal crossings. Suppose that for each curve C c C, C' is a lifting, with lifting

data

as defined in Definition 11.1.2. In this section we prove that, given such lifting data,

we have the following intersection formulas.

11.3.1 PROPOSITION (INTERSECTION FORMULAS). He is any curve in C and a

and ß are in G, tben

a(C').ß(C') = II~12IaHc n ßHc IC2.
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H C and D are clistinct curves in C and a and ß are in G, then

1 .
a(C').ß(D') = L 'lI 111 Ila'1J(p, C)-l He n ß'1J(p, D)-l HDI·

pEenD e D

The proof requires a few lemmas. The first two concern interseetions of curves in

p-l(C) for a single curve C in C.

11.3.2 LEMMA. For any curve C in C the curves in p-l(C) are disjoint.

Proof. Take any p in C. Since C U B contains only normal crossings, p lies in at

most one curve D E Bother than C and in this case I D C He by Proposition

1.4.10. H there is such a curve D, then Ip is generated by the elements of 1e and

ID, otherwise just the elements of Ie. In either case, I p is contained in He.

Now, suppose there are two curves Cl and C2 in p-l(C) intersecting at a point q

in p-l (p). Let U be a neighborhood of p in Y so that each connected component of

p-1 (U) contains a distinct point in p-1 (p) (see property (4) of hranched coverings

in Definition 1.2.1). Let Vq be the connected component of p-l(U) containing q.

We will show Cl and C2 must be equal. For any point p' E C n U, let ql E Cl

and q2 E C2 be points lying in p-l(p') n Vq • Since G acts transitively, there is

an automorphism a E G so that a(ql) = q2. Since Q' perrnutes the connected

components of p-l(U) and ql and q2 both He in V(q), it follows that a(Vq ) equals

Vq . The only point in p-l(p) n Vq is q, so a(q) = q. But this implies that Q' is in

I p which is contained in He, so a(Cl ) = Cl and q2 E Cl. This means that Cl and

C2 intersect in p-l (p'), hut p' was chosen arbitrarily in U, so Cl and C2 intersect

at all points in the open set Vq n p-l(C). Therefore, Cl and C2 must be the same

curve.•

11.3.3 LEMMA. H C' is any irreducible component oE p-l(C), then the seIl inter­

section C 12 equals
IHe l C 2

11el2 •

Proof. Consider C a.s a divisor on Y and let p·C be its pullback. Then by tbe

general theory ofintersections and pullbacks, (p·C)2 equals IGIC2 (see, for example,
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[Fu2], Example 1.7.6, pp. 20 - 21). Each component of p·C counts with multiplicity

Ilel. Furthermore, no pair of distinct components of p-1(C) meet by Lemma 11.3.2,

so we have

IGIC2 = Il el 2 L C,2.
e'cp-l(e)

The number of irreducible components in p-1 ( C) is the index of He in G. Since the

covering is Galois, all the components have the same self intersection. Therefore,

lGIC2 = 11 1
2JQl C'2

e IHel '

for a given C' C p-1 (C). Multiplying both sides of this equation by

finishes the proof. I

If 0' and ß are in G and C' is a curve in p-1 (C), then, by Lemma 11.3.2, 0'(C') n
ß(C') is nonempty ooly when they are the same curve. This only happens when

aHe equals ßHe , or equivalently, when the intersection aHe n ßHe is nonempty.

Thus, by Lemma 11.3.3

o:(C').ß(C') = II~12Io:Hc n ßHcIC2 ,

and we have proven (*).

Now assurne that C and D are distinct curves in C.

11.3.4 LEMMA. H C' and D' are curves in p-1(C) and p-1(D) interesecting at q,

then

rnq(C',D') = 1,

i.e., tbe intersection is transversal.

Proof. As in the proof of Proposition 1.5.1, since the covering X is smooth, the

covering map p oear q looks like
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where r and t are integers greater than or equal to O. The preimage of the brauch

locus is the union of {x = Ol, if r > 0 and {y = O}, if t > 0 and the intersection,

occurring if r and t are both positive, is transversal. I

11.3.5 COROLLARY. H C' and D' are curves in p-l(C) and p-l(D), respectively,

tben C' .D' equals the number oE points at wbich C' and D' meet.

11.3.6 LEMMA. Two curves a(C') and ß(D') above C and D meet at a point in

tbe fiber p-l (p) oE a point p E C n D if and only jf

aw(p, C)-1 He nß'I!(Pl D)-1 H D

is nonempty.

Proof. We know from the definition of W that the two curves w(p, C)(C') and

w(p, D)(D') intersect in at least one point in the fiber p-l(p).

For one direction, suppose , is in the intersection

a'I!(p, C)-1 He n ß'I!(Pl D)-1 HD

then ,He equals aw(p, C)-1 He aud ,HD equals ß\I!(p, D)-1 H D, so

aC' n ßD' = aW(p, C)-1 '1J(p, C)C' n ß'l!(p, D)-1 'l!(p, D)D'

= ,\I!(p, C)C' n ,'l!(Pl D)D'

= ,('1!(p, C)C' n 'l!(p, D)D').

Since, is an automorphism and 'I! is lifting data, aC' and ßD' must intersect in a

point in p-l(p).

Conversely, suppose that ql is a point in aC' n ßD' so that p(ql) = p. Let q2 be

a point in w(p, C)C' n w(p, D)D' lying over P and let, E G be an element taking

q2 to ql. Then ql is in the intersection

,W(Pl C)C' n ,w(p, D)D'.
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Therefore, ,\l1(p, C)C' and o:C' intersect in ql, and hence ,'l1(p, C)He and aHe are

equal cosets. Thus, is contained in o:\I!(p, C)-1 He and, similarly, , is contained

in ß\l1(p, C)-1 HD. Therefore,

a\l1(p, C)-1 He n ß\l1(p, D)-1 H D

is nonempty. I

11.3.7 LEMMA. Let p E C n D and let C' and D' be two curves in p-l(C) and

p-l(D), respectively, so tbat C' and D' meet at a point above p. Then the nwnber

oE points where C' and D' meet in the fiber p-l(p) equals

IHenHDI
IIellIDI .

Proof. By Proposition 1.5.1, le and ID intersect only in the identity element, so

IleID I equals IIeIIIDI. Also, since C and D intersect transversally, by Proposi­

tion 1.4.10, Ie and ID are contained in He n H D. Thus, it suffices to show that

(He n HD)/leID acts transitively and freely on the set S = p-l(p) n C' n D'.

Since the covering is regular., G acts transitively on p-1 (p). H Q' is in He n H D

then a(C') = C' and a(D') = D', so o:(C' n D') = C' n D'. Thus, He n HD acts

on S.

We have to show that the action is transitive. We know that for auy ql and q2 in

S there is.an element a of G so that a(ql) = Q2. Since the distinct curves in p-l(C)

are disjoint, o:(C') = C' and a(D') = D' imply 0: E HD. Therefore, 0: E He n HD.

Finally, we need to show that the kernel of the action is leID. We know from

Lemma 1.3.3 that leID equals lp. Therefore, leID is the subgroup of G fixing each

point in p-l(p). I

11.3.8 LEMMA. H aHe and ßHD intersect, then tbe number oE elements in their

intersection is the same as the nwnber in He n H D .

Proof. Suppose 1 is in aHe n ßHD. Then ,He = aHe and ,HD = ßHD, so

,(He n HD) = aHe n ßHD. I
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Now to prove (**) in Proposition 11.3.1, we need only put together the above

lemmas. By definition of \IJ, we know that, for p E C n D,

\IJ(p, C)(C') n \IJ(p, D)(D')

is nonempty. By Lemma 11.3.7, the number of elements in the intersection is

1
IIcIDllHc n HDI.

By Lemma 11.3.4, the interseetions number of distinct curves in p-1 (C) are, for any

a, ß E G, is given by

aC'·ßD' = L laC' n ßD' n p-1(p)l·
pECnD

By Lemmas 11.3.6, 11.3.7 and 11.3.8, we have

1
laC' n ßD' n p-1(p)1 = IIcIIIDlla\IJ(P' C)-1 He n ß\IJ(p, D)-1 HDI.

Summing over all p E enD gives the formula (**).
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Chapter 111. Hirzebruch covering surfaces

In this chapter we apply the previous results specifically to Hirzebruch surfaces

and describe the techniques that lead to an effective algorithm for computing the

first Betti number b1 and lower bound for the Picard number p of Hirzebruch sur­

faces X associated to configurations of reallines. The algorithm is given in Chapter

IV.

We define Hirzebruch covering surfaces and give sorne properties following [Hi]

in 111.1. The surfaces are desingularizations of certain abelian branched coverings

X of p2 whose branch locus ~ is a finite union. The surface X is desingularized

(see Lemma 1II.1.2 and Remark II1.1.3) by taking the pullback covering X over

the blowup of p2 at the tripie and higher intersections on ~, with the exception

of the case where I:, is two lines, in which case we take the blowup over the single

intersection point. Thus, X is a branched covering

p: X --+ p2

branched along a subset of the total transform Eof 1:,.

We describe the generators of the inertia and stabilizer subgroups for the brauch

locus of p and p. This is a useful part of the algorithm and also, together with

Proposition 1.5.1, leads to an easy proof that X is smooth.

In order to compute b1 the main steps are the following.

(1) Find a presentation for the fundamental group of 1t"1(P2 - 1:,).

(2) Find lifting data for a Elifting for p: X --+ p2.

Using Fox calculus on the presentation for 7r) (P2 -I:,) and applying Libgober's result,

we can compute the first Betti. number br of the unbranched part of the covering.

From the lifting data and generators for the stabilizer and inertia subgroups, we

can find the intersection matrix I'for the curves above the branch locus, using the
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formulas of Proposition II.3.1, and compute its nullity Null{I). By Proposition

1.6.3, b1 equals bi - Null{I).

To find a presentation for 7rl (P2 - L:), we use the technique often used by Moishe­

zon [Mo) and Libgober [Li2), (Li3). The idea is to project p2 - L: to a generalline H

and compute the monodromy of the assoeiated fibration as do Van Kampen [V) and

Cheniot [Cl and analyse the monodromy using braids. For eonfigurations of real

lines, the monodromy is easier to describe explicitly than in the general situation.

We do this in 111.2 and show how to find the presentation in II1.3.

To find lifting data for the braueh locus, we also study the loeal topology of

real line configurations in p2. In II1.4, we show how to find an intersection graph

together with shifting data (see 11.2) for the line configuration. Lemma 11.2.5 shows

how to convert this to lifting data.

111.1 Hirzebruch covering surfaces

The covering surfaces that we will deal with throughout the rest of this paper

were defined in [Hi]. Here is an alternative definition using the language developed

in seetion 11.

III.1.1 Definition. Let L: be a finite union of k lines in p2 and let n ~ 2 be an

integer. Let

p: X -+ p2

be the abelian branched covering determined by the defining map (see Definition

1.2.6)

cP : H1(p2 - L:j Z) -+ H1(p2 - L:j Z/nZ).

Let S be the points of intersection and let T C S the points where at least three

lines in L: intersect. Define a surface p2 and abirational morphism er : p2 -+ p2

depending on L: as folIows.

(1) H L: consists of two lines, let (j : p2 -+ p2 be the blowup of p2 at the point

of intersection.
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(2) If T is empty and k > 2, let p2 equal p2 and let u be the identity map.

