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LEGENDRE POLYNOMIALS
AND RAMANUJAN-TYPE SERIES FOR 1/π

HENG HUAT CHAN, JAMES WAN, AND WADIM ZUDILIN

On Jon Borwein’s 60th birthday

Abstract. We resolve a family of recently observed identities involving 1/π using
the theory of modular forms and hypergeometric series. In particular, we resort
to a formula of Brafman which relates a generating function of the Legendre
polynomials to a product of two Gaussian hypergeometric functions. Using our
methods, we also derive some new Ramanujan-type series.

1. Introduction

Recently, Z.-W. Sun [16] and G. Almkvist experimentally observed several new
identities for 1/π of the form

∞∑
n=0

(s)n(1− s)n

n!2
(A + Bn)Tn(b, c)λn =

C

π
, (1)

where s ∈ {1/2, 1/3, 1/4}, A, B, b, c ∈ Z, Tn(b, c) denotes the coefficient of xn in the
expansion of (x2 + bx + c)n, viz.

Tn(b, c) =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck, (2)

while λ and C are either rational or (linear combinations of) quadratic irrationalities.
All such equalities from [16] are compactly listed in Table 1 in Section 2.

The binomial sums (2) can be expressed via the classical Legendre polynomials

Pn(x) = 2F1

(
−n, n + 1

1

∣∣∣∣ 1− x

2

)
by means of the formula

Tn(b, c) = (b2 − 4c)n/2Pn

(
b

(b2 − 4c)1/2

)
,
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so that equalities (1) assume the form

∞∑
n=0

(s)n(1− s)n

n!2
(A + Bn)Pn(x0)z

n
0 =

C

π
. (3)

Here and throughout the paper we use a standard notation for hypergeometric series,

mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z

)
=

∞∑
n=0

(a1)n(a2)n · · · (am)n

(b2)n · · · (bm)n

zn

n!
,

where (a)n = Γ(a + n)/Γ(a) denotes the Pochhammer symbol.
The sequence of Legendre polynomials can be alternatively defined by the ordinary

generating function

(1− 2xz + z2)−1/2 =
∞∑

n=0

Pn(x)zn.

In the rest of the paper, we will make heavy use of another generating function
for the Legendre polynomials due to F. Brafman. This and our general approach is
described in Section 2. In Sections 3, 4, 5, and 6, we will examine the conjectures for
s = 1/2, 1/3, 1/4 respectively, and indicate six new identities (46)–(51) for s = 1/4
and 1/6. Then in Sections 7 and 8 we show that “companion series” involving
derivatives of Legendre polynomials can be obtained, and some of them, as well as
a few series examined in the previous sections, are expressible in terms of known
constants.

Our main result is the following, which we prove in Section 2:

Theorem 1. All the series for 1/π listed in Table 1 are true.

2. Brafman’s formula and modular equations

In [10], Brafman proved the following elegant hypergeometric formula for a gen-
erating function of the Legendre polynomials.

Proposition 1 (Brafman’s formula [10]).

∞∑
n=0

(s)n(1− s)n

n!2
Pn(x)zn = 2F1

(
s, 1− s

1

∣∣∣∣ 1− ρ− z

2

)
· 2F1

(
s, 1− s

1

∣∣∣∣ 1− ρ + z

2

)
,

(4)
where ρ = ρ(x, z) := (1− 2xz + z2)1/2.

This result is a consequence of Bailey’s identity for a special case of Appell’s
hypergeometric function of the fourth type [1, Section 9.6].

By introducing the compact notation for the involved hypergeometric function
and its derivative,

F (t) = F (s, t) := 2F1

(
s, 1− s

1

∣∣∣∣ t

)
, G(t) = G(s, t) := t

d

dt
F (t), (5)

and differentiating both sides of (4) with respect to z, we immediately deduce
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Proposition 2.
∞∑

n=0

(s)n(1− s)n

n!2
Pn(x)zn = F (t−)F (t+), (6)

∞∑
n=0

(s)n(1− s)n

n!2
nPn(x)zn =

z(x− z − ρ)

ρ(1− ρ− z)
G(t−)F (t+) +

z(x− z + ρ)

ρ(1− ρ + z)
F (t−)G(t+),

(7)

where t± = t±(x, z) := (1− ρ± z)/2.

For s ∈ {1/2, 1/3, 1/4, 1/6} the right-hand side of Brafman’s formula represents
the product of two arithmetic hypergeometric series: the modular functions

t4(τ) =

(
1 +

1

16

(
η(τ)

η(4τ)

)8)−1

, t3(τ) =

(
1 +

1

27

(
η(τ)

η(3τ)

)12)−1

,

t2(τ) =

(
1 +

1

64

(
η(τ)

η(2τ)

)24)−1

, t1(τ) =
1

2
− 1

2

√
1− 1728

j(τ)

(8)

(with subscripts denoting the levels) translate the respective series F (t) into a
weight 1 modular form F (t(τ)). Here η(τ) and j(τ) are classical Dedekind’s eta
function and the modular invariant, respectively. For the rest of the paper we will
omit the subscript in t`(τ) when the modular function used is clear from the context.
The inversion formula is given [4, p. 91] by

τ = iCs
F (1− t)

F (t)
, where Cs =

1

2 sin πs
=


1
2

if s = 1
2
,

1√
3

if s = 1
3
,

1√
2

if s = 1
4
,

1 if s = 1
6
.

