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Introduction

The basic topological invariants for classifying smooth complex projective sur-
faces are the Kodaira dimension x, Chern numbers ¢ and c;, and the first Betti
number b;. From these one can compute many other invariants, such as: the Eu-
ler characteristics, both topological and of the structure sheaf, the topological and
geometric genus, and all the Betti numbers and Hodge numbers. An invariant de-
pending on the algebraic structure of the surface is the Picard number, the rank of
the Neron-Severi group, or subgroup of the second integral h;)mology group gener-
ated by algebraic cycles.

Surfaces with K = —00,0,1 have been thoroughly investigated and their Chern
numbers and Betti numbers are well-understood [B-P-V]. For the large remaining
class with k = 2, surfaces of “general type,” relatively little is known about which
Chern numbers and Betti numbers occur, aside from the famous result due to

Miyaoka [My] and Yau [Y], which states that for these surfaces
c% < 3eq

and equality holds if and only if the surface is uniformized by the unit ball [Y].

In this paper we focus on surfaces introduced by Hirzebruch [Hz], which are
minimal smooth models X of certain abelian coverings X of P? branched along
configurations of lines £. The branched coverings X are completions over P? of the

unbranched covering over P? — £ defined by the canonical map
W}(Pz - [:) — HI(P2 - C, Z/nZ)

for some integer n > 2. We will call X the Hirzebruch covering associated to £ and
n. The coverings, see [B-H-H], are also referred to as Kummer coverings. When
L contains triple or higher intersection points, X is singular, but X itself can often

be realized as a smooth abelian branched covering of a blowup of P2,



Hirzebruch’s construction produces many examples of surfaces of general type,
with the advantage that their Chern numbers are easy to calculate in terms of the
simple combinatorics of the line configuration and the degree of the covering. In
addition to these formulas, Hirzebruch also gives the Enriques-Kodaira classification
of these surfaces. His results lead him to exhibit three examples of surfaces of general
type satisfying c? = 3¢z, the extremal case of the Miyaoka-Yau inequality. As yet,
however, there is no simple formula for the first Betti number or the Picard number
of these surfaces.

The main result of this paper is an algorithm for computing the first Betti number
of Hirzebruch coverings associated to configurations of real lines. We have developed
a computer implementation of our algorithm and applied it to a large number of
examples.

The study of the first Betti number for branched coverings goes back to work
of Zariski for cyclic coverings [Zal], [Za2]. A recent extension of his work was
achieved by Libgober [Lil]. Our basic approach is similar to that of Zariski and
Libgober, in that we focus on the topology of the complement of the branch locus
and the relation between the branched and unbranched parts.

In {I] Ishida outlines an algebraic method for computing the first Betti numbers,
which works for any configuration of lines (not necessarily real). The method is
described in a more general setting by Esnault in [Es]. Ishida develops an effective
algorithm for the case when there are at most 12 triple intersections and none of
higher order, and using this he explicitly computes 4; for the three known Hirzebruch
coverings satisfying ¢ = 3c;. Our computation agrees with his on the example
which is associated to a real line configuration.

Our algorithm has two main steps: the first is to find the first Betti number of
the unbranched part of the covering and the second is to find the nullity of the
intersection matrix of the curves above the branch locus. It can be shown (see
Proposition 1.6.3) that the difference between these two numbers equals b;.

The first step in the algorithm uses classical methods which depend only on the
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topology of the embedding of the branch locus in P? and the action of the group
G of covering automorphisms. First, by constructing a fibration, computing its
monodromy (see II1.2, II1.3) and using techniques developed by Zariski and van
Kampen (K] (see also [C]), we find a presentation for the fundamental group of the
complement of the branch locus in P2. Then using Fox calculus [Fol] we construct
a presentation matrix for the first homology group H;(X; Z) as a Z[G]-module.
Computing the rank of this group over Z is facilitated by a result of Libgober [Li4].

The second step relies on new techniques which we develop in Chapter II. Given
a smooth abelian branched covering p : X — Y and smooth curves C in the base
space Y with normal crossings and certain other conditions, we give an intersection
formula for the curves in the preimage of C. The formula requires some basic lifting
data for the curves above each irreducible component of C. We show how to find
such data for the branch loci of Hirzebruch coverings(111.4). Computing the rank
of the resulting intersection matrix finishes the algorithm.

As an added bonus the rank of the intersection matrix gives a lower bound for
another interesting invariant of smooth surfaces: the Picard number. This is the
rank of the Neron-Severi group, i.e., the image of the divisors on Xin Hg(f i Z).

The Picard number has a natural upper bound, the Hodge number k', which
can be computed from the first Betti number and the Chern numbers. Sometimes
the two bounds agree, allowing us to find the Picard number exactly (see Chapter
V for examples).

This paper is organised as follows. Chapter I contains background material on
branched coverings. The key result of this paper is in Chapter II, which is concerned
with intersection formulas for curves on smooth abelian covering surfaces. These
are applied in Chapter III to give techniques for an algorithm to compute the first
Betti number of Hirzebruch coverings associated to configurations of real lines. The
actual steps of the algorithm are set down in Chapter IV. The final Chapter contains
specific examples of Hirzebruch coverings. The numerical invariants were calculated

using a computer program implementing the algorithm of Chapter IV.
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It has recently been shown in [Ho], in answer to a question posed by Sarnak [Sa),
that the first Betti number of Hirzebruch surfaces is ”polynomial periodic”. That

is, if X, is the branched covering associated to
m (P — £) = Ha(P? - £;Z/n2),
then there exist polynomials p;,...,pn so that
by (Xn) = pi(n) whenever  n =i(mod N).

Put together with Zuo’s results in {Zu], one sees that the polynomials p; must all
be of degree eqﬁa.l to one minus the maximum number of lines coming together.
Furthermore, the polynomials only differ by at most a constant.

This suggests that the sequence of polynomials thus associated to £ could be use-
ful as isotopy invariants of the embedding of £ in P2. In fact, the results mentioned
above hold in slightly more generality than just for lines in P2. It seems possible
that polynomial periodicity holds for arbitrary hypersurfaces on a smooth variety.
The current problem is that the polynomials, even for the case of lines in P? are
difficult to compute.

This paper is based on my Ph.D. thesis at Brown University. I would like to thank
Bill Fulton, who introduced ﬁe to the subject of branched coverings, my advisor
Alan Landman, Anatoly Libgober, Curt McMullen and Dave Roberts for helpful
comments and suggestions. Final editing of this paper and some new computations
of examples were carried out at the Max-Planck-Institute in Bonn. During my stay
there, this paper has benefited greatly from helpful conversations with Prof. F.

Hirzebruch and others as well as from the excellent computer facilities.



Chapter I. Preliminaries

In this chapter we discuss some basic properties of branched coverings that are
applied in the later chapters. The main objects we deal with in this thesis are
abelian branched coverings of the complex projective plane and its blowups. Our
emphasis is on the topology and combinatorics of these coverings. Because most
related expositions on branched coverings are either algebraic and don’t directly
describe the basic topology, or are purely topological and don’t deal specifically
with branched coverings of complex varieties, some results which are essentially
well known are restated and reproven here.

Section I.1 contains a definition of branched coverings of smooth varieties and an
explanation of how to construct new branched coverings from old ones by blowing
up the base space and pulling back. 1.2 deals with basic topological properties of
branched coverings, the unbranched part of the covering and fundamental groups.
The most important result of this section is Proposition 1.2.11: a homotopy lift-
ing theorem for branched coverings. This result is applied in III.3 to find crucial
combinatorial data about the preimage of the branch locus.

In 1.3 we describe the stabilizer and inertia subgroups of the Galois group associ-
ated to subvarieties of the base space of regular coverings. These are the main tools
for studying the geometry of the branched covering in terms of the geometry of the
base space. In 1.4 we show how to find generators for these subgroups. We give
a criterion for the existence of singularities on the branched covering of a smooth
surface in terms of the inertia and stabilizer subgroups in I.5. Finally, in 1.6, we dis-
cuss some basic properties of the first Betti number and Picard number of a smooth
surface. The key result, Proposition 1.6.3, states that the difference between the
first Betti number of the branched and unbranched parts of a covering equals the
nullity of the intersection matrix of curves above the branch locus (assuming that

the branch curves support an ample divisor.)

5



Most of the material in this section is well known and can be found in the liter-
ature. Possible exceptions are Proposition 1.2.11 and Proposition 1.6.3. The latter
was communicated to me by Anatoly Libgober and Alan Landman. Some general
sources on branched coverings of algebraic varieties are [A], [Gr2], [Na], [Se] and
Chapter XIII and its appendix in [Za4]. We also use [Mu] and [Ha)] for basic re-
sults from algebraic geometry. In describing the topology of branched coverings we
use some of Fox’s formulations [Fo3] and, for facts about topological unbranched
coverings, we often refer to [Ma].

Before beginning, here is some basic terminology. In this thesis a variety is
irreducible and complex projective; curves and surfaces are varieties of dimensions
1 and 2. Hypersurfaces are subvarieties of codimension 1. Varieties are given the

strong, or analytic, topology.

1.1 Branched coverings of smooth varieties
This section gives the algebreo-geometric definition of branched coverings and

associated definitions and results.

I.1.1 Definition. A branched covering p : X — Y is a finite surjective morphism
between normal varieties. Let G be the group of isomorphisms a : X — X so that
pla(z)) = p(z) for all z in X. G is called the group of covering automorphisms of
the covering. If G acts transitively on all fibers of p : X — Y, then the covering
is called Galois or regular. In this case G is also referred to as the Galois group of
the covering. An abelian covering is a branched covering which is Galois and has
abelian Galois group. A branched covering p : X — Y is called smooth if X is

smooth.

I.1.2 Remark. For any branched covering
p: XY
there is a finite extension of function fields
p*: C(Y) = C(X)
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given by p*(f) = fopfor f € C(Y).
~ Conversely, given a smooth variety ¥ with function field K = C(Y') and a finite
field extension

i: K— L

there is a branched covering (unique up to an isomorphism commuting with the
covering maps)

p: X =Y

so that p* =1.

The surface X is the normalization (see [Ha], p. 23, for definition) of Y in L and
p 18 its projection to Y.
I.1.3 Definition. Let p : X — Y be a branched covering and let o : ¥ > Y be
a birational morphism. This induces an isomorphism ¢* : C(Y) — C(I’}) Let
7: X — ¥ be the branched covering associated to the field extension

c®) "2 cr) & cox).

We call p : X - ¥ the pullback branched covering of the branched covering p :
X > Y overo: Y — Y, since it is the minimal branched covering of g making the

following diagram commute:

b

-~
o
 ——

)

P

—

oy L
~

—
1.2 The topology of branched coverings
In this section we give a topological definition of branched coverings and give some
" properties. We conclude by showing how the algebraic and topological definitions
given in [.1 and this section are related.
Throughout this section assume that all topological spaces are locally path con-

nected, semi-locally simply connected and Hausdorff and all maps between topo-

logical spaces are continuous.



We start with a topological definition of finite branched coverings following Fox
[Fo3].

1.2.1 Definition. Let p: X — Y be a surjective map between topological spaces
and suppose that the following properties hold:

e topology on X is generated by connected components of preimages o
1) the topology on X 1s g ted b ted ts of preimages of
open sets in Y
ere is a dense open subse C Y so tha = p- i8 connecte
2) there is a d bset Y* C Y so that X* (y™) ted

and dense in X and for p* = p|x.
pl.l . Xﬂ - Yu

is a finite unbranched covering;

(3) the topology on Y has a basis of open sets whose intersections with Y'* are
path connected (in other words, Y is locally-connected in Y');

(4) for any point p € Y, there is a fundamental system of neighborhoods V of p
so that each component of p~!(V) contains a single point in the fiber p~!(p);

(5) X" is locally-connected in X.

Then p : X — Y is called a finiste topological branched covering over Y. If Y* is
chosen to be maximal, then B =Y — Y" is called the branch locus of the covering
and p* : X* — Y™ is called the unbranched part of the covering. A topological

covering automorphism is a homeomorphism of X to itself preserving fibers of p.

Note that if p : X — Y is a finite topological branched covering U is an open
subset of Y and V C p~}(U) is a connected component, then ply : V — U is also
a finite topological branched covering.

1.2.2 LEMMA. For any p : X — Y satisfying properties (1), (2), (3) and (4) of
branched coverings, Y has a basis of open sets V so that, for any connected com-
ponent U of p™'(V), p(U) = V and the connected components of p~!(V) form a
basis for the topology of X.



Proof. By property (3) we can choose a basis of open sets V for Y so that VNY*
are path connected for all V. Property (1) implies that the connected components
of p~1(V) form a basis for the topology of X.

Take any connected component U of p~!'(V). Since, by property (2), X* is
dense in X, there is a point ¢; in p(U N X*). Let py = p(g1). Take any ps in
V NnY*. Then there is a path v from p; to p; in VNY™". By property (2) and the
path lifting theorem for unbranched coverings v lifts to any connected component
of p~(V NY™"). Since VNY™ is contained in V, any connected component of
p~H(V NY*") must be either contained in U or disjoint from U. Since ¢; € U, there
is a path lift of y with endpoint ¢, which is contained in U. Therefore, there is a
point gz in U so that p(q2) = p2. Thus, p(U N X*) maps onto VNY™". Since Y* is
dense in Y, p(U) contains a dense subset of V.

To show that p(U) = V, take any point p € V. For any neighborhood V;, of p in
V, p~1(V,) has a connected component U, which intersects U. Therefore, U, must

be contained U. By property (4) U, must contain at least one point in p~(p). B

1.2.3 COROLLARY. Any map p : X — Y satisfying properties (1), (2), (3) and (4)

of branched coverings is open and proper.

Proof. By property (1) and Lemma 1.2.2 there is a basis of open sets V for ¥ so
that the connected components U of p~(V) form a basis of open sets for X and
p(U) = V. Therefore, p is open.

By properties (2) and (4) Y has a basis of open sets V so that the number of
connected components of p~!(V) is finite. To see that p is proper, take any compact
subset F' of Y. We need to show that p~!(F) is compact. By Lemma 1.2.2 for any
open covering of p~!(F) there is a refinement {U,} so that for each « there is an
open set V in Y so that U, is a connected component of p~!(V) and p(Us) = V.
Thus, we may assume that for some open covering {Vg} of F, {U4} consists of all
the connected components of p~!(Vj3) where Vj range over sets in this covering.

The {Vg} form an open covering of F so there is a finite subcovering. By taking
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the connected components of the preimages of these sets we get a finite subcovering
of p~1(F). i
If we remove property (5) from Definition 1.2.1, topological branched coverings

have the following functorial property. This lemma will be used later in Proposition

1.2.11, to prove the homotopy lifting theorem for branched coverings.

[.2.4 LEMMA. Let p: X — Y be a continuous surjective map between topological
spaces satisfying properties (1), (2), (3) and (4) of branched coverings, with branch
locus B and let

f:Z-Y

be a continuous map from a space Z so that f(Z)— B is dense and locally-connected
in f(Z). Let Xz be the topological fiber product of Z and X over Y and pz the
projection of Xz on Z. Then pz satisfies properties (1), (2), (3) and (4) of branched

coverings.

Proof. First, recall that
Xz ={(z,2) € X x Z|p(z) = f(2)}.

Property (3) for pz follows from the hypothesis.

To prove (1), recall also that the topology on Xz is the one induced by the
product topology on X x Z. Thus, given any point (z,z) € Xz and neighborhood
U’, there is a smaller neighborhood U C U’ so that U is the intersection of V x W
with Xz, where V is a neighborhood of z in X and W is a neighborhood of z in
Z. Since, by Corollary 1.2.3, p is an open map, we can assume that p(V) is open.

Furthermore, since

(VxW)nXz =V xW)nXgz,

where W' is the largest subspace of W so that f(W') C p(V), we can assume
without loss of generality that f(W) C p(V) and pz{(U) = W.
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Finally, since the topology on X is generated by connected components of preim-
ages of open sets in Y, we can assume V is a connected component of
(V).

Let Vi, Va,..., Vi be the connected components of p~1(p(V)). Then p;'(W) is
contained in the disjoint union of intersections of V{ xW, ..., Vi x W with X 7. Since
U is connected and equals one of these sets, U must be a connected component of
p7z'(W). This proves property (1) for pz.

By property (4) for p, by choosing V small enough we can assume each of the
connected components Vi, ..., Vi contains only one point in the fiber p~!(z). Thus,
pz (W) is a disjoint union of open sets each containing a single point in the fiber
p~(z). This proves property (4) for pz.

To prove property (2) we need to show that pz restricted to X zN(X"* x Z)isan
unbranched covering. For this it suffices to show that pz is a local homeomorphism.
Let (z,z) be any point and U a neighborhood in Xz N(X* x Z). Assume without
loss of generality that U is the intersection Xz N(V x Z) where V is an open set in
X and p is @ homeomorphism when restricted to V. Then pz is a homeomorphism

when restricted to U. 1

In his paper [Fo3], Fox shows that unbranched coverings can be canonically

completed to branched coverings.