(3) H T is nonempty, let (1 : p2 ~ p2 be the blowup of p2 at the points in T.

Let

p: X ~ p2

be the pullback covering (see Definition 1.1.7) of p : X ~ p2. Then we call X the

Hirzebruch covering associated to L and n.

One paxticularly useful property of Hirzebruch coverings is the following.

111.1.2 LEMMA. ([Hi], p. 122) Hirzebruch coverings X are smootb.

A proof is sketched by Hirzebruch in [Hi]. We give a more detailed proof in

Remark III.1.3 using the language developed in Chapter I. In the process we show

how to find the generators of the stabilizer and inertia subgroups of the branch

locus of p and p.
Recall from Definition 1.4.1 that, if rjJ : H1(P2 - Lj Z) -+ H1 (P2 - L; Z/nZ) is the

defioing map of the coveriog, to each line L in L there is a canonically associated

element JiL E H1(P2 -.c; Z) which cau be realized as a positively oriented meridianal

loop around L.

LEMMA 111.1.3. If.c is any finite union of k lines in p2, tben H1(P2 - .cj Z) is

generated by fLL for all L C .c and has the only relation

Proof. The Lefschetz hyperplane theorem states that for a general hyperplane H

in p 2 the map

is onto. Hy Proposition 1.4.2, the fLL cau be represented by loops on H -.c. There­

fore, the fLL generate H1 (P2 - .cj Z), and satisfy the relation

L fLL = O.
Lcr.
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We need to show that the above map is one-to-one. We can assume that ~

contains at least two lines (since if not, both domain and range are simply-connected,

so the map must be an isomorpmsm. ) It suffices then to show that any subset of

the set of JlL of order k - 1 has uo relations among its elements. But the Van

Kampen method [K] for computing 1r1 (P2 - ~) (see Proposition 111.3.3 for a more

detailed explanation of this method) show that this group is generated by k - 1

of the base-pointed loops JlL and has relations given by the monodromy action of

a generic pencil. Since the action is by conjugation, the relations are trivial after

abelianization. I

For each line L in ~, let 9L be the image of JlL under the map 4>. Then the

above proposition implies that the Galois group G is the abelian group generated

by 9L, each having order n and the only relation among them is that the SUffi of

the generators is O.

As before, let S be the set of points where the lines in (, meet. Define

9p = L 9L·
pELCC.

111.1.4 PROPOSITION. The inertia suhgroup IL associated to the line L is generated

by the 9L, and tbe stabilizer subgroup H L is generated by 9L and 9p where p ranges

over points in sn L.

Proof. This follows immediately from Propositions 1.4.5 and 1.4.10. I

Let T be the set of tripie and higher order intersections on 12 and let a : p2 -.. p2

be the blowup at the points in T. Then the brauch locus of p: X -.. p2 is contained

in E= a-l{.c) (with equality except in the case where allIines pass through oue

point). The curves in l are the proper transforms L of lines L in 12 and the

exceptional sets Ep associated to points pET.

111.1.5 PROPOSITION. Let L be the proper transEorrn oE L. Then II; equals IL

and HI; equals HL. Let Ep be tbe exceptional set lying above pET. Tben IEp is

generated by 9p and H E p is generated by a11 9L wbere L C 12 and p E L.
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Proof. This follows from Proposition 1.4.11. I

111.1.6 Remark. Proposition 111.1.3 and 1.5.1 lead to a proof of Lemma III.1.3.

Assume there are at least 3 lines in.c. Since the brauch locus Eof the covering

p : X -+ Y is a union of smooth eurves with normal crossings, we can apply

Proposition 1.5.1. Thus, we need only show that the inertia subgroups of two

interseeting eurves in Einterseet in the identity.

Let 91, ... , 9k he the generators of G corresponding to the lines LI, ... , Lk 10

.c. Take any two interseeting eurves C and D in E. If C and D are the proper

transforms LI and L2 , then Ie = (9Li) and ID = (9 L 2 ). These intersect in the

identity in C, since there is at least one more generator in C. If one of C and D is

an exeeptional curve, say C = Ep , and D is the proper transform L, then

Ic=( L 9u)
pEUC(,.

and

In order for these to intersect nontrivially there must be a nontrivial relation among

the 9u where L' ranges over lines in .c passing through p. This ean only happen

if all the lines in .c pass through p, hut in this ease IEp = O. The ease for .c equal

to two lines is the same as for the case where .c consists of severallines all passing

through one point. I

111.1.7 PROPOSITION. Assume tbat not all lines in .c pass tbrougb a single point

p. For eacb line L in .c, let rL be the number oE points in Sn L. Then tbe number

oE curves in pI (L) equals

k-rL -1n .

For eacb point pET let i p be the Dumber oE lines in .c passmg tbrough p. Tben

the number oE curves in p-I(Ep ) equals
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Thus, the total number oE curves in p-1(l) is a polynomial in n.

Proof. We know that G has order n k - 1 .

In Proposition 111.1.4, we saw that HL is generated by gL and gp for all points

pES n L. Since alliines in p2 intersect,

gL + L (gp - 9L) = O.
pEsnL

Since there is no other relation, H L is generated freely by gp - gL where p ranges

over points in S n L. Since there are r L of these, the order of the group H L equals

n TL • Therefore, the order of G/ HL equaIs n k - rL -1. By Proposition 111.1.5, HZ

equals HL so the number of curves in p1(L) equals n k - rL -1.

In Proposition 111.1.5, we saw that HEp is generated by gL, where L ranges over

lines in J:, passing through p. Since not allIines in L pass through p, these generators

have no relations. Therefore, the order of H E p equals n lp , and the number of curves

in p-1(Ep ) equals n k - lp - 1. I

111.2 Fibrations and monodromy

In this section we consider a finite union of lines L so that for some affine coor­

dinates x, y, the intersection L of .c with C2 is a union of k lines defined by real

equations in x, y and ooe line at infinity. (The constant k will be used in this and

the next chapter as one less than the number of lines in .c.)

The choice of coordinates determines a projection Px : C2 - L --+ C onto the

x-axis. Let S be the set of intersections of lines in L and let Q = Px(S), H 00

fiber of Px contains a line in .c, then for points q E C not in Q the fiber P;l(q)

is canonically isomorphie to a copy of C minus k points. Therefore, Px defines a

fibration of C2
- Lover C with singular fibers above points in Px(S). The aim of

this section is to study the monodromy of this fibration around singular fibers.

111.2.1 Conditions on the coordinates x, y. Rotate the coordinates X, y if necessary

so that the following hold.
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PI. Each Ln in L is given by an equation of the form

where m n and hn are real.

P2. The projection Pz sends the set of all intersections S on 12 to distinct (neces­

sarily real) points Q in C.

Note that the slopes m n are not necessarily distinct.

111.2.2 Definition. Given coordinates x, y satisfying the conditions in 111.2.1 order

the lines in .c so that

Order the points PI, ... , Pa in S so that if qI, ... , qa are their images in Q, then

1II.2.3 Example.

q4 qj q2 qJ

111.2.4 The fibration Pz . Let x, y be coordinates satisfying the conditions in II1.2.1

and order the lines in .c and points of intersection S in .c as in Definition 111.2.2.

For any q E C - Q, the fiber Fx = P;l(q) equals a copy of C, parameterized by y,

minus k points Tq , where Tq is the set of pE C so that (q,p) lies on 12. H q E R - Q,

then the points t 1 , ••• ,tk in Tq are real and can be ordered so that
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111.2.5 Monodromy. Let qo ERbe a point so that qo > q for all q E Q. The

monodromy of the fibration is the image of the natural map

where Mod(Fqo ) is the mapping dass group, or group of isotopy dasses of home­

omorphisms of FqO to itself which fix everything outside of a large disk in FqO

containing Tqo '

There is a canonical homomorprnsm

where Bk is the braid group on k strands [Mo]. Let

be the map E which takes a loop , : [0, 1] ~ C - S based at qo to the braid obtained

by following T,(9) as 8 ranges between 0 and 1. Then the map (*) is the composition

of E and (**).

III.2.6 Identification of fibers over real points. To explicitly find E(,) for paths

, E 7r] (e - Q, qo), we use the fact that, whenever q E R, Tq is a set of real points,

and hence has a canonical loeal ordering from largest to smallest. Note that this

is different from the ordering on Tq induced by the global ordering of the lines

L], ... ,Lk . Thus, for all real points q E e there is a homeomorphism of any fiber

Fq to Fqo ' given by the Ioeal ordering, whieh is unique up to isotopy. Therefore,

any path , in C - Q with real endpoints defines an element in Mod(Fqo )'

Explicitly, given any q E R - Q there is a unique isotopy dass of maps

with the following properties:

(1) the orderings of Tq and TqO are preservedj
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(2) for any e > 0 there is a representative 4>q E [4tq] so that the following diagrarn

commutes

Fq - {I Im(y)1 < e}

1
c - {! Im(y)1 < e}

4'9
---+1 Fx - {IIm(y)1 < e}

1
identity
----+1 C - {I Im(Y)1 < e},

where the vertical maps are the canonical identifications;

(3) auy homeomorphism from Fq to FqO which has properties (1) and (2) is in

the isotopy dass [4tq].

Using these maps, one can define a map from the set Pa of paths on C - Q whose

endpoints are real to Bk,

so that l for auy path ;, b(;) is the braid obtained by following the points of Tq where

q ranges over the image of;. Then if;1 and ;2 are paths so that the endpoint of

;1 is the initial point of ;2, then b(;1;2) = b(;I)b(;2)' Furthermore, the restrietion

of b to dosed paths based at qo equals E.

III.2.7 Generators for '7rl(C - Q, qo). vVe construct generators as in the following

diagrarn.

+
iR L

12 m y;
r-\ :s 'C 2

~
y; y~

Assume without loss of generality that
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for a1l j = 1, ... ,s - 1. Let Tl, ... ,Ta-l be paths on R - Q defined by

Tl : [0,1] -+ R - Q

(J t-t qo + (J(ql - qo +1)

Tj : [0,1] -+ R - Q, for j = 2, ... , s

(J t-t (qj-l -1) + (J(qj - qj-l +2)

Let 'Yt and 1j be paths on C - Q defined by

'Yt : [0,1] -+ C - Q

(J t-t qj + e7ri6

I; : [0,1] -+ C - Q

for j = 1, ... ,s. Note that the endpoints of all paths defined above He in R - Q.

As can be seen by the previous diagram, the fundamental group trl (C - Q, qo) is

generated by r 1, ... , r a , where each r j is defined by

j-l j-l

r (II +) + - -l(II +)-1j = Tr1r Tjlj 'Yj Tj Tr'Yr'

r.=l r=l

III.2.8 Generators for Bk. Recall that Bk is generated by O'}, • •• ,O'k-l, where each

0'i is the braid

1

k
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and has relations

for li - jl ~ 2 and

for i = 1, ... , S - 2.

Recall that Fqo equals C minus kordered points lying on the real line. The

braid (jj eorresponds to the element of Mod(Fqo ) whieh ean be represented by a

homeomorphism which rotates a disk D, eontaining only the ith and i + 1st point

and centered between them, by 180 degrees and fixes all points outside of a disk D

containing D.

1 .

