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ABSTRACT. We describe the dualization of the algebra of secondary cohomology operations in terms of
generators extending the Milnor dual of the Steenrod algebra. In this way we obtain explicit formula for
the computation of the E3-term of the Adams spectral sequence converging to the stable homotopy groups
of spheres.
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Preface

Spheres are most elementary compact spaces, but the simple question of counting essential maps
between spheres turned out to be a landmarking problem. In fact, progress in algebraic topology might
be measured by its impact on this question. Topologists work on the problem of describing the homotopy
groups of spheres for around 80 years and still there is no satisfactory solution in sight. Many approaches
were developed, a distinguished one is the Adams spectral sequence

E2, Es, B4, ...
converging to homotopy groups of spheres. Adams computed the E,-term and showed that
E, = Ext(F,F)

is algebraically determined by Ext-groups associated to the Steenrod algebra <7. Hence E; is an upper
bound for homotopy groups of spheres which is given by an algebraic resolution of the prime field F = F,
over the algebra 7. The Steenrod algebra < is in fact a Hopf algebra with wonderful algebraic properties.
Milnor showed that the dual algebra
o, = Hom(<7, F)

is a polynomial algebra. Topologically the Steenrod algebra is the algebra of primary cohomology opera-
tions.

In the book [3] the pair algebra % of secondary cohomology operations is computed which enriches
the known algebraic structure of the Steenrod algebra considerably. The pair algebra 4 is given by an
exact sequence

0 q

>of By B . (*)

Here 4, is the free associative algebra over G = Z/p?Z generated by the Steenrod operations which also
generate .2/ and q is the identity on generators. Moreover there is a multiplication map

m: ByQ%B, & $B,%By — %

and a diagonal map
A B — (%0@331 @331@%0)/ ~

such that Z = (%4, m, A) is a “secondary Hopf algebra”, see [3], inducing the Hopf algebra structure of the
Steenrod algebra .7

Adams computed those special values of differentials d) in E; which are related to the Hopf invariant
1 problem. In the book of Ravenel [16] one finds a list of all differentials up to degree 60 which, however,
are tentative in degrees > 46. Corrections of published differentials in low degrees were made by Bruner
[10]. An explicit method for the computation of the differential d(z) in general, however, has not been
achieved in the literature. This is done in the present paper.

We show that the differential d(;) and the Ez-term can be completely computed by the formula

E; = Ext»(G*, G¥)

where the secondary Ext-groups Ext are given by an algebraic secondary resolution associated to the pair
algebra 4. The computation of E3 yields a new algebraic upper bound of homotopy groups of spheres
improving the Adams bound given by E.

In order to do explicit computations of the new bound E3 one has to carry out two tasks. On the one
hand one has to describe the algebraic structure of the secondary Hopf algebra % explicitly by equations
which a computer can deal with in an easy way. On the other hand one has to choose a secondary resolution
associated to & by solving inductively a system of explicit equations determined by 4.
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In the first part (chapters 1, 2, 3) of this paper we describe the algebra which yields the secondary
resolution associated to % and which determines the differential dz) on E by the resolution. In the second
part (chapters 4, 5, 6, 7, 8) we study the algebraic properties of % and of the dualization of 4. In particular
we show that the results of Milnor on the dual Steenrod algebra <7, have secondary analogues. For the
dualization of % we proceed as follows. The projection q : %y - <7 in (x) above admits a factorization

q: By » Fo» A
where %y = %, Q F is the free associative algebra over F = Z/pZ generated by the Steenrod operations.
Now let
R# = kernel(%y, — <)
Rz = kernel(%#y — &).
Then one has an exact sequence of F-vector spaces
o > RzF » Ra
which can be dualized by applying the functor Hom(—, F). Moreover the exact sequence of F-vector spaces
XA > B OF » Ry ®F

can be dualized by Hom(—,F). The main results of this work describe in detail the multiplication in %
and the diagonal in % on the level of %; ® F and on the dual Hom(%, F). In this way we obtain explicit
formulee describing the algebraic structure of % and of the dual of %. of course the dual of % determines
2 and vice versa.

