A Note on the Geography of Symplectic Manifolds

András Stipsicz

Department of Mathematics
University of California
Irvine, CA 92717
USA

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
GERMANY

A Note on the Geography of Symplectic Manifolds

András Stipsicz

July 26, 1995

1 Introduction

Based on recent developments in gauge theory - the introduction of Seiberg-Witten invariants and results of Taubes - our understanding of the differentail topology of symplectic manifolds improved by a margin in the past year. In this note we would like to discuss some existence problems of minimal simply connected symplectic manifolds; in particular we would like to compare the "geography" of symplectic manifolds and complex surfaces.

Let us first briefly recall the geography of simply comnected compact complex surfaces. Since X is simply connected, b^{+}is odd (by the Noether formula $12 \mid c_{1}^{2}(X)+c_{2}(X)$), and the holomorphic Euler characteristic $\chi(X)$ is $\frac{1+b^{+}}{2}$. Also note that $c_{1}^{2}(X)=3 \sigma(X)+2 e(X)$, here $\sigma(X)$ denotes the signature, $e(X)$ the Euler characteristic of X.

To a complex surface X let us associate this two integers

$$
X \rightarrow\left(\chi(X), c_{1}^{2}(X)\right)
$$

For example $\left(\chi\left(\mathbb{P}^{2}\right), c_{1}^{2}\left(\mathbb{C P}^{2}\right)\right)=(1,9) ;\left(\chi\left(S^{2} \times S^{2}\right), c_{1}^{2}\left(S^{2} \times S^{2}\right)\right)=(1,8)$ and $\left(\chi(E(n)), c_{1}^{2}(E(n))\right)=(n, 0)(E(n)$ is the regular elliptic surface with a section and $e(E(n))=12 n$, in particular $E(2)$ is the $K 3$ surface $)$.

Note also that if X^{\prime} is the blow up of X, then $\left(\chi\left(X^{\prime}\right), c_{1}^{2}\left(X^{\prime}\right)\right)=\left(\chi(X), c_{1}^{2}(X)-1\right)$.
By the classification result of Kodaira we know that a simpy connected compact complex surface is either rational, elliptic or a surface of general type. If X is rational (meaning birationally equivalent to $\mathbb{C P}^{2}$), then $b^{+}=\chi(X)=1$, and the simply connected minimal rationals are diffeomorphic to $\mathbb{C P}^{2}, S^{2} \times S^{2}$ or $\mathbb{C P}^{2} \# \overline{\mathbb{P}}^{2}$ (the Hirzebruch-surfaces).

If X is minimal elliptic (so X admits a holomorphic map $\pi: X \rightarrow \mathbb{C P}^{1}$ with a smooth elliptic curve as a generic fiber), then $\left(\chi(X), c_{1}^{2}(X)\right)=(n, 0)$ for some $n \in \mathbb{N}$. For surfaces
of general type we know that $c_{1}^{2}(X)>0$, and the two famous inequalities (the Noether inequality and the Bogomolov-Miyaoka-Yau inequality) give constraints for $c_{1}^{2}(X)$ in terms of $\chi(X)$:

$$
2 \chi(X)-6 \leq c_{1}^{2}(X) \leq 9 \chi(X)
$$

Most of the points of this region (like $2 \chi(X)-6 \leq c_{1}^{2}(X) \leq 4 \chi(X)$) is known to correspod to a minimal surface of general type (see $[\mathrm{P}]$ or $[\mathrm{BPV}]$ for further details).

The same geography question makes sense for symplectic manifolds as well - namely which points $(a, b) \in \mathbb{Z}^{2}$ can be realized as $\left(\chi(X)=\frac{1+b^{+}}{2}, c_{1}^{2}(X)=3 \sigma(X)+2 e(X)\right)$ of a minimal simply connected symplectic manifold X. Note that $12 \mid c_{1}^{2}(X)+c_{2}(X)$ holds for an almost complex manifold, and so in particular for a simplectic manifold as well, so b_{X}^{+}is odd for a symplectic manifold X. Also blow up and blow down of a symplectic (-1)-sphere makes sense in the symplectic category, so minimality can be defined for symplectic manifolds as well.

A simply connected complex surface is Kähler, hence symplectic; so the regions populated by complex surfaces are already covered by symplectic manifolds as well. In the followig we will show, that a big part of the region under the Noether-line can be populated by minimal symplectic manifolds, more precisely if $D=\left\{(a, b) \in \mathbb{Z}^{2} \mid 0<b<2 a-6\right\}$, then

Theorem 1.1 If $(a, b) \in D$ and b is even, then there is a minimal symplectic manifold X such that $\left(\chi(X), c_{1}^{2}(X)\right)=(a, b)$.

Remark 1.2 - Note that - by recent resull of Taubes $-c_{1}^{2}(X) \geq 0$ for a minimal symplectic manifold.

- The region D above was already populated by examples of Gompf ([G]) which were symplectic, but it is not clear yet wether those examples are minimal - although they very likely are. Fintushel and Stern gave irreducible examples covering the region D as well; since the rational blow down process (defined in [FS2]) is not proved to keep the symplectic structure, it is not clear wether those examples carry symplectic structure - very likely they do. Our theorem represents only points $(a, b) \in D$ with even b as $\left(\chi\left(X^{\prime}\right), c_{1}^{2}(X)\right)$ of a minimal symplectic manifold X, although most probably the same argument works for every point in D.
- Note also that the examples given by Theorem 1.1 do not carry complex structure.

Acknowledgement: We would like to thank the Max-Planck-Institute for iheir hospitality and Bob Gompf for the many helpful discussions.

2 Donaldson series

Let us briefly recall the rudiments of Donaldson series (see also [KM], [DK]).
For a simply connected manifold X with $b^{+} \geq 3$ and odd an analytic function

$$
\mathbb{D}_{X, c}: H_{2}(X ; \mathbb{R}) \rightarrow \mathbb{R}
$$

can be defined. The definition of $\mathbb{D}_{X, c}$ uses the $A S D$ equation for connections on auxiliary principal $\mathrm{SO}(3)$-bundles P over X with $w_{2}(P) \equiv c(\bmod 2)$.

Remark 2.1 To define $\mathbb{D}_{X, c}$ one needs an additional property of X - it has to be of simple type (see [KM]). Also the definition of $\mathbb{D}_{X, c}$ needs a choice of $c \in H_{2}(X ; \mathbb{Z})$ and a homology orientation of X (see [D]).

The beautiful structure theorem of Kronheimer-Mrowka and Fintushel-Stern ([KM], [FS1]) states that

$$
\mathbb{D}_{X, c}=\exp \left(\frac{Q}{2}\right) \cdot \sum_{i=1}^{s} a_{i} e^{K_{i}}
$$

where $a_{i} \in \mathbb{Q} \backslash\{0\}$ and $K_{i} \in H^{2}(X ; \mathbb{Z})(i=1, \ldots, s) .\left\{K_{i}\right\}_{i=1}^{s}$ is the set of (KM)-basic classes of the manifold X, these classes satisfy the following properties:

- $K_{i} \equiv w_{2}(X)(\bmod 2)$;
- if K is a basic class, then $-K$ is a basic class as well;
- if $\Sigma \subset X$ is a smoothly embedded surface with $[\Sigma]^{2} \geq 0$ and genus $g(\Sigma)$, then for any basic class K

$$
2 g(\Sigma)-2 \geq[\Sigma]^{2}+|K([\Sigma])| .
$$

Theorem 2.2 (Blow up formula)

If $\left\{K_{i}\right\}_{i=1}^{s}$ is the set of basic classes for X, then $\left\{K_{i} \pm E\right\}_{i=1}^{s}$ is the set of basic classes for $X \# \mathbb{C P}^{2}$ (E is the Poincare dual of the exceptional fiber).

More generally if $X=X_{1} \# X_{2}$ where $b^{+}\left(X_{2}\right) \doteq 0$ (so the intersection form of X_{2} is $n\langle-1\rangle$ spanned by $\left\{e_{1}, \ldots, e_{n}\right\}$), then the set of basic classes of X is $\left\{K_{i} \pm E_{1} \pm \ldots \pm E_{n}\right\}$ where $\left\{K_{i}\right\}$ is the set of basic classes of X_{1} (and E_{i} is the Poincare dual of e_{i}).

By the connected sum theorem of Donaldson we know, that if X has non-zero series, then X cannot admit a decomposition $X=X_{1} \# X_{2}^{\prime}$ with $b^{+}\left(X_{i}\right)>0(i=1,2)$. A decomposition with $b^{+}\left(X_{2}\right)=0$ however is possible, so irreducibility doesn't follow directly from the nonvanishing of the invariants.

Proposition 2.3 Assume that the set of basic classes $\left\{K_{i}^{\prime}\right\}_{i=1}^{*}$ of the manifold X satisfies

$$
\left(K_{i}-K_{j}\right)^{2} \neq-4 \text { for all } 1 \leq i, j \leq s .
$$

In this case X is irreducible.

Proof: The existence of basic classes insure, that $\mathbb{D}_{X} \neq 0$, so if X is reducible, then $X=X_{1} \# X_{2}$ with $b^{+}\left(X_{2}\right)=0$ is the only possibility. By the previous remark however in this case there are basic classes K_{i}, K_{j} such that $K_{i}-K_{j}=2 E_{1}$, so $\left(K_{i}-K_{j}\right)^{2}=-4$ contradicting our assumption.