1.2.5 THEOREM. Given a finite unbranched covering
pri Xt =YY,

with X* connected, and an imbedding Y* — Y whose image is dense, there is a

unique branched covering in the topological sense
p: X =Y

whose unbranched part is p* : X" — Y'®.
Note that without property (3) the uniqueness would not hold.
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Let us recall some facts about topological unbranched coverings. Let Y* be a
connected, locally pathwise connected, semi-locally simply connected space. Then
there is a bijection between unbranched coverings of Y'* and conjugacy classes of
subgroups of (Y%, y) which takes p* : X* — Y™ to the conjugacy class of the
subgroup p.(m (X", z)) in 7 (Y",y) ([Ma], Theorem 10.2, p. 175). The covering
is regular if and only if p.(m1(X*,z)) is a normal subgroup of m (Y*,y) ([Ma),

Lemma 8.1, p. 164.) In this case there is a canonical surjective map
Pp:m(Y" y)— G,

where G is the group of covering automorphisms. Under this map a loop v €
71(Y¥,y) goes to the unique covering automorphism taking any point = € p~(y)
to the endpoint of the lift of v at z ((Ma], Theorem 7.2, p. 162.) The kernel of the
map ¥ equals p¥(m (X", z)) ([Ma], Corollary 7.4, p. 163.) It follows that abelian

regular unbranched coverings lie in one-to-one correspondence with surjective maps
¢:-H(Y",Z) - G
where G is an abelian group, since ¥ must factor through the Hurewicz map
h:m(Y*) - Hi(Y*, Z)
taking loops to their homology classes, whose kernel is the commutator subgroup

of m(Y*®,y).
1.2.6 Definition. We call ¢ : Hy(Y*,Z) — G the defining map of the unbranched

covering and canonically associated branched covering,.
The next two lemmas hold generally for topological branched coverings.
1.2.7 LEMMA. If p: X — Y is a topological branched covering with unbranched

part p* : X" — Y", then the natural map from the group of covering automor-

phisms of p to that of p*, given by restriction, is an isomorphism onto.

Proof. Let G be the group of topological configurations of p*. Any g € G extends
to a covering automorphism on X as follows. Let p € Y and g € p~(p). Let V be
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a neighborhood of p in Y so that the connected components of p~!(V') each contain
a single point in p~1(p). Let W be the connected component of p~(V) containing
q whose intersection with X* is connected. Let W, be the connected component of
p~1(V) containing g(W NX*") and define g(g) to be the intersection of W with the
fiber p™(p).

By this definition, the extension of g is fiber preserving. To see that the extension

is a homeomorphism, it suffices to show that g is an open map at each point ¢ € X.

This follows from Corollary 1.2.3. 1

1.2.8 COROLLARY. If the group G of covering automorphisms of a topological
branched covering p : X — Y acts transitively on fibers in the unbranched part,

then it acts transitively on all fibers.

Proof. Let p be any point in Y. To see that G acts transitively on the fiber p=1(p),
let V be a neighborhood of p so that the connected components of p~'(V) each
contain a single point in the fiber p~!(p). Since G acts transitively on fibers in the
unbranched part X* of the covering, which is dense in X, G must act transitively
on the connected components of p~!(V). Since each of these components contains a
single point in the fiber p~!(p), G must also act transitively on the fiber p=(p). I

We conclude this section with a result analogous to the homotopy lifting theorem

for unbranched coverings.

1.2.9 Definition. Given a topological branched covering p : X — Y and a map

f:T =Y, a continuous map
h:{0,1] xT - Y,

such that (setting he(y) = h(t,7)) ho(y) = f(y) and hy(y) €Y — B for allt > 0 is
called a homotopy of I off B.

1.2.10 Definition. Let f:T' = Y be a continuous map and let

ff:r-=X
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be any map so that p(f'(y)) = f(7) for all v in I'. We call f' a lifting map for f.

Recall the following basic result from the theory of unbranched coverings. (See
[Ma], Theorem 5.1, p. 156.) Let f : I' = Y be a map between topological spaces
(recall they must be locally connected) and suppose p : X — Y is a topological

unbranched covering. If

fe(m1 (T, %)) C pa(mi(X, %))

both considered as subgroups of m;(Y, %), then there is a lifting f' : I' - X. We
generalize this to branched coverings in the following proposition.
1.2.11 PROPOSITION. Let f : ' — Y be a continuous map from any connected
space I' into Y and suppose there exists a homotopy
h:[0,1]]xI =Y
of I off B so that
(h1)ami (T, %) C (p*)um (X", %)

as subgroups of m1(Y®,*). Then there is a continuous lifting map
fl:r=X
for f.

Before proving this we prove a lemma.

1.2.12 LEMMA. Let Z be a connected space and f : Z — Y be any map so that
f(Z) — B is locally connected in f(Z). Suppose there is a dense open connected
subspace U C Z which is locally connected in Z so that the restriction of f to U
has a lift f' : U — X. Then we can extend f' to a lifting on all of Z.

Proof. Consider the topological fiber product Xz = X xy Z. Then by Lemma
1.2.4 the projection pz : Xz — Z satisfies properties (1),(2),(3) and (4) of branched

coverings.
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Let Z’' be the closure of the preimage U’ of the graph of f' in Xz. We claim that
pz restricted to Z' is a homeomorphism onto Z. Since, by Proposition 1.2.3, pz is
an proper mapping, it suffices to show that pz is a bijection from Z' to Z. Since
pz sends closed sets to closed sets pz(Z'") contains the closure of U in Z, which is
all of Z, so pz is onto. To see that it is one-to-one, take any p € Z. By Lemma
1.2.2, there is a connected open neighborhood V,, of p in Z so that any connected
component of p;' (V,) maps onto V, and contains a single point in the fiber p7'(p).
Suppose there are two points ¢; and ¢z in p~!(p) N Z'. Then there are two distinct
connected components Wi and W; in p3'(V,) which intersect Z'. But, since U’ is
dense in Z', W), and W, must also intersect U'. This contradicts the fact that pz
is one-to-one on U’.

Now, by composing the inverse of pz restricted to Z' with projection to X we

obtain a lift of f on all of Z. |
Proof of Proposition 1.2.11. We have
ham1((0,1] x T, %) = (hy)am (T, %)
C(p*)am (X", %),
so there is a lifting map

R':(0,1]xT — X*

so that p(h'(t,v)) = h(t,7) for t € (0,1] and v € T..
Let Z=1[0,1] xT', U =(0,1] x I" and f = h. Then the rest follows from Lemma
L2.12. 1

We now end this section by describing the relation between topological and alge-
braic branched coverings.

The following theorems were proven by Zariski in the 1930’s.

1.2.13 THEOREM. Let p: X — Y be a finite surjective morphism between normal
varieties. Then, considered as a map between topological spaces, p is a topological

branched covering.
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[.2.14 THEOREM. The branch locus of a branched covering p : X — Y is either

empty or a subvariety of Y of pure codimension one.

The properties in Definition 1.2.1 follow from the “fundamental openness theo-
rem” (see for example [Mu], p. 43) and the unibranch property of normal surface,
sometimes known as Zariski’s main theorem. Zariski’s paper on the “purity of the
branch locus” [Za3] gives a proof of Theorem 1.2.14.

Property (5) of topological branched coverings is analogous to the condition that
branched coverings of varieties must be normal.

The following theorem is analogous to Lemma 1.2.5.

1.2.15 THEOREM. Let Y be a normal variety and B a finite union of proper
subvariety of pure codimension one. Given a topological unbranched covering
p* + X* — Y — B, with X" connected, there exists an irreducible normal va-
riety X with a finite surjective morphism p : X — Y and a homeomorphism
s: X" = p~I(Y — B) such that p(z) = p*(s(z)) for all z € X*.

This is a generalization of the Riemann-Enriques Existence Theorem [En], proved
by Grauert and Remmert [G-R)]. See Grothendieck’s work [Grl] for further gen-
eralizations. The statement given here is taken from Serre’s introduction to his
survey [Se|. Since normalizations are unique, there is only one branched covering
p: X — Y over Y associated to an unbranched covering p* : X* — Y*, where Y

is the complement of a finite union of subvarieties of codimension 1 in Y.

1.2.16 LEMMA. Any topological covering automorphismof p: X — Y is an iso-

morphism from X to itself considered as a variety.

Proof. Let o be a topological covering automorphism. Since p is a local isomor-
phism on the unbranched part X", ¢ is an isomorphism from X* to itself. The fact

that o extends to an isomorphism of X to itself follows from a weaker version of

the Theorem 1.2.15. I
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1.3 Inertia and stabilizer subgroups

In order to translate from combinatorial data of branched coverings to geometric
data about the covering space it is useful to study the actions of special subgroups
of the group of covering automorphisms. Let p: X — Y be any branched covering

with branch locus B and with group of covering automorphisms G.

1.3.1 Definition. For any subvariety W of X, the subgroup Iw of G defined by
Iw={g€G | g(z)=z foralzeW}

is called the inertia subgroup of W and the subgroup defined by
Hy={g€eG | g(z)eW forallzec W}

is called the stabilizer subgroup of W.

[.3.2 Remark. If the covering is regular, then the inertia subgroups (respectively,
stabilizer subgroups) for different components of p~!(Z), where Z is a subvariety of
Y, are conjugate. If the covering is also abelian, then conjugate subgroups are equal
and we can define Iz and Hz for subvarieties of ¥ to be the inertia and stabilizer
subgroup for any irreducible component of p~!(Z). In this case a subvariety Z of

X 1is in the branch locus if and only if Iz is nontrivial.

Hereafter, assume p : X — Y 1s abelian.

1.3.3 LEMMA. For any subvariety Z in Y, Iz is the subgroup of G generated by

elements of Iw for all irreducible components W of B containing V.

Proof. Let S be the subgroup of G generated by Iy for all hypersurfaces W
containing V', where W C B. Whenever Z is contained in W, any automorphism
which fixes all points in p~!(W) must fix points in p~1(Z), so we have Iw C Iz
and hence S C I3.

Conversely, suppose we take the quotient of the covering space X by S. The

quotient covering

p:X/S-Y
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is a branched covering and G/S equals its group of covering automorphisms. The
new inertia subgroup Iy for W is the image of the original inertia subgroup Iw
in G/S for any subvariety W of Y. Since Iy is trivial for all hypersurfaces W of
Y with V C¢ W, X/S is not branched over any hypersurface W containing Z. By
Zariski’s “purity of the branch locus,” this implies that X /S is not branched over Z
itself and therefore the image of Iz in G/S is trivial. In other words, Iz is contained
inS. 1

I.4 Generators for inertia and stabilizer subgroups

In this section we use some simple local topology to find special elements of the
inertia and stabilizer subgroups of a curve C in the branch locus of an abelian
branched covering over a smooth surface Y. These generate I¢ and Hc when C is
simply connected.

First, we study the more general case when Y can have any dimension.
[.4.1 Definition. Let B be a finite union of codimension-1 subvarieties of Y and let

V be any irreducible component of B. For any smooth point p of B contained in

V, let D be the unit complex disk and let

j:D=Y
be an analytic embedding intersecting B transversally at p with 7(0) = p. Note
that for fixed p this is well defined up to homotopy. Let u, be the path defined by

8 — j(e'%), for 0 £ 6 < 2.

We will call u, the positively-oriented meridianal loop, or just positive loop around

V at p.

1.4.2 PROPOSITION. Any two positive loops yp and p, around an irreducible com-

ponent V of B at smooth points p and q of B on V are homologically equivalent in
Y - B.

Proof. For the case p = ¢ see Definition 1.4.1. Assume p # ¢. Let L be the singular
points of B and let 4 be a path from p to ¢ on V —X. (One exists since T is a proper
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subvariety of V, hence codimension one in an irreducible variety, so its complement
is path connected.) Since V — £ is a smooth submanifold of B and  is contained
in V — Z, v has a tubular neighborhood T'(¥) in Y. That is, there is a (real disk
bundle) T(y) — v and an embedding T(y) — Y so that the zero section maps to
7, the rest lies in in Y — B and the fibers over the endpoints p and ¢ of 4 equal the
loops gp and pg. The boundary of the image of the S bundle sitting inside the
image of T'(y) equals the difference between pp and pq. 1

We will hereafter denote by uyv the class in H1(Y — B; Z) of a positively-oriented
meridianal loop around V.

The following is a standard fact about topological unbranched covering (see, for

example, [Ma], Proposition II.1, p. 177).

1.4.3 PROPOSITION. Let p: X — Y be any topological unbranched covering, V C
Y a connected subset and W a connected component of p~1(V'). Then the restriction
of p. to W is an unbranched covering map and for the inclusion map::V < Y

and any w € W we have

,Og('ﬂ'] (Wa ‘LU)) = 3.—1 (pt(ﬂ'l (X) w)))1
both considered as subgroups of 1 (V, p(w)).
1.4.4 COROLLARY. If V CY is any hypersurface not contained in the branch locus
B, then the stabilizer subgroup Hy equals
¢(i. Hy(V — B; 7))
where 1, is induced by the inclusiont:V—-B <Y ~-Band ¢ :H,(Y - B;Z) - G
is the defining map for the covering.

Proof. Let ¢ : m(Y — B,v) — G be the defining map for the covering (taking v to
be in V — B). Then ¢ = ¢ o h, where h is the Hurewicz map.

Let W be any irreducible component of p~!(V). We need to show that the kernel
of ¥ o 1, equals m (W — p~!(B),*). Since ¥ is the defining map for p: X — Y,
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the kernel of i equals p.(m (X — p~!(B), w), where we may take the basepoint w
to be in W — p~!(B) intersected with the fiber p~!(v). Thus, the kernel of ¢ 01,
equals i (p.(m (X —p~}(B),w))), which equals (W —p~1(B), w), by Proposition
1.43. 1

1.4.5 PROPOSITION. Given any irreducible component V C B, Iy is generated by

gv = ¢(uv).

Proof. By Lemma 1.3.3,if p € V — (B — V), then I, = Iy. For a small enough
ball U centered at p, m (U — B) is generated by a loop whose image under the
Hurewicz map is homologically equivalent to py. Thus, gy generates the subgroup
of G which stabilizes U — B. Since U can be taken to be arbitrarily small and G

acts continuously, I, must be generated by gv. I

1.4.6 PROPOSITION. For any point p € B, I, is generated by gv for all irreducible

components V in B passing through p.

Proof. By Lemma 1.3.3, I, is generated by elements of Iy where V ranges over

all irreducible components of B containing p. The rest follows from Proposition

14.5. 1

We now concentrate on the case that Y is a smooth surface. Let C C Y be a
curve not contained in the branch locus B. Let p € CNB and let U C Y be a small
ball around p in Y so that p is the only singular point on U N(C U B). We will find

special elements of Hc given as the images of the composition of maps
H,(UNC -p;Z) 3 H(C - B;7) *¥ G,

where j, is induced by the inclusion  : UNC -p—- C —~ B.

Consider 8U N C, where U, the boundary of U, is isomorphic to a 3-sphere S°.
Then CNAU is a finite union of homeomorphic images of the circle S? oriented by the
complex structure, so the inclusion of CNAU in 8U defines an oriented link L with

components Ki,...,K;. These components lie in one-to-one correspondence with
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connected components of (U — p) N C. The closures by, ..., b of these components
are called the brenches of C at p.
The following theorem can be found in [Br], Theorem 14, pp. 440-441.

1.4.7 THEOREM. Let C and D be two analytic curves (not necessarily irreducible)
defined in a complex disk U with origin p, and assume p is the only singular point
of CUD. Let L¢ and Lp be the intersections of C and D with 0U thought of as

oriented links on a 3-sphere. Then the intersection multiplicity I,(C, D) equals the
linking number lk(L¢, Lp).

1.4.8 COROLLARY. The image of the composition of maps
Hi(UN(C - B);Z) 5 H(C-B;7) B H,(Y -B;7) S G
is generated by elements of G of the form

Z IP(b’ D)gDa

DCB

where b ranges over branches of C' at p and the sum is over curves D in B.

Proof. We have a commutative diagram

Hy(U N (C = B);Z) —— H,(C — B;1)

.| .|
H(UN(Y = B)Z) —— Hy(Y - B;Z)

where all maps are induced by inclusion. We will find the image of foa. Let Lp
be the oriented link in QU given by 0U N B. Then the pair

(8UN(C - B),0UN(Y — B)) = (L¢,0U — Lp)
is a deformation retract of

(UN(C - B),UN(Y — B))

21



(see [Mi], Theorem 2.10, p. 18). Therefore, we have a commutative diagram

Hy(L¢c;Z) —— Hy(0U - Lp;2)
| |
Hi(UNn(C-B)1)) —— Hi(UN(Y — B);Z)

where all maps are induced by inclusions and vertical maps are isomorphisms. We
will find the image of S o a.

Let K;,...,K; be the oriented connected components of L. For each ¢, the
image of K, in H{(0U — Lp;1) equals, by definition of linking number (see [R], p.
132),

> (K¢, Lp)pp.
DCBnU

By Theorem 1.4.7, 8 0 a(K}) equals
Z I(be, D)up-
DCB
Applying the map ¢ we have
(6o Boa)(Ki)= Y I(b, D)gp.
DCB
Since K),...,K; generate H (L¢;Z), the elements described above generate their

image under ¢o foa. I

1.4.9 PROPOSITION. If C is a curve in Y not in the branch locus B, then H¢

contains the elements of G of the form

(*) Z Ip(bs D)gp

DcCB

where p ranges over points in C N B and b ranges over branches of C at p. If C is

smooth and rational, then these elements generate H¢.
Proof. By Corollary 1.4.8, the elements (*) are in the image of
83 (Ba (C - B;Z)).
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By Corollary 1.4.4, they are elements of Hg. If C is smooth and rational then
H,(C — B;1) is generated by the images of the maps

Hi(U, N (C - B);Z) — H,(C - B; 1)

induced by inclusions, where U, are small balls around points p € CNB. Therefore,

the elements of the form (*) generate He. 1

1.4.10 ProrosITION. If C is a curve in B, then Hc contains gc and elements in

G of the form
Y I(bD)p,

Dc(B-0C)
where p ranges over points in C N (B — C) and b ranges over branches of C at p. If

C is smooth and rational then these generate Hc.

Proof. Consider the covering

X/Ic

d!
Y
obtained by taking the quotient of X by the action of I The new branch locus B no

longer contains C and, by Proposition 1.4.9, the stabilizer subgroup H¢ associated

to C in the new covering contains elements in G of the form
Z Ip(b D gD:
DC(B-C)
where p ranges over points in C N (B — C), b ranges over branches of C at p and
gp is the image of gp under the quotient map
G—-G / I C.