. (-1.

g
(+2 .

k·

111.2.9 Generators for the Monodromy. To find generators for the image of E, we

need only find E(rj) for r 1, ... , r a as defined in 111.2.7. To do this we find b(Tj),

b(,t) and b(,]:-).

For eaeh j, Tj(B) E R for all B and Tj(B) doesn't pass through auy points in Q,

the points in Trj (6) are real and their ordering is preserved as B varies from 0 to 1.

The loeal pieture over the image of Tj looks sehematieally as follows. Note that the
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lines are not really parallel as in the picture, but they might as weil be, since they

don't meet each other over this interval.

"Cj

This is beeause a set of k points moving continuously on the realline cannot get

permuted without coming into contact. Therefore, b(Tj) is trivial for all j.

Now look at fibers over a path ,t or "'I; for any j = 1, ... ,s. The real fibers of

Px : R2 -.c -+ R over an interval containing qj looks schematically like the following.

Consider the local ordering for the points t 1, .. . , tk in Tq for q any real point to the

right of qj in this interval as in 111.2.6. Let l be the first index with respect to this

loeal ordering so that Li passes through Pj. Translate coordinates so that

where bi is the y-intercept and mi is the slope of Li with respect to x and y.
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After the change of coordinates, and with respect to the local ordering, the lines

in .c are given by new equations

for r = 1, ... , k,

On F-.,f(6)' we have
J

er = 0, for 811 r = i, ... ,i +d - 1.

T-.,f(8) = {ml e1ri6 +b1 +mlQj,···, mt_1e 'Jl'i6 + bt - 1 +mt-lQj,
J

'JI'i6 'JI'i6
mte , ... , ffit+d-le ,

Similarly, on F-.,':"(8)' we have
J

T-.,f(8) = {_mle
1ri8 + b1 +mlqj,.·., -mt_ 1 e 'Jl'i8 + bt - 1 + mt-lqj,

J

'JI'i6 'JI'i8
-ffite , ... , -mt+d-le ,

Thus, the element of Mod(Fqo ) corresponding to,,+ and,,- rotates a disk contailling

tt, • .. ,tt+d-l 180 degrees as in the following picture.

1 1-1 !+d k

We will call this the loeal monodromy around the fiber above qj.
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111.2.10 Examples. The corresponding braid for d = 2 is the generator element CIt.

The corresponding braid for d = 3 is

1

which equals

For d = 4, the braid is

1-1 I 1+1 1+2 1+3 k

1

and equals

1-1 I 1+1 1+2 1+3 1+4 k

1II.2.11 Definition. Let Et d be the braid
I

1 0'

TI (TI CIt+ß-l)'

a=d-l ß=l

56



111.2.12 PROPOSITION. H, by the loeal ordering at ,j(O) = ,7(0), the lines indexed

by i, ... ,i + d - 1 eome togetber, tben the braids b(,7) and b(,j) equal ~l,d.

Putting this local information together we have the following Proposition.

111.2.13 PROPOSITION. Tbe image oE the monodromy

is generated by
j-I j-I

~(rj) = [(11 Elr,dr)E~j,dj(11Elr,dr)-I]
r=I r=I

wbere j = 1, ... , s.

III.2.14 Example. Take the configuration in Example III.2.3. The monodromy is

generated by
(E2,3)2,

E2,3(E) ,2)2 E~~,

E2,3 E1,2(E2,2)2 ~~~ E~~,

E2,3 E1,2 E2,2 (E3,2)2 E~~ E~~ E~~.

111.3 Fundamental group of the complement of reallines

In this section, we apply the results of III.2 to find the fundamental group of the

complement of a configuration J:, of reallines in P2.

Choose affine coordinates x, y in p2, so that one of the lines in J:, is the line

at infinity and satisfying the conditions P 1 and P2 of III.2.1. Let L 1 , •.. , L k (we

assume, for ease of notation, as in III.2, that the original number of lines was k +1)

and PI, ... ,Ps be the (globally) ordered lines in J:, and points in S as in III.2.2.

111.3.1 Definition. Define a map
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where Fk is the free group on k generators Jlt, . .. ,Jlk and Aut(Fk) is its group of

automorphisms, by

{

Jlj+l

M(lTd(Jlj) = Jlj~lJLjJLj+l

Jlj

if i = j

if i = j + 1

otherwise.

111.3.2 PROPOSITION. Tbe following is a presentation for 7rl (P2 - ~):

< Jl}, ... ,Jlk : Ro,p; Cl! = 1, ... , kj ß = 1, ... , S >,

where the Jll, ... ,Jlk correspond to positively oriented loops in C2 - J:, around the

lines LI, ... ,Lk ,

and E(rp) is as described in Proposition III.2.13.

Proof. By a well-known result due to Zariski and van Kampen [KJ (see also Che­

niot's paper [C]), 7rl (C2
- [.,Po) (where Po is contained in Fqo ) is generated by loops

Jll,' .. ,Jlk on the fiber FqO as given by the following picture

Yo

and has relations
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To find E(rj)* it suffices to find 0'; for each generator Ur of Bk. From the picture

JlJ

Jl, 0,

~
..

Ya Ya

Jlr+

Jlk

we see that

{

JJr+l

(1; (JJd = JJr+ 1JJ r JJ;:~1

JJi

ifi=r

if i = r + 1

otherwise

Thus, M(ur ) = 0';. I

111.4 Lifting data Cor curves above the brauch locus

In this section, we use the methods described in section 11.2 to define lifting data

for curves in the brauch locus Eof p : X ~ p2. Recall that this means that we

define a map

from the set of pairs

J = {(p,C): p E C,C c II

to the Galois group G = H1(P2 - L; Z/nZ) so that, for some choice of lifting C' for

curves 0 C L and point pi E p-l(p) for pES, we have pi E \lJ(p, 0)0' for all 0 C L

and pE C.

We first study tbe covering p : X ~ p2 aud then extend our findings to the

pullback covering p: X ~ P2.
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lIlA.! More conditions on the coordinates x, y. Choose affine coordioa'tes x, y sat­

isfying the conditions PI and P2 in IIl.2.I, and also assume the following.

P3. All intersections on .c lie on the affine plane.

This condition implies that none of the lines in .c is the line at infinity. Further­

more, the slopes fiI, ... I mk of the lines in .c can be strictly ordered

P4. All slopes are nonzero.

111.4.2 Intersection graph. Let r be the graph with vertices v corresponding to

points of intersection S of .c, and with edges e labelled L given by the line segments

lying between adjacent points of intersection on Ln R2
• Let

f: r -+ p2

be the natural inclusion. Note that this graph satisfies the conditions of Definition

Il.2.2.

111.4.3 Example.

..

Here the edges are labelled as folIows:

e3 is labelled LI

e2 " L2

el " L3

e4,e~ arelabelled L4

60



111.4.4 A lifting for f : r --+ p2. We will use Proposition 1.2.11 to show there is a

lifting for f : r --+ p2.

Note that the set

A = {(xQ +i8,yo): (XO,yo) E R2 ,0 < 8 ~ 1},

which is homeomorphic to R2 X (0,1], is contained in p2 -.c. This is because all

lines in I:. are gjven by equations of the form

y = mx +b

where m =I 0 and m, b E R, so for (x, y) E A the imagjnary part on the left side of

the equation is 0 while on the right it is m8 > O.

Define

h : [0, 1] x r --+ p2

by hg(,) = J(,) + (iD, 0). Then, for 8 > 0, hg(,) E A, so

h((O, 1] x r) c A.

Since A is contractible and is contained in p2 - 1:.,

is trivial. Therefore, by Proposition 1.2.11, there is a lifting map

f' : r --+ X

so that p(/'(,)) = J(,).

111.4.5 Shifting data for the lifting. We now want to define a map

from the set I of pairs (el , e2) labelled by the same line L and meeting at a common

vertex v, to G, so that, if el and e2 are labelIed L, 'ljJ(el,e2)J'(el) and f'(e2) lie on

the same curve in p-l(L).
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We find t/J using the fibration and monodromy described in III.2. Suppose f( el)

and f( e2) lie on the line L = L j and f( el) and f( e2) are joined at the point pES.

Locally near p, [. n R2 looks like the following picture.

~~. L'j
P :

Let Px : C2 - .c -+ C be the projection Px(x, y) = x as in 111.2.4 and assume, by a

suitable change of coordinates if necessary, that Px(p) = 0 and P;l([_l, 1]) n S =

{p}.

Define

, : [0, 1] -+ p2

so that ,(9) equals the point p;1(e1l"i8) n L and define

r : [0, 1] -t p2

so that r(9) equals (sin(1r8)i, 0) +Px- 1 (cos(1r8)) nL. Note that ,(0) = r(O), ,(1) =

r(1), the x coordinates of ,(8) and r(8) are equal, ,(8) c L and r(8) C A for all

0<8<1.

Lj+(i, 0)-------------

~------~--
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Take the quotient covering p : X ~ p2, where X is the surface obtained by

modding X out by the action of ILj. Then the covering p is defined by the map

and the group of covering automorphisms of pis the group

- 2G = H1 (P - (.c - L j ); Z/nZ),

111.4.6 LEMMA. Let 1J'(ell e2) be any element ofG so tbat the image oft/J(ell e2) in

G equals ~(TI-l). Then 1jJ(el' e2)f'(el) and f'(e2) lie on tbe same curvein p-l(Lj).

Proof. We have a composition of coverings

Pi
X } X

pI
p2

1

where p(x) = p(Pj(X)) for all x E X and Ij is the Galois group for pj. Since ILi

is the inertia subgroup for Lj in the composition covering P, p is one to one over

P-] (L j). Therefore, if t/J( e] , e2) is any element of G/ Ij so that

(1) t/J(el,e2)pj(f'(el)) and pj(f'(e2)) lie one the same curve in p-l(Lj )

(2) ,p(e], e2) is the image of t/'(el, e2) in G,

then t/'(el,e2)f'(el) and f'(e2) lie on the same curve in p-l(Lj ).

Thus, we need to show that ;j(7 / -] )pj(f'(e])) and Pj(/'(e2)) He on the same

curve in p-l(L j ). The image of 7 is contained in

h([D, l] x r),

so auy lift of T with initial point in pj(f'(e])) has endpoint on pj(f'(e2)). On the

other hand, since 1 doesn't pass through auy points in S, the image of 1 is contained
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in Lj , so any !ift of ,-1 with initial point on pj(f'(e2)) has endpoint on tbe same

curve in p-1(Lj) as the one containing pj(f'(e2)).

Therefore, the action Of~(T,-l) takes points on pj(f'(e1)) to points on the curve

in p-1(Lj) containing pj(f'(e2)). I

We now have left to find ~(7,-1). To do this we will look at the analysis in

111.2.9 in more detail. Let t 1 , . .. ,tk be the locally ordered points in Tl with respect

to the fiber P;l(l). We saw in 111.2.9 that the Iocal monodromy around the fiber

over 0 fixes the locally ordered points numbered 1, ... ,f - 1 and f + d, ... , k, and

rotates a disk containing the points numbered l, . .. ,l +d - 1 counterclockwise by

180 degrees. This corresponds to the braid ~d,l as given in Definition 111.2.11.