(9)

The elliptic norm is defined throughout the paper as q = e2πiτ . Note that for any of
the four modular functions in (8) we have

1

2πi

dt

dτ
= q

dt

dq
= t(1− t) F 2(t), (10)

the result already known to Ramanujan [4, Chap. 33], [5], [13].
When τ is a quadratic irrationality (with Im τ > 0), the value t(τ) is known to be

an algebraic number; computation of such values is well discussed in the literature —
see, for example, [4, Chap. 34]. A common feature of the Sun–Almkvist series (3)
from [16] for s ∈ {1/2, 1/3, 1/4} is that the algebraic numbers

α =
1− ρ0 − z0

2
and β =

1− ρ0 + z0

2
, where ρ0 := (1− 2x0z0 + z2

0)
1/2,

(11)
are always values of the modular function t(τ) at two quadratic irrational points.
In cases when x0 and z0 are real, we get α = t(τ0) and β = t(τ0/N); while in cases
when both x0 and z0 are purely imaginary (and there are five such cases in Table 1
marked by asterisk), we have α = t(τ0) and β = 1 − t(τ0/N). The corresponding
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# in [16] s x0 z0 ρ0 A B C τ0 N

(I1)∗ 1/2 −i
3
√

7
−3i

√
7

16
15
16

7 30 24 i
√

7+1
4

2

(I2) 1/2 17
12
√

2
−3
4
√

2
5
√

3
4
√

2
7 30 12 2i

√
3−3
2

3

(I3) 1/2 97
56
√

3
7
√

3
16

√
15

16
−1 30 80 i

√
15

2
5

(I4) 1/2 31
8
√

15

√
15

16
7
√

3
16

5 42 16
√

3 i
√

15
2

3

(II1) 1/3 3
√

3
5

5
6
√

3
5

6
√

3
2 15 45

√
3

4
2i√
3

2

(II2) 1/3 5
2
√

6
27
√

3
125

√
2

91
125

12 91 75
√

3
2

i
√

2 2

(II3) 1/3 99
70
√

2
35

27
√

2

√
5

27
−4 15 135

√
3

2
i
√

10√
3

5

(II4) 1/3 485
198

√
6

99
√

3
125

√
2

√
14

125
−41 42 525

√
3 i

√
14√
3

7

(II5) 1/3 365
364

91
125

27
√

3
125

√
2

1 18 25
√

3 i
√

2 3

(II6) 1/3 51
10
√

26
5
√

13
4913

√
2

3465
√

2
4913

559 6930 1445
√

6
2

i
√

26√
3

2

(II7) 1/3 99
70
√

2
35

35937
√

2
8710

√
17

35937
15724 222105 114345

√
3

4
i
√

34√
3

2

(II8) 1/3 19601
13860

√
2

3465
√

2
4913

5
√

13
4913

√
2

−3967 390 56355
√

3 i
√

26√
3

13

(II9) 1/3 143649
34840

√
17

8710
√

17
35937

35
35937

√
2

−7157 210 114345
√

3 i
√

34√
3

17

(II10)∗ 1/3 −13i
4
√

35
i
√

35
64

27
√

5
64

7 45 8(3+
√

5)√
3

i
√

35−1
6

3

(II11)∗ 1/3 −7i
√

5
22

−11i
10
√

5
27

10
√

5
2 9 15+

√
5

2
√

3
i
√

5+1
3

2

(II12)∗ 1/3 −10i
√

2
23

−23i
125

√
2

189
125

√
2

11 63 25(3+4
√

2)

4
√

3
i
√

8+1
3

3

(A1) 1/3 9
4
√

5

√
5

27
35

27
√

2
5 42 54

√
3

5
i
√

10√
3

2

(A2) 1/3 15
4
√

14

√
14

125
99
√

3
125

√
2

7 66 50
√

2
3

i
√

14√
3

2

(III1) 1/4 52
30
√

3
160

121
√

3
85
363

2 85 33
√

33 i
√

3 3

(III2) 1/4 55
12
√

21
−
√

21
6

2
√

7
3

5 28 3
√

6 i
√

21+3
2

3

(III3) 1/4 49
20
√

6
10
√

6
49

10
√

6
49

3 40 70
√

21
9

3i√
2

3

(III4) 1/4 257
255

85
363

160
121

√
3

9 80 11
√

66
2

i
√

3 2

(III5)∗ 1/4 −7i
33
√

15
−11i

√
15

147
64
√

5
147

13 80 7
√

42(3+2
√

5)
8

i
√

15+1
4

2

Table 1. Identities (3), and the corresponding choice of τ0 and N
such that (1 − ρ0 − z0)/2 = t(τ0) and (1 − ρ0 + z0)/2 = t(τ0/N) or
1− t(τ0/N) (the latter option is for entries marked by asterisk).
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choice of quadratic irrational τ0 and integer N > 1 is given in Table 1. We also note
that |α| ≤ |β| for all entries, with the strict inequality when both x0 and z0 are real.

Remark 1. Observe the duality between several entries in Table 1, where the roles
of z0 and ρ0 are swapped. These correspond to the same choice of τ0 with different
choices of N , which is often a prime factor of an integer inside the radical in τ0.

Proposition 3. In notation (11), assume that both α and β are within the conver-
gence domain of the hypergeometric function F (t) (that is, |α|, |β| < 1).

(a) Suppose that α = t(τ0) and β = t(τ0/N) for a quadratic irrational τ0 and an
integer N > 1. Then there exist effectively computable algebraic numbers µ0, λ0 and
λ1 such that

F (β) = µ0F (α) and G(β) = λ0F (α) + λ1G(α). (12)

(b) Suppose that α = t(τ0) and β = 1− t(τ0/N) for a quadratic irrational τ0 and
an integer N > 1. In addition, assume that |1− β| < 1. Then there exist effectively
computable algebraic numbers µ0, λ0, λ1 and λ2 such that

F (β) = µ0F (α) and G(β) = λ0F (α) + λ1G(α) +
λ2

πF (α)
. (13)

Proof. (a) For N given, the two modular functions t(τ) and t(τ/N) are related by
the modular equation of degree N ; in particular, the function t(τ/N) is an algebraic
function of t(τ). As both F (t(τ)) and F (t(τ/N)) are weight 1 modular forms, their
quotient F (t(τ/N))/F (t(τ)) is a modular function, hence is an algebraic function
of t(τ). The quotient specialized at τ = τ0 is then an algebraic number, which we
denote by µ0.