These generate H¢ if C' is smooth and rational. Since He is the image of H¢ under
the quotient map and g¢ generates I by Proposition 1.4.5, the result follows. I

Finally, we describe the effect of pullbacks of branched coverings of Y over blowups

of Y on the inertia and stabilizer subgroups.
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1.4.11 PROPOSITION. Let o : ¥ — Y be the blowup of Y at a point p € B and let
7:X - Y be the pullback covering over Y of p: X > Y. Then the branch locus
of the new covering p consists of the proper transforms C of curves C in B and
possibly the exceptional set E,. The inertia and stabilizer subgroups of each C are
the same as those for C. The inertia subgroup for E, is generated by

Z: mp(Clgc,

where mp(C) is the multiplicity of C at p and the sum is taken over all curves C in
B containing p. The stabilizer subgroup is generated by m,(C)gc, where C ranges

over all curves in B passing through p.

Proof. The coverings p : X - Y and p: X — Y agree on their unbranched part
and hence so does the Galois group action.

Let C be any curvein Y, let Co = C — B — C — Sing(C) and let ¢ € Cp be chosen
generically. Then, by Lemma 1.3.3, I; = I¢. Let ¢ € Y bea point so that o(q) = g.
Let C; be the connected component of p~!(Cy) containing §. The restriction pc
of p to C; is a branched covering, since it is a finite morphism and it has Galois
group G/Ic. Since g was chosen generically, pc is unbranched near gq. Therefore,
the inertia subgroup of g with respect to p¢ is trivial and hence must be I¢ with
respect to p. Thus, the inertia subgroup Iz equals the inertia subgroup Ic. It
follows that only proper transforms of curves in B and possibly the exceptional
curve, lie in the branch locus of p by Remark 1.3.2.

Let

¢:H(Y -B;1) > G

be the defining map for p, let B be the total transform of curves in B, and
$:H1(}7—-.§;Z)->G

be the defining map for p, where B is the total transform of curves in B. Then
$= ¢ o o,, where

oo : Hy(¥Y = B;Z) » Hy(Y - B;Z)
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is the isomorphism induced by o.

By Corollary 1.4.4, we know H & equals

$(i. By (C - B; 7))

-~ ~ -~

where i : € — B — ¥ — B is the inclusion map. This equals
$(0.i Hi(C - B; 1)) = ¢(j. Ha (C - B; ),

where j : C — B — Y — B is inclusion and the latter equals H¢, also by Corollary
1.4.4. Therefore, Hc equals H &

We now find the stabilizer subgroup of the exceptional set E,. Let C},...,C; be
curves in B passing through p. Let ¥ be a loop on ¥ around E,, with image v in
Y and let v;,...,v: be loops on Y around Cj,...,C\, respectively. We can assume
that v lies on some line I on ¥ intersecting E, at a general point. Projecting this
line to Y, we obtain a new line L passing through p in general position with respect

to the branch curves near p. By assumption v lies on L.

Let U be a neighborhood of p isomorphic to a disk with center p. Assume U is
small enough so that the intersections of branch curves C}, ..., C; with the boundary

0U are equal to L, ¢,,...,Lp c, and U N L is homotopic to 4. Then in 9U, v is
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homotopic to

t t
Y KLy e 1)e =Y I(Ch, O
=1 =1

t
= Z mp(Cs )7:-
=1

The last equality comes from the fact that L is in general position with respect to
the C;. By Proposition 1.4.5, it follows that Ig, is generated by

Emp(c)901

where the sum is over curves C in B passing through p.
Applying Corollary 1.4.10 to E,, which is isomorphic to P! and is simply con-
nected, Hg, is generated by

mp(Cgc,
where C ranges over curves in B passing through p. 1

I.5 Criterion for the smoothness of coverings

In this section we give a criterion for an abelian covering p : X — Y over a
smooth surface to be smooth in terms of conditions on the branch locus and the
inertia subgroups associated to its irreducible components. Assume that the curves
in the branch locus B are smooth and intersect in normal crossings. Given any
branched covering one can construct one satisfying this hypothesis by taking a

sequence of pullback coverings over blowups of the singularities in the branch locus.

1.5.1 PROPOSITION. The covering surface X is smooth if and only if whenever two
curves C and D in the branch locus intersect, the inertia subgroups Ic and Ip

intersect only in the identity element.

Proof. To study smoothness we need to look locally. Take any p € Y. If p is
not in the branch locus, then for any ¢ in the fiber p=!(p), p is locally an analytic
isomorphism near ¢. Since, in particular, Y is smooth at p, ¢ must also be a smooth

point of X.
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We will now assume p is a point in B. Let U be a small ball around p isomorphic
to a complex disk, so that, for any two distinct points ¢ and gz in p~'(p), the
connected components V; and V; of p~!(U) containing ¢; and ¢z don’t intersect.
(See property (4) of Definition 1.2.1.)

Suppose p lies on a single irreducible component C' of B. By choosing U smaller
if necessary, we can find complex coordinates z and y on U so that U N B is given
by the equation z = 0. For any ¢ in p~'(p), let V, be the connected component
of p~!(U). Then the restriction of p to V; is a branched covering over U branched
along U N B.

The fundamental group of U — B is isomorphic to Z, so V, must be a cyclic
branched covering of U branched along B. By uniqueness of branched coverings,
V, must also be isomorphic to a complex disk and p restricted to Vi must be of the

form

(z,y) = (=5, ).

Suppose p is a point on the intersection of two curves C' and D iﬁ B. We will
show that any point ¢ in p~!(p) is smooth if and only if Ic N Ip contains only the
identity element.

Again, take U small enough so that U N B equals U N (C U D). Choose complex
coordinates z and y on U so that U N C is given by the equation z =0 and UND
by y=0. - '

Let V, be the connected component of p~!(U) containing ¢. Since the restriction
pq of p to Vg is a branched covering (by the remark after Definition 1.2.1) the

isomorphism class of V; is determined by the exact sequence
(+) 0—m(Vy—p'(B) 2 m(U -B) 8 G -0,

where G, equals covering automorphisms defined on V;. From Proposition 1.4.3 it
follows that one can consider G4 as the subgroup of G generated by g¢ and gp and,

by Proposition 1.3.3, it equals I,.
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Let r,s,t be nonnegative integers so that
rgc +8gp =0 and tgp=20

generate the relations in Gy. Since G is finite, r,¢ > 0. We can also assume without
loss of generality that s < ¢.

The numbers r and ¢ are uniquely determined by the above and, if we assume
also that s is minimal, then s is also determined. Note that s = 0 if and only if
IcnIp =(0).

Now ¢ is a smooth point of X if and only if V, is isomorphic to a complex
disk. (Recall that by Definition I.2.1 the topology on X, in this case the complex
topology, is generated by components of preimages of open sets in Y.) Thus, we
need to classify all branched coverings of the complex disk to itself branched along
z=0and y=0.

All analytic maps from the disk to itself which are unbranched coverings over the

complement of x = 0 and y = 0 can be put in the form
(z,y) = (23, 2°y").
By a change of coordinates, one can write this as
(z,y) = (z",2"y")

where r,t > 0 and 0 < s < t. If we choose s to be minimal then r, s,¢ are uniquely
determined. The map defines a branched covering (i.e. is finite) if and only if s = 0.
The unbranched part of this map is given by the same exact sequence as (*).

Thus, ¢ is a smooth point of X if and only if s = 0. 1

1.6 The first Betti number and the Picard number of a smooth surface
Let p : X — Y be a branched covering over a smooth surface Y and let o : XX
be a desingularization. In this section we make a few remarks concerning two

numerical invariants of X: the first Betti number and the Picard number. We show
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that if the branch locus supports an ample divisor, the problem of finding the first
Betti number breaks up into two parts. One is finding the first Betti number of the
unbranched part and the other is finding the nullity of the intersection matrix for
curves in X above the branch locus. The rank of this matrix gives a lower bound
for the Picard number of X.

The first Betti number b; is the rank of the first homology group Hl()? i Z) of X.
It is not hard to see that the first Betti number (and, in fact, the fundamental group
of a smooth variety) is invariant under blowing up. This follows by van Kampen’s
theorem and the fact that, topologically, blowing up consists of replacing a simply
connected set with simply connected boundary in X (a ball around the point to
be blown up) by another simply connected set with simply connected boundary

(isomorphic to a 2-disk fiber bundle over P?).

1.6.1 Definition. Two divisors C and D on X are said to be numerically equivalent
if C.H = D.H for all divisors H on X. The Picard number p is the rank of the
group of divisors on X modulo numerical equivalence, or, equivalently, the rank of

the Neron-Sever: group of X.

1.6.2 Remark. Any divisor determines a class in Hg()? ;Q), and intersections of
divisors generalizes to intersections of homology 2-cycles. The intersection pairing
on Hg(f ; Q) 1s nondegenerate by Poincaré duality, since Xisa compact 4-manifold.
By the Hodge Index theorem, if a divisor D has the property that D.H = 0 for all
divisors H on X, then considering D as an element of Hg()? ;Q), D.Z = 0 for any
homology 2-cycle Z. Therefore, p can also be thought of as the rank of the image
of the group of divisors on X in Hz(f ; Q).

Since the first Betti number of the unbranched part of the covering b;(X*) can
be computed using essentially topological methods (which we describe in detail in
Chapter III), our goal here is to find the difference b (X*)— b, (f }. More generally
we will show how the first Betti number of any smooth surface changes when one

removes arbitrary unions of curves that support an ample divisor. The result ap-
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plies to the difference between the first Betti numbers of branched and unbranched
coverings as long as the branch locus supports an ample divisor, since then the
preimage of the branch locus will also.

The following proposition was suggested to me by A. Libgober and A. Landman.

1.6.3. PROPOSITION. If X is any smooth surface and C is a finite union of curves

on X so that some linear combination defines an ample divisor on X, then
b1 (X) = b (X - C) — Null(C),
where Null(C) is the nullity of the intersection matrix of C in X.
Proof. Consider the exact homology sequence of the pair (X, X - C)
Hy(X) = H (X, X - C)
- H(X -C) -H;(X) - H(X,X -C)

with rationa.l_ coefficients.

Intersection gives nondegenerate pairings
Hk(C) X H4_k(X,X —C) - Q

and

Hp(X) xHy (X)) — Q

for k=0,1,2,3,4.

In particular, the dual of H{(X,X — C) is isomorphic to H3(C) which is trivial
gince C is a 2-complex. So, Hy(X,X — C) is trivial. Therefore, the difference
b1 (X — C) — b(X) equals the dimension of the cokerne] of the map

r. H‘)(X) — H2(X,X —-C),
or, equivalently, the nullity of the dual map

r* Ha(X, X = C)* — Ho(X)".
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Let : : C — X be the inclusion map. The intersection pairing also shows that,

since H;(C) is generated by cycles [C] representing the irreducible components of

C, Ho(X, X — C)* is generated by [C]*, where
r*[C]*a = [C}*r(a) = [C].7(a) = i.[C].a

for all @ € Hy(X).
It follows that the kernel of r* consists of [D]*, where D is any linear combination
of curves C in C, such that

i.[D}.a = 0,
for all & € Hy(X). In particular, for all curves C in C,
1u[D].i.[C] = 0.

Thus, the rank of ker(r*) is at most the nullity of the intersection matrix for curves
in C.

To see the equality, suppose D is a linear combination of curves in C, and
i.[D].2.[C]} =0

for all curves C in C. Then 1,[D].i.[D] = 0 and, since C supports an ample divisor
H, i,[D).H = 0. By the Hodge index theorem this implies :,[D] is numerically
equivalent to zero. Therefore, t.{D].c = 0 for all & € H2(X) and [D]* € ker(r*). 1
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Chapter II. Intersections of curves in abelian covering surfaces

In this chapter all branched coverings p : X — Y are smooth abelian branched
coverings over a smooth surface Y. The goal here is to describe intersections of
curves on X in terms of intersections in the base space Y and the action of the
Galois group G. The results are applied later in Chapter III to find the intersection
matrix for the preimage of the branch locus.

We use topological properties of branched coverings described in section 1.2 and
properties of the intertia and stabilizer subgroups defined in 1.3. Because in our
applications the curves we deal with are smooth and intersect in normal crossings
and thus distinct curves lying above the same curve in the base space are disjoint
(as we see in Lemma I1.3.2), the problem of finding intersections of distinct curves
reduces to counting points. The main difficulty in setting up the intersection formula
is to find a language for relating the intersections of curves in the covering space to
those in the base space.

Given a collection of curves C in the base space, our key result, Proposition 11.3.1,
gives intersection formulas for the curves in the preimage of C in terms of what we
call lifting data for C. Roughly, this has two parts. One is an enumeration of the
curves above C and the other is some simple information determining which curves
in p~*(C) and p~'(D) meet in the fiber of a point p € C N D.

We set up the terminology in II.1. In II.2 we show how to apply graphs with
certain properties imbedded in C to the problem of finding lifting data. If the graph
lifts to the covering surface, then we show that finding the lifting data for C reduces
to a local problem.

Finally, in 1.3 we give intersection formulas for curves in p~!(C) in terms of
lifting data, when C is a union of smooth curves so that C U B has normal crossings.
When C is the branch locus of the covering, the nullity of the intersection matrix,

which one can compute from the formulas, gives the difference between the first
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Betti numbers of the branched and unbranched parts of the covering surface (see
Proposition 1.6.3) and the rank of the intersection matrix gives a lower bound for

the Picard number of the surface (see Remark 1.6.2).

I1.1 Lifting data for curves in the base space

Let p: X — Y be an abelian branched covering with branch locus B and Galois
group G. Let C be a finite union of curves in Y. For each C C C, let H¢ be the
stabilizer subgroup of C. Then the curves in p~!(C) are a principal homogeneous
space for G/H¢. Thus, choosing a fixed curve C' in p~!(C) determines a one-to-one

correspondence between curves in p~!(C) and cosets G/H¢ such that
aC' «— aHg, for a € G.

I1.1.1 Definition. A choice of curves C' C p~!(C) for each curve C in C is called a
choice of liftings for C, or a C lifting.

Once we have liftings, we would like to know, given two curves C and D in C,
with p € C' N D, for which a, 8 € G do the curves «(C") and F(D') intersect in the
fiber p~1(p).

I1.1.2 Definition. Let S be the intersections on C and let J be the set of pairs (p, C)
where p € S, C is a curve in C and p € C. Given a C lifting, let

. 7-G
be a map so that, for each p € §,
( () ¥@.o)C)np'(p) #0.
peECCC

We call the map V¥ lifting data for the C lifting,.

I1.1.3 Remark. For any C lifting there exists lifting data ¥, but it may be difficult
to determine the map explicitly. One would like to find the simplest lifting data

which can be associated to a choice of liftings of the curves. An interesting problem,
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which we have not been able to solve is whether there exists a C lifting so that the
trivial map taking all pairs to the identity element is lifting data for this choice. We
call a C lifting with this property a good lifting.

To conclude this section, we now explain how the lifting data transforms under
blowups and pullback coverings in the special case that all pairs of curvesin CU B
intersect transversally. Let : ¥ — Y be a blowup of Y at some point p in C. Let
¥ : J — G be lifting data for a C lifting. We will show how to find lifting data
for a choice of lifting for curves in the total transform C in the pull-back covering
p: X7

Since ¢ is an isomorphism outside p, X and X are isomorphic outside of the
fibers above the exceptional set E, and p. Therefore, there is a well-defined curve
C' corresponding to C' above the total transform C of C € C.

By Proposition 1.4.11 the stabilizer subgroup Hg, is generated by

mP(C)901

where C' C B ranges over all curves, passing through p. By assumption m,(C) =1
for all curves ¢ C B containing p. Therefore, Hg, = I, by Proposition 1.4.6.
Therefore, there is one curve Ej, in X mapping to the point p’ in X, where p' is
the point in p~!(p) associated to the lifting data and E; intersects ¥(p, C)C'. If p
lies on only one curve C in CU B, let E, be any curve in X mapping to p’ which

intersects ¥(p, C)C".
Let S be the set of intersections on C and define

¥:7-G
so that ¥(g, C) equals ¥(o(q), C) for any ¢ € SNC and U(q, E, ) equals the identity
forallge 5N E,.
I1.1.4 PROPOSITION. The map V¥ is lifting data for the C lifting.

Proof. Take any ¢ € S. If o(g) # p then the fibers 5~'(q) and p~(o(g)) are

canonically isomorphic and the isomorphism commutes with the action of G so the
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result follows. If o(q) = p, then ¢ € E, N C for at most one curve C C C U B, since,
by assumption, all intersections of pairs of curves in C U B are transversal. Since

E,, intersects ¥(p, C)é' in at least one point, we are done. |

I1.2 Intersection graphs
Let p: X — Y be any abelian branched covering with branch locus B and let C

be a finite union of curves on Y. In this section we show how to find lifting data

for C using graphs.

I1.2.1 Definition. Let S be the set of intersections on C, and let ' be a graph with
points in S as vertices and edges labelled C connecting vertices in SN C. Suppose
f:T =Y is a continuous map sending vertices to their corresponding points in S
and sending interiors of edges labelled C to paths on C — (B — C). Suppose also
that the subgraph I'c of I' mapping to C' under f is connected and nonempty. Then
f:T =Y is called an intersection graph for C.

I1.2.2 Definition. Given an intersection graph f: ' = Y for C, a lifting map for f

in X is a continuous map

ff:T—=X

so that p(f'(7)) = f(y) for all y € T.

Note that given one lifting f' there are others given by ¢ o f' where o is any

covering transformation.

I1.2.3 Remark. If f : T — Y has a lifting map f' : I' = X so that f'(I'¢c) is
contained in a single curve C' C p~!(C) for all curves C in C, then we have a good

lifting as described in Remark II.1.3.

Our aim now is to show that given a lifting map f' : I' = X for an intersection

graph f: ' = Y, we can find lifting data by a local study.

I1.2.4 Definition. Let f' : T' — X be a lifting map for an intersection graph f : I’ —
Y for C. Let T be the set of pairs of edges of I' labelled by the same curve C C C,
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meeting at a common vertex. Let
v: T -G

be a map so that for each (e;,ez) € Z, there is a curve C' C p~!(C) such that
Y(er,e2)f'(e1) and f'(ez2) lie on C’. We call 9 the shifting data for f': T - Y.