It is important to notice where the center of rotation of this disk is in relation to

the points l, . .. ,e + d - 1. Let R be the first (global) index so that the line corre­

sponding to tR has positive slope and the !ine corresponding to tR+1 has negative

slope. H R is between l and e+d -1 then the center of rotation of the disk occurs

somewhere between Rand R+ 1. Thus the fibers fibers Fp(-y+(6)) and Fp('Y- (8)) vary

as in the following pictures. (Here 7 and 'Y. are drawn for the case that e< j < R.)

. 1

(.)

!+d

. k

9= 1/3

./+d

: k

8=2/3

H R is not between l and l + d - 1 then the center of rotation is either somewhere

above P. (if R < l) or somewhere beiow P. + d - 1 (if R > e+ d - 1). For example, if
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R> e+d - 1 we have the following picture.

1

: 1-1

. I+d

R
k

6 = 1/3

Therefore,
min{R,l+d-I)

L:= 9L r

r=j+I

j-I

L:= 9L r

r=mn.x{R+I,l)

where 9L equals the image of 9L in G.

1

1-1

~r;~.;.<

. I+d

R
k

9=213

ifj < R

if j > R

III.4.7 Example. Assume k = 3, d = 3, R = 2 and j = 1. Then the braid associated

to the monodromy looks like this:

1 2 3
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and if we draw in the paths / and 7 in bold face, we have the following picture.

1 2 3

It is easy to see that 7,-1 = J-l'21, so 4>(7) = -92'

We can put together the loeal information to obtain the following global result.

111.4.8 PROPOSITION. For eacb LeI:" order the points PI, ... ,PrL E Sn L so that

Pr. (PI ) > ... > Pr. (PrL ).

Let el, ... , erL -1 be the edges in r labelled L so that P z (ei) is the interval between

PZ(Pi) and Pz (pi+l). Let tPi be any element oE G mapping to 4>(7,-1) in G/ I L as

defined above for ei-l and ei. For eaeb Pi E sn L, let

{

0
'lj;pj =

tPl ... <Pi-l
Define

'I!:3-+G

so that for each L and pES n L

if j = 1

otherwise.

Then tbere exists a lifting L' of L for each LeI:, so that W is lifting data for L'.

Proof. Define L' to be the lift of L containing the edge f'( el). The rest follows

fram 11.2.6. I

We are now ready to find lifting data for a E lifting in p:X -+ Y.
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111.4.9 PROPOSITION. For eacb proper transform LEE of a line L in .c, let L' be

tbe curve in pl{L) corresponding to L' under tbe birational map (j : X --+ X. For

eacb point pET, let E~ be the curve in p-l{Ep ) mapping to f'{p) under (j. Let

be deiined by \ji (q, L) = w(O"{q), L) for alllines L in ,c and let \ji (Ep ) be the identi ty

element. Then \ji is lifting data for the liftings.

PROOF: Since f'{p) is in W{p, L)L' for all pES and p E L C 'c, the result follows

from Proposition II.1.4. I
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Chapter IV. Algorithm for Computing the First Betti Number

In this chapter we give an explicit algorithm for finding bl (X). The algorithm

breaks up ioto three parts:

INPUT. Create input for the algorithm. To do this we find a choice of coordinates

satisfying certain criteria.

A. A point/Hne incidence matrix M for the line configuration I:. with respect to

a choice of coordinates satisfying certain criteria.
........

B. An integer n so that the surface X is determined by the canonical map

C. The index R of the first line in I:. whose slope is negative.

STEP 1. Find the first Betti number bj of the unbranched part XU of p : X --+ p2

using the following substeps.

A. Make a point/line incidence matrix M for lines C2
- 1:., where C2 denotes the

affine plane given by z =f. 0 and I:. is the intersection of I:. with C2 .

B. Find a presentation for the fundamental group of p2 - 1:..

C. Compute the Alexander matrix associated to the presentation.

D. Find bj.

STEP 2. Find the nullity Null(I) of the intersection matrix for curves in pI (E)

using the following substeps.

A. Make a point/curve incidence matrix für curves in i.
B. Make a shift matrix for E.
C. Order the curves above i (using generators for the stabilizer subgroups).

D. Make an intersection matrix for curves above i.
E. Find the nullity of the intersection matrix.

By Proposition 1.6.3, the difference bi - Null(I) equals b1(X).
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INPUT

The format of the input is important in making the later calculations from this

input easier.

IV.l Conditions on coordinates x, y. Recall the conditions on x, y given in III.2

and III.4. Properties Pl and P2 are needed to implement the algorithm for finding

bj described in III.4 and Pl, P2, P3 and P4 are needed to implement the algorithm

for finding the lifting data as described in III.4.

Pl. Each La in L is given by an equation of the form

where m o and bo are real.

P2. The projection Px sends the set of all intersections S on L n C2 to distinct

(necessarily real) points Q in C.

P3. All points in S lie on the affine plane.

P4. All slopes m o are nonzero.

Add two more conditions.

P5. For same jo, Pi E LI; for all j ~ jo, and rotating the affine plane so that

LI; becomes vertical doesn't change the ordering of the x-coordinates of points in

S- LI;.

This property can always be achieved by changing coordinates if necessary so

that the line y = (mI; +€)x +bio goes to infinity, where € > 0 is chosen small enough

(this process would require changing the ordering of LI, ... ,Lk-I and PI,' .. ,P6)'

P6. Px(p) > 0 for all pES.

By shifting x by a constant Xo greater than !PX (P6)! we can make sure property

P6 holds without changing the previous conditions.

As a consequence of these conditions, we have orderings LI, .. . ,LI. of the lines

in L so that the slopes are strict1y decreasing:
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and orderings Pt, ... , P~ for points in the set of intersections S of r.. so that

Condition PB implies that the y intercepts of the defining equations for r.. satisfy

We make the definition of a pointfcurve incidence correspondence for any collec­

tion of curves on a surface, since we will also use one for l in p2 in the algorithm.

The definition also makes sense for curves lying on a quasi-projective surface, for

example, p2 minus a line "at infinity."

IV.2 Definition. Let C be a union of k curves on a quasi-projective surface Y with

orderings Ct , ... ,Ck for the curves in C and Pt, ... , P~ for the points of intersection

S on C. The point/curve incidence matrix M for C with these orderings is the s by

k matrix with entries
if Pi E Cj

otherwise.

In the special case where C is a configuration of lines in p2 we will also call this the

point/line incidence matrix.

Let M be the pointfline incidence matrix defined by the orderings of r.. and S

determined by the coordinates x, y, as in Definition IV.2, let n be the order of the

coefficient group, and let R be the last index so that Ln has positive slope with

respect to the coordinate. The algorithm which we are about to describe takes as

input M, n and R.

IV.3 Example. Recall the line configuration of 111.2.3.
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The point/line incidence matrix is

1 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1

The last index R so that LR has positive slope is 2

STEP 1: First Betti Number of Unbranched Part

Summary. To find the fundamental group we first send one line to infinity. This

involves a change of coordinates which we need to show still satisfy properties PI

and P2 of 111.3.1, and we get a new point/line incidence matrix. We then apply the

methods described in HI.2 and HI.3 to find a presentation for 1r} (P2 - .c). Applying

Fox calculus, we obtain the Alexander matrix, a presentation matrix for H} (XU; Z)

as a Z[G]-module, where G is the Galois group of the covering.

A. Point/line incidence matrix for the affine part of p 2
- .c

We first show that a new point /line incidence matrix M associated to a choice of

coordinates where one line in .c is sent to infinity can be obtained as folIows.

1V.4 LEMMA. The following change of coordinates leads to new coordinates satjs­

[ying the conditions of 111.2.1.

Cl. Rotate the affine plane so that the equatjon for the line Lk becomes

x = 0;

C2. Apply the change of coordinates

[x : y : z] ~ [-z : y : x].

Let M be the matrix obtained !rom M by chopping off the rows with a 1 in the last

column (i.e, tbe rows) = )0, ... ,s as in property (P5) of the coordinates). Tben

M js the point/line incidence matrix for Ln c2 with respect to tbis orderjng.

Proof. Clearly, the two changes of coordinates preserve Rp2, so the new coordinates

still give real equations for .c and thus satisfy PI.
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To prove the rest of the lemma it suffices to show that the changes of coordinates

preserve the ordering of the slopes of lines in I:, and of the x-coordinates of points

in S.

Note that the ordering of the slopes of lines in I:, corresponds to the natural

ordering (from largest to smallest) of the intersections of I:, with a vertical real line

x = a, where a is greater than the x-coordinate of any point in S. Any rotation

of the affine plane preserves the ordering of these intersections for all lines which

don't become vertical during the rotation.

Since mA: is the smallest slope of any line in 1:" the rotation of Cl preserves the

orderings of the slopes of the lines LI, ... , LA:. By the same reasoning the ordering

of the y-intercepts also do not change.

Herafter for this part of the algorithm we will replace k -1 by k. Therefore, after

Cl the new equations for LI, ... , LI are

for i = 1, ... , k,

where

ml > m2 > ... > m;;

and

By property P5, the ordering of the x-coordinates of points in S is also perserved.

Clearly, if we follow with C2, LA: goes to the line at infinity. The affine equations

for the lines LI, ... , L;; become

(The ordering of the y-intercepts reverses, hut their ordering is not important for

this part of the algorithm.) Thus, hy (*), the ordering of the slopes remains the
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same. Furthermore, if Xt, ••• , X a are the ordered x-coordinates for points in S under

the coordinate system obtained after Step (1), the new x coordinates are

1 1 1
--,--, ... , ,

Xt X2 X a

so the ordering remains the same for points in S as weIl. I

B. Presentation of 1rt (P2 - (,)

We now use M to find a presentation for 1r} (C2
- (,). Let E(fj), j = 1, ... ,s be

elements of Bk as in Proposition III.2.13, let M be the homomorphism

where Fk is the free group on generators J.L}, ... , J.L"'f as in Definition III.3.1, and let

for i = 1, ... ,k and j = 1, ... , jo - 1. Then as we saw by Proposition III.3.2,

< /-LI,· ··,J.Lk: Ri,j,i = 1, .. . ,k;j = 1,. ··,i6 >

is a presentation for the fundamental group of p2 - {,.

To compute Ri,j explicitly we use the foIlowing definition. For ease of notation we

make this definition for an arbitrary point/line incidence matrix M corresponding

to an ordering of k affine reallines {, and intersection points S on {" defined by

coordinates x and y satisfying the conditions in Definition 111.2.1.

IV.5 Definition. Define EI, ... , Ea in Bk as follows.

(1) Look at the first row of M. Let E t equal E~ d' where eis the first column of,
M containing a nonzero entry and d is the number of nonzero entries in M

(they will be conseeutive) and Et,d is as in Definition III.2.110 Let EI equal

Et,d'

(2) Given the previous Er, let Ur be the element of the symmetrie group on k
elements in the image of Er under the natural map
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if n > 0

if n < O.

if / can be presented as a word not involving Pi;

Define

where i equals Ur applied to the first column containing a nonzero entry in

the current row and d is the number of nonzero entries in this row.

IV.6 PROPOSITION. H we use the matrix M, then tbe EI, ... ,Ea defined in Defi­

nition N.5 generate the monodromy of the :B.bration Px on C2 - ~.

Proof. This follows from Proposition 111.2.13. I

Now we ean find Ri,j = J-Lj1 MEi(J-Lj) explieitly using Definition 111.3.2.