We use these formule for computer calculations of the secondary resolution associated to % and we
derive in this way the differentials d(z on E;. In section 3.2 we do such computations up to degree 40 in
order to confirm the algebraic equations achieved in the book [3]. Our goal is to compute E3 up to degree
210 as this was done for E; by Nassau [15]. An effective computer implementation of E; relies on the
computation of the dual of 4 in section 8.3 below.



CHAPTER 1

Secondary Ext-groups associated to pair algebras

In this chapter we introduce algebraically secondary Ext-groups Extg over a pair algebra B. In [4] we
already studied secondary Ext-groups in an andditive track category which yield the Ext-groups Extg as a
special case if one considers the track category of B-modules. In chapter 3 we shall see thet the E3-term
of the Adams spectral sequence is given by secondary Ext-groups over the pair algebra % of secondary
cohomology operations.

1.1. Modulesover pair algebras

We here recall from [3] the notion of pair modules, pair algebras, and pair modules over a pair alge-
bra B. The category B-Mod of pair modules over B is an additive track category in which we consider
secondary resolutions as defined in [4]. Using such secondary resolutions we shall obtain the secondary
derived functors Extg in section 1.3.

Let k be a commutative ring with unit and let Mod be the category of k-modules and k-linear maps.
This is a symmetric monoidal category via the tensor product A® B over k of k-modules A, B. A pair of
modules is a morphism

(1.1.1) X = (xl 2, xo)

in Mod. We write mo(X) = kerd and m1(X) = cokerd. A morphism f : X — Y of pairs is a commutative
diagram

X]_L-Yl

Xo —2> Yo
Evidently pairs with these morphisms form a category .Z%.:;(Mod) and one has functors
no, w1 Fows(Mod) > Mod.

A pair morphism is called a weak equivalence if it induces isomorphisms on 7o and ;.

Clearly a pair in Mod coincides with a chain complex concentrated in degrees 0 and 1. For two pairs
X and Y the tensor product of the complexes corresponding to them is concentrated in degrees in 0, 1 and
2 and is given by

X1®Y, i X1®Yo ® Xo®Y1 0—0> Xo®Yo
withdp = (0®1,1®d)and 01 = (-1® 9,0 ® 1). Truncating X ® Y we get the pair

X®Y = ((x&;\()1 _ coker(dy) 5> Xo ® Yo = (XéY)o)
with 9 induced by do.

(1.1.2) Remark. Note that the full embedding of the category of pairs into the category of chain
complexes induced by the above identification has a left adjoint Tr given by truncation: for a chain complex

C-= ( S8 B, e, 5 )
one has

Tr(C) = (coker(al) ﬂ Co),

1



2 1. SECONDARY Ext-GROUPS ASSOCIATED TO PAIR ALGEBRAS

with 8o induced by do. Then clearly one has
X&Y = THX ®Y).

Using the fact that Tr is a reflection onto a full subcategory, one easily checks that the category {,@%(M od)
together with the tensor product ® and unit k = (0 — K) is a symmetric monoidal category, and Tr is a
monoidal functor.

We define the tensor product A ® B of two graded modules in the usual way, i. e. by
AeB)"= (HA B
i+j=n

A (graded) pair module is a graded object of (@M(M od), i. e. asequence X" = (9 : X! — X7) of pairs
in Mod. We identify such a pair module X with the underlying morphism d of degree 0 between graded
modules

X = (xl 2 xo).
Now the tensor product X®Y of graded pair modules X, Y is defined by
(1.1.3) (x&Y)" = H x'ey.
i+j=n

This defines a monoidal structure on the category of graded pair modules. Morphisms in this category are
of degree 0.

For two morphisms f,g : X — Y between graded pair modules, a homotopy H : f = g is a morphism
H : Xo — Y3 of degree 0 as in the diagram

fi
Xl _— Yl

¢}
(1.1.4) al H/ la

/fg
Xo :; Yo,

%

satisfying fo — go = dH and f; — g1 = Ho.
A pair algebra B is a monoid in the monoidal category of graded pair modules, with multiplication

u:BeB — B.