Assume that the manifold X has only 2 basic classes $\pm K \in H^{2}(X ; \mathbb{Z})$ and $K^{2}>0$. Assume also that X contains a torus f with square 0 lying in a cusp neighborhood. In this case one can take the fiber sum of X with the reular elliptic surface $E(n)$ along f.

Proposition $2.4 X \#_{f} E(n)$ is an irreducible manifold.

Proof: Applying the computations presented in [S] (Proposition 3.3), the set of basic classes of $X \#_{f} E(n)$ is

$$
\{ \pm K+k \cdot F|k \equiv n(\bmod 2),|k| \leq n\}
$$

(F is the Poincare dual of the homology class represented by f). The difference of two basic classes is either $k_{1} \cdot F$ or $\pm\left(2 K+k_{2} \cdot F\right)$; the squares of these elements are at least 0 so by Proposition $2.3 X \#_{f} E(n)$ is irreducible.

3 Irreducible symplectic manifolds

Let us take the set Ξ of simply connected symplectic manifolds X having the following properties:

1. X has exactly two basic classes $(\pm K)$ and $K^{2}>0$;
2. X contains a torus f with $f^{2}=0$ such that f is lying in a cusp neighborhood and f is a symplectic or lagrangian submanifold of X.

By the construction of Gompf $X \#_{f} E(n)$ is symplectic; by Proposition 2.4 it is irreducible as well. Note that $\left(\chi\left(X \#_{f} E(n)\right), c_{1}^{2}\left(X \#_{f} E(n)\right)\right)=\left(\chi(X)+n, c_{1}^{2}\left(X^{\prime}\right)\right)$. So to prove Theorem 1.1 we only have to show, that for every even $b>0 \Xi$ contains an element X such that
$\left(\chi(X), c_{1}^{2}(X)\right)=(a, b)$ with $b \geq 2 a-6$. As Fintushel and Stern observed ([FS]), complete intersections, Moishezon surfaces and Salvetti surfaces are elements of Ξ (note that in these cases the torus f is a lagrangian submanifold). Also by analyzing the effect of rational blowdown, Fintushel and Stern realized ([FS2]) that surfaces on the Noether-line $c_{1}^{2}=2 \chi-6$ (the Horikawa surfaces) can be constructed by blowing down rationally elliptic surfaces $E(n)$. Since $E(n)$ contains lagrangian tori disjoint from the configurations one blows down to get the Horikawa surfaces, we have

Theorem 3.1 The Horikawn surfaces constructed by rationally blowing down the elliptic surfaces $E(n)$ are in Ξ.

In this way we have an element of Ξ with $c_{1}^{2}=2 \chi-6$ for every even c_{1}^{2}, and this proves Theorem 1.1.

Remark 3.2 - By performing a logarithmic transformation of multiplicity 2 on f which is known to be a symplectic operation - we can turn a spin manifold into a non-spin one; the resulting manifold remains irreducible.

- Most probably the surfaces on the "next Horikawa line" $c_{1}^{2}=2 \chi-5$ contain also the required symplectic or lagrangian torus in the cusp neighborhood, so we can relax the assumption on the parity of b in Theorem 1.1. This isswe will be discussed elsewhere.

References

[BPV] W. Barth, C. Peters, A. Van de Ven "Compact Complex Surfaces" Ergebnisse der Mathematik, Springer-Verlag, Berlin 1984
[D] S.K. Donaldson Polynomial Invariants for Smooth 4-Manifolds, Topology 29 (1990) 257-315
[DK] S.K. Donaldson, P. Kronheimer "The Geometry of Four-Manifolds" Oxford Mathematical Monography, Oxford University Press, Oxford 1990
[FS] R. Fintushel, R. Stern Surgery in Cusp Neighborhoods and the Geography of Irreducible 4 -Manifolds, to appear
[FS1] R. Fintushel, R. Stern Donaldson invariants of 4-manifolds with simple type, preprint.
[FS2] R. Fintushel, R. Stern Rational blowdowns of smooth 4-manifolds, preprint
[G] R. Gompf A New Construction of Symplectic Manifolds, preprint
[KM] P. Kronheimer, T. Mrowka Embedded surfaces and the structure of Donaldson's polynomial invariants, to appear in Journal of Differential Geometry
[P] U. Persson Chern invariants of surfaces of general type, Compositio Mathematica, Vol 43 (1981) 3-58
[S] A. Stipsicz Donaldson series and (-1)-tori, to appear

Department of Mathematics,
University of California
Irvine, CA 92717
e-mail: astipsic@math.uci.edu