C. Alexander Matrix

We eompute the Alexander matrix of the presentation using Fox Caleulus (see

[Fol]), whieh we summarize here.

IV.7 Definition. Given a free group H generated by J.ll, ... ,JL"k' Fox derivative8 are

maps 8 8 , ... , -88 from H to the group ring Z[H] of the abelianization ii of H
1J1 P.-l

defined as follows.
a 8 8

-(fg) = -(f) +f-(g);
8Pi 8Pi api
8

-Cf) = 0
8Pi

8 {1 +Pi +... +pi-I,
-(JLi) =
8Pi -1 -2 n-J.li - Pi _ ... - Pi ,

Let cP : H1 (P2 -~; Z) -4 G be the defining map for the covering. Then cl> induces

amap

given by composing cP with the inclusion of G in Z[G]. Recall that H I (P2 -~; Z) is

eanonieally isomorphie to the abelianization of 71"1 (p2 - ~,*).

Let< PI, ... ,PI; : Rl , . .. ,RN> be a presentation for 71"1 (P2 - ~,*). Let A be

the matrix of Fox derivatives

74



The matrix A is called the Alexander matrix for the presentation.

The following proposition is a special case of Fox's result ([Fo2], (3.5), p. 411.)

IV.8 PROPOSITION. Tbe Alexander matrix A js a presentation matrix for the first

homology group H1 (XU, Fj Z) considered as a Z[G]-module, for F any fiber.

D. Computing b~

Let nk be the set of k-tuples of nth roots of unity and, for each element w =

(Wl, . .. ,wt) in nk, let

be the Z-module homomorphism defined by

where 9i = 4>(J.Ld. Let Aw be the matrix obtained from A by replacing each entry

ai,i by Tw(ai,i)' Let rw be the rank of Aw •

The following result is a. consequence of [Li4], p. 2, Theorem 1 (see also [Ho],

§2).

IV.9 THEOREM. The first Bettj number of XU js given by

br = L k -1- rw

wEnn

This completes STEP 1 of the algorithrn.

STEP 2 : Intersection Matrix for Curves Above Branch Locus

Summary. As we saw in Chapter 11, finding an intersection for curves in X above

E requires lifting data, i.e., a way to choose curves C' in the covering, one above

each curve C in l, together with the information of which group action makes two

curves meet above a specified point. In Step 2, we make a point/curve incidence

matrix Ai for l and then replace each entry in Ai by a group element, so that in

the (p, C) entry we have the element W(p, C) with the property that

w(p, C)C' n W(p, D)D'
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meet in the fiber p-l(p).

Using Propositions 111.4.8 and IIIA.9 we show how to define a rnap

using M and R, so that for sorne choice of lifting of the curves in Ein the covering

p: X --+ p2, lJ1 gives lifting data.

Prom this infonnation, we use the formula in 11.3.1 to find the intersection matrix

I of the curves in pI (.c). Then, by Proposition 1.6.3,

bl = b~ - Null(I).

A. Point/curve incidence matrix for E
We begin by ordering the curves in Eand the points Sof intersection on E.
The curves in Eare proper transforms LI, ... ,Lk of lines .c and exceptional curves

E q for points q E T. Order the points ql,"" qt in T so that each qi = pr, where Pr

is the ith point in the sequence PI, ... ,Pa through which more than two lines pass.

Order the curves in J:, a.s follows:

-- --LI, .. . , L k , Eql ,· •• ,Eqt •

For each point pr E S with only two lines Lit and Lh passing through pr, set

dr = 1. There is a single corresponding point Pr in Lit n Lh'

For each point Pr E S with Pr = qu for some qu in T, there are dr distinct

points Pr,l,'" ,Pr,rflr in o:-I(Pr) = Eqq so that the proper transforms Lil"'" LÜr

intersect E qq •

We thus have an ordering for the points in S:

pi,I" .. ,Pl,dl ,P2,l" .. ,p2,d2 ,··· ,Pa,I'" . ,Pa,d,.

Define MI, ... ,Ma to be the matrices defined as follows.

(1) If row r of M has only two columns ji and j2 with entry equal to 1 then

let Mr be the 1 x (k + t) matrix with a 1 in the jl and j2 columns and zero

elsewhere.
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(2) H row r of M has columns jl," . ,jd with entries equal to 1, with d > 2, then

let Mr be the d x (k + t) matrix with a 1 in the i,jt and i, k + u place for

i = 1, ... , d, if r is the uth row of M containing more than two entries equal

to 1.

Let M be the matrix obtained by coocateoatiog these matrices.

The following proposition can be checked easily from the definitions.

IV.10 PROPOSITION. The matrix Xi defined as !lbove is the point/curve incidence

matrix for the curves in Eand the points of intersection Sin Eordered as above.

B. Shift matrix for l
To find the shift matrix for Ewe begin by finding one for l..

IV.11 Definition. Let ai,j, i = 1, ... , S; j = 1, ... , k be the entries of M. DeBne

the shift matrix 8h(l.) with entries bi,j inductively on i as follows.

(1) Row 1: b1 ,i = 0 for all j = 1, ... , k.

(2) Row i:

if ai ,j = 0 or j = R or j = R + 1;
R

bi-1,j - L getai,et
et=j+I

i-I

bi-I,j - L getai,et
O'=R+I

if ai,j = 1 and j < R;

By Proposition 111.4.8, there is a choice of lifting Li for each Lj in l. so that

'J!::J-+G

are lifting data.

Now we are ready to find the shift matrix for E.
-IV.12 Definition. For r = 1, ... ,S, let Sh r be the matrix defined as follows

(1) If row r of M has ooly two columns jI and j2 with entries equal to 1, then

let Shr be the 1 x (k + t) matrix with entries br,it in the jl COlWllll, br,h in

the j2 column and zeros elsewhere.
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(2) H row r of M has columns j}, ... ,jd with entries equal to 1 and d > 2,

then let Shr be the d x (k + t) matrix with entries br,h in the P,jt place for

i = 1, ... , d and zeros elsewhere.

Let Sh(E) be the matrix given by concatenating Sb1 , ... l Sh". Since Sh(E) has

the same dimensions as Ai, there is a well-defined bijection from J to entries of

Sh(E), which we can think of as a correspondence between pairs (p, C) in J to

integer pairs (ip,je), where i p is the row corresponding to the point p and je is the

column corresponding to the curve C in M.
By Proposition III.4.9, there is a choice of lifting C' for each curve C in Ein the

covering

so that

is lifting data for the C'.

c. Ordering curves above E
To find the intersection matrix for the curves in pI (E) explicitly, we need to be

able to order the curves in p I (i) and find their intersection numbers.

Recall that the curves in p-l (C) for any curve C in Eare in one to oue corre­

spondence with cosets of the stabilizer subgroup He associated to C. Thus our goal

now is to find the stabilizer subgroups explicitly.

IV.13 PROPOSITION. Consider G as the quotient oE the Eree abelian Z/nZ-module

A k oE rank k with basis 91, ... 19k by the submodule generated by 91 +92 + ... +9k.

For each curve C c Ewe have:

(1) iE C = Li, for i = 1, ... ,k, tben He is tbe submodule oE G generated by tbe

relation-free elements
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tor a11 p E Li n s;
(2) if C = E q... , tor u = 1, ... , t, then He is the submodule of G generated by

tbe relation-free elements gil' ... ,9id, where Lil,' .. ,Lid are tbe lines in .c
passing througb qu.

Proof. This is arestatement of Propositions III.1.4 and 111.1.5. I

1V.14 COROLLARY. The number of curves in p-l(C) for Ce l is

(1) n k - r - 1 if C = Lj for some j = 1, ... ,k and r is the number of entries in the

j th column of M equal to 1;

(2) n k - d - 1 if C = E qu for some u = 1, ... , t and, tor i such that Pi = qu, d is

tbe number entries in the itb row of M equal to 1.

1V.15 COROLLARY. Witb notation as in N.14, the quotient G/He for C cE is a

free Z/nZ-module of rank

(1) Re = k - r - 1 if C = Lj ,

(2) Re = k - d - 1 if C = E qu .

Furtbermore, we can choose bases for these quotients as follows.

(1) H C = Lj, G / He is freely generated by the images of elements o{ the form

wbere Lh and Li;z pass through a point P E Lj and i 2 is the largest index

« j) oE a line in r. passing tbrough p;

(2) He = E q... , G / He is freely generated by the images of elements of the form

where Li 1 and Li2 don 't pass througb qu and i 2 is the largest index of any

line in .c not passing througb qu.

Proof. The first part of the corollary follows trivially from Corollary IV.7. To show

that the elements described above generate the quotient modules, we first check that
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the ranks are eorreet. For case (2) this is obvious. For case (1) assume there are

r points in S n l. and there are a total of d i lines through the i th point in S n L j

for each i = 1, ... ,r. By definition we have di - 2 generators for eaeh Pi E Sn Lj.

Sinee alilines interseet in p2,

r

L (di - 1) = k - 1.
i=l

Therefore,
r

L(di - 2) = k - r - 1.
i=l

Let G be the quotient of G by the subgroup generated by the generators deseribed

above. Sinee the generators deseribed are independent in G and He is clearly

eontained in the kernel of the map

G-. G,

G must be isomorphie to Gj He. I

Now we order the eurves in p-l(C) by ordering the elements of CIHe in lexieo­

graphie order with respeet to the ehoiee of basis given in Corollary IV.15.

D. Intersection matrix for curves above E
From Theorem 111.2.1, to find the interseetion number of eurves lying above C

and D we need to find the number of elements in

aHenßHD

explicitly for C and D in i and a, ß E G.

Let TC be the quotient map

TC:G-.GjHc

for eaeh C c i. The number of elements in aHc n ßHD equals the number of

simultaneous solutions to

Te(g) = a, TD(9) = ß,
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where a and ßare the images of a and ß in G/Be and G/BD.

It is easiest to find the number of simultaneous solutions by writing the maps TC

in matrix form. Recall that Gis isomorphie to the quotient of Ak by the submodule
k ~

I generated by Li=1 Xi. For each Cer. define the matriees Tc as follows

(1) If C = Lj, for eaeh row i in M with d ~ 3 column entries equal to 1, let

jl, ... ,jd-l be the indices of these eolumns excluding j. Let Te,i be the

(d - 2) x k matrix with a -1 in all the jd-l column entries, a 1 in the l,jt

entries, and zeros elsewhere. Concatenate the Te,i in the order of increasing

i to get Tc.

(2) If C = E pr , where Pr corresponds to the ith'row of M, let j1, ... ,jk be

the eolumns with entries 0 in row i. Let Tc be the (k - d - 1) x k matrix

with entries -1 in the entire jk-i column, 1 in the l,ji entries, and zeros

elsewhere.

IV.16 PROPOSITION. For eacb C, Tc is a matrix which represents a surjective

module homomorphism

Tc : AA; -+ G/He

so tbat Tc is tbe composition oE tbe quotient maps Ak -+ Ak/I = G and G -+

G/He.

Praof. One abserves that the rows of Te correspond to the generators fouod in

Corollary IV.15. I

IV.17 Blocks of the intersection matrix. We construct the intersection matrix l in

blocks leiD corresponding to how the eurves above C and curves above D intersect,

for C and D in E.
Each curve in Eeorresponds to a column of the point/eurve incidence matrix M.