Differentiating F (t(τ/N))/F (t(τ)) logarithmically and multiplying the result by
F 2(t(τ)), we arrive at a relation expressing G(t(τ/N)) linearly via F (t(τ)) and
G(t(τ)) with coefficients which are modular functions. Specializing at τ = τ0 this
yields the second equality in (12) with algebraic λ0 and λ1.

(b) Consider now β = 1− β′ where β′ = t(τ0/N). By what is shown in part (a),

F (β′) = µ′0F (α) and G(β′) = λ′0F (α) + λ′1G(α) (14)

for certain algebraic µ′0, λ′0 and λ′1. Relation (9) implies that

F (1− t)

F (t)
= − iτ

Cs

, (15)

which specialized to τ = τ0/N , hence t = β′, results in

F (β) = − iτ0

NCs

F (β′). (16)

Computing the logarithmic t-derivative of (15) and using (5), we find

tG(1− t)

F (1− t)
+

(1− t)G(t)

F (t)
= −t(1− t)

τ

(
dt

dτ

)−1

=
it(1− t)F (t)

CsF (1− t)

(
dt

dτ

)−1

,
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which, after multiplication by F (1− t)/t and using (15), can be written as

G(1− t) =
iτ(1− t)

Cst
G(t) +

i(1− t)

Cs

F (t)

(
dt

dτ

)−1

. (17)

Using now (10) and taking τ = τ0/N (so that t = t(τ0/N) = β′) in (17) we obtain

G(β) =
iτ0β

NCs(1− β)
G(β′) +

1

2πCs(1− β)F (β′)
. (18)

Combining now (14), (16) and (18) we arrive at (13).
Finally note that all the above algebraicity is effectively computed by means of

the involved modular equations. �

Now we appeal to a particular case of Clausen’s formula (1828),

2F1

(
s, 1− s

1

∣∣∣∣ t

)2

= 3F2

(
1
2
, s, 1− s

1, 1

∣∣∣∣ 4t(1− t)

)
, (19)

which is valid for t within the left half of the lemniscate 4|t(1−t)| = 1. Differentiating
(19) and expanding the 3F2 hypergeometric function into series, we obtain

Proposition 4. For t satisfying |t(1− t)| ≤ 1/4 and Re t < 1/2,

F 2(t) =
∞∑

n=0

(1
2
)n(s)n(1− s)n

n!3
(
4t(1− t)

)n
,

F (t)G(t) =
1− 2t

2(1− t)

∞∑
n=0

(1
2
)n(s)n(1− s)n

n!3
· n

(
4t(1− t)

)n
.

Our final argument goes back to Ramanujan’s discovery [15] of hypergeometric
formulas for 1/π. Its proof is outlined in [6], [7], [8] and [12].

Proposition 5. Let α be the value of the modular function t(τ) at a quadratic
irrationality τ0. Assume that |α(1 − α)| ≤ 1/4 and Re α < 1/2. Then there exist
effectively computable algebraic constants a, b and c such that

∞∑
n=0

(1
2
)n(s)n(1− s)n

n!3
(a + bn)

(
4α(1− α)

)n
=

c

π
. (20)

Remark 2. Observe that all the values α = (1− ρ0 − z0)/2 from Table 1 satisfy the
hypothesis of Proposition 5, with the exception of (II11) which we treat separately
in Section 4.

Proof of Theorem 1. For a given entry from Table 1, we choose α = (1−ρ0−z0)/2 =
t(τ0) and β = (1 − ρ0 + z0)/2. Proposition 5 implies that we have a Ramanujan
series (20). On invoking Proposition 4 for t = α we can write (20) in the form

aF 2(α) + 2b
1− α

1− 2α
F (α)G(α) =

c

π
. (21)
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On the other hand, by specializing the identities in Proposition 2 at x = x0, z = z0

and using then the algebraic relations obtained in Proposition 3 we obtain

∞∑
n=0

(s)n(1− s)n

n!2
Pn(x0)z

n
0 = µ0F

2(α),

∞∑
n=0

(s)n(1− s)n

n!2
nPn(x0)z

n
0 = λ′0F

2(α) + λ′1F (α)G(α) +
λ′2
π

,

with some algebraic (effectively computable) coefficients µ0, λ′0, λ′1 and λ′2, where
we simply choose λ′2 = 0 if β = t(τ0/N).

Finally, taking

B′ =
2b(1− α)

λ′1(1− 2α)
and A′ =

a−B′λ′0
µ0

we derive from (21) that

∞∑
n=0

(s)n(1− s)n

n!2
(A′ + B′n)Pn(x0)z

n
0 =

c−B′λ′2
π

,

which assumes the required form (3) after stretching A = CA′/(c − B′λ′2), B =
CB′/(c−B′λ′2). �

As verification of each entry in the table requires an explicit knowledge of all alge-
braic numbers involved and is therefore tedious, we give details for only some of the
entries. In Section 3 we discuss in details identity (I2) by using a parametrization
of the corresponding modular equation. Section 4 describes the techniques with-
out using an explicit parametrization on an example of identity (II1), and uses a
hypergeometric transformation to treat (II11), an entry that does not satisfy the
conditions of Proposition 5. Section 5 explains the derivation of identity (III5),
which corresponds to imaginary x0 and z0, as well as outlines new identities for
s = 1/4. In Section 6 we present two identities corresponding to s = 1/6, which are
not from the list in [16].

3. Identities for s = 1/2

We illustrate our techniques outlined in Section 2 with (I2),

∞∑
n=0

(1
2
)2
n

n!2
(7 + 30n)Pn

(
17

12
√

2

)(
− 3

4
√

2

)n

=
12

π
.