The similarity of the notation with the lifting data associated to a C lifting will be
explained in the next lemma. The problem of finding shifting data 1 is a local one
in the following sense. If (e1,e2) € T and e; and ez meet at a vertex corresponding
to p, then 1(ey, e2) depends only on the combinatorics of the covering near the fiber
p~Y(p). Using the next lemma, we will show that the local information given by the
shifting data leads to finding the global lifting data.

I1.2.5 LEMMA. For each curve C inC, let C' be a choice of lifting of C in X so that

for some edge ec labelled C in T, f'(ec) is contained in C'. For any two curves C

and D inC andpe CN D, let

€1,€2,---,€k
fl,f27"')fl

be two sequences of edges labelled C' and D, respectively, which are attached from
end to end by common vertices, ec = €1, ep = f1, and the final endpoint of these

strings of edges is a vertex associated to p. Define a¢ and ap in G by

ac = P(er,e2)P(ez,e3). .. P(er—1,ex)
ap = ¥(f1, f2)¥(f2, f3) .. ¥ (fe-1, fe).

Then ac(C') and ap(D') meet at a point in the fiber p~!(p).

I1.2.6 Remark. It is easiest to visualize the curve ac(C') as the curve obtained
from C' by applying ¥(e1,e2), then (ez,e3) successively in this order, although

since G is abelian, the ordering doesn’t matter.
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Proof of Lemma I1.2.5. Since ¥(e;, €i4+1)f'(e;) and f'(ei41) lie on the same irre-

ducible component of p~1(C), for: = 1,...,k — 1,

ac(f'(ec)) = Y(e1, e2). .. Y(ex—1,ex)(f'(ec))
and f'(ex) lie on the same irreducible component ac(C’) of p~!(C). Similarly,
ap(f'(fp)) and f'(fe) both lie on ap(D'). Since, by definition, f'(p) € f'(fe) N
f'{ex), ac(C') and ap(D') meet above p. (Note that the result is independent of

the choice of sequences ep,...,ex and f2,...,fr.) B

Thus, from a lifting f' : I' = X and shifting data ¢ : T — G, we can construct
the lifting data for any C lifting satisfying the hypotheses of Lemma I1.2.5 as follows.
If C and D are two curves in C meeting at a point p, we can always find sequences
of edges on I'c and 'p as in Lemma I1.2.5, since I'c and I'p are connected. Then
all we need to do is let ¥(p,C) = ac and ¥(p, D) = ap be as defined in Lemma
I1.2.5.

I1.3 Intersection formulas for covering surfaces

Let p : X — Y be a smooth abelian branched covering of a smooth surface
Y with branch locus B. Assume in addition that B is a finite union of smooth
curves intersecting in normal crossings. (Recall the criterion for smoothness given
in Proposition 1.5.1.)

Let C be a finite union of smooth curves in Y so that the intersections in CU B
are normal crossings. Suppose that for each curve C C C, C' 1s a lifting, with Lifting
data

v:7 -G

as defined in Definition II.1.2. In this section we prove that, given such lifting data,

we have the following intersection formulas.

I1.3.1 PROPOSITION (INTERSECTION FORMULAS). If C is any curve in C and o
and f are in G, then

1

|IC|2 |(.IHC N ﬁHc|Cz.

(%) a(C).p(C") =

37



If C and D are distinct curves in C and a and § are in G, then
, L e oy _
() «C)BD)= Y . |a¥(p,C)~ He N ¥(p, D)™ Hp|.
pecnp el

The proof requires a few lemmas. The first two concern intersections of curves in

p~1(C) for a single curve C in C.
I11.3.2 LEMMA. For any curve C in C the curves in p~!(C) are disjoint.

Proof. Take any p in C. Since C U B contains only normal crossings, p lies in at
most one curve D € B other than C and in this case Ip C H¢ by Proposition
1.4.10. If there is such a curve D, then I, is generated by the elements of I¢ and
Ip, otherwise just the elements of I¢. In either case, I, is contained in He.

Now, suppose there are two curves C; and C; in p~!(C) intersecting at a point ¢
in p~!(p). Let U be a neighborhood of p in ¥ so that each connected component of
p~1(U) contains a distinct point in p~!(p) (see property (4) of branched coverings
in Definition 1.2.1). Let V; be the connected component of p~!(U) containing g.

We will show C; and C; must be equal. For any point p’ € CNU, let ¢; € C
and g2 € C: be points lying in p~!(p') N V. Since G acts transitively, there is
an automorphism « € G so that a(q1) = ¢z2. Since a permutes the connected
components of p~1(U) and ¢; and g; both lie in V(g), it follows that a(V;) equals
V,. The only point in p~(p) NV, is ¢, so a(g) = q. But this implies that « is in
I, which is contained in Hg¢, so a(Cy) = C, and ¢2 € C;. This means that C; and
C, intersect in p~!(p'), but p' was chosen arbitrarily in U, so Cy and C; intersect
at all points in the open set V; N p~!(C). Therefore, C; and C; must be the same

curve.

11.3.3 LEMMA. If C' is any irreducible component of p~!(C), then the self inter-

section C'% equals
|He| n
—-C*.
[Ic|?

Proof. Consider C as a divisor on Y and let p*C be its pullback. Then by the
general theory of intersections and pullbacks, (p*C)? equals |G|C? (see, for example,
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[Fu2], Example 1.7.6, pp. 20 - 21). Each component of p*C counts with multiplicity
|Ic|. Furthermore, no pair of distinct components of p~!(C') meet by Lemma 11.3.2,

so we have

lGIc? = Ic)? ). ™
C'Cp~1{(C)

The number of irreducible components in p~!(C) is the index of H¢ in G. Since the
covering is Galois, all the components have the same self intersection. Therefore,

|G|

G|C? = |Io|?
|G| lIc| Ho]

12
c”,

for a given C' C p~!(C). Multiplying both sides of this equation by

|Hc|
l1c*1G|
finishes the proof. I

If @ and 8 are in G and C' is a curve in p~*(C), then, by Lemma I1.3.2, o(C') N
B(C") is nonempty only when they are the same curve. This only happens when
aHc equals fH¢, or equivalently, when the intersection aH¢ N fH¢ is nonempty.
Thus, by Lemma 11.3.3

1

a(C)(C) = [

laHe N ﬁHc|CQ,
and we have proven (*).
Now assume that C and D are distinct curves in C.

11.3.4 LEMMA. If C' and D' are curves in p~!(C) and p~!(D) interesecting at g,
then

my(C',D') =1,
i.e., the intersection is transversal.
Proof. As in the proof of Proposition 1.5.1, since the covering X is smooth, the
covering map p near ¢ looks like

(xa y) = (xr’ yt)
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where r and ¢ are integers greater than or equal to 0. The preimage of the branch
locus is the union of {z = 0}, if » > 0 and {y = 0}, if ¢ > 0 and the intersection,

occurring if r and ¢ are both positive, is transversal. |}

11.3.5 COROLLARY. If C' and D' are curves in p~'(C) and p~'(D), respectively,
then C'.D' equals the number of points at which C' and D' meet.

11.3.6 LEMMA. Two curves a(C') and f(D') above C and D meet at a point in
the fiber p~1(p) of a point p € C N D if and only if

a¥(p,CY 'Hc N B¥(p, D) Hp

18 nonempty.

Proof. We know from the definition of ¥ that the two curves ¥(p,C)(C’') and
U(p, D)(D') intersect in at least one point in the fiber p™1(p).

For one direction, suppose « is in the intersection
a¥(p,C)"'Hc N B¥(p,D) ' Hp

then yHc¢ equals «¥(p,C) ' He and yHp equals §¥(p, D)~ Hp, so

aC'NBD' = a¥(p,C)~ ' ¥(p,C)C' N B¥(p,D)~ ' ¥(p, D)D'
= 71¥(p,C)C' N y¥(p, D)D'
= v(¥(p,C)C' N ¥(p, D)D").
Since ¥ is an automorphism and V¥ is lifting data, «C' and 8D’ must intersect in a
point in p~(p).
Conversely, suppose that ¢; is a point in aC’' N D’ so that p(¢,) = p. Let g3 be
a point in ¥(p,C)C' N ¥(p, D)D' lying over p and let ¥ € G be an element taking

g2 to g1. Then ¢; is in the intersection

7¥(p,C)C' Nv¥(p, D)D",
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Therefore, v¥(p, C)C’' and aC' intersect in ¢;, and hence y¥(p, C)H¢ and aH¢ are
equal cosets. Thus v is contained in a¥(p, C)~!Hc and, similarly, v is contained

in f¥(p,C)"'Hp. Therefore,
a¥(p,C)" He N fY(p, D)™ Hp

1s nonempty. [

11.3.7 LEMMA. Let p € CN D and let C' and D' be two curves in p~!(C) and
p~Y(D), respectively, so that C' and D' meet at a poinf above p. Then the number
of points where C' and D' meet in the fiber p~1(p) equals
|Hc N Hp|
[Icllp]

Proof. By Proposition 1.5.1, I¢ and Ip intersect only in the identity element, so
[IcIp| equals |Ic||Ip|. Also, since C and D intersect transversally, by Proposi-
tion 1.4.10, I¢ and Ip are contained in He N Hp. Thus, it suffices to show that
(Hec N Hp)/IcIp acts transitively and freely on the set $ = p~(p)NC' N D'.

Since the covering is regular, G acts transitively on p~!(p). If a is in Hc N Hp
then a(C') = C' and a(D') = D', so a(C' N D') = C'N D'. Thus, Hc N Hp acts
on S.

We have to show that the action is transitive. We know that for any ¢; and ¢2 in
S there is.an element « of G so that a(g1) = ¢2. Since the distinct curves in p~1(C)
are disjoint, a(C') = C' and a(D') = D' imply a« € Hp. Therefore, « € Hc N Hp.

Finally, we need to show that the kernel of the action is IcIp. We know from
Lemma I1.3.3 that IcIp equals I,. Therefore, IcIp is the subgroup of G fixing each
point in p~1(p). B

11.3.8 LEMMA. If aH¢ and fHp intersect, then the number of elements in their

intersection is the same as the number in Ho N Hp.

Proof. Suppose v is in aH¢ N BHp. Then yHe = aHe and vHp = BHp, so
y(HcNHp)=aHcNBHp. 1
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Now to prove (*#) in Proposition I1.3.1, we need only put together the above
lemmas. By definition of ¥, we know that, for p € C N D,

2(p,C)(C"YN¥(p, D)D)

is nonempty. By Lemma I1.3.7, the number of elements in the intersection is

1
|IcIpl

|Hc ﬂHDI.

By Lemma I1.3.4, the intersections number of distinct curves in p~!(C) are, for any

a, B € G, is given by

aC'.BD' = 3 |aC'nBD N p7(p)|-
pECND

By Lemmas I1.3.6, I1.3.7 and 11.3.8, we have

|eC' N BD' N p~ Y (p)| = |a¥(p,C)'He N BY(p, D) ' Hp|.

1
[ Ic|lp|

Summing over all p € C N D gives the formula (**).
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Chapter II1. Hirzebruch covering surfaces

In this chapter we apply the previous results specifically to Hirzebruch surfaces
and describe the techniques that lead to an effective algorithm for computing the
first Betti number b, and lower bound for the Picard number p of Hirzebruch sur-
faces X associated to configurations of real lines. The algorithm is given in Chapter
Iv.

We define Hirzebruch covering surfaces and give some properties following [Hi]
in IIL1. The surfaces are desingularizations of certain abelian branched coverings
X of P? whose branch locus £ is a finite union. The surface X is desingularized
(see Lemma II1.1.2 and Remark II1.1.3) by taking the pullback covering X over
the blowup of P? at the triple and higher intersections on £, with the exception
of the case where £ is two lines, in which case we take the blowup over the single

intersection point. Thus, X is a branched covering
7: X - p?

branched along a subset of the total transform L of L.

We describe the generators of the inertia and stabilizer subgroups for the branch
locus of p and p. This is a useful part of the algorithm and also, together with
Proposition 1.5.1, leads to an easy proof that X is smooth.

In order to compute b; the main steps are the following,.

(1) Find a presentation for the fundamental group of m (P? — £).

(2) Find lifting data for a £ lifting for : X — P2
Using Fox calculus on the presentation for 7 (P%?—L£) and applying Libgober’s result,
we can compute the first Betti. number b} of the unbranched part of the covering.
From the lifting data and generators for the stabilizer and inertia subgroups, we

can find the intersection matrix I for the curves above the branch locus, using the
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formulas of Proposition 11.3.1, and compute its nullity Null(I). By Proposition
1.6.3, by equals b} — Null([).

To find a presentation for m;(P? — £), we use the technique often used by Moishe-
zon [Mo) and Libgober [Li2], [Li3]. The idea is to project P? — L to a general line H
and compute the monodromy of the associated fibration as do Van Kampen [V] and
Cheniot [C] and analyse the monodromy using braids. For configurations of real
lines, the monodromy is easier to describe explicitly than in the general situation.
We do this in II1.2 and show how to find the presentation in II1.3.

To find lifting data for the branch locus, we also study the local topology of
real line configurations in P2, In III.4, we show how to find an intersection graph
together with shifting data (see I1.2) for the line configuration. Lemma II.2.5 shows
how to convert this to lifting data.

II1.1 Hirzebruch covering surfaces
The covering surfaces that we will deal with throughout the rest of this paper
were defined in [Hi]. Here is an alternative definition using the language developed

in section II.
I11.1.1 Definition. Let £ be a finite union of % lines in P? and let n > 2 be an
integer. Let

,(J:X—»F'2

be the abelian branched covering determined by the defining map (see Definition
1.2.6)

é:Hy(P? - £;7) —» H,(P? — £;Z/nl).

Let S be the points of intersection and let T C S the points where at least three
lines in £ intersect. Define a surface P2 and a birational morphism o : P2 — P?

depending on L as follows.

(1) If £ consists of two lines, let & : P2 — P? be the blowup of P2 at the point

of intersection.



(2) If T is empty and k > 2, let p2 equal P? and let o be the identity map.
(3) If T is nonempty, let o : P2 — P2 be the blowup of P? at the points in T.
Let
7: X - P?
be the pullback covering (see Definition 1.1.7) of p : X — P2. Then we call X the

Hirzebruch covering associated to £ and n.

One particularly useful property of Hirzebruch coverings is the following.
I11.1.2 LEMMA. ([Hi], p. 122) Hirzebruch coverings X are smooth.

A proof is sketched by Hirzebruch in [Hi]. We give a more detailed proof in
Remark I11.1.3 using the language developed in Chapter I. In the process we show
how to find the generators of the stabilizer and inertia subgroups of the branch
locus of p and p.

Recall from Definition 1.4.1 that, if ¢ : H1(P? — £;Z) — H,(P? — £;Z/nZ) is the
defining map of the covering, to each line L in £ there is a canonically associated
element u;, € H;(P? —L; Z) which can be realized as a positively oriented meridianal

loop around L.

LEMMA II1.1.3. If £ is any finite union of k lines in P?, then H,(P? - £;Z) is
generated by uy, for all L C £ and has the only relation
E pr =0.
LCL
Proof. The Lefschetz hyperplane theorem states that for a general hyperplane H
in P? the map
Hi(H —~ £;Z) — H(P? - £;7)

is onto. By Proposition 1.4.2, the 1 can be represented by loops on H — £. There-
fore, the ur generate Hy(P? — £;Z), and satisfy the relation

Z#L=0-

LCL
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We need to show that the above map is one-to-one. We can assume that £
contains at least two lines (since if not, both domain and range are simply-connected,
so the map must be an isomorphism.) It suffices then to show that any subset of
the set of ur of order ¥ — 1 has no relations among its elements. But the Van
Kampen method [K] for computing 11’1(F"2 — L) (see Proposition II1.3.3 for a more
detailed explanation of this method) show that this group is generated by & — 1
of the base-pointed loops u; and has relations given by the monodromy action of
a generic pencil. Since the action is by conjugation, the relations are trivial after

abelianization. |

For each line L in L, let g; be the image of y; under the map ¢. Then the
above proposition implies that the Galois group G is the abelian group generated
by gr, each having order n and the only relation among them is that the sum of
the generators is 0.

As before, let S be the set of points where the lines in £ meet. Define

gp = z gr.
pELCL
IT1.1.4 PROPOSITION. The inertia subgroup Iy, associated to the line L is generated
by the g, and the stabilizer subgroup H|, is generated by g1, and g, where p ranges

over points in SN L.

Proof. This follows immediately from Propositions 1.4.5 and 1.4.10. ]

Let T be the set of triple and higher order intersections on £ and let o : P2 - p2
be the blowup at the points in T. Then the branch locus of 5 : X — P? is contained
in £ = 0~1(L) (with equality except in the case where all lines pass through one
point). The curves in L are the proper transforms T of lines L in £ and the

exceptional sets E, associated to points p € T.

I11.1.5 PROPOSITION. Let L be the proper transform of L. Then I3 equals I,
and H; equals Hy. Let E, be the exceptional set lying above p € T. Then Ig, is
generated by g, and Hg, is genérated by all g1 where L C L and p € L.
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Proof. This follows from Proposition 1.4.11. §
II1.1.6 Remark. Proposition II1.1.3 and I.5.1 lead to a proof of Lemma III.1.3.

Assume there are at least 3 lines in £. Since the branch locus £ of the covering
p: X — ¥ is a union of smooth curves with normal crossings, we can apply
Proposition 1.5.1. Thus, we need only show that the inertia subgroups of two
intersecting curves in L intersect in the identity.