Let c, d denote the two columns corresponding to the curves C and D. Let Re and

RD be as in Corollary IV.14. Define Meld to be the n Re X nR,j matrix with entries
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as follows.

(1) H c = d ~ k, then Mc,d has entries

1
3(rank(Te))(1 - Re)
n

on the diagonal and zeros elsewhere.

(2) H c = d > k, then le,D has entries

1
a(rank(Tc))(-1)
n

on the diagonal and zero elsewhere.

(3) H c =I d and M has a row whose c and d columns don't both have entry 1,

then M c d is the zero matrix.,

(4) H c =I d and M has a row whose c and d columns have entry 1, let Q' and

ß run through elements of G/ He and G/ H D ordered lexicographically, and

let l C D be the matrix with entries
I

1 -
3(number of solutions to TeX = 0', TDX = ß)
n

in the Q', ß place.

The le,D defined in IV.17 is the intersection matrix for curves in p-I(C) and

pI (D). After concatenation we get the intersection matrix I for all curves in

p-I(E).

E. Computing the nullity of the matrix I

We compute the nullity of l using basic integer row reduction. A problem with

the algorithm is that the size of the matrix I grows as a polynomial in n, so it

quickly becomes too large for a computer to handle.

Putting together the results of STEP 1 and STEP 2 gives the first Betti nlUllber

of X.
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Chapter V. Examples

In this chapter we swnmarize the classification of Hirzebruch eoverings, following

[Hi], and ealeulate geometrie invariants which ean be obtained from the algorithms

and fonnulas deseribed in this paper. These are the Betti numbers, Chern numbers,

bounds on the Pieard number, irregularity, algebraie and geometrie genera.

The types of surfaees which oecur as Hirzebruch coverings are ruled, elliptic,

K3 and general type. We review Hirzebruch's classification and properties in V.I.

We also prove in this section, following Ishida's analysis in [I], that the branched

coverings X are complete interseetions when .c is a union of lines not all passing

through a single point.

H the branch locus is a configuration of k > 3 lines in general position then the

eovering is simply connected and of general type (see V.2). There are specific kinds

of line configurations whieh give rise to surfaces whieh are birationally equivalent

to a product of curves (see V.3) or fibrations (see V.4). Examples of K3 surfaces

and elliptie surfaces (see V.5) oceur when we consider coverings with n = 2. The

largest dass of Hirzebruch coverings are general type (see V.6). In V.7 we give of a

list of some computer output.

V.I Classiflcation cf Hirzebruch coverings

We give here properties of Hirzebruch coverings and formulas for the Chern lltun­

bers and other geometrie invariants. The results are essentially contained in [Hi],

but we use some different notation here to make our computer calculations simpler.

As we saw in Lemma IIL1.2 Hirzebruch coverings are smooth. In most cases they

are also minimal and one can speak of their I(odaira-Enriques classifieation.

V.l.l THEOREM. ({Hi), p. 127) The Hirzebruch surface X is a minimal surface

except in the following cases:

(1) T contains a single point p and a11 but at most 2 line in [. passes through p;
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(2) T contains two points p and q, alllines in .c.. pass through p or q, and tbere

is one lines in .c containing botb p and q.

For n 2: 3, the canonical dimension of X is 2, that is, X is a surface ofgeneral type.

For n = 2 and k = 6, X is a K3 surface, and for n = 2 and k 2: 7, X has canonical

dimension greater tban or equal to 0, and it is elliptic or oE general type.

We will deal with the exceptional cases in V.3 and VA.

A useful aspect of Hirzebruch coverings is the ease with which their ehern nUffi­

bers can be calculated.

Let t be the number of points in T and let s be the number of points in S. For

each pES, let lp be the number of lines in .c.. passing through p and for each line

L C 1:" let rL be the number of points in Sn L.

V.l.2 THEOREM. ({Hi), pp. 123-125) H not a11lines pass through a single point,

tben we have

where Ep is tbe exceptional curve lying above the point p. Tbis implies that

2 der K 2
cl = X

k I n-l 2 L n-l 2= n - ((-3 +k(-)) - (1 + -(1 -lp)) ).
n n

pET

Tbe second ehern number equals

def ......
C2 = Xtop(X)

,= n t
-

I (3_s_ L(2-rL))+nk
-

2(L(2-lp )+ L(2-rL))
Le~ pET Lee

+n k
-

3 (s - t + L lp).
pET

H alllines pass tbrough a single point p, then

........ ( • '" n - 1 • )Kx = p U K P 2 + Ep + L.,; -n-u L
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and hence

The second ebern number equals

V.l.3 Remark. Noether's formula gives the Euler number of the structure sheaf

Thus, onee one finds the first Betti number bl of X, we have the following addi­

tional invanants:

(1) From the Hodge deeomposition of H I (X; C) and Poineare duality

bl = hI,a + ha,l

= 2q,

and we get the formula
1

q = -bI
2

for the irregularity q of X;
(2) From Poineare duality we get all the Betti number,,:

and

and, sinee C2 = Xtop(X) = bo - bl +bz - b3 +b4 , we have

(3) From the deeomposition X(V;) = 1- hI,a + h2,O we obtain the arithmetic

genU.5
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I

and the geometrie genu,.,

der h2 0
P - ,

9 -

= Pa +qj

(4) From the Hodge decomposition of H2 (X; C) and Poincare duality

= 2pg + hI,I,

and solving for hI,I we obtain

1 1 5 1 2h' = - C2 - - C + bl •6 6 1 ,

(5) Hodge theory tells us that the Picard number p is bounded

Another interesting property of Hirzebruch surfaces is that X, the covering before

desingularization, is a complete intersection when the lines in L don't all meet at a

single point. The proof follows from the analysis of Ishida [I] which leads him to a

different method for finding the first Betti number.

V.l.4 PROPOSITION. H.c. is a connguration ol k ~ 3 lines not all meeting at a

single point and n > 1, tben tbe branched covering X olp2 denned by the map

is a complete intersection. Jl no k - 1 01 the k lines pass tbrough a single point,

then X is the complete intersection 01 smooth hypersurfaces.

Proof. Define i : p2 -+ pk-l by
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where W I , W2l W3 are homogeneous coordinates for p2 and lI, ... ,lk are homoge­

nous equations for the lines in J:... The map eis induced by a linear map m : C3 ---+

C k • Since not alliines in J:, pass through one point, this map has nonzero kernei,

so edefines an immersion p2 ~ pk-l, i.e., eis an isomorphism of varieties from p2

to R(P2).

Consider the perpendicular space P to m(C3 ). This is a (k - 3).dimensionallinear

subspace of Ck . Let

i=l, ... ,k-3,

i = 1, ... , k - 3,

be a basis for P. Let hI, . .. ,hk-3 be linear homogeneous equations on pk-l defined

by
k

hi = Lai,jYj
j=l

where Y1 , ... , Yk are the homogeneous coordinates for pk-l. Then l(P2) is the

complete intersection of the hyperplanes defined by the equations hi = O.

Let Cn be the morphism defined by

C
n

: pk-l -t pk-l

[Xl: ... : Xk] ~ [X~ : ... : Xr].

Then Cn is a branched covering branched along the coordinate axes

k

U{}i = O}
i=l

defined by the natural map

k k

. 1t'1 (pk-l - U{Yi = O}) ~ HI(pk-l ~ U{Yi = O} j Z/nZ).
i=l i=l

Let X = c;;-I(R(P2)). Since einduces an isomorphism on the fundamental groups

of p2 - .c and pk-l - U~=l {Yi = O}, by Corollary 1.4.4 the stabilizer subgroup of

R(P2) is the whole Galois group. Therefore, X is irreducible. Since Cn is a finite
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morphism, its restrietion to X is a finite morphism. Furthermore, by Proposition

1.4.3, its r~triction to p-l(i(P2 - 1:)) is an unbranched covering de:6ned by the

natural map

Therefore, to show that X is the Hirzebruch surface associated to .c and n it suffices

to show that X is normal. We will show this and the statement of the proposition by

showing that X is a global complete intersection with singularities in codimension

2 (see [Ha] p. 188.)

Consider the equations

i = 1, ... , k - 3.

At least set theoretically, X is the intersection of these hypersurfaces. To show that

X is normal and equal to the complete intersection, it suffices to show that the

J acobian matrix for the set

has rank k - 3 for all but a finite number of points in X.

'The Jacobian matrix has entries nai,jXr-1. We claim that if P is a point in X

so ..that not more than two of its coordinates are zero (i.e., a point p so that cn(p)

lies in the image of at most two lines in .c) the Jacobian matrix at P has rank k - 3.

Define Mit,h to be the matrix obtained from [ai,j] by setting the)1 and)2 columns

equal to O. Since n ;::: 2, the matrix [nai,jXr-1] at a point P lying on the image of

L j 1 U Lh, but not on the image of any other lines in .c, has the same rank as Mit ,h .

We need to show that Mit ,h has rank k - 3. Suppose there was a linear relation

among the rows of Mit ,h' Then, since [ai,j] has fuH rank, this would imply that

there is an element of P where only the)1 and j2 entries are nonzero, i.e., an element

giving a linear relation between m(EI) and m(e2 ). This implies that i 1 and e2 are

linearly dependent, which rneans that the lines LI and L 2 must be equal. Thus,

Mit ,h roust have rank k - 3.
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Trus shows that the scheme defined by the functions 11, ... ,!k-3 is reduced and

can only have singularities at points above the image of tripie and higher intersee­

tions on .c. Therefore, it roust be anormal complete intersection.

Suppose no k-l of the lines meet in a single point. If Yl, .. . , Yk are the coordinates

for Ck , P does not lie in auy coordinate hyperplane Yj = O. If it did, then this would

imply that any tripie of lines other than Li are dependent vectors in the dual space

(:3 to C3 . That is any tripie of lines not containing Lj intersect in a single point.

This implies that all k - 1 lines in .c other than L j intersect in a single point

contradicting the hypothesis. Therefore, P has a basis

i=1, ... ,k-3,

where none of the ai,j are O. In this case, it is easy to see that the hypersurfaces

defined by 11, ... ,!k-3 are smooth. I

V.2. Lines in general position
. .

Assume .c contains ooly double points, i.e., T is empty. Then 'there is no need

for blowups and pullbacks, and the Hirzebruch surface X associated to .c and any

positive integer n equals X. By Proposition 111.2.6, we know that X is the complete

intersection of smooth hypersurfaces in pk-l. Since X is smcoth, these surfaces

must be in general position. Thus, we can embed pk-l into pN for appropriate

N so that X is the complete intersection of the image of pk and hyperplanes in

general position. The Lefschetz hyperplane theorem states that, for any variety Y

of dimension greater than or equal to 3 and generic hyperplane H in the ambient

projective space, the map

7T'1 (Y n H) --.. 7rl (Y)

induced by indusion is an isomorphism. Therefore, since pk.-l is simply connected,

so is X.

Here is a proof of the followiog weaker statement, which illustrates the techniques

of the general algorithm of this thesis.
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V.2.1 PROPOSITION. The first Betti number oE X is O.

Proof. Zariski's conjecture on the fundamental group of the complement of nodal

curves, proven by Deligne [D] and Fulton [Fol], implies that

is abelian. (In fact, the theorem asserts that the fundamental group is abelian for

any union of curves with only normal crossings.)