Here we have N = 3, so that the values α = t(τ0) = (1 − ρ0 − z0)/2 and β =
t(τ0/3) = (1− ρ0 + z0)/2 are related by the modular polynomial [3, Chap. 19]

(α2 + β2 + 6αβ)2 − 16αβ
(
4(1 + αβ)− 3(α + β)

)2
= 0
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and admit the rational parametrization

α =
4
√

2− 5
√

3 + 3

8
√

2
=

p3(2 + p)

1 + 2p
,

β =
4
√

2− 5
√

3− 3

8
√

2
=

p(2 + p)3

(1 + 2p)3
,

p =
3−

√
2−

√
3

2
√

2
.

In notation (5), recall now the identity [3, p. 238, Entry 6 (i)]

F

(
p(2 + p)3

(1 + 2p)3

)
= (1 + 2p)F

(
p3(2 + p)

1 + 2p

)
for p ∈

(
−1

2
, 1

)
; (22)

differentiating it we obtain

G

(
p(2 + p)3

(1 + 2p)3

)
=

p(1 + 2p)(2 + p)

(1− p)2
F

(
p3(2 + p)

1 + 2p

)
+

3(1 + p)2(1 + 2p)

(1− p)2
G

(
p3(2 + p)

1 + 2p

)
.

(23)
Substituting p = (3−

√
2−

√
3)/(2

√
2) into (22) and (23) we obtain

F (β) =
−
√

6 + 3
√

2

2
F (α),

G(β) = −85
√

6 + 120
√

3− 147
√

2− 208

2
F (α) +

(−19
√

3 + 33)(17
√

2 + 24)

2
G(α).

Specializing (6), (7) by taking x = 17/(12
√

2), z = −3/(4
√

2) we get
∞∑

n=0

(1
2
)2
n

n!2
(A + Bn)Pn

(
17

12
√

2

)(
−3

4
√

2

)n

=
√

6

(√
3− 1

2
A− B

30

)
F 2(α)

+
15
√

2 + 8
√

3− 3
√

6

10
BF (α)G(α).

In turn, the choice A = 7 and B = 30, Clausen’s formula (19) (Proposition 4) and

4t(1− t)
∣∣
t=(4

√
2−5

√
3+3)/(8

√
2)

= −(
√

3− 1)6

27

imply
∞∑

n=0

(1
2
)2
n

n!2
(7 + 30n)Pn

(
17

12
√

2

)(
−3

4
√

2

)n

=

√
6(7

√
3− 9)

2
3F2

(
1
2
, 1

2
, 1

2
1, 1

∣∣∣∣ −(
√

3− 1)6

27

)
+

9
√

2(101
√

3− 175)

128
3F2

(
3
2
, 3

2
, 3

2
2, 2

∣∣∣∣ −(
√

3− 1)6

27

)
,

which is precisely 3/
√

2 times the Ramanujan-type formula [2, eq. (8.3)]
∞∑

n=0

(1
2
)3
n

n!3
(
7− 3

√
3 + 6(5−

√
3)n

)(−1)n(
√

3− 1)6n

27n
=

4
√

2

π
.

The derivation of (I4) is very similar, as the degree N is also 3 in this case
(although we have to swap the rational p-parametric expressions of α and β). The



LEGENDRE POLYNOMIALS AND RAMANUJAN-TYPE SERIES FOR 1/π 9

choice of the parameter in the above rational parametrization is p = −(2 +
√

3 +√
15)/4, and the transformation (22) assumes the form

F

(
p(2 + p)3

(1 + 2p)3

)
= −1 + 2p

3
F

(
p3(2 + p)

1 + 2p

)
for p ∈ (−∞,−1).

This in fact follows from (22) by a change of variables then by applying to both
sides a transformation of the complete elliptic integral K (as K(t) = πF (t2)/2),

K(x) =
1√

1− x2
K

(√
x2

x2 − 1

)
, (24)

itself a result of Euler’s hypergeometric transformation [1, Section 1.2, eq. (2)].
Finally, (I4) reduces to Ramanujan’s identity [15, eq. (30)]

∞∑
n=0

(1
2
)3
n

n!3
(
5
√

5− 1 + 6(7
√

5 + 5)n
)(
√

5− 1)8n

214n
=

32

π
.

For (I1) and (I3) we have to use the modular equations of degree 2 and 5, respec-
tively [3, Chap. 19]; the corresponding “complex” Ramanujan-type series for 1/π
required in the derivation of (I1) can be found in [14, Section 4].

4. Identities for s = 1/3

In this section we first prove (II1),

∞∑
n=0

(1
3
)n(2

3
)n

n!2
(2 + 15n)Pn

(
3
√

3

5

)(
5

6
√

3

)n

=
45
√

3

4π
,

which is representative of identities in the large group for s = 1/3 in Table 1. Here

α =
1− ρ0 − z0

2
=

1

4

(
1− 1√

3

)3

and β =
1− ρ0 + z0

2
=

1

2
(25)

satisfy the modular equation of degree 2 in signature 3. Although a rational paramet-
rization similar to the one we exploited in Section 3 exists, we will compute the
algebraic relations of Proposition 3 by using the modular equation itself

(αβ)1/3 + ((1− α)(1− β))1/3 = 1 (26)

as well as the equation for the corresponding multiplier [4, p. 120, Theorem 7.1]

m =
F (β)

F (α)
=

(1− α)2/3

(1− β)1/3
− α2/3

β1/3
, (27)

where α = α(τ) = t(τ) has degree 2 over β = β(τ) = t(τ/2).
On specializing (27) by taking τ = τ0, we get

F

(
1

2

)
=

2√
3

F (α)
∣∣
α=(1−1/

√
3)3/4

. (28)
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Computing the logarithmic t-derivative of (27) at t = α, and using the notation
of (5) result in

G(β)

βF (β)

dβ

dα
− G(α)

αF (α)
=

1

m

d

dα

(
(1− α)2/3

(1− β)1/3
− α2/3

β1/3

)
=

F (α)

F (β)

1

3

(
dβ

dα

(
(1− α)2/3

(1− β)4/3
+

α2/3

β4/3

)
− 2

(1− α)1/3(1− β)1/3
− 2

α1/3β1/3

)
. (29)

The derivative dβ/dα can be obtained by differentiating (26),

dβ

dα

(
α1/3

β2/3
− (1− α)1/3

(1− β)2/3

)
+

β1/3

α2/3
− (1− β)1/3

(1− α)2/3
= 0,

so that
dβ

dα

∣∣∣∣
τ=τ0

= 9.