Let g1,...,9% be the generators of G corresponding to the lines L,,...,Li in
L. Take any two intersecting curves C' and D in L. If C and D are the proper
transforms L; and L, then Ic = (gz,) and Ip = (gz,). These intersect in the

identity in G, since there is at least one more generator in G. If one of C and D is

an exceptional curve, say C = E,, and D is the proper transform L, then

Ie=( ) ov)

pEL'CL
and

Ip = (g1)-

In order for these to intersect nontrivially there must be a nontrivial relation among
the g where L' ranges over lines in £ passing through p. This can only happen
if all the lines in £ pass through p, but in this case Ig, = 0. The case for £ equal
to two lines is the same as for the case where £ consists of several lines all passing

through one point. |

IT11.1.7 PROPOSITION. Assume that not all lines in L pass through a single point
p. For each line L in L, let r;, be the number of points in SN L. Then the number

of curves in p~1(L) equals

nk—v"L -1 .

For each point p € T let £, be the number of lines in L passing through p. Then

the number of curves in p~!(E,) equals

k=1
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Thus, the total number of curves in p— l(,(‘I\) is a polynomial in n.

Proof. We know that G has order n*~1,
In Proposition II1.1.4, we saw that Hj, is generated by g, and g, for all points
p € SN L. Since all lines in P? intersect,

gL+ Y (9p—g1)=0.

PESNL

Since there is no other relation, Hy, is generated freely by g, — g1 where p ranges
over points in $ N L. Since there are 7 of these, the order of the group Hy, equals
n"t. Therefore, the order of G/HL equals n*~"2~1, By Proposition II1.1.5, H;
equals Hy, so the number of curves in 3‘1(E) equals nf—"2-1,

In Proposition II1.1.5, we saw that Hg, is generated by g1, where L ranges over
lines in £ passing through p. Since not all linesin £ pass through p, these generators
have no relations. Therefore, the order of Hg, equals n», and the number of curves

in p~1(E,) equals nF~%t~1

I11.2 Fibrations and monodromy

In this section we consider a finite union of lines £ so that for some affine coor-
dinates z,y, the intersection £ of £ with C? is a union of k lines defined by real
equations in z,y and one line at infinity. (The constant k£ will be used in this and
the next chapter as one less than the number of lines in £.)

The choice of coordinates determines a projection Py : C2 — L — C onto the
z-axis. Let S be the set of intersections of lines in £ and let Q@ = P;(S). If no
fiber of P, contains a line in £, then for points ¢ € C not in Q the fiber P 1(q)
is canonically isomorphic to a copy of C minus k points. Therefore, P, defines a
fibration of C? — £ over C with singular fibers above points in P;(S). The aim of

this section is to study the monodromy of this fibration around singular fibers.

II1.2.1 Conditions on the coordinates z,y. Rotate the coordinates z,y if necessary

so that the following hold.
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P1. Each L, in £ is given by an equation of the form
y = Mal + ba,

where m, and b, are real.

P2. The projection P: sends the set of all intersections § on L to distinct (neces-

sarily real) points @ in C.
Note that the slopes m, are not necessarily distinct.

II1.2.2 Definition. Given coordinates z,y satisfying the conditions in II1.2.1 order
the lines in £ so that

mp 2 mg 2. 2 M.

Order the points p;,...,p, in S so that if qy,..., ¢, are their images in Q, then

G >q22> >4,

I11.2.3 Example.

9% %49, 9

I11.2.4 The fibration P,. Let z,y be coordinates satisfying the conditions in IT1.2.1
and order the lines in £ and points of intersection S in £ as in Definition II1.2.2.
For any g € C — @, the fiber F, = P;!(q) equals a copy of C, parameterized by y,
minus k points Ty, where Ty is the set of p € C so that (¢,p) lieson £. If g € R—Q,

then the points #;,...,t; in T, are real and can be ordered so that

tp >t >0 > .
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IT1.2.5 Monodromy. Let g € R be a point so that g0 > ¢ for all ¢ € Q. The

monodromy of the fibration is the image of the natural map
(%) m1(C - Q,90) — Mod(Fy,)

where Mod(Fy,) is the mapping class group, or group of isotopy classes of home-
omorphisms of F,, to itself which fix everything outside of a large disk in Fy,
containing T, .

There is a canonical homomorphism
(%) By — Mod(Fy,),
where By is the braid group on k strands [Mo]. Let
E:m(C—-S,q)— B

be the map ¥ which takes a loop 7 : [0,1] = C— S based at gy to the braid obtained
by following Ty(g) as 8 ranges between 0 and 1. Then the map (*) is the composition
of T and (**).
II1.2.6 Identification of fibers over real points. To explicitly find 3(v) for paths
v € m(C — @, ¢o), we use the fact that, whenever ¢ € R, T, is a set of real points,
and hence has a canonical local ordering from largest to smallest. Note that this
is different from the ordering on T, induced by the global ordering of the lines
Ly,..., L. Thus, for all real points ¢ € C there is a homeomorphism of any fiber
F, to Fy,, given by the local ordering, which is unique up to isotopy. Therefore,
any path v in C — @ with real endpoints defines an element in Mod(F,,).
Explicitly, given any ¢ € R — Q there is a unique isotopy class of maps

[bg] : Fy — Fy

with the following properties:

(1) the orderings of T, and Ty, are preserved;
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(2) for any € > 0 there is a representative ¢, € [¢,] so that the following diagram

commutes

F, - {|Im(y)| < ¢} L’ F; — {|Im(y)| < €}

l o
C—{IIm(y)| < ) —— €~ {|Im(y)] < ),
where the vertical maps are the canonical identifications;
(3) any homeomorphism from Fg to F;, which has properties (1) and (2) is in
the isotopy class [@,].

Using these maps, one can define a map from the set Pa of paths on C — ) whose

endpoints are real to By,

b: Pa— B,

so that, for any path v, b(7) is the braid obtained by following the points of T, where
g ranges over the image of v. Then if v, and +; are paths so that the endpoint of
v, is the initial point of v, then b(y;v2) = b(71)b(y2). Furthermore, the restriction
of b to closed paths based at gp equals .

I11.2.7 Generators for m{C — @, o). We construct generators as in the following

diagram.

Y2 T
T, T3 T,
e ..... o .
Y2 Y

Assume without loss of generality that

lg; — gj+11 > 1
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forallj=1,...,5s—1. Let 7,...,7,—; be paths on R — @ defined by
n:[0,1]] = R-Q
6 qo+6(q1 ~qo+1)
15:[0,1] > R-Q, forj=2,...,s
- (gj-1—1) +6(g; — gj-1 +2)
Let 7? and 7; be paths on C — @ defined by
7}-’“:[0,1]-—»C-Q
6 g; + e

77 :[0,1]] - C-@Q
quj_erriO

for j = 1,...,s. Note that the endpoints of all paths defined above lie in R — Q.
As can be seen by the previous diagram, the fundamental group m(C — @, qo) is
generated by I'y,...,T,, where each I'; is defined by

J-1 J-1
;= ([[ revHrivfyy 7 /(] 7o)~
r=1 r=1

I11.2.8 Generators for Bg. Recall that By is generated by oy,...,0k—1, where each
o; is the braid

l-1

f+1 X

/+2
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and has relations

0i0; = 0;0;

for |i — j| 2 2 and

Oi0i4+10; = Oi410i0i41

fort=1,...,8 =2

Recall that Fy, equals C minus k ordered points lying on the real line. The
braid o; corresponds to the element of Mod(F,,) which can be represented by a
homeomorphism which rotates a disk D, containing only the :th and : + 1st point
and centered between them, by 180 degrees and fixes all points outside of a disk D

containing D.

0427
k. &,

I11.2.9 Generators for the Monodromy. To find generators for the image of T, we
need only find X(T';) for I',...,T, as defined in II1.2.7. To do this we find b(r;),
b(7;) and b(;).

For each j, 7;(6) € R for all 8 and 7;(8) doesn’t pass through any points in @,
the points in T, () are real and their ordering is preserved as 6 varies from 0 to 1.

The local picture over the image of 7; looks schematically as follows. Note that the
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lines are not really parallel as in the picture, but they might as well be, since they

don’t meet each other over this interval.

T
]
This is because a set of k£ points moving continuously on the real line cannot get
permuted without coming into contact. Therefore, b(7;) is trivial for all j.
Now look at fibers over a path 7f or ; for any j =1,...,s. The real fibers of
P, : RZ— £ — R over an interval containing ¢; looks schematically like the following.

'

4q;

Consider the local ordering for the points ¢y,...,tx in T for ¢ any real point to the
right of g; in this interval as in II1.2.6. Let £ be the first index with respect to this
local ordering so that L, passes through p;. Translate coordinates so that

where by is the y-intercept and mg is the slope of L, with respect to z and y.
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After the change of coordinates, and with respect to the local ordering, the lines

in £ are given by new equations

L.:gy=mT+ec,, fdrr=1,...,k,
where ¢, = (by — b¢) + (m, — my)q;. For some d > 2

cr =0, forallr=2¢,...,0+d—1.

On F‘T}l-(a), we have

mié

T-vf(o) = {m1e™ + b +mugj,...,me-1€™ + bey +me_ig;,

m‘cma, . ,mt-l-d—lema,

. .9
Motae™® + bopa + Merdgs, .. . ,mre™ + b + mag;).

Similarly, on F‘r,-'( g)> W€ have

i0 i
T +gp = {—m1e™ + b1 + magj,..., ~me_1™° + be_y + me_1g;,
b
—mee™ .., —m¢+d..le"w,
9 0
—mepge”" + berd + Meraqs,. .., —mre™ + b + mpg;}.

Thus, the element of Mod(F,, ) corresponding to v+ and 7™~ rotates a disk containing

te,. .., terd—1 180 degrees as in the following picture.

We will call this the local monodromy around the fiber above g;.
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I11.2.10 Examples. The corresponding braid for d = 2 is the generator element a,.
7

r\I

1 l-1 ! /41 442 !1+3 k

The corresponding braid for d = 3 is

/

which equals

Tt0t+10¢-

For d = 4, the braid is

1 (-1 ¢ fl+l 42 (43 (44 k

and equals

TtO¢410¢420¢0¢410¢.

II1.2.11 Definition. Let ¥, 4 be the braid

1 a
IT (II eers-v).

a=d-1 f=1
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I11.2.12 PROPOSITION. If, by the local ordering at v; (0) = 77 (0), the lines indexed
by ¢,...,£+ d — 1 come together, then the braids b(‘y;-") and b(7;") equal 4.

Putting this local information together we have the following Proposition.

I11.2.13 PrOPOSITION. The image of the monodromy
E: Trl(c - Q’qo) - Bk:

is generated by
i—1 -1
2(T;) = [([] Bera )55 0, (] Zer9,) ")
r=1 r=1
where j =1,...,s.

I11.2.14 Example. Take the configuration in Example III1.2.3. The monodromy is

generated by
(22,3 )2 H

$2,3(T1,2)* 273,
223 21,2(22,2)22;;22:;’
$2.351,252,2(3 2)? Ez_ézl_,;z:;:l!

I11.3 Fundamental group of the complement of real lines

In this section, we apply the results of I11.2 to find the fundamental group of the
complement of a configuration £ of real lines in P2,

Choose affine coordinates z,y in P2, so that one of the lines in £ is the line
at infinity and satisfying the conditions P1 and P2 of IIL.2.1. Let Ly,..., Ly (we
assume, for ease of notation, as in II1.2, that the original number of lines was k + 1)

and p1,...,ps be the (globally) ordered lines in £ and points in S as in I11.2.2.

II1.3.1 Definition. Define a map

M : By — Aut{Fy),
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where F} is the free group on k generators py,...,ux and Aut(F}) is its group of
automorphisms, by

piv1  ifi=j
M(oi)(ps) = S pipsisin Hi=j+1
B otherwise.
I11.3.2 PROPOSITION. The following is a presentation for m (P? — £):

<1y pk  Ragia=1,... k8=1,...,8>,

where the p;, ..., pux correspond to positively oriented loops in C* — L around the

lines Lq,...,Lg,
R = pg' M(Z)(ka)

and (T'g) is as described in Proposition I11.2.13.

Proof. By a well-known result due to Zariski and van Kampen [K] (see also Che-
niot’s paper [C]), 71(C% — L, po) (where py is contained in F,) is generated by loops
B1,..., 4k on the fiber Fy, as given by the following picture

and has relations
pi = E(T5)"(ps)-
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To find E(T';)* it suffices to find o} for each generator o, of Bg. From the picture

Yo

we see that .
prg1 Mi=r

or(pi) = I‘r+lPr»“:-}1-1 fi=r+1
i otherwise

Thus, M(o,) =02. 1

II1.4 Lifting data for curves above the branch locus
In this section, we use the methods described in section I1.2 to define lifting data
for curves in the branch locus £ of p: X — P2 Recall that this means that we
define a map |
v.J7-G

from the set of pairs

J ={(»C):peC,CcLl)

to the Galois group G = H,(P? — £;Z/nZ) so that, for some choice of lifting C’ for
curves C C £ and point p' € p~!(p) for p € S, we have p' € ¥(p,C)C' forall C C L
and p € C.

We first study the covering p : X — P? and then extend our findings to the
pullback covering 5 : X — P2.
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I11.4.1 More conditions on the coordinates z,y. Choose affine coordinates z,y sat-

isfying the conditions P1 and P2 in II1.2.1, and also assume the following.
P3. All intersections on £ lie on the affine plane.

This condition implies that none of the lines in £ is the line at infinity. Further-

more, the slopes my,...,m; of the lines in £ can be strictly ordered
my > Mg > - > Mi.
P4. All slopes are nonzero.

111.4.2 Intersection graph. Let I' be the graph with vertices v corresponding to
points of intersection S of £, and with edges e labelled L given by the line segments

lying between adjacent points of intersection on L N R%. Let
f:T = P?
be the natural inclusion. Note that this graph satisfies the conditions of Definition
I1.2.2.
111.4.3 Example.

Here the edges are labelled as follows:

e3 is labelled Ly
€2 ” L,
e " L,
€4, €5 are labelled L,
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I11.4.4 A lifting for f : T — P2, We will use Proposition 1.2.11 to show there is a
lifting for f: ' — P2,
Note that the set

A = {(320 +193y0) : (xosyO) € R2:0 < 9 S 1}7

which is homeomorphic to R? x (0, 1], is contained in P? — £. This is because all

lines in £ are given by equations of the form
y=mz+b

where m # 0 and m,b € R, so for (z,y) € A the imaginary part on the left side of
the equation is 0 while on the right it is m8 > 0.
Define

h:[0,1] x T — P?
by he(y) = f(¥) + (16,0). Then, for § > 0, he(y) € A, so
h({0,1] x ') C A.
Since A is contractible and is contained in P? — £,
ha(m1((0,1] X T'))
is trivial. Therefore, by Proposition 1.2.11, there is a lifting map
ff:T=X
so that p(f'(7)) = f(7).
I11.4.5 Shifting data for the lifting. We now want to define a map
Yp:IT -G

from the set Z of pairs (€3, e2) labelled by the same line L and meeting at a common
vertex v, to G, so that, if e; and e; are labelled L, 9(e;,ez)f'(e1) and f'(e) lie on

the same curve in p~1(L).
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We find 1 using the fibration and monodromy described in III.2. Suppose f(e;)
and f(e;) lie on the line L = L; and f(e;) and f(e;) are joined at the point p € S.
Locally near p, £ N R? looks like the following picture.

Let P, : C? — £ — C be the projection P;(z,y) = z as in II1.2.4 and assume, by a
suitable change of coordinates if necessary, that P;(p) =0 and P;1([-1,1]) NS =

{p}.
Define

v:[0,1] — P?
so that v(6) equals the point P;!(e™%) N L and define

7:[0,1] — P?
so that 7(8) equals (sin(r8):,0) + P !(cos(78)) N L. Note that v(0) = 7(0), v(1) =
7(1), the z coordinates of ¥(#) and 7(8) are equal, y(8) C L and () C A for all
0<f<l1.

F(W=Rf)
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Take the quotient covering p : X — P2%, where X is the surface obtained by
modding X out by the action of Ir;. Then the covering p is defined by the map

¢ :Hi(P? — (£ = L;);Z) ~ Ha(P? — (£ — L;); Z/nZ)
and the group of covering automorphisms of p is the group
G =H,(P* - (L-L;);2/nl),

or G/Iy;.

I11.4.6 LEMMA. Let 3(e1,e2) be any element of G so that the image of (e, €3) in
G equals ¢(77™1). Then (e, e3)f'(e1) and f'(eg) lie on the same curve in p~*(L;).

Proof. We have a composition of coverings

where p(z) = p(pj(z)) for all z € X and I; is the Galois group for p;. Since Iy,
is the inertia subgroup for L; in the composition covering p, p is one to one over

p~Y(L;). Therefore, if ¥(e1, e2) is any element of G/I; so that

(1) ¥(ex,e2)p;(f'(e1)) and p;(f'(e2)) lic one the same curve in p~1(L;)
(2) ¥(e1,ez) is the image of ¥(e;,e2) in G,

then t(e;, e2)f'(e1) and f'(ez) lie on the same curve in p~!(L;).
Thus, we need to show that ¢(7y~1)p;(f'(e1)) and p;(f'(ez)) lie on the same

curve in p71(L;). The image of 7 is contained in
h({0,1] x T'),

so any lift of 7 with initial point in p;(f'(e1)) has endpoint on p;(f'(ez)). On the

other hand, since vy doesn’t pass through any points in S, the image of v is contained
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in Lj, so any lift of y~?

with initial point on p;(f'(e2)) has endpoint on the same
curve in p~1(L;) as the one containing p;(f'(e2)).

Therefore, the action of ¢(7y~1) takes points on p;(f'(e1)) to points on the curve
in p7!(L;) containing p;(f'(e2)). 1

We now have left to find ¢(ry~!). To do this we will look at the analysis in
I11.2.9 in more detail. Let ¢;,...,¢ be the locally ordered points in Ty with respect
to the fiber P 1(1). We saw in II1.2.9 that the local monodromy around the fiber
over 0 fixes the locally ordered points numbered 1,...,£ —1 and £+ d,...,k, and
rotates a disk containing the points numbered ¢, ..., + d — 1 counterclockwise by
180 degrees. This corresponds to the braid L4 ¢ as given in Definition II1.2.11.