Consider the eommutative diagram

h

h
7t"1{P2 -1:,*) • H1{P2 -1:;Z)

where the horizonal maps h are the Hurewicz homomorphisms taking loops to their

homology classes.

Then, sinee 7t"1 (P2 - 1:) is abelian and p: :7t"1 (XU) -t 7t"1 (P2 - l.) is injeetive, we

have

is injective. The eokernel of p: is isomorphie to the eokernel of the map

and is isomorphie to G, a finite group. Therefore, the image of p: has finite index

in H1(P2 - 1:; Z). Thus, the rank of H1(XU; Z) equals that of H1(P2 - 1:; Z) or k-1.

Therefore, b~ = k - 1. Now eonsider the interseetion matrix for p-l{L) in X.

Any line L c 1: interseets all other lines in 1: in distinet points, so HL = G.

Therefore, L' = p-l{L) is irreducible for all L C L.

H LI and L 2 are two distinct lines in L, then by Proposition 11.3.1

L;L~ = ~IHLl nHL2 1
n
1

= n 21G1
= n k - 3
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If L is any line in .c, then

Therefore, the intersection matrix for p-I (.c) equals n k - 3 times the intersection

matrix I(.c) for .c, and hence the rank and nullity of the matrices are the same and

equal 1 and k - 1, respectively.

Putting this together with bf, we get

bl == b~ - Null(I(p-I(.c)))

==k-1-(k-l)

== o.
I

The Chern numbers for X associated to lines in general position go as follows.

n-l
c~ == n t - I ( -3 + k( __ ))2.

n

C2 == n t - I (3 _ k(k -1) _ k(3 _ k)) + n k - 2 k(3 _ k) +nk-3 k(k - 1).
2 2

V.2.2 EXAMPLE: If k == 3, then X = p2 and

p : p2 ----+ p2

is given by

p([X : Y : Z]) = [x n : yn : zn]

for some choice of coordinates [X : Y : Z].

By the above formulas we get the Chern numbers:

n-l
c~ = n 2

( -3 +3-_)2
n

= (-3n + 3(n - 1))2

=9;

and

C2 = n
2 (3 - 3) + 0 + 1(3) == 3

as expected.
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V.3. Fibrations

In this section we deal with exceptional case (1) of Theorem V.l.l. (See also [Hi],

p.l3l.)

Before we begin, we do a calculation which will be useful in both this and the

next section.

V.3.l LEMMA. Let P be k points in pI and let C be tbe branched covering over

pI defined by

7r1 (pI - P) ~ H1(pI - P; Z/nZ).

Tben C has topological Euler characteristic

Xtop(C) = (2 - k)nk-I + knk
-

2

and genus

g(C) = ~((k - 2)nk
-

1
- knk

-
2 +2).

2

Proof. It suffices to show the formula for Xtop, since g(C) = t(2 - Xtop). Let

Cu = p-I(PI - P). By a general property of unbranched coverings, since n k - I is

the degree of the covering and 2 - k is the topological Euler characteristic of pI - P,

we have

The completion C is obtained by adding n k - 2 points above each of the k points in

P. The claim folIows. I

Case (1) in Theorem V.1.l generalizes to the case where T contains only one

point p, as in the following diagram (note that not all intersections are drawn here.)
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As usuallet p2 be the blowup of p2 at p. There is a natural pI fibration f : p2 -t Ep

given by projeeting along the proper transforms of lines through p. Let lp be the

number of lines through p.

Consider the eomposition of maps X .z p2 ~ Ep • By Stein faetorization, there

is a eurve C so that trus eomposition faetors as X .L C -+ Ep , where X -+ C

h88 connected fibers and C -+ Ep is a finite surjective morphism (i.e., a branchecl

eovering.) It follows that X eau be deseribed as a fibration over the eurve C.

To find C explieitly, look at the commutative diagram

./ /', ......
C' IX • c

1 ;J 1
E p I p2 f

I Ep

where C' is a eonneeted eomponent of p-I{Ep ) and the maps i : Ep -+ p2 and

i' : C' -+ X are inc1usions. Note that C' irreducible by Lemma 11.3.2. Since

f 0 i : E p -+ Ep is an isomorphism and j' 0 i' : C' -+ C is a one-to-one and outo

map preserving fiber, C' and C are isomorphie and C is the branehed eovering of

pI branehed along lp points.

The general fibers of this fibration are branched along k - f p + 1 points.

From the above diseussion, Proposition 1.4.3 and Lemma V.3.1, we have the

following proposition.

V.3.2 PROPOSITION. The surface X is a libration over the curve C with genus

and witb Ebers F of genus

g(F) = { ~((k - f p - l)n k
-

t
, - (k - f p + l)n k

-
t
,-1 +2)
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When f p = k, k - 1, X is a ruied surface for ali n ~ 2. When f p = k - 2, X is

ruied surface for n = 2, an elliptic surface for n = 3 and a surface of general type

for n ~ 3. When f p ::; k - 3, X is of general type for ali n ~ 2.

In this case, if n = 2 one gets a ruled surface, if n = 3 one gets an elliptic surface

and for n > 3 one gets a surface of general type. For f p not equal to k, k - 1 or

k - 2, and n ~ 2, X is of general type.

V.3.3 REMARK: The special fibers of the fibration depend on the positions of the

double points.

Consider, for example, the following configurations drawn on the "real part" of

p2.

Assume, say, that n = 2. The coverings corresponding to these configurations are

naturally fibrations over pI with general fibers of genus 5. For the left configuration,

all special fibers have genus 1, but for the right configuration, there are special fibers

lying over the dotted line with genus O.

V.4 Coverings birational to the product of two curves

We now deal with exceptional case (2) of Theorem V.1.3. Let p and q be the two

points in T and let lp and lq be the number of !ines through p and q. Then p2 is

obtained from p2 by blowing up the points p and q. As is well known, if one blows

down the proper transform of the line N C L passing through p and q one obtains

p I X pI. We have
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where the arrows are birational morphisms. The preimage L of J: in p2 equals the

union of the proper transforms of the lines in I: and two exceptional divisors Ep

and E q• The image of L in pI x pI equals ep + llines in one ruling and eq + llines

in the other ruling. The maps are isomorpmsms on the complement U of these sets.

L1 --+--H-----t~

Lz- ......-t-t-+-

Lr --+-+-+--f-
q

Note that in the above diagram, the notation for curves and their proper transforms

are the same, as no confusion should arise.

Let Z be the completion over pI x pt of the unbranched covering of U given by

restricting p. Then Z is birationally equivalent to X and agrees over U. We will

show that Z is a product of curves, which can be given as branched coverings of

the components of pI x pI.

Let LI, . .. ,Lrp (respectively, MI, ... ,Mrp ) be the lines in 1:, other than N, go­

ing through p (respectively q). Let II, ••• ,Ir, be the meridianal loops around

LI, ... ,L rp , let PI, ... ,Prq be the loops around MI, ... ,Mr, and let T be the loop

around N.

Recall that G = Ht (P2 - Lj Z/nZ) is generated by

11, ... , Ir, , Pl , ... , jJ.r" T

and they have the relation

r p r q

L li +L jJ.i + T = O.
i=I i=I

Thus, 11, ... 'Irp and jJ.I, ..• ,jJ.rq generate subgroups Gp and Gq , with the property

that G = Gp x Gq•
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Now, U is isomorphie to

pI _ {rp + Ipoints} x pI - irq +1 points}

and the defining map 'trI (U) -t G ean be seen as the produet of the maps

and

7rl(pl - irq + 1 points}) ~ Gq.

We thus have proved the following. (See also [Hi], p. 131.)

V.4.1 Proposition. Suppose T contains two points p and q, a11 lines in ~ pass

tbrougb p or q and there is a line in ~ passing through both p and q. Then X is

birationallyequivalent to the product oE curves C and D, where

g(C) = ~((rp -l)nrp
- (rp+1)nrp

-
1 + 2)

and
1

g(D) = 2"((rq - 1)nr9
- (r q + I)n r9

-
I + 2)

In particular, if r p = 2 (or r q = 2 and n = 2 then X is ruled, if n = 3 then X is

elliptic and if n > 3 then X is of general type. If T p = 3 or T q = 3, then X is elliptic

for n = 2, general type for n ~ 3. If both T p and r q are greater than or equal to r,

then X is of general type.

V.5 K3 surfaces aod elliptic surfaces

Assume ~ does not fall under one of the exceptional cases of Theorem V.I.I.

Recall the equation for K X from Theorem V.1.2. Replacing n by 2, we have, for H

a general Hne on p2,

KJ(=p(a'Kpd L~(3-€p)Ep+L ~a'L)
pET Lee

1 k
= !?(-30'·H + L 2(3 - ip)Ep+ 20'· H)

pET

=p((-3 + ~ )a'H + L ~(3 - €p)Ep).
pET
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Here equality means linear equivalence as divisors.

Thus, if k = 6 and l. has no quadruple or higher order points, then the canonical

divisor K X is trivial and X is a 1(3 sUlface. If k ~ 7 then Kx is effective (one does

not subtract off more Ep 's than one adds with the u· H's.)

Prom Theorem V.1.2, the formula for c~ when n = 2 is

c~ = 2k- 1(( -3 + ~? - L::(3 - ep )2).
pET

Thus, for example, if k = 7, then X is an eHiptic surface if and only if l, has ODe

quadruple point and the rest are double or triple points.

V.5 Calculations of invariants

We end with a list of output from computer aided caleulations implementing the

algorithm deseribed in this paper. The invariants which we foeus on are the Betti

numbers bJ, ~, the ehern numbers c~, C2 and bOlll1ds on the Pieard number given

by the rank of the interseetion matrix for eurves above the braneh loeus and the

Hodge number hI,I. (Note that given C2 and bl, one ean ealeulate ~ direetly.)

Although surfaces with Kodaira dimension less than two have been studied in

detail and their Betti numbers as weH as Chern numbers are understood. This

is not true for surfaces of general type. We have seen that most of the examples

arising as Hirzebruch coverings are of general type. For example, if n 2:: 3, k 2:: 7

and T has at least three points, this is the case.

According to the Miyaoka-Yau inequality, we have c~ :::; 3C2 for minimal surfaces

of general type, with equality occuring when the surface is uniformized by the

complex ball. An example of a Hirzebrueh eovering surface whose Chern numbers

satisfy the equality, with brauch locus defined by real equations, aceurs when we
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have the folowing configuration, with n = 5.

The above configuration is also interesting because when n = 2 one gets a K3 surface

with Picard number equal to 20, which equals hI,I. When n = 3 one gets a surface

of general for which the Picard number is also equal to hIlI.

In the following we list computer calculations for configurations of 6 and 7 lines

as weil as two more examples. The existence of the first (a configuration with 9

lines) can be proven using Pappus' Theorem. The second, is the set of lines through

5 points in general position.