Thus, with the choice τ = τ0 in (29), we obtain

G

(
1

2

)
=

(
2

9
F (α) +

3
√

3 + 5

3
G(α)

)∣∣∣∣
α=(1−1/

√
3)3/4

. (30)

From now on we fix α and β as defined in (25). With the help of Proposition 2
and (28), (30) we find that

∞∑
n=0

(1
3
)n(2

3
)n

n!2
Pn(x0)z

n
0 = F (α)F (β) =

2√
3

F 2(α),

∞∑
n=0

(1
3
)n(2

3
)n

n!2
nPn(x0)z

n
0 =

3
√

3 + 5

5
G(α)F (β) +

3
√

3

5
F (α)G(β)

=
2

5
√

3
F 2(α) +

3
√

3 + 5√
3

F (α)G(α).

Therefore,
∞∑

n=0

(1
3
)n(2

3
)n

n!2
(2 + 15n)Pn(x0)z

n
0 =

10√
3

F 2(α) +
15(3

√
3 + 5)√
3

F (α)G(α)

=
5√
3

∞∑
n=0

(1
2
)n(1

3
)n(2

3
)n

n!3
(2 + 15n)

(
4α(1− α)

)n
,

while the latter is a multiple of Ramanujan’s series [15, eq. (31)]

∞∑
n=0

(1
2
)n(1

3
)n(2

3
)n

n!3
(2 + 15n)

(
2

27

)n

=
27

4π
,

and identity (II1) follows.
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Remark 3. In Section 8 we show that in the discussed example we have closed form
evaluations of F (1/2) and G(1/2), hence of

F (α) =

√
3

2
F

(
1

2

)
, G(α) =

5
√

3− 9

6
F

(
1

2

)
+

9
√

3− 15

2
G

(
1

2

)
(31)

(the relations follow from (28) and (30)). In particular, this gives a different way of
deducing (II1), avoiding use of a Ramanujan-type series (Propositions 4 and 5).

We now turn our attention to (II11), shown below, for which 4|α(1 − α)| > 1
and thus does not satisfy the conditions of Proposition 5. Our method employed is
illustrative in dealing with more general situations when this occurs. It is also worth
noting that this approach bypasses the computational difficulties encountered with
purely imaginary x0 and z0 (see Section 5), as is the case here.

We are required to prove
∞∑

n=0

(1
3
)n(2

3
)n

n!2
(2 + 9n)Pn

(
−7i

√
5

22

)(
−11i

10
√

5

)n

=
15
√

3 +
√

15

6π
,

with α = (10
√

5− 27 + 11i)/(20
√

5). We now take

p0 =
(1 +

√
5)

√√
5− 2−

√
22− 10

√
5

4
− 1

2
,

and apply the transformation [4, p. 112, Theorem 5.6]

2F1

(
1
3
, 2

3
1

∣∣∣∣ 27p2(1 + p)2

4(1 + p + p2)3

)
=

1 + p + p2

√
1 + 2p

2F1

(
1
2
, 1

2
1

∣∣∣∣ p3(2 + p)

1 + 2p

)
, (32)

which is valid for real p ∈ [0, 1). By analytic continuation, the transformation
remains valid in a domain surrounding the origin in which the absolute values of
the arguments of both hypergeometric functions are less than 1; in particular, this
domain contains p0 and its conjugate p0.

In notation

F̃ (t) := 2F1

(
1
2
, 1

2
1

∣∣∣∣ t

)
, G̃(t) := t

d

dt
F̃ (t),

transformation (32) at p = p0 gives us

F (α) =
(2
√

5− 1 + (32− 14
√

5)i)1/4

√
2

F̃ (α0), (33)

where α0 = 1/2 −
√√

5− 2 is real. Moreover, as β is the conjugate of α, it easily
follows that at p = p0,

F (β) =
(2
√

5− 1− (32− 14
√

5)i)1/4

√
2

F̃ (α0). (34)

Therefore, F (α) and F (β) are both algebraic multiples of F̃ (α0), and we have trans-
posed the problem to a simpler one in signature 2 with real argument. It remains

to express G(α) and G(β) in terms of F̃ (α0) and G̃(α0).
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To this end, we differentiate (32) with respect to p, and obtain

(1− p)(2 + p)(1 + 2p)5/2

(1 + p)(1 + p + p2)
G

(
27p2(1 + p)2

4(1 + p + p2)3

)
= 3p2(1 + p) F̃

(
p3(2 + p)

1 + 2p

)
+

6(1 + p)2(1 + p + p2)

2 + p
G̃

(
p3(2 + p)

1 + 2p

)
. (35)

Substituting p0 and its complex conjugate p0, respectively, into (35) simplifies both
G(α) and G(β) in terms of the desired functions. Armed with this knowledge as
well as with (33) and (34), we can use Proposition 2 to obtain

∞∑
n=0

(1
3
)n(2

3
)n

n!2
(2 + 9n)Pn

(
−7i

√
5

22

)(
−11i

10
√

5

)n

=

√
5
√

41
√

5− 89√
6

F̃ 2(α0) +

(
5(
√

3 + 3
√

5)

6
+

10
√

17
√

5− 31√
6

)
F̃ (α0)G̃(α0).

This now satisfies the conditions of Proposition 4 with s = 1/2, and the truth
of (II11) is reduced to that of a classical Ramanujan series

∞∑
n=0

(1
2
)3
n

n!3
(5−

√
5 + 20n)

(√
5− 1

2

)6n

=
2
√

5

π

√
2 +

√
5, (36)

as 4α0(1 − α0) = ((
√

5 − 1)/2)6 —we comment on this remarkable numerical coin-
cidence in Section 8.