It is important to notice where the center of rotation of this disk is in relation to
the points ¢,...,£ 4+ d — 1. Let R be the first (global) index so that the line corre-
sponding to tg has positive slope and the line corresponding to tp+; has negative
slope. If R is between £ and £ + d — 1 then the center of rotation of the disk occurs
somewhere between R and R+1. Thus the fibers fibers Fp(+(4)) and Fp(,- (4)) vary

as in the following pictures. (Here 7 and v are drawn for the case that £ < j < R.)

1 1
: ¥y
:t+d
k Dk
0=1/3 0=2/3

If R is not between £ and £ +d — 1 then the center of rotation is either somewhere

above £ (if R < £) or somewhere below £+d—1 (if R > £+ d — 1). For example, if
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R > £+ d — 1 we have the following picture.

1 .1
e o
. f+d P l+d
‘' R : R

k Lk
0=l/3 9:2/3

Therefore,

([ min(R,¢+d—1)

- Y, g ifj<R
B(ry™1) = o

- Y §, ifj>R
r=max(R+1,) '

\

where g, equals the image of g; in G.

I11.4.7 Example. Assumek = 3,d =3, R = 2 and j = 1. Then the braid associated

to the monodromy looks like this:

1)23
/\f\/
™
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and if we draw in the paths v and 7 in bold face, we have the following picture.

1 2

\

It is easy to see that 7y~!

= 1“2 ) SO d’(T —3;-
We can put together the local information to obtain the following global result.

I11.4.8 PROPOSITION. Foreach L C L, order the points py,...,pr, € SNL so that

P(p1) > - > Pe(pr, )

Let ey,...,er,—1 be the edges in T’ labelled L so that P,(e;) is the interval between
P.(p;) and Py(pi4+1). Let ¢; be any element of G mapping to $(ry~1) in G/I as
defined above for e;_y and e;. For each p; € SN L, let

0 ifg=1
Yp; = .
$1... ¢ otherwise.

v:7-G

Define

so that for each L andpe SNL
¥(p, L) = ¥y
Then there exists a lifting L' of L for each L C L so that ¥ is lifting data for L'.

Proof. Define L' to be the lift of L containing the edge f'(e;). The rest follows
from 11.2.6. 11

We are now ready to find lifting data for a L lifting in p': X7
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I11.4.9 PROPOSITION. For each proper transform LeLl ofalineLin L, let L' be
the curve in f)‘l(f) corresponding to L' under the birational map & : X — X. For

each point p € T, let E;, be the curve in p™'(E,) mapping to f'(p) under 5. Let
T T =G

be defined by ¥(q, L) = ¥(o(q), L) for all lines L in £ and let U(E,) be the identity
element. Then ¥ is lifting data for the liftings.

PROOF: Since f'(p) is in ¥(p, L)L for all p € S and p € L C L, the result follows
from Proposition 11.1.4. B
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Chapter IV, Algorithm for Computing the First Betti Number

In this chapter we give an explicit algorithm for finding b;(X). The algorithm
breaks up into three parts:

INPUT. Create input for the algorithm. To do this we find a choice of coordinates
satisfying certain criteria.

A. A point/line incidence matrix M for the line configuration £ with respect to
a choice of coordinates satisfying certain criteria.

B. An integer n so that the surface X is determined by the canonical map
71 (P? — £,%) —» H,(P? — £;Z/n1).

C. The index R of the first line in £ whose slope is negative.

STEP 1. Find the first Betti number b} of the unbranched part X* of p: X — P2
using the following substeps.

A. Make a point/line incidence matrix M for lines C? — L, where C? denotes the
affine plane given by z # 0 and £ is the intersection of £ with C2.

B. Find a presentation for the fundamental group of P? — L.

C. Compute the Alexander matrix associated to the presentation.

D. Find b

STEP 2. Find the nullity Null(Z) of the intersection matrix for curves in p~*(L)
using the following substeps.

A. Make a point/curve incidence matrix for curves in L.

B. Make a shift matrix for £.

C. Order the curves above £ (using generators for the stabilizer subgroups).

D. Make an intersection matrix for curves above L.

E. Find the nullity of the intersection matrix.
By Proposition 1.6.3, the difference b} — Null(I) equals b, ()? ).
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INPUT
The format of the input is important in making the later calculations from this

input easier.

IV.1 Conditions on coordinates z,y. Recall the conditions on z,y given in II1.2
and II1.4. Properties P1 and P2 are needed to implement the algorithm for finding
b} described in II1.4 and P1, P2, P3 and P4 are needed to implement the algorithm
for finding the lifting data as described in III.4.

P1. Each L, in £ is given by an equation of the form

Y = MmaZ + ba,
where m, and b, are real.

P2. The projection P; sends the set of all intersections § on £ N C? to distinct
(necessarily real) points @ in C.

P3. All points in S lie on the affine plane.
P4. All slopes m, are nonzero.
Add two more conditions.

P5. For some jo, p; € Li for all § > jg, and rotating the affine plane so that

L; becomes vertical doesn’t change the ordering of the z-coordinates of points in

S — L.

This property can always be achieved by changing coordinates if necessary so
that the line y = (my + €)z + bx goes to infinity, where € > 0 is chosen small enough
(this process would require changing the ordering of Ly,...,Lg_; and py,...,p,).

P6. P,(p)>0forallpes.

By shifting = by a constant zo greater than |P.(p,)| we can make sure property

P6 holds without changing the previous conditions.

As a consequence of these conditions, we have orderings L;,..., L; of the lines

in L so that the slopes are strictly decreasing:
my > me > - > My,
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and orderings pi,...,p, for points in the set of intersections S of £ so that

P;(Pl) > P;(PQ) > > Px(pa)'
Condition P6 implies that the y intercepts of the defining equations for £ satisfy
by < by <-r < by

We make the definition of a point/curve incidence correspondence for any collec-
tion of curves on a surface, since we will also use one for £ in P2 in the algorithm.
The definition also makes sense for curves lying on a quasi-projective surface, for
example, P? minus a line “at infinity.”

IV.2 Definition. Let C be a union of k curves on a quasi-projective surface ¥ with
orderings C, ..., Ck for the curves in C and py,...,p, for the points of intersection

S on C. The point/curve incidence matriz M for C with these orderings is the s by

1 if pi € C;
aij =

0 otherwise.

k matrix with entries

In the special case where C is a configuration of lines in P? we will also call this the
point/line incidence matriz.

Let M be the point/line incidence matrix defined by the orderings of £ and S
determined by the coordinates z,y, as in Definition IV.2, let n be the order of the
coeflicient group, and let R be the last index so that Lr has positive slope with
respect to the coordinate. The algorithm which we are about to describe takes as
input M, n and R.

IV.3 Example. Recall the line configuration of I11.2.3.

pj pl Lj
P2
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The point/line incidence matrix is

1110
1 0 01
0101
0 011

The last index R so that Lg has positive slope is 2

STEP 1: First Betti Number of Unbranched Part

Summary. To find the fundamental group we first send one line to infinity. This
involves a change of coordinates which we need to show still satisfy properties P1
and P2 of II1.3.1, and we get a new point/line incidence matrix. We then apply the
methods described in II1.2 and I11.3 to find a presentation for = (P2 — £). Applying
Fox calculus, we obtain the Alexander matrix, a presentation matrix for H,(X*;Z)

as a Z[G]-module, where G is the Galois group of the covering.

A. Point/line incidence matrix for the affine part of P2 — (
We first show that a new point/line incidence matrix M associated to a choice of

coordinates where one line in £ is sent to infinity can be obtained as follows.

IV.4 LEMMA. The following change of coordinates leads to new coordinates satis-
fying the conditions of II1.2.1.
C1. Rotate the affine plane so that the equation for the line L; becomes

z =0
C2. Apply the change of coordinates
[oiy:elo 20y al
Let M be the matrix obtained from M by chopping off the rows with a 1 in the last

column (i.e, the rows j = jo,...,s as in property (P5) of the coordinates). Then

M is the point/line incidence matrix for L N C? with respect to this ordering.

Proof. Clearly, the two changes of coordinates preserve RP?, so the new coordinates

still give real equations for £ and thus satisfy P1.
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To prove the rest of the lemma it suffices to show that the changes of coordinates
preserve the ordering of the slopes of lines in £ and of the z-coordinates of points
in S.

Note that the ordering of the slopes of lines in £ corresponds to the natural
ordering (from largest to smallest) of the intersections of £ with a vertical real line
T = a, where « is greater than the z-coordinate of any point in S. Any rotation
of the affine plane preserves the ordering of these intersections for all lines which
don’t become vertical during the rotation.

Since my is the smallest slope of any line in £, the rotation of C1 preserves the
orderings of the slopes of the lines L;,..., Ly. By the same reasoning the ordering
of the y-intercepts also do not change.

Herafter for this part of the algorithm we will replace k¥ — 1 by k. Therefore, after

C1 the new equations for L,..., Lt are

where

m >-ﬁ2>"'>ﬁz
and
(%) b <bp <<y

By property P5, the ordering of the z-coordinates of points in S is also perserved.
Clearly, if we follow with C2, Ly goes to the line at infinity. The affine equations

for the lines L,,..., Ly become
Li:y= —E.':L' -+ m;.

(The ordering of the y-intercepts reverses, but their ordering is not important for

this part of the algorithm.) Thus, by (%), the ordering of the slopes remains the
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same. Furthermore, if z1,...,z, are the ordered z-coordinates for points in S under
the coordinate system obtained after Step (1), the new z coordinates are

1 1 1

’ 10y ?
1 T2 Ts

so the ordering remains the same for points in S as well. i

B. Presentation of m (P? — £)
We now use M to find a presentation for 7;(C? — £). Let £(T;),j = 1,...,s be
elements of By as in Proposition I11.2.13, let M be the homomorphism

M 3Bk —»AutF;

where F} is the free group on generators py,..., ug as in Definition I11.3.1, and let

Rij = ui M(T5)a (i)
fori=1,...,kand j =1,...,j0 — 1. Then as we saw by Proposition I11.3.2,
<l‘la---}!1§“:Ra'.jﬂ':1:---1F;j=1a---aja>

is a presentation for the fundamental group of P2 — L.

To compute R; ; explicitly we use the following definition. For ease of notation we
make this definition for an arbitrary point/line incidence matrix M corresponding
to an ordering of ¥ affine real lines £ and intersection points S on £, defined by
coordinates z and y satisfying the conditions in Definition III.2.1.

IV.5 Definition. Define £,,...,%, in By as follows.

(1) Look at the first row of M. Let T, equal I ;, where £ is the first column of
M containing a nonzero entry and d is the number of nonzero entries in M
(they will be consecutive) and ¥, 4 is as in Definition II1.2.11. Let 3 equal
Led.

(2) Given the previous T, let &, be the element of the symmetric group on k

elements in the image of ¥, under the natural map
By — Symg.
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Define
Ly = E—r(zl,d)zz—r_l,

where £ equals o, applied to the first column containing a nonzero entry in

the current row and d i1s the number of nonzero entries in this row.

I1V.6 PROPOSITION. If we use thé matrix M, then the £,,...,%, defined in Defi-
nition IV.5 generate the monodromy of the fibration P, on C* — L.
Proof. This follows from Proposition 111.2.13.
Now we can find R; ; = pj—lME,-(/,zJ-) explicitly using Definition II1.3.2.
C. Alexander Matrix

We compute the Alexander matrix of the presentation using Fox Calculus (see

[Fol]), which we summarize here.

IV.7 Definition. Given a free group H generated by p1, ..., ux, Foz derivatives are
maps %> 8. from H to the group ring Z[I? ] of the abelianization Hof H

Opr?" "7 Opea

defined as follows.

0 3] a

a—m(fg) = 6_m(f) + fz,';:(g),

3?“ (=0 if f can be presented as a word not involving u;;
5 T pi 44 pl ifn>0

o Hi) =
H —uit —pt ==l ifn<O.

Let ¢ : H;(P? — £;Z) — G be the defining map for the covering. Then ¢ induces
a map
¢:Hi(P* - £;7) - Z(6],
given by composing ¢ with the inclusion of G in Z[G]. Recall that H;(P? — £;Z) is
canonically isomorphic to the abelianization of m(P? — L, ).
Let < py,...,pk : Ry,...,RN > be a presentation for m;(P? — £, ). Let 4 be
the matrix of Fox derivatives
~ OR;
=)
3
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The matrix A is called the Alezander matriz for the presentation.

The following proposition is a special case of Fox’s result ([Fo2], (3.5), p. 411.)

IV.8 PROPOSITION. The Alexander matrix A is a presentation matrix for the first

homology group Hy(X*, F; 1) considered as a Z|G]-module, for F any fiber.

D. Computing b}
Let Q* be the set of k-tuples of nth roots of unity and, for each element w =
(w1, ..,wp) in Qf, let

o : Z[G] = Z[Q"]

be the Z-module homomorphism defined by
Tw(9:i) = wi,

where g; = ¢(ui). Let A, be the matrix obtained from A by replacing each entry
ai; by 7.(a;i ;). Let ro, be the rank of A,.

The following result is a consequence of [Li4], p. 2, Theorem 1 (see also [Ho],
§2).

IV.9 THEOREM. The first Betti number of X* is given by
by = Z E—-1-r,
welln
This completes STEP 1 of the algorithm.

STEP 2 : Intersection Matrix for Curves Above Branch Locus

Summary. As we saw in Chapter II, finding an intersection for curves in X above
L requires lifting data, i.e., a way to choose curves C' in the covering, one above
each curve C in L, together with the information of which group action makes two
curves meet above a specified point. In Step 2, we make a point/curve incidence
matrix M for £ and then replace each entry in M by a group element, so that in
the (p, C) entry we have the element ¥(p, C') with the property that

¥(p,C)C' N ¥(p, D)D'
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meet in the fiber p~1(p).
Using Propositions 1I1.4.8 and I11.4.9 we show how to define a map

7:7 - G,
using M and R, so that for some choice of lifting of the curves in L in the covering
7: X — P2, U gives lifting data.
From this information, we use the formula in I1.3.1 to find the intersection matrix

I of the curves in ﬁ_l(ﬁ) Then, by Proposition 1.6.3,
by = b} — Null(I).

A. Point/curve incidence matrix for L
We begin by ordering the curves in £ and the points S of intersection on L.
The curves in £ are proper transforms El, ceey Ly of lines £ and exceptional curves
E, for points ¢ € T. Order the points ¢;,...,¢; in T so that each ¢; = p,,, where p,
is the ith point in the sequence p;,...,p, through which more than two lines pass.

Order the curves in £ as follows:

Li,....,L,E,,,....E,

¢

For each point p, € S with only two lines L;, and L;, passing through p,, set
d, = 1. There is a single corresponding point p, in E_,-l Nk ja s

For each point p, € § with p, = ¢, for some ¢, in T, there are d, distinct
points Pr1,...,Prr., in 0 1(p;) = E,, so that the proper transforms Ejl ye s ,EJ“P
intersect E, .

We thus have an ordering for the points in S:
P11y s P1,d1 s P21y o+ 3 P2,day e+ oy Ps,1y ooy Pard, -

Define ﬂ?l yeees A?, to be the matrices defined as follows.

(1) If row r of M has only two columns j; and j, with entry equal to 1 then
let M, be the 1 x (k + t) matrix with a 1 in the j; and j; columns and zero

elsewhere.
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(2) If row r of M has columns jj,.. ., j4 with entries equal to 1, with d > 2, then
let M, be the d x (k + t) matrix with a 1 in the £, j, and £, k + u place for
£=1,...,d,if r is the uth row of M containing more than two entries equal
to 1.

Let M be the matrix obtained by concatenating these matrices.
The following proposition can be checked easily from the definitions.

IV.10 PROPOSITION. The matrix M defined as above is the point/curve incidence

matrix for the curves in L and the points of intersection S in £ ordered as above.
B. Shift matrix for £

To find the shift matrix for £ we begin by finding one for L.
IV.11 Definition. Let a;j, ¢t = 1,...,8; j = 1,...,k be the entries of M. Define

the shift matrix Sh(L) with entries b; ; inductively on i as follows.

(1) Row 1: b ; =0forall j=1,...,k.

(2) Row i:
( bi—1,j fa;j=0o0rj=Rorj=R+1;
R
bi-1,j — Z Fali o ifa;;=1and j < R;
bij = 4 a=j+1
j-1
b,'_l,_,' - E Falia if a;; = 1 a.ndj > R.
\ C(=R+1

By Proposition II1.4.8, there is a choice of lifting L, for each L; in £ so that
V.7 -G

(pi, Lj) = bij
are lifting data.

Now we are ready to find the shift matrix for L.
IV.12 Definition. Forr =1,...,s, let §Er be the matrix defined as follows

(1) If row r of M has only two columns j; and j; with entries equal to 1, then
let Sh, be the 1 x (k + t) matrix with entries b, ;, in the j; column, b, ;, in

the 72 column and zeros elsewhere.
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(2) If row r of M has columns ji,...,j4 with entries equal to 1 and d > 2,
then let Sh, be the d x (k + t) matrix with entries b, j, in the £, j, place for

£=1,...,d and zeros elsewhere.

Let Sh(f) be the matrix given by concatenating §El, .. ,g.ﬁ_,. Since Sh(f) has
the same dimensions as M, , there is a well-defined bijection from J to entries of
Sh(E), which we can think of as a correspondence between pairs (p,C) in J to
integer pairs (2p, jc), where i, is the row corresponding to the point p and j¢ is the
column corresponding to the curve C in M.

By Proposition I11.4.9, there is a choice of lifting C' for each curve C in Lin the
covering

7: X - P?
so that N
Uv:7 -G
(, C) = bi, jc
is lifting data for the C’.

C. Ordering curves above L

To find the intersection matrix for the curves in ﬁ‘l(E) explicitly, we need to be
able to order the curves in 5~!(£) and find their intersection numbers.

Recall that the curves in p~!(C) for any curve C in L are in one to one corre-
spondence with cosets of the stabilizer subgroup H¢ associated to C. Thus our goal

now is to find the stabilizer subgroups explicitly.

IV.13 PROPOSITION. Consider G as the quotient of the free abelian Z /nZ-module
Ay of rank k with basis ¢1,. .., g% by the submodule generated by g1 + g2+ -+ g&.

For each curve C C L we have:

(1) if C = E.-, for1=1,...,k, then H¢ is the submodule of G generated by the

relation-free elements

2 9

PE€L;
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forallpe L;N S,
(2) if C = Ey,, foru =1,...,t, then H¢ is the submodule of G generated by
the relation-free elements g;,,...,9;,, where L;,,...,L;, are the lines in £

passing through q,.

Proof. This is a restatement of Propositions III.1.4 and III.1.5. i

IV.14 COROLLARY. The number of curves in p~(C) for C C L is

(1) n*—1if C = 3_,- for some j = 1,...,k and r is the number of entries in the
jth column of M equal to 1;
(2) n*¥=4=1 if C = E,, for someu = 1,...,t and, for i such that p; = qu, d is

the number entries in the 1th row of M equal to 1.

IV.15 CorOLLARY. With notation as in IV.14, the quotient G/H¢ for C C Lisa
free Z /nZ-module of rank

(1) Re=k—r—1ifC=1IL;,
(2) Re=k—-d-1ifC=E,,.
Furthermore, we can choose bases for these quotients as follows.

1) HC= fj, G/Hc is freely generated by the images of elements of the form
Giy — Gia»
where L;, and L;, pass through a point p € L; and i3 is the largest index
(< j) of a line in L passing through p;
(2) If C = E,,, G/Hc is freely generated by the images of elements of the form
g, — iy
where L;, and L;, don’t pass through ¢, and iy is the largest index of any

line in £ not passing through gq,.

Proof. The first part of the corollary follows trivially from Corollary IV.7. To show

that the elements described above generate the quotient modules, we first check that
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the ranks are correct. For case (2) this is obvious. For case (1) assume there are
r points in S N L and there are a total of d; lines through the ith point in SN L;
for each 1 = 1,...,r. By definition we have d; — 2 generators for each p; € SN L;.

Since all lines intersect in PZ, -

r

Y (di-1)=k-1.

=1

Therefore,

Y (di-2)=k-r-1.

i=1
Let G be the quotient of G by the subgroup generated by the generators described
above. Since the generators described are independent in G and H¢ is clearly

contained in the kernel of the map

G-

Q

G must be isomorphic to G/He. I

Now we order the curves in p~!(C') by ordering the elements of G/H( in lexico-

graphic order with respect to the choice of basis given in Corollary IV.15.

D. Intersection matrix for curves above £
From Theorem II[.2.1, to find the intersection number of curves lying above C

and D we need to find the number of elements in
aHecNBHp

explicitly for C and D in £ and o, 8 € G.

Let ¢ be the quotient map
1¢:G— G/He

for each C C L. The number of elements in aHc N BHp equals the number of

simultaneous solutions to

TC(g) =a, TD(Q) = B:
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where @ and § are the images of « and 8 in G/H¢c and G/Hp.
It is easiest to find the number of simultaneous solutions by writing the maps 7¢

in matrix form. Recall that G is isomorphic to the quotient of Ax by the submodule
I generated by E?=1 z;. For each C C L define the matrices Tc as follows

(1) fC = f,‘, for each row ¢ in M with d > 3 column entries equal to 1, let
J1y-+-,Jd—1 be the indices of these. columns excluding j. Let T¢; be the
(d — 2) x k matrix with a —1 in all the j;—; column entries, a 1 in the £, j,
entries, and zeros elsewhere. Concatenate the T¢; in the order of increasing
1 to get Tc.

(2) If C = E, , where p, corresponds to the ith row of M, let ji,...,j& be
the columns with entries 0 in row i. Let T¢ be the (k — d — 1) x k matrix
with entries —1 in the entire jx—, column, 1 in the £, j, entries, and zeros

elsewhere.

IV.16 PROPOSITION. For each C, T¢ is a matrix which represents a surjective

module homomorphism

Tc . Ak — G/HC

so that Tc is the composition of the quotient maps Ay — Ax/I = G and G —
G/Hc.

Proof. One observes that the rows of T¢ correspond to the generators found in

Corollary 1V.15. 1

IV.17 Blocks of the intersection matrix. We construct the intersection matrix I in
blocks I p corresponding to how the curves above C' and curves above D intersect,
for C and D in L.

Each curve in £ corresponds to a column of the point/curve incidence matrix M.

Let ¢, d denote the two columns corresponding to the curves C' and D. Let R¢ and

Rp be as in Corollary IV.14. Define M, 4 to be the nfte x nf4 matrix with entries
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as follows.

(1) If ¢ =d < k, then M, 4 has entries

%(ra.nk(Tc))(l — Ro)

on the diagonal and zeros elsewhere.

(2) If c =d > k, then I¢,p has entries

— (rank(T2))(-1)

on the diagonal and zero elsewhere.

(3) If ¢ # d and M has a row whose ¢ and d columns don’t both have entry 1,
then M, 4 is the zero matrix.

(4) If ¢ # d and M has a row whose ¢ and d columns have entry 1, let @ and
B run through elements of G/H¢ and G/Hp ordered lexicographically, and

let Ic,p be the matrix with entries
1 , : _
— (number of solutions to Tc X =&, TpX = B)
n

in the &, § place.

The Ic p defined in IV.17 is the intersection matrix for curves in p~1(C) and
p (D). After concatenation we get the intersection matrix I for all curves in
(D).

E. Computing the nullity of the matrix I

We compute the nullity of I using basic integer row reduction. A problem with
the algorithm is that the size of the matrix I grows as a polynomial in n, so it
quickly becomes too large for a computer to handle.

Putting together the results of STEP 1 and STEP 2 gives the first Betti number
of X.
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Chapter V. Examples

In this chapter we summarize the classification of Hirzebruch coverings, following
[Hi], and calculate geometric invariants which can be obtained from the algorithms
and formulas described in this paper. These are the Betti numbers, Chern numbers,
bounds on the Picard number, irregularity, algebraic and geometric genera.

The types of surfaces which occur as Hirzebruch coverings are ruled, elliptic,
K3 z-md general type. We review Hirzebruch’s classification and properties in V.1.
We also prove in this section, following Ishida’s analysis in [I], that the branched
coverings X are complete intersections when £ is a union of lines not all passing
through a single point. ‘

If the branch locus is a configuration of ¥ > 3 lines in general position then the
covering is simply connected and of general type (see V.2). There are specific kinds
of line configurations which give rise to surfaces which are birationally equivalent
to a product of curves (see V.3) or fibrations (see V.4). Examples of K3 surfaces
and elliptic surfaces (see V.5) occur when we consider coverings with n = 2. The
largest class of Hirzebruch coverings are general type (see V.6). In V.7 we give of a

list of some computer output.

V.1 Classification of Hirzebruch coverings
We give here properties of Hirzebruch coverings and formulas for the Chern num-
bers and other geometric invariants. The results are essentially contained in [Hi],
but we use some different notation here to make our computer calculations simpler.
As we saw in Lemma I11.1.2 Hirzebruch coverings are smooth. In most cases they

are also minimal and one can speak of their Kodaira-Enriques classification.

V.1.1 THEOREM. ([Hi], p. 127) The Hirzebruch surface X is a minimal surface

except in the following cases:

(1) T contains a single point p and all but at most 2 line in L passes through p;
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(2) T contains two points p and ¢, all lines in £ pass through p or ¢, and there

is one lines in L containing both p and gq.
For n > 3, the canonical dimension of X is 2, that is, X is a surface of general type.
Forn=2andk =6, X isaKs surface, and for n = 2 and k > 7, X has canonical

dimension greater than or equal to 0, and it is elliptic or of general type.

We will deal with the exceptional cases in V.3 and V.4.
A useful aspect of Hirzebruch coverings is the ease with which their Chern num-

bers can be calculated.

Let ¢ be the number of points in 7' and let s be the number of points in S. For
each p € S, let £, be the number of lines in £ passing through p and for each line
L C L, let r, be the number of points in SN L.

V.1.2 THEOREM. ([Hi], pp. 123-125) If not all lines pass through a single point,

then we have

PET Lcc
where E, is the exceptional curve lying above the point p. This implies that

2 def K2

£))").

pET

The second Chern number equals
C2 dé{ Xtop(f)
=t B Y@= ) +nf P2 - 6) + ) (2= )

Lcc peET Lcce

s—t+ ) 8).

peT

If all lines pass through a single point p, then

1U'L)
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and hence

? =n*1[(-3+ n-l

k)2 —1].

The second Chern number equals
cg = 2(2 — k)n*! 4 2knF 2,
V.1.3 Remark. Noether’s formula gives the Euler number of the structure sheaf
X(03) = 5(ct +2)
X212t ’

Thus, once one finds the first Betti number b, of X, we have the following addi-
tional invariants:
(1) From the Hodge decomposition of Hy(X;C) and Poincaré duality
by = A0 4 RO
= 2g,
and we get the formula

g=3h

for the irreqularity ¢ of X ;
(2) From Poincaré duality we get all the Betti numbers:

bp =by =1

and

b3 =bl)

and, since c; = x;op()?) = by — by + by — b3 + by, we have
bz = Cq —2+2b1;

(3) From the decomposition x(Og) = 1 — h1® + h%0 we obtain the arithmetic

genus
def
Da = X(Oj'(‘) -1

1
= E(Cg +Cg) -1
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and the geometric genus
2y def 2,0
=pat+G;
(4) From the Hodge decomposition of Hz()? ; C) and Poincaré duality
by = B2 + R 4 02
= 2p, + A,

and solving for h'* we obtain

Rl = gcz - %Cf + b;

(5) Hodge theory tells us that the Picard number p is bounded

P S hl,l.

Another interesting property of Hirzebruch surfaces is that X, the covering before
desingularization, is a complete intersection when the lines in £ don’t all meet at a
single point. The proof follows from the analysis of Ishida [I] which leads him to a
different method for finding the first Betti number.

V.1.4 PROPOSITION. If L is a configuration of k > 3 lines not all meeting at a

single point and n > 1, then the branched covering X of P? defined by the map
(P2 — £) = Hy(P? - L;Z/nZ)

is a complete intersection. If no k — 1 of the k lines pass through a single point,

then X is the complete intersection of smooth hypersurfaces.

Proof. Define £: P2 — P¥-1 by

(WI:WZaW3) = (gl(WIaW%W:l)a s >ek(W1?W2’W3))
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where W1, Wz, W3 are homogeneous coordinates for P? and ¢4,..., ¢ are homoge-
nous equations for the lines in £. The map ¢ is induced by a linear map m : C® —
C*. Since not all lines in £ pass through one point, this map has nonzero kernel,
50 ¢ defines an immersion P? — Pk=1je., ¢is an isomorphism of varieties from P2
to £(P?). |

Consider the perpendicular space P to m(C3?). This is a (k—3)-dimensional linear
subspace of C*. Let

(@igy..aix)  i=1,...,k=3,

be a basis for P. Let hy, ..., hi-3 be linear homogeneous equations on P¥-1 defined
by '
k
h; =Zag'ij oaa=1,...,k=3,
j=1
where Yj,...,Y; are the homogeneous coordinates for P¥~!. Then ¢(P?) is the

complete intersection of the hyperplanes defined by the equations h; = 0.
Let ¢,, be the morphism defined by

Cp : PE1 o pE-L
[X1: - Xi] o [ X7 X7

Then ¢, is a branched covering branched a.long_ the coordinate axes
k .
U{ri=0}
=1
defined by the natural map
» k k
m(PE7! — | J{¥i = 0}) - Hy(P¥! - | (Y = 0};2/n2).

Let X = c¢7'(4(P?)). Since £ induces an isomorphism on the fundamental groups
of P2 — £ and P*-1 — ULI{Y; = 0}, by Corollary 1.4.4 the stabilizer subgroup of
£(P?) is the whole Galois group. Therefore, X is irreducible. Since ¢, is a finite

87



morphism, its restriction to X is a finite morphism. Furthermore, by Proposition
1.4.3, its restriction to p~1(£(P? — L)) is an unbranched covering defined by the
natural map

1 (8(P? — £)) - H ((P? — £);Z/nZ).

Therefore, to show that X is the Hirzebruch surface associated to £ and n it suffices
to show that X is normal. We will show this and the statement of the proposition by
showing that X is a global complete intersection with singularities in codimension
2 (see [Ha] p. 188.)

Consider the equations
def n n .
fi = (X7, XE)=0 1=1,...,k-3.

At least set theoretically, X is the intersection of these hypersurfaces. To show that
X is normal and equal to the complete intersection, it suffices to show that the

Jacobian matrix for the set

{fla'-'sfk*-3}

has rank k£ — 3 for all but a finite number of points in X.

The Jacobian matrix has entries na; ;X~!. We claim that if p is a point in X
so.that not more than two of its coordinates are zero (i.e., a point p so that c,{(p)
lies in the image of at most two lines in £) the Jacobian matrix at p has rank k ~ 3.
Define Mj, j, to be the matrix obtained from [a; ;] by setting the j; and j2 columns
equal to 0. Since n > 2, the matrix [ne; ;X~'] at a point p lying on the image of
L;, UL;j,, but not on the image of any other lines in £, has the same rank as M;, ;,.

We need to show that Mj, ;, has rank k — 3. Suppose there was a linear relation
among the rows of Mj, ;,. Then, since [a; ;] has full rank, this would imply that
there is an element of P where only the j; and j; entries are nonzero, i.e., an element
giving a linear relation between m(f;) and m(¢;). This implies that ¢; and ¢ are
linearly dependent, which means that the lines L; and L; must be equal. Thus,

M;, ;, must have rank k — 3.
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This shows that the scheme defined by the functions fi,..., fx—3 is reduced and
can only have singularities at points above the image of triple and higher intersec-
tions on £. Therefore, it must be a normal complete intersection.

Sﬁppose 1o k—1 of the lines meet in a single point. If y;,...,yx are the coordinates
for C¥, P does not lie in any coordinate hyperplane y; = 0. If it did, then this would
imply that any triple of lines other than L; are dependent vectors in the dual space
C? to C3. That is any triple of lines not containing L; intersect in a single point.
This implies that all £k — 1 lines in £ other than L; intersect in a single point
contradicting the hypothesis. Therefore, P has a basis

(@i1y. 1 Gik) 1=1,...,k =3,

where none of the a;; are 0. In this case, it is easy to see that the hypersurfaces

defined by fi,..., fr—3 are smooth.

V.2. Lines in general position

Assume £ contains only double points, i.e., T is empty. Then there is no need
for blc;wups and pullbacks, and the Hirzebruch surface X associated to £ and any
positive integer n equals X. By Proposition II1.2.6, we know that X is the complete
intersection of smooth hypersurfaces in P*~!. Since X is smcoth, these surfaces
must be in general position. Thus, we can embed P*¥~! into P¥ for appropriate
N so that X is the complete intersection of the image of P¥ and hyperplanes in
general position. The Lefschetz hyperplane theorem states that, for any variety ¥
of dimension greater than or equal to 3 and generic hyperplane H in the ambient
projective space, the map

MY NH) - m(Y)

induced by inclusion is an isomorphism. Therefore, since P¥~! is simply connected,
sois X.
Here is a proof of the following weaker statement, which illustrates the techniques

of the general algorithm of this thesis.
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V.2.1 PROPOSITION. The first Betti number of X is 0.

Proof. Zariski's conjecture on the fundamental group of the complement of nodal

curves, proven by Deligne [D] and Fulton [Ful], implies that
T 1(P2 - C)

is abelian. (In fact, the theorem asserts that the fundamental group is abelian for
any union of curves with only normal crossings.)

Consider the commutative diagram
h
W](.X",*) _— H](Xu;Z)

p:l prl
h
(P2 = £, %) —— Hy(P? - L;2Z)

where the horizonal maps h are the Hurewicz homomorphisms taking loops to their
homology classes.

Then, since m;(P? — £) is abelian and p* : m;(X*) — m;(P? — £) is injective, we
have

et Hy (X% Z) - Hy(P? - £;2)

is injective. The cokernel of p¥ is isomorphic to the cokernel of the map

Py m(X*) = m(P? - L),

and is isomorphic to G, a finite group. Therefore, the image of p} has finite index
in Hy(P? — £;Z). Thus, the rank of H;(X";Z) equals that of H;(P* — £;Z) or k—1.
Therefore, b} = k — 1. Now consider the intersection matrix for p—l(f) in X.

Any line L C L intersects all other lines in £ in distinct points, so H, = G.
Therefore, L' = p~1(L) is irreducible for all L C L.

If L, and L, are two distinct lines in L, then by Proposition 11.3.1



If L is any line in £, then
1 -
L’.L' = n—2|G| = n" 3.

Therefore, the intersection matrix for p~!(£) equals n¥~3 times the intersection
matrix I(£) for £, and hence the rank and nullity of the matrices are the same and
equal 1 and k — 1, respectively.
Putting this together with b}, we get
| by = b} — Null(I(p™ (L))
=k-1-(k-1)
=0.
i

The Chern numbers for X associated to lines in general position go as follows.

)
— k(38— k) +n*"2k(3 - k) + n"‘3@.

n—1

A =nF1 (=3 + K ~
k(k —1)
2
V.2.2 EXAMPLE: If k = 3, then X =P? and

cg =nF"1(3 -

p: Pt p?
is given by
p[X:Y:Z)=[X":Y":2"
for some choice of coordinates [X : Y : Z].

By the above formulas we get the Chern numbers:

& = (-3 + 3022
= (=3n+ 3(n — 1))
=9
and
c2=n%3-3)+0+1(3)=3
as expected.
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V.3. Fibrations

In this section we deal with exceptional case (1) of Theorem V.1.1. (See also [Hi],
p.131.)

Before we begin, we do a calculation which will be useful in both this and the

next section.

V.3.1 LEMMA. Let P be k points in P! and let C be the branched covering over
P! defined by
m (P! — P) — Hy(P! - P;Z/n1).

Then C has topological Euler characteristic
Xtop(C) = (2 — E)n*~! 4 kn*~2

and genus

£(C) = %((k _ 9)nkl _ knk? 4 9),

Proof. It suffices to show the formula for xop, since g(C) = 1(2 — xiop). Let
C* = p~}(P! — P). By a general property of unbranched coverings, since n*~! is
the degree of the covering and 2 — k is the topological Euler characteristic of P! — P,

we have

Xtop(C¥) = n*7H(2 = k).
The completion C is obtained by adding n*~2 points above each of the k points in
P. The claim follows. I

Case (1) in Theorem V.1.1 generalizes to the case where T' contains only one

point p, as in the following diagram (note that not all intersections are drawn here.)
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As usual let P? be the blowup of P? at p. There is a natural P! fibration f : Pz o E,
given by projecting along the proper transforms of lines through p. Let £, be the
number of lines through p.

Consider the composition of maps X .".’: p2 J, E;. By Stein factorization, there
is a curve C so that this composition factors as X e E,, where X-cC
has connected fibers and C — E, is a finite surjective morphism (i.e., a branched
covering.) It follows that X can be described as a fibration over the curve C.

To find C explicitly, look at the commutative diagram

c' » X C
Lo |
E, i y P2 d E,

where C' is a connected component of p~!(E,) and the maps i : E, — P2 and
i'  C' —» X are inclusions. Note that C' irreducible by Lemma II1.3.2. Since
foi: E, —» E, is an isomorphism and f' ot : C' — C is a one-to-one and onto
map preserving fiber, C' and C are isomorphic and C is the branched covering of

P! branched along £, points.
The general fibers of this fibration are branched along &£ — £, + 1 points.

From the above discussion, Proposition 1.4.3 and Lemma V.3.1, we have the

following proposition.

V.3.2 PROPOSITION. The surface X is a fibration over the curve C with genus
1
BC) = 5((6 —Dn™" — nt~? 42)
and with fibers F' of genus

() = { -;—((k Ll — 1)kl — (k—fy + k1 £ 2)  iff, < k-2
Ootherwise
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When £, = k,k — 1, X is a ruled surface for all n > 2. When ¢, = k-2, Xis
ruled surface for n = 2, an ellipéic surface for n = 3 and a surface of general type
for n > 3. When ¢, < k -3, X is of general type for all n > 2.

In this case, if n = 2 one gets a ruled surface, if n = 3 one gets an elliptic surface
and for n > 3 one gets a surface of general type. For £, not equal to k,k — 1 or
k—2,and n > 2, X is of general type.

V.3.3 REMARK: The special fibers of the fibration depend on the positions of the
double points.

Consider, for example, the following configurations drawn on the “real part” of

P2,

Assume, say, that n = 2. The coverings corresponding to these configurations are
naturally fibrations over P! with general fibers of genus 5. For the left configuration,
all special fibers have genus 1, but for the right configuration, there are special fibers
lying over the dotted line with genus 0.

V.4 Coverings birational to the product of two curves

We now deal with exceptional case (2) of Theorem V.1.3. Let p and ¢ be the two
points in T and let £, and ¢, be the number of iines through p and ¢. Then P? is
obtained from P? by blowing up the points p and q. As is well known, if one blows

down the proper transform of the line N C I passing through p and ¢ one obtains
P! x P!. We have

P? — P2 5 P! x P!
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where the arrows are birational morphisms. The preimage L of L in P? equals the
union of the proper transforms of the lines in £ and two exceptional divisors E,
and E,;. The image of L in P! x P! equals £, 4+ 1 lines in one ruling and £; + 1 lines

in the other ruling. The maps are isomorphisms on the complement U of these sets.

L [
1—7
L2 :
[ L
Ly L
e r,
/ ‘ NEK(’// T E
P q
M Eq

E M
MM, M,;’ P ‘MIJMz r,
!

P PxP

L

L

N

N/ \
L 1
LoLL MM,

PJ

Note that in the above diagram, the notation for curves and their proper transforms
are the same, as no confusion should arise.

Let Z be the completion over P! x P! of the unbranched covering of U given by
restricting p. Then Z is birationally equivalent to X and agrees over U. We will
show that Z is a product of curves, which can be given as branched coverings of
the components of P! x P!,

Let Ly,..., Ly, (respectively, Mi,..., M, ) be the lines in £, other than N, go-
ing through p (respectively ¢). Let 7,...,7, be the meridianal loops around
Ly,...,Ly,, let p1,...,pur, be the loops around M;,..., M, and let 7 be the loop

around N.

Recall that G = Hy(P? — £;Z/n1) is generated by

Moo s Yrps Bl s Brgs T

and they have the relation

Thus, v1,...,7r, and y,..., iy, generate subgroups G, and G4, with the property
that G = G, x Gy.
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Now, U is isomorphic to
P! — {r, + lpoints} x P! — {r, + 1 points}
and the defining map 7 (i) — G can be seen as the product of the maps
71 (P! ~ {r, + lpoints}) — G,
and
m (P! — {r, + 1 points}) — G,.
We thus have proved the following. (See also [Hi], p. 131.)

V.4.1 Proposition. Suppose T contains two points p and ¢, all lines in L pass
through p or q and there is a line in L passing through both p and q. Then X is
birationally equivalent to the product of curves C and D, where

£C) = 5((rp = D' = (ry + V"™ +2)
and
£D) = 5((rq = D™ = (rg + D"~ +2)
In particular, if r, = 2 (or ry = 2 and n = 2 then Xis ruled, if n = 3 then X is
elliptic and if n > 3 then X isof general type. If rp = 3 or ry = 3, then X is elliptic

for n = 2, general type for n > 3. If both r, and r; are greater than or equal to r,

then X is of general type.

V.5 K3 surfaces and elliptic surfaces
Assume L does not fall under one of the exceptional cases of Theorem V.1.1.
Recall the equation for K¢ from Theorem V.1.2. Replacing n by 2, we have, for &

a general line on P?,

5 * 1 1 *
Kf=P(J KP2+Z§(3——EP)EP+Z§U L)

peET LCcC
1 k
=p"(-30"H + ) 5(3 = &)E; + So* H)
pET

=7 ((~3 + g)a"H + ;%(3 ~¢,)E,).
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Here equality means linear equivalence as divisors.

Thus, if ¥ = 6 and £ has no quadruple or higher order points, then the canonical
divisor K ¢ is trivial and X is a K3 surface. If k > 7 then K % is effective (one does
not subtract off more E,’s than one adds with the o*H’s.)

From Theorem V.1.2, the formula for ¢ when n =2 is

= 2k-1((- 3+ 2N (3-6)).

pET

Thus, for example, if £ = 7, then X is an elliptic surface if and only if £ has one
quadruple point and the rest are double or triple points.

V.5 Calculations of invariants

We end with a list of output from computer aided calculations implementing the
algorithm described in this paper. The invariants which we focus on are the Betti
numbers by, b2, the Chern numbers cf, ¢z and bounds on the Picard number given
by the rank of the intersection matrix for curves above the branch locus and the

Hodge number A's!. (Note that given c¢; and b;, one can calculate b, directly.)

Although surfaces with Kodaira dimension less than two have been studied in
detail and their Betti numbers as well as Chern numbers are understood. This
is not true for surfaces of general type. We have seen that most of the examples
arising as Hirzebruch coverings are of general type. For example,if n > 3, £k > 7

and T has at least three points, this is the case.

According to the Miyaoka-Yau inequality, we have ¢ < 3¢, for minimal surfaces
of general type, with equality occuring when the surface is uniformized by the
complex ball. An example of a Hirzebruch covering surface whose Chern numbers

satisfy the equality, with branch locus defined by real equations, occurs when we
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have the folowing configuration, with n = 5.

DA

The above configuration is also interesting because when n = 2 one gets a K3 surface
with Picard number equal to 20, which equals A'''. When n = 3 one gets a surface
of general for which the Picard number is also equal to A1,

In the following we list computer calculations for configurations of 6 and 7 lines
as well as two more examples. The existence of the first (a configuration with 9
lines) can be proven using Pappus’ Theorem. The second, is the set of lines through

5 points in general position.
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Configurations of 6 lines

n=2:K3,b;=0,0,=22,c2=0,c=24,1<p<20
n = 3: general, b; = 0, by = 403, ¢} = 243, ¢; = 405, 1 < p < 297
n = 5: general, b; =0, by = 9373, ¢ = 10125, c; = 9375, 1 < p < 6125

n=2 K3, b =0b=2,c=0c,=245<p<20
n = 3: general, by = 2, b, = 326, c? = 216, c; = 324, 10 < p < 236
n = 5: general, by = 12, by = 7522, ¢f = 9000, c; = 7500, 26 < p < 4762

n=2 ruled*, b =2,b,=10,c =-8,c2=8,3<p<10
n = 3: elliptic, b; = 20,b; =148, ¢? = 0,¢;=108,4 < p < 110
n = 5: general, b; = 152, b3 = 3802, ¢? = 4000, c2 = 3500, 6 < p < 2402

n=2ruled, b =10,b;=2,c3 = =32, ¢c3==~16,2<p< 2
n=3: ruled, by = 110,03 =2, ¢ = ~432,¢3 = -216,2< p < 2

cruled, by = 34,0 =2, =-32,¢c,=-64,2<p< 6
: ruled, by = 488,53 =2,¢3 =0,¢c3 = -972,2< p < 128

mu
o 8

=2 K3, by =2 b;=10, 2= —8,c;=8,10< p < 10
. elliptic®, by = 22, by = 69, c? = —27, ¢ = 27, 29 < p < 49

n=2K3, b =0,0=22,¢3=0,02=24,9<p<20
n = 3: general, b; = 4, by = 249, c? = 189,00 =243,19<p< 175
n = b: general, by = 24, by = 5671, c? = 7875, ¢4 = 5625, 51 < p < 3399

D K3, b, =0, b3 =22, =0, c=24,10 < p < 20
. general, by = 4, by = 249, c? = 189, c; = 243, 23 < p < 175
: general, by = 24, by = 5671, ¢? = 7875, ¢; = 5625, 67 < p < 3399

S 32
i
Ut B

tK3,b=0,b0=22,¢=0,c0=24,16<p<20
: general, by =6, b3 = 172, ¢? = 162, c; = 162, 40 < p < 114
: general, b; = 36, by = 3820, ¢? = 6750, cz = 3750, 124 < p < 2036

2 33
nn
(=Ll

~
S

%%%%%%%%%%

n=2K356=00=22,=0,c0=24,20<p<20
n = 3: general, b; = 10,7 =99, ¢ =135, c2=81,55 < p< 55
n = 5: general, b; = 60, by = 1993, ¢} = 5625, c; = 1875, 185 < p < 685

* not minimal model
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n=2:

n=3%

n=2
: general, b; = 2, by = 1946, ¢ = 1944, c3 = 1944, 28 < p < 1298

n=2
. elliptic, b; = 110, by = 542, ¢ = 0, ¢z = 324,

n=2
: general, by =4, by = 1707, ¢? = 1863, ¢; = 1701, 59 < p < 1111

Configurations of 7 lines

general, b =0, b, =78, c2 = 16,¢c3=80,1 < p < 64
general, by = 0, by = 2185, ¢? = 2025, ¢c; = 2187,1 < p < 1485

general, by = 0,53 =78,¢3=16,c2=80,9< p < 64

: elliptic, b =2, b2 =50,c2 =0,¢c2=48,5 < p <42
: general, b; = 20, by = 1334, ¢? = 1296, c; = 1296, 10 < p < 884

ruled*, by = 10, b, = 18, ¢} = —48,¢;, = 0,3 < p < 18
4<rp

4
<p<380

cruled, by =34,b2=2,¢ = -128,¢c0=—-64,2<p<2
:ruled, by = 488,68, =2, ¢ = ~1944, ¢; = -972,2< p< 2

cruled, by = 98,5, =2, ¢3 = —48,¢,=-192,2<p < 18

= 2: general, b =0, b3 =178, ¢ = 16, c2 =80, 17 < p < 64
n=13%

general, b, = 4, b; = 1707, ¢} = 1863, ¢z = 1701, 55 < p < 1111

general, b; =0, by = 78, ¢? = 16, ¢z = 80, 18 < p < 64
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R H K KK

n = 2: elliptic, b, =2, b3 =50, ¢ =0, c3 = 48,13 < p< 42
n = 3: general, b; = 22, by = 1095, ¢ = 1215, ¢; = 1053, 37 < p < 697

n=2: elliptic, by =2, b2 =50,¢c} =0,c2=48,16 < p < 42
n = 3: general, b, = 22, by = 1095, ¢ = 1215, ¢c; = 1053, 53 < p < 697

n=2: ruled’, b, =10,b; =18, ¢} = —48,¢c2=0,18< p < 18
n = 3: elliptic*, by = 112, b; = 303, ¢ = —81,¢c; = 81,83 < p < 193

n=2: elliptic*, b; =4, 5, =22, ¢} = ~16,¢2=16,18 < p < 20
n = 3: general®, b; = 40, b; = 483, ¢? = 567, c3 = 405, 83 < p < 283

n=2: general, by =0, by = 78, c¢? = 16, c; = 80, 27 < p < 64
n = 3: general, b; = 6, b; = 1468, cf = 1782, ¢3 = 1458, 90 < p < 924

n=2: general, b =0, by =78, ¢} =16, c3 =80, 28 < p < 64
n =3: general, b, = 6, by = 1468, c? = 1782, c; = 1458, 94 < p < 924

n=2: general, b; =0, b, = 78, ¢} = 16, ¢ = 80, 29 < p < 64
n = 3: general, b; = 6, by = 1468, ¢? = 1782, ¢3 = 1458, 102 < p < 924

n=2: elliptic, by =2, 5, =50,¢2 =0,c3=48,28< p <42
n = 3: general, b; = 24, b; = 856, ¢} = 1134, 5 = 810, 100 < p < 510
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17

18

19

20

21

22

XK FE KK FX

23

a3

S

n=2:

QI

n=2:

|

(|1l

[

: general, by = 0, by = 62, ¢? = 16, c; = 64, 38 < p < 50
: general, by = 8, by = 905, ¢? = 1701, c; = 891, 129 < p < 467

: general, by =0, b3 =78, ¢c? = 16,¢c3=80,36 < p < 64
: general, b; = 10, b3 = 1233, c? = 1701, c3 = 1215, 127 < p < 739

general, by =0, by =78, ¢? = 16, c; = 80,40 < p < 64

= 3: general, b; = 8, by = 1229, ¢} = 1701, ¢z = 1215, 141 < p < 737

n i

: elliptic, by =2, b2 =50,¢2 =0,¢3=48,38 < p< 42
: general, b) = 28, by = 621, ¢ = 1053, c; = 567, 145 < p < 325

: general, b =0, by =78, ¢} = 16, ¢ = 80,51 < p< 64
: general, by = 10, b3 = 990, ¢ = 1620, ¢z = 972, 180 < p < 550

general, by = 0, by = 78, c? = 16, c3 = 80, 50 < p < 64

= 3: general, b; = 12, ba = 994, ¢? = 1620, c; = 972, 186 < p < 552

[ -]

: general, by =2, b3 =82, ¢ =16, ¢, =80,62< p< 66
: general, by = 18, by = 763, ¢? = 1539, ¢3 = 729, 237 < p < 369

* not a minimal surface
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INPUT

DATA DE’I‘ERMINING THE

SURFACE:
Real line configuration jp P2

L,
\ P

2

pld i)

P,

Lg
Py

Order of cyclic group: 9.
Index of center of rotation: 4,
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Point line incidence correspondence:

L1 L2
41
P2
D3
D4
Ps
Ps
p7
ps
Do
Pio
P11
P13
P13
P14
P15
P16
Pz
pis

OO O, OOOCOOOOr—rmrF~=OO
OC O OO FEFMFEODODOOO —=OoOC

OUTPUT

L3

O OO OO OO OO =m OO FRC—O

L4 L5
0 1
1 0
10
¢ o0
0 1
0 o0
0 0
0 1
0 0
0 0
0 1
1 0
1 0
0 o
0 0
1 1
0 0
0 0

First Betti Number of Unbranched Part: b} = 38.

First Betti Number: 4, = 0.
Second Betti Number: b, = 766.
Chern Numbers: ¢} = 576, c2 = 768.

ocroco0O~ROocOROCOOCORO O~

c-~ooorRroo—~OO~o~Ooo0ON

Bounds on the Picard number: rank = 322 <p<hll = 544.

Euler number of O3: x(0Og) = 112.
Irregularity: ¢ = 0.

Arithmetic genus: p,= 111.
Geometric genus: p,= 111.
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INPUT
DATA DETERMINING THE SURFACE:

Real line configuration in P

iy
Pao
2

Pis

Pz

PisQ

Order of cyclic group: 2.
Index of center of rotation: 7.

Lio

Ps
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Point line incidence correspondence:

Ly Ly Ly Ly

—

n
P
Pa
P4
Ds
Ps
P
Ps
Py

pPio
P11
P12
P13
P14
Pis
P16
P17
D18
P19
P20

DO OO O =S~ OQC OO0 OO OO
OO OO O OO OO MMMmHE OOOC OO
OO O OO OOOO OO OO O F =

DO O~ OO = OCOOO~HOMEMOOCOO -

OUTPUT

First Betti Number of Unbranched Part: 6% = 94.

First Betti Number: b; = 10.

Second Betti Number: &; = 914.

Chern Numbers: ¢ = 1408, c; = 896.
Bounds on the Picard number: 236 <p<522.
Euler number of Og: x(0gz) = 192.
Irregularity: q = 5.

Arithmetic genus: p;= 191.

Geometric genus: p,= 196.

OO R COO~ OO0 OOROOOC Mmool
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