98



• not m..inimal model

Configurations of 6 lines

n = 2: K3, b1 = 0, b'2 =22, cr =0, C'2 =24, 1 :5 P:5 20
n =3: general, b1 =0, b2 =403, cr = 243, C'2 = 405, 1 :5 P :5 297
n = 5: general, b1 =0, b'2 = 9373, c? = 10125, C'2 = 9375, 1 :5 P :5 6125

n = 2: K3, b1 = 0, b'2 = 22, cr = 0, C'2 = 24, 5 :5 P :5 20
n = 3: general, b1 = 2, b2 = 326, ci = 216, C2 = 324, 10 :5 p :5 236
n =5: general, b1 = 12, b2 = 7522, cr = 9000, C2 = 7500, 26 :5 P :5 4762

n = 2: ruled"', b1 = 2, b2 = 10, cr = -8, C2 = 8, 3 :5 p :5 10
n =3: eHiptic, b1 =20, b2 = 148, cr =0, C'2 = 108,4 :5 P :5 110
n = 5: general, b1 =152, b2 = 3802, cr = 4000, C2 =3500, 6 :5 p :5 2402

n = 2: ruled, b1 =10, b2 =2, ci =-32, C'2 =-16, 2 :5 P :5 2
n = 3: ruled, b1 = HO, b2 =2, ci =-432, C2 = -216, 2 :5 p :5 2

n =2: ruled, b1 = 34, b2 =2, cr = -32, C2 =-64, 2 :5 p :5 6
n =3: ruled, b1 = 488, b2 =2, cr = 0, C2 = -972, 2 :5 p :5 128

n = 2: K3"', b1 = 2, b'J = 10, cr =-8, C'J = 8, 10 :5 p :5 10
n =3: elliptic·, b 1 =22, b'J = 69, ci = -27, C2 =27, 29 :5 p :5 49

n =2: K3, b1 = 0, b2 = 22, cr =0, C2 =24, 9 :5 P :5 20
n = 3: general, b1 = 4, b2 =249, cr = 189, C2 = 243, 19 :5 p :5 175
n =5: general, bt =24, b'2 =5671, c? =7875, C2 =5625, 51 :5 p :5 3399

n = 2: K3, bt =0, b2 = 22, cr =0, C"2 = 24, 10 :5 p :5 20
n = 3: general, bt =4, b2 = 249, c? =189, C2 = 243,23 :5 P :5 175
n = 5: general, b1 = 24, b'2 =5671, cr = 7875, C2 = 5625, 67 :5 P :5 3399

n = 2: K3, bt = 0, b2 =22, ci =0, C2 =24, 16 :5 P :5 20
n =3: general, b1 =6, b'J =172, er = 162, C2 = 162, 40 :5 p :5 114
n =5: general, b1 =36, b2 = 3820, cr = 6750, C2 =3750, 124 :5 p :5 2036

n = 2: K3, b1 =0, b2 =22, cI = 0, C2 = 24, 20 :5 p :5 20
n = 3: general, b1 =10. b'J =99, cr =135, C'2 =81,55 :5 P :5 55
n = 5: general, b1 = 60. b2 =1993, cr = 5625, C'2 =1875, 185 :5 p:5 685
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Configurations of 7 lines

n =2: general, b1 =0, b2 =78, c~ =16, C2 =80, 1 :5 P:5 64
n =3: general, b1 =0, b2 =2185, c~ =2025, C2 =2187, 1 :5 P:5 1485

n =2: general, bt =0, b~ =78, c~ =16, C2 =80, 9:5 P :5 64
n =3: general, b1 =2, b2 =1946, c~ =1944, C~ =1944, 28 :5 P :5 1298

n =2: elliptic, b1 =2, b2 =50, c~ =0, C2 =48, 5 :5 P :5 42
n =3: general, b1 =20, b2 =1334, c~ =1296, C2 =1296, 10 :5 P:5 884

n =2: ruled*, b1 =10, b2 =18, c~ =-48, C2 =0,3 :5 P:5 18
n =3: elliptic, b1 =110, b2 =542, c~ =0, C2 =324, 4 :5 P :5 380

n =2: ruled, b1 =34, b2 =2, c~ =-128, C2 =-64, 2 :5 p :5 2
n =3: ruled, b1 =488, b2 =2, c~ =-1944, C~ =-972,2 :5 p:5 2

n =2: ruled, b1 =98, b2 =2, c~ =-48, C2 =-192, 2 :5 p :5 18

n =2: general, b1 =0, b2 =78, c~ =16, C2 =80, 17 :5 p :5 64
n =3: general, b1 =4, b2 =1707, c? =1863, C2 =1701,55:5 P:5 1111

8

n =2: general, b1 =0, b2 =78, c~ =16, C2 =80, 18 :5 P :5 64
n =3: general, b1 =4, b2 =1707, c? =1863, C2 =1701,59:5 P:5 1111
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9

~
10

~
11

~
12

~
13

~
14

~
15

~
16~

n =2: elliptic, b1 =2, b2 =50, c~ =0, C2 =48, 13 :5 p :5 42
n =3: general, b1 =22, b2 =1095, c? =1215, C:l =1053, 37 :5 p :5 697

n =2: elliptic, b1 =2, b2 =50, c~ =0, C:l =48, 16 :5 p :5 42
n =3: general, b1 =22, b:l = 1095, c~ = 1215, C:l = 1053, 53 :5 p :5 697

n = 2: ruled·, b1 = 10, b:l = 18, c~ = -48, C:l = 0, 18 :5 p :5 18
n = 3: elliptic·, b1 = 112, b2 = 303, c~ = -81, C:l = 81, 83 :5 p :5 193

n = 2: elliptic·, h =4, b:l = 22, c~ = -16, C2 = 16, 18 :5 P:5 20
n = 3: general-, b1 =40, b:l = 483, c~ = 567, C2 = 405, 83 :5 P :5 283

n = 2: general, b1 = 0, b:l = 78, c~ = 16, C:l = 80, 27 :5 p :5 64
n = 3: general, h = 6, b'l = 1468, c~ = 1782, C:l = 1458, 90 :5 p :5 924

n = 2: general, b1 = 0, b:l = 78, c? = 16, C:l = 80, 28 :5 p :5 64-
n = 3: general, b1 = 6, b:l = 1468, c? = 1782, C:l = 1458, 94 :5 p :5 924

n = 2: general, b1 = 0, b:l = 78, cI = 16, C2 = 80, 29 :5 p:5 64
n = 3: general, b1 = 6, b2 = 1468, c~ = 1782, C2 = 1458, 102 :5 p :5 924

n =2: elliptic, b1 =2, b:l =50, c~ =0, C:l =48, 28 :5 p :5 42
n =3: general, b1 =24, b:l =856, c? =1134, C:l =810, 100 :5 p :5 510
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17

~
18

~
19

~
20

~
21

~
22

*
23~

• not a minimall!!lurfa.ce

n =2: general, b1 =0, b1 =62, c~ =16, C1 =64, 38 $ p $ 50
n =3: general, b1 =8, b'J =905, c~ =1701, C1 =891, 129 ~ p $ 467

n =2: general, b1 =0, b1 =78, c~ =16, C1 =80,36 $ p $ 64
n =3: general, b1 =10, b'J =1233, c~ =1701, C'J =1215, 127 ~ p:5 739

n =2: general, b1 =0, b1 =78, c~ =16, C1 =80,40 $ p $ 64
n = 3: general, b1 =8, b1 =1229, c~ =1701, C2 =1215, 141 $ p :5 737

n =2: elliptic, b1 =2, b2 =50, c~ =0, C2 =48, 38 :5 p :5 42
n =3: general, b1 =28, b1 =621, c~ =1053, C2 =567, 145:5 P:5 325

n =2: general, b1 =0, b1 = 78, c~ =16, C1 =80,51 :5 P:5 64
n =3: general, b1 =10, b2 = 990, c~ =1620, C2 =972, 180 :5 P .s 550

n =2: general, b1 =0, b2 =78, ci =16, C2 =80, 50 :5 P:5 64
n =3: general, b1 =12, b1 =994, c~ =1620, C1 =972, 186.$ P :5 552

n =2: general, b1 =2, b1 =82, c~ =16, C2 =80, 62 :5 P:5 66
n =3: general, b1 =18, b2 =763, c~ =1539, C'J =729, 237 :5 P :::; 369
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INPUT

DATA DETERMINING THE SURFACE;
Realline configuration in p2;

Order of cyclic group: 2.
Index of center of rotation: 4.
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Point line incidence correspondence:

LI L2 L3 L4 L5 L6 L7 L8 L9
PI 0 0 0 0 1 1 0 0 0
1'2 0 0 1 1 0 0 0 0 0
P3 1 1 0 1 0 0 0 0 0
P4 1 0 1 0 0 1 0 0 0
Pli 1 0 0 0 1 0 1 0 0
Pe 1 0 0 0 0 0 0 1 0

P7 0 0 1 0 0 0 1 0 0
Ps 0 0 1 0 1 0 0 1 0

P9 0 1 0 0 0 1 0 0 0
PIO 0 1 0 0 0 0 1 1 0
Pu 0 1 0 0 1 0 0 0 0
Pl:l 0 0 0 1 0 1 0 1 0
P13 0 0 0 1 0 0 1 0 0
P14 1 0 0 0 0 0 0 0 1
Plli 0 1 1 0 0 0 0 0 1
P16 0 0 0 1 1 0 0 0 1
Pt7 0 0 0 0 0 1 1 0 1
PiS 0 0 0 0 0 0 0 1 1

OUTPUT
First Betti Number of Unbranched Part: bY =38.
First Betti Number: b1 =O.
Second Betti Number: b2 =766.
ehern Numbers: c~ =576, C2 =768.
Bounds on the Picard number: rank =322 :Sp:Shll =544.
Euler number of 0:;: X(O:;) =112.
Irregularity: q =O.
Ari thmetie genus: Pa= 111.
Geometrie genus: Pg= 111.

104



INPUT
DATA DETERMINING THE SURFACE:
Real line configuration in p:l:

Order of cydic grOllp: 2.
Index of center of rotati.on: 7.
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Point line ineidenee eorrespondenee:

L 1 L'J L3 L4 L 5 L6 L7 Ls L 9 LlO

P1 0 0 1 1 0 0 0 0 0 0
P'J 0 0 1 0 1 1 1 0 0 0
P3 0 0 1 0 0 0 0 1 0 0
P4 0 0 0 0 1 0 0 1 0 0
Ps 0 0 1 0 0 0 0 0 1 0
P6 0 0 0 1 0 0 1 0 0 0
PT 0 1 0 0 0 0 1 0 0 0
Ps 0 1 0 1 0 1 0 1 0 0

P9 0 1 0 0 1 0 0 0 0 0
P10 0 1 0 0 0 0 0 0 1 0
Pu 1 0 0 0 0 0 1 0 0 0
P1'J 1 0 0 0 0 0 0 1 0 0
P13 1 0 0 0 0 1 0 0 0 0
PH 1 0 0 1 1 0 0 0 1 0
P15 0 0 0 0 0 1 0 0 1 0
P16 1 1 1 0 0 0 0 0 0 1
P17 0 0 0 1 0 0 0 0 0 1
P1S 0 0 0 0 1 0 0 0 0 1
P19 0 0 0 0 0 1 0 0 0 1
P20 0 0 0 0 0 0 1 1 1 1

OUTPUT
First Betti Number of Unbranehed Part: b? = 94.
First Betti Number: b1 =10.
Second Betti Number: b'J = 914.
ehern Numbers: c? = 1408, C'J =896.
Bounds on the Picard number: 236 :5p:5522.
Euler number of 0x: X(Ox) =192.
Irregularity: q = 5.
Arithmetie genus: Pa= 191.
Geometrie genus: P,= 196.
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