5. Identities for s = 1/4

Although In this section we choose to prove identity (III5),

∞∑
n=0

(1
4
)n(3

4
)n

n!2
(13 + 80n)Pn

(
− 7i

33
√

15

)(
−11i

√
15

147

)n

=
7
√

42(3 + 2
√

5)

8π
,

and our new “rational” identity (46). However, it is worth commenting on the proof
of (III3), which is very similar to the one of (II1) presented in Section 4. For (III3)
we get

α =
(
√

6− 2)4

23 · 72
, β =

1

2
,

the degree 3 modular equation reads

(αβ)1/2 + ((1− α)(1− β))1/2 + 4(αβ(1− α)(1− β))1/4 = 1, (37)

while the underlying series
∞∑

n=0

(1
2
)n(1

4
)n(3

4
)n

n!3
(3 + 40n)

1

74n
=

1

3π
√

3

is due to Ramanujan [15, eq. (42)]. A more elementary derivation of (II1), which
we discuss in Section 8, is also available for (III3).
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In the case of (III5), we have τ0 = (1 + i
√

15)/4, N = 2,

α = t(τ0) =
1

2
− 32

√
5

3 · 72
+

11i
√

15

6 · 72
, β =

1

2
− 32

√
5

3 · 72
− 11i

√
15

6 · 72
,

and β′ = 1− β = t(τ0/2). Note that for subsequent calculations,

β1/2 =
4
√

5− 5

14
− i

√
15 + 4

√
3

42
.

The degree 2 modular equation for s = 1/4 is [11, eq. (4.6)]

α1/2
(
1 + 3(1− β′)1/2

)
= 1− (1− β′)1/2, (38)

and the multiplier is given by [11, eq. (4.5)]

m =
F (β′)

F (α)
= 2

(
1 + 3(1− β′)1/2

)−1/2
. (39)

Using (16) and (38), we can find the ratio between F (β′) and F (β), as well as
between F (β′) and F (α):

F (β) =
3 + 2

√
5− (

√
5− 2)

√
3i

2
√

14
F (α), (40)

F (β′) =
2
√

3 +
√

15 + (2
√

5− 3)i

2
√

7
F (α). (41)

Relation (18) of Proposition 3 assumes the form

G(β) =
(7− 3

√
5)(5

√
15 + 61i)

128
√

2
G(β′) +

3(69 + 7
√

5) + 33i
√

3(15− 7
√

5)

256
√

2 π F (β′)
. (42)

It remains to express G(β′) as a linear combination of G(α) and F (α). Proceeding
in a similar fashion as Section 4 (for (II1)), we differentiate both sides of (38) with
respect to t at α, and obtain

(1 + 3β1/2)2β1/2 =
(
1− β1/2 + 3α(1 + 3β1/2)

)dβ′

dα
,

from which we easily solve for dβ′/dα; this we substitute into the next equation,
obtained by differentiating both sides of (39):

G(β′) =
β′G(α)F (β′)

αF (α)

(
dβ′

dα

)−1

+
3β′F (α)

2β1/2(1 + 3β1/2)3/2
. (43)

Now (43), when tidied up via (41), expresses G(β′) in terms of G(α) and F (α)
as promised. Substituting the result into (42) and using (41) again, after much
computational work we arrive at an expression of G(β) in terms of G(α) and F (α):

G(β) =
3
√

7
(
23
√

15− 39
√

3− (3
√

5 + 1)i
)

256
√

2π F (α)
− 15 + 18

√
5 + (38

√
3− 23

√
15)i

112
√

14
F (α)

− 513 + 323
√

5 + (153
√

3− 361
√

15)i

448
√

14
G(α). (44)
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Combining (40) and (44) with Proposition 2 allows us to invoke Proposition 4 to
arrive at a series equivalent to (III5); the corresponding Ramanujan-type series and
its conjugate are given by

∞∑
n=0

(1
2
)n(1

4
)n(3

4
)n

n!3
(
(52∓ 12i

√
3) + (320∓ 55i

√
3)n

)(2(5± i
√

3)

7
√

3

)4n

=
98
√

3

π
, (45)

as we have

4α(1− α) =

(
2(5 + i

√
3)

7
√

3

)4

in this case.

Remark 4. We remark that the Ramanujan-type series (45) are rational over the
ring Z[e2πi/3]. A possible way to establish them rests upon application of degree 2
modular equations (38), (39) with the different choice

α = t

(
i
√

15± 1

2

)
= −

(
16− 7

√
5

11
√

3

)2

, β′ = t

(
i
√

15± 1

4

)
,

so that α is real, and on using the real Ramanujan-type series
∞∑

n=0

(1
2
)n(1

4
)n(3

4
)n

n!3
(
1500− 604

√
5 + (6825− 2240

√
5)n

)
× (−1)n

(
2(13− 5

√
5)

11
√

3

)4n

=
121

√
15

π

for the argument 4α(1 − α); this is very similar to what was done for (II11) in
Section 4. A different approach is applying the general construction from [7].

At the end of this section we would like to present four new rational series that
are analogous to (III2).