We assume that B is concentrated in nonnegative degrees, that is B" = 0 for n < 0.
A left B-module is a graded pair module M together with a left action

u:BeM —» M

of the monoid B on M.
More explicitly pair algebras and modules over them can be described as follows.

(1.1.5) DeriniTion. A pair algebra B is a graded pair
0:B1— By

in Mod with B = B = 0 for n < 0 such that By is a graded algebra in Mod, B; is a graded Bo-Bo-bimodule,
and 9 is a bimodule homomorphism. Moreover for x,y € B; the equality

a(x)y = xa(y)
holds in Bj.
It is easy to see that there results an exact sequence of graded By-Bo-bimodules
O—>7rlB—>BliBo—>7roB—>0

where in fact 7B is a k-algebra, 7B is a moB-moB-bimodule, and By — mo(B) is a homomorphism of
algebras.
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(1.1.6) Derinirion. A (left) module over a pair algebra B is a graded pair M = (0 : M1 — Mp) in Mod
such that M; and Mg are left Bo-modules and 9 is By-linear. Moreover a Bo-linear map

,L_t . Bl®Bo Mo — My

is given fitting in the commutative diagram

B1 ®g, M1 10 B1 ®8, Mo

l/ l"

M1 = M,

where u(b @ m) = d(b)m for b € By and m € My U M.

For an indeterminate element x of degree n = |x| let B[x] denote the B-module with B[x]; consisting
of expressions bx with b € B;j, i = 0,1, with bx having degree |b| + n, and structure maps given by
d(bx) = d(b)x, u(b’ ® bx) = (b’b)x and u(b’ ® bx) = (b’b)x.

A free B-module is a direct sum of several copies of modules of the form B[x], with x € | for some set
I of indeterminates of possibly different degrees. It will be denoted

Bl = P BIX.
Xel

For a left B-module M one has the exact sequence of Bo-modules
0—-mM—->M; > My —>agM—>0

where oM and 71 M are actually moB-modules.

Let B-Mod be the category of left modules over the pair algebra B. Morphisms f = (fp, f1) : M — N
are pair morphisms which are B-equivariant, that is, fo and f; are By-equivariant and compatible with p
above, i. e. the diagram

B: ®, Mo — > My
l®f0l lfl
B: ®8, No — > N

commutes.
For two such maps f,g: M — Natrack H : f = g is a degree zero map

(1.1.7) H: My — N;

satisfying fo — o = 0H and f; — g1 = Ho such that H is Bg-equivariant. FortracksH : f = g, K:g=nh
their composition KoH : f = his K + H.

(1.1.8) ProposriTioN. For a pair algebra B, the category B-Mod with the above track structure is a
well-defined additive track category.

Proor. For a morphism f = (fo, f1) : M — N between B-modules, one has
Aut(f) = {H € Homg,(Mg, N1) | 9H = fo — fo,HO = f; — f1} = Hom,, g(moM, 71N).

Since this group is abelian, by [6] we know that B-Mod is a linear track extension of its homotopy category
by the bifunctor D with D(M, N) = Hom,,g(7oM, 71 N). It thus remains to show that the homotopy category
is additive and the bifunctor D is biadditive.

By definition the set of morphisms [M, N] between objects M, N in the homotopy category is given by
the exact sequence of abelian groups

Homg, (Mg, N1) — Homg(M, N) - [M, N].
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This makes evident the abelian group structure on the hom-sets [M, N]. Bilinearity of composition follows
from consideration of the commutative diagram

Homg, (Mo, N1)®@Homg(N, P) & Homg(M, N)®@Homg,(No, P1) LN Homg, (Mo, P1)

l l

Homg(M, N) ® Homg(N, P) Homg(M, P)
[IM\N]J®[N,P] - = = = = — = = = — — — — >[M,P]

with exact columns, where u(H®g + f®K) = g1H + K fy. It also shows that the functor B-Mod — B-Mod..

is linear. Since this functor is the identity on objects, it follows that the homotopy category is additive.
Now note that both functors ng, 71 factor to define functors on B-Mod.. Since these functors are

evidently additive, it follows that D = Hom,,g(mo, 7r1) is a biadditive bifunctor. O

(1.1.9) Lemma. If M is a free B-module, then the canonical map
[M, N] - Homy,g(moM, moN)
is an isomorphism for any B-module N.

Proor. Let (gi)ici be a free generating set for M. Given a 7ro(B)-equivarianthomomorphism f : oM —
moN, define its lifting f to M by specifying f(gi) = ni, with n; chosen arbitrarily from the class f([gi]) =
[ni].

To show monomorphicity, given f : M — N such that 7o f = 0, this means that im fy c im g, so we
can choose H(g;) € N; in such a way that dH(g;) = fo(gi). This then extends uniquely to a Bo-module
homomorphism H : My — N; with dH = fy; moreover any element of M; is a linear combination of
elements of the form b, g; with by € By, and for these one has HA(b1gi) = H(d(b1)gi) = d(b1)H(gi). But
f1(010i) = b1 fo(gi) = b1oH(gi) = d(b1)H(gi) too, so HA = f;. This shows that f is nullhomotopic. m|

1.2. X-structure

(1.2.1) Dernimion. The suspension X of a graded object X = (X"),¢z is given by degree shift, (ZX)" =
X1,

Let T : X — XX be the map of degree 1 given by the identity. If X is a left A-module over the graded
algebra A then =X is a left A-module via
(1.2.2) a-xx = (-1)P¥x(@- x)
fora € A, x € X. On the other hand if X is a right A-module then (£x) - a = Z(x - a) yields the right
A-module structure on £X.

(1.2.3) DerniTioN. A Z-module is a graded pair module X = (9 : X; — Xg) together with an isomor-

phism
o mX = XX

of graded k-modules. We then call o a Z-structure of X. A Z-map between Z-modules is a map f between
pair modules such that o-(m1 f) = Z(mo f)o. If X is a pair algebra then a Z-structure is an isomorphism of
moX-moX-bimodules. If X is a left module over a pair algebra B then a Z-structure of X is an isomorphism
o of left moB-modules. Let

(B-Mod)* c B-Mod
be the track category of B-modules with Z-structure and Z-maps.

(1.2.4) Lemma. Suspension of a B-module M has by (1.2.2) the structure of a B-module and XM has a
X-structure if M has one.

Proor. Given o : m1M = XmrgM one defines a X-structure on M via

TEM = S M 25 S520M = S10EM.
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Hence we get suspension functors between track categories

B-Mod ——=—> B-Mod

T |

(B-Mod)* —— (B-Mod)~.

(1.2.5) LemmMa. The track category (B—Mod)® is L-additive in the sense of [4], with L = =72, or as
well R-additive, with R = X.

Proor. The statement of the lemma means that the bifunctor
D(M, N) = AUt(OM,N)

is either left- or right-representable, i. e. there is an endofunctor L, respectively R of (B-Mod)* and a
binatural isomorphism D(M, N) = [LM, N], resp. D(M, N) = [M,RN].

Now by (1.1.7), atrack in Aut(Om ) is a Bo-module homomorphism H : My — Nj with dH = H9 = 0;
hence

D(M, N) = Hom,,g(moM, 71N) = Hom,, g(7oX* M, 7oN) = Hom,,g(moM, mEN).

(1.2.6) Lemma. If B is a pair algebra with Z-structure then each free B-module has a Z-structure.

Proor. This is clear from the description of free modules in 1.1.6. O

1.3. The secondary differential over pair algebras

For a pair algebra B with a X-structure, for a *-module M over B, and a module N over B we now
define the secondary dijferential

do : EXtQOB(ﬂo M, moN) — EXtQ:é(ﬂ'oM,ﬂlN).

Here d) = d)(M, N) depends on the B-modules M and N and is natural in M and N with respect to maps
in (B-Mod)>. For the definition of d») we consider secondary chain complexes and secondary resolutions.
In [4] such a construction was performed in the generality of an arbitrary L-additive track category. We
will first present the construction of d(y) for the track category of pair modules and then will indicate how
this construction is a particular case of the more general situation discussed in [4].

(1.3.1) DeriniTiON. For a pair algebra B, a secondary chain complex M, in B-M od is given by a diagram
of the form

Ons11 G141

Mhn2,1 Mhn1,1 Mn-1.1
Hni1
n+ [)mz/ \Lan 1
Mn+20 Mn+1,0 Mn-1,0
-1,0

where each M, = (6p : M1 — Mn,o) is a B-module, each d, = (dn,o, dn1) is @ morphism in B-Mod, each
Hn is Bo-linear and moreover the identities

dn,0dn+1,0 = 6an
dn,1dn+1,1 = Hnons2

and

Hndn+2,0 = dn,l Hn+1

hold for all n € Z. We thus see that in this case a secondary complex is the same as a graded version of a
multicomplex (see e. g. [13]) with only two nonzero rows.
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One then defines the total complex Tot(M,) of the form
(dn—l.o _3nfl ) (dn,o _an )

Hn2 —0n-21 Hn1 —Onh-11
e My 0®Mpg1 ¢———— Mpo® Mp_11 ¢——— Mpy100 Mp1 « ...
Cycles and boundaries in this complex will be called secondary cycles, resp. secondary boundaries of
M.. Thus a secondary n-cycle in M, is a pair (c,y) with ¢ € Mno, ¥ € Mn_11 such that dn_10C = dn-17,
Hn-2C = dn—217y and such a cycle is a boundary iff there exist b € Mp,10 and 8 € Mp; with ¢ = dpob + 9,8
andy = Hp_1b+dn-1,18. A secondary complex M, is called exact if its total complex is, that is, if secondary
cycles are secondary boundaries.

Let us now consider a secondary chain complex M, in B-Mod. It is clear then that

7o0n41 700 700h-1
moM, : o > 1oMpyo — 1oMpy1 — 1My —— 7pMp_1 — ...

is a chain complex of 7oB-modules. The next result corresponds to [4, lemma 3.5].

(1.3.2) ProposiTion. Let M, be a secondary complex consisting of £-modules and X-maps between
them. If 7o(M.,) is an exact complex then M, is an exact secondary complex. Conversely, if 7gM, is
bounded below then secondary exactness of M, implies exactness of 7o M,.

Proor. The proof consists in translating the argument from the analogous general statement in [4] to
our setting. Suppose first that oM, is an exact complex, and consider a secondary cycle (c,y) € Mo ®
Mn-11, i. €. one has dn_1,0C = dn-1y and Hp_2C = dn_2.1y. Then in particular [c] € moMp is a cycle, so there
exists [b] € moMn.1 with [c] = mo(dn)[b]. Take b € [b], then ¢ — d,ob = 948 for some 8 € Mp,1.1. Consider
6= Y_Hn—lb_dn—l,l,g- One has 0p16 = On-1Y—0n-1 Hn—lb_an—ldn—l,lﬂ = dn—l,OC_dn—l,Odn,Ob_dn—l,Oan,B =
0, so that ¢ is an element of 11 M,,. Moreover dn-216 = dn-21y — dn-2.1Hn-1b — dn-210n-118 = Hn-2C —
Hn-2dnob — Hn—20r8 = 0, i. €. § is a cycle in 1 M,. Since by assumption oM, is exact, taking into account
the Z-structure 71 M, is exact too, so that there exists € 71 Mp with § = dn_1.1%. DefineB =B+ . Then
dnob+3n8 = dnob+8,8 = csince ¢ € ker d,. Moreoverdy_118 = dn_1.18+0n_1.1¢ = dn_118+6 = y—Hn_1b,
which means that (c, y) is the boundary of (b, 5). Thus M, is an exact secondary complex.

Conversely suppose M, is exact, and oM, bounded below. Given a cycle [c] € mo(My), represent it by
ac € Mpo. Then modn-1[c] = 0 implies dn-1,0C € imdn_1, so there is ay € M_11 such that d_1,0C = dn-17.
Consider w = dn,g,ly —Hn-2c. One has On—2w = 6n,2dn,2,1’y — On—2Hn2C = dnfz,oanfl’y - dnfg,odnfl,oC =0,
i. e. wis an element of 71 M,_,. Moreover dn,3,1w = dn,3,1dn,2,1’y— dn,3,1Hn,QC = Hn,38n,1y— Hn,3dn,oC =
0, s0 w is a n—2-dimensional cycle in 71 M,. Using the Z-structure, this then gives a n—3-dimensional cycle
in moM,. Now since oM, is bounded below, we might assume by induction that it is exact in dimension
n — 3, so that w is a boundary. That is, there exists @ € 71Mp_; with dp210 = w. Definey = y — a;
then one has dn-21y = dn-21y — dn—21@ = dn_21yY — w = Hp_2C. Moreover d,_1y = dn-1y = dn-1,0C Since
a € ker(@)n— 1. Thus (c, ) is a secondary cycle, and by secondary exactness of M, there exists a pair
(b, B) with ¢ = dnob + 848 Then [c] = mo(dn)[b], i. €. ¢ is a boundary. m]

(1.3.3) DermnrTion. Let B be a pair algebra with Z-structure. A secondary resolution of a -module
M = (8 : My — M) over B is an exact secondary complex F, in (B—Mod)* of the form

Fa1 & Fa1 du F1 do For ——= M 0 0
3 2 1 0
8
Fso Fao Fio Foo —— Mo 0 0
dzo le dOO 0

where each F, = (8, : Frp — Fno) is a free B-module.

It follows from 1.3.2 that for any secondary resolution F, of a B-module M with Z-structure, moF. will
be a free resolution of the moB-module oM, so that in particular one has

Ext} g(7oM, U) = H" Hom(moF., U)

for all n and any moB-module U.
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(1.3.4) DermniTion. Given a pair algebra B with Z-structure, a -module M over B, a module N over B
and a secondary resolution F, of M, we define the secondary differential

d) 1 Ext} ' s(moM, moN) — Ext™2(oM, 11N)

ﬂgB

in the following way. Suppose given a class [c] € ExtQOB(noM,nON). First represent it by some element
in Hom,,g(moFn, 7oN) which is a cocycle, i. e. its composite with 7g(dp) is 0. By 1.1.9 we know that the
natural maps

[Fn, N] - Hom,rOB(ﬂ'oF,n'oN)
are isomorphisms, hence to any such element corresponds a homotopy class in [F,, N] which is also a

cocycle, i. e. value of [dn, N] on it is zero. Take a representative map ¢ : F,, — N from this homotopy class.
Then cdpy, is nullhomotopic, so we can find a Bo-equivariant map H : Fn,10 — Nj such that in the diagram

Ons11 On1
Fni21 —= Fni11 Fn1

Ons2
dn+1 dn

Fn20 - Fn+1o

C1

one has codnp = dH, c1dn1 = Hne1 and dc; = codn. Then taking I' = ciHp — Hdyi10 0ONne has dI" = 0,
I'Ons2 = 0,50 T determinesa map I : coker dny2 — Kkerd, i. e. from moFn2 to myN. Moreoverl";ro(dmg) =
0, so itis a cocycle in Hom(mo(F.), 71N) and we define

dlc] = [T] € Ext¥*3(moM, 71N).

(1.3.5) DerNiTioN. Let M and N be B-modules with X-structure. Then also all the B-modules Z*M,
YN have Z-structures and we get by 1.3.4 the secondary differential

d(z)(M,sz)

Ext} g(moM, moZ*N) EXtI*3(moM, 11 2¥N)

Ext?. 5(7oM, Z510N) d Ext™Z(1oM, Z17oN).

In case the composite

Ext? 3 (oM, ¢ 1oN) 94 Ext? " s(moM, KNy S EXtI*3 (oM, 1 7oN)
vanishes we define the secondary Ext-groups to be the quotient groups
Ext3(M, N)¥ := kerd/imd.

(1.3.6) Tueorem. For a X-algebra B, a B-module M with X-structure and any B-module N, the sec-
ondary differential d) in 1.3.4 coincides with the secondary differential

de) : EXtI(M, N) — Ext*2(M, N)
from [4, Section 4] as constructed for the L-additive track category (B—Mod)* in 1.2.5, relative to the
subcategory b of free B-modules with a = b...

Proor. We begin by recalling the appropriate notions from [4]. There secondary chain complexes A, =
(An, dn, dn)nez are defined in arbitrary additive track category B. They consist of objects An, morphisms
dn : Anr1 — Anand tracks 6, @ dpdner = Oa, A, N € Z, such that the equality of tracks

5ndn+2 = dn5n+1

holds for all n. For an object X, an X-valued n-cycle in a secondary chain complex A, is defined to be a
pair (c, ) consisting of a morphismc : X — Ap and a track y : dn_1¢ = Oxa, , such that the equality of
tracks

On-2C = dn2y
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is satisfied. Such a cycle is called a boundary if there existsamap b : X —» An;p andatrack8: ¢ = dyb
such that the equality
¥ = 6n-1body_18

holds. A secondary chain complex is called X-exact if every X-valued cycle in it is a boundary. Similarly it
is called b-exact, if it is X-exact for every object X in b, where b is a track subcategory of B. A secondary
b-resolution of an object A is a b-exact secondary chain complex A, with A, = 0 forn < -1, A_; = A,
An € b forn # —1; the last differentials will be then denotedd_; = e : Ag = A, 6_1 = € : edy — 0a, 4 and
the pair (e, €) will be called augmentation of the resolution. It is clear that any secondary chain complex
(A.,d., d,) in B gives rise to a chain complex (A., [d.]), in the ordinary sense, in the homotopy category
B.. of B. Moreover if B is Z-additive, i. e. there exists a functor £ and isomorphisms Aut(0Oxy) = [ZX, Y],
natural in X, Y, then b-exactness of (A., d., d.) implies b..-exactness of (A., [d.]) in the sense that the chain
complex of abelian groups [X, (A.,[d.])] will be exact for each X € b. In [4], the notion of b..-relative
derived functors has been developed using such b..-resolutions, which we also recall.

For an additive subcategory a = b.. of the homotopy category B.., the a-relative left derived functors
L2F, n > 0, of a functor F : B. — &/ from B.. to an abelian category <7 are defined by

(LAF)A = Ha(F(AL)),

where A, is given by any a-resolution of A. Similarly, a-relative right derived functors of a contravariant
functor F : B® — o7 are given by

(RIF)A = H"(F(A.)).
In particular, for the contravariant functor F = [_, B] we get the a-relative Ext-groups
Extz(A, B) := (Ri[- BD)A = H"([A., B])

for any a-exact resolution A, of A. Similarly, for the contravariant functor Aut(0_g) which assigns to an
object A the group Aut(0a g) of all tracks « : 0ag = 0a g from the zero map A — « — B to itself, one gets
the groups of a-derived automorphisms

Autl(A, B) := (R Aut(0_g))(A).

It is proved in [4] that under mild conditions (existence of a subset of a such that every object of ais a
direct summand of a direct sum of objects from that subset) every object has an a-resolution, and that the
resulting groups do not depend on the choice of a resolution.

We next recall the construction of the secondary differential from [4]. This is the map of the form

de) : Ext}(A, B) - Aut)(Oag);

it is constructed from any secondary b-resolution (A., d, ., €, €) of the object A. Given an element [c] €
Ext](A, B), one first represents it by