Our first series for s = 1/4 corresponds to the choice

x0 =
199

60
√

11
, z0 =

−5
√

11

96
, ρ0 =

65

32
√

3
, τ0 =

i
√

33 + 3

2
, and N = 3,

in the notation of Table 1. Then we have
∞∑

n=0

(1
4
)n(3

4
)n

n!2
(33 + 260n)Pn(x0)z

n
0 =

32
√

6

π
,

or alternatively in the form involving Tn (as in (1)),
∞∑

n=0

33 + 260n

(−3842)n

(
4n

2n

)(
2n

n

)
Tn(398, 1) =

32
√

6

π
. (46)

The proof proceeds in the fashion of (II1) via the degree 3 modular equation and
the multiplier in signature 4 (see [4, pp. 153–154]), and the Ramanujan-type series
∞∑

n=0

(1
4
)n(3

4
)n(1

2
)n

n!3
(
33
√

33− 119 + (260
√

33− 220)n
)(325

√
33− 1867

4608

)n

=
128

√
3

π
.
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The three other new series are obtained by choosing

τ0 ∈
{

i
√

57 + 3

2
,
i
√

93 + 3

2
,
i
√

177 + 3

2

}
and, again, N = 3. They are:

∞∑
n=0

7 331 + 83 980n

(−2 6882)n

(
4n

2n

)(
2n

n

)
Tn(2 702, 1) =

80
√

423

π
, (47)

∞∑
n=0

71 161 + 1 071 980n

(−24 2882)n

(
4n

2n

)(
2n

n

)
Tn(24 302, 1) =

135
√

2533

π
√

6
, (48)

and

∞∑
n=0

30 282 753 + 632 736 260n

(−1 123 5842)n

(
4n

2n

)(
2n

n

)
Tn(1 123 598, 1) =

2944
√

14633

π
√

3
. (49)

The partial sum of (49) adds about four digits of accuracy per term.
In order to find these new series similar to (III2), we search for imaginary quadratic

fields Q(
√
−3`) with class number 4, where prime ` ≡ 3 (mod 4). It turns out that

this is satisfied when ` = 7, 11, 19, 31 and 59 (this list seems exhaustive). The four
new series correspond to the latter four discriminants, respectively.

Another curious observation is that, in the notation of
∞∑

n=0

A + Bn

Λn

(
4n

2n

)(
2n

n

)
Tn(b, 1) =

C

π
,

when N = 3 we have |b − |Λ|1/2| = 14. This is observed in (III1)–(III3), as well as
in (46)–(49), and in fact follows from the modular equation (37).

6. New identities for s = 1/6

In this section, we illustrate two series corresponding to s = 1/6, a case not
considered in [16].

Our first example follows by taking τ0 = i
√

6 and N = 2. Then

1728

j(τ0)
=

1399− 988
√

2

4913
and

1728

j(τ0/2)
=

1399 + 988
√

2

4913
,

and we have two Ramanujan-type series of Proposition 5,
∞∑

n=0

(1
2
)n(1

6
)n(5

6
)n

n!3
(
5 + 12(5∓

√
2)n

)(1399± 988
√

2

4913

)n

=
3± 1

2π

√
213∓ 24

√
2.

Note that adding these two series gives a rational left-hand side. By using either of
the two series, and with

x0 =
17
√

17− 46

2
√

1757− 391
√

17
, z0 =

√
1757− 391

√
17

17
√

17
,
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we obtain
∞∑

n=0

(1
6
)n(5

6
)n

n!2
(
5(31 + 17

√
17) + 5928n

)
Pn(x0)z

n
0 =

17
√

6

π

√
1069

√
17− 1683.

In notation of (1), this becomes
∞∑

n=0

(
6n

3n

)(
3n

n

)(
5(31 +

√
173) + 5928n

)
Tn

(
2
(√

173 − 46
)
, 1

) 1

(12
√

17)3n

=
17
√

6

π

√
1069

√
17− 1683. (50)

In the second example we choose τ0 = i
√

7 + 1 and N = 2, so that

1728

j(τ0)
=

(
4

85

)3

and
1728

j(τ0/2)
= −

(
4

5

)3

,

and the related Ramanujan-type series is
∞∑

n=0

(1
2
)n(1

6
)n(5

6
)n

n!3
(8 + 133n)

(
4

85

)3n

=

√
853

18π
√

3
,

due to Ramanujan himself [15, eq. (34)]. The series and the corresponding choice

x0 =
323

√
1785

13650
−
√

105

40950
, z0 =

171
√

1785

14450
− 3

√
105

50

generate the formula
∞∑

n=0

(1
6
)n(5

6
)n

n!2
(1687− 15

√
173 + 6552n)Pn(x0)z

n
0 =

85
√

30

32π

√
19809

√
17− 68425.

In notation of (1), the identity can be stated in the form
∞∑

n=0

(
6n

3n

)(
3n

n

)
(1687− 15

√
173 + 6552n)Tn

(
10773− 125

√
173

32
,−1

)
1

(−15
√

17)3n

=
85
√

30

32π

√
19809

√
17− 68425. (51)

The appearance of a negative c in (1) is not found on the list from [16].

7. Companion series

If we differentiate (4) with respect to x instead of z, a series involving the deriva-
tives of Legendre polynomials is obtained:

Proposition 6. In the notation of (5),
∞∑

n=0

(s)n(1− s)n

n!2
P ′

n(x)zn =
z

ρ

(
G(t−)F (t+)

1− ρ− z
+

F (t−)G(t+)

1− ρ + z

)
, (52)

where t± = t±(x, z) := (1− ρ± z)/2.
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We may then take a linear combination of the series (6) and (52), and apply
Proposition 4 to match a series for 1/π (of the type in Proposition 5), thus obtaining
what we call a “companion series”.

For instance, in the case of (II1), the resulting companion series is
∞∑

n=0

(1
3
)n(2

3
)n

n!2

[
P ′

n

(
3
√

3

5

)
+
√

3 Pn

(
3
√

3

5

)](
5

6
√

3

)n

=
15

2π
.

If we combine (II1), its companion, and the formula

P ′
n(x) =

n

x2 − 1

(
xPn(x)− Pn−1(x)

)
,

we produce the new identity
∞∑

n=0

(1
3
)n(2

3
)n

n!2
nPn−1

(
3
√

3

5

)(
5

6
√

3

)n

=
3

4π
.

Note that the second order recursion satisfied by the Legendre polynomials allows
us to derive many identities of this kind.

As another example of a companion series, (I4) produces
∞∑

n=0

(1
2
)2
n

n!2

[
7

26
√

5
P ′

n

(
31

8
√

15

)
+

214

13
√

3
Pn

(
31

8
√

15

)](√
15

16

)n

=
32

π
.

8. Closed forms

Here we give our elementary proof of (II1) as promised in Remark 3. Using the
same notation as Section 4, applying Proposition 2 and relation (31), we obtain

∞∑
n=0

(1
3
)n(2

3
)n

n!2
(2 + 15n)Pn

(
3
√

3

5

)(
5

6
√

3

)n

=
45

2
F

(
1

2

)
G

(
1

2

)
.

Note that both the hypergeometric series on the right-hand side can be summed by
Gauss’ second summation theorem [1, Section 2.4, eq. (2)]:

F

(
1

2

)
= 2F1

(
1
3
, 2

3
1

∣∣∣∣ 1

2

)
=

Γ(1
2
)

Γ(2
3
)Γ(5

6
)
,

G

(
1

2

)
=

1

9
2F1

(
4
3
, 5

3
2

∣∣∣∣ 1

2

)
=

2Γ(1
2
)

Γ(1
3
)Γ(1

6
)
.

Therefore,

F

(
1

2

)
G

(
1

2

)
=

√
3

2π
,

and identity (II1) follows. As mentioned, a similar derivation is valid for (III3).
When s = 1/2, we can alternatively use the complete elliptic integrals K(k) and

K ′(k) := K(k′) = K(
√

1− k2) to represent proofs of the identities in group I. This
sometimes leads to unexpected closed form evaluations of the involved F (α) and
F (β), hence also of G(α) and G(β) through the corresponding series for 1/π or by
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taking derivatives. Our evaluations depend on the Nth singular value of K, that is,
a modulus kN such that

K ′(kN)

K(kN)
=
√

N.

For a positive integer N , kN is algebraic and can be effectively computed [15], and
the values of K and its derivative at kN (hence F (k2

N) and G(k2
N)) are expressible

in terms of gamma functions (see [8, Chap. 5], which also lists kN for small N).
Consider, for example, the product F (α)F (β) for (I2); with the help of (22) we

see that it is

2
√

6(
√

3 + 1)

3π2
K2

(√
4
√

2− 5
√

3− 3

8
√

2

)
.

We now apply the transformation (24) followed by [8, Chap. 1]

K(x) =
1

1 + x
K

(
2
√

x

1 + x

)
,

and observe that the argument of the elliptic integral is transformed to k′3, where
k3 = sin(π/12) is the third singular value. As K ′(k3) has a closed form, we obtain

∞∑
n=0

(1
2
)2
n

n!2
Pn

(
17

12
√

2

)(
− 3

4
√

2

)n

=
3Γ

(
1
3

)6

211/3π4
.

Curiously enough, the quantity on the right-hand side is exactly the value of the
(−1)st moment of the distance from the origin in a uniform 3-step walk on the
plane [9, Section 6].

In (I3) and (I4), α = 16−7
√

3−
√

15 is the square of the 15th singular value of K.
In the proof of (II11), α0 is the square of the fifth singular value. In all these cases,
F and G all have computable closed forms at α and α0; we can therefore complete
their proofs without resorting to Propositions 4 and 5. In the case of (II11) we can
use the fact to establish the series (36).

9. Conclusion

We have discussed the proofs of several Ramanujan-type series for 1/π that are
associated with the Legendre polynomials. Our analysis in Sections 5 and 6 shows
that the list in [16] does not exhaust all, even rational, examples of such series, and
that the latter problem is related to investigation of imaginary quadratic fields with
prescribed class groups. In particular, our work effectively gives a recipe to generate
more series of the type by picking suitable τ in imaginary quadratic fields.

The techniques of present paper also allows us to prove other identities in [16] of
the forms

∞∑
n=0

(1
2
)2
n

n!2
(A + Bn)P2n(x0)z

n
0 =

C

π
and

∞∑
n=0

(1
3
)n(2

3
)n

n!2
(A + Bn)P3n(x0)z

n
0 =

C

π
,

(53)
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although computation becomes more involved and the next two identities need to
be invoked. Brafman’s generating function (4) in these cases is replaced by

∞∑
n=0

(1
2
)2
n

n!2
P2n

(
(u + v)(1− uv)

(u− v)(1 + uv)

)(
u− v

1 + uv

)2n

=
1 + uv

2
2F1

(
1
2
, 1

2
1

∣∣∣∣ 1− u2

)
2F1

(
1
2
, 1

2
1

∣∣∣∣ 1− v2

)
(54)

and
∞∑

n=0

(1
3
)n(2

3
)n

n!2
P3n

(
u + v − 2u2v2

(u− v)
√

1 + 4uv(u + v)

)(
u− v√

1 + 4uv(u + v)

)3n

=

√
1 + 4uv(u + v)

3
2F1

(
1
3
, 2

3
1

∣∣∣∣ 1− u3

)
2F1

(
1
3
, 2

3
1

∣∣∣∣ 1− v3

)
. (55)

Identities (54) and (55), valid in a neighbourhood of u = v = 1, are new, and we
prove them and several other previously unknown generating functions of Legendre
polynomials in [17]; there we also discuss in more detail applications to formulas for
1/π including the forms (53). In particular, we prove in [17] new series such as:

∞∑
n=0

(1
2
)2
n

n!2
(2 + 15n) P2n

(
3
√

3

5

)(
2
√

2

5

)2n

=
15

π
,

∞∑
n=0

(1
2
)2
n

n!2
n P2n

(
45

17
√

7

)(
4
√

14

17

)2n

=
68

21π
,

and

∞∑
n=0

(1
3
)n(2

3
)n

n!2
(1 + 9n) P3n

(
4√
10

)(
1√
10

)3n

=

√
15 + 10

√
3

π
√

2
.

Although parameters b, c and λ in notation (1) cannot all be made rational, the
summands of the three series given are all rational numbers.

Acknowledgments. We would like to credit Zhi-Wei Sun for raising this new
family of remarkable series for 1/π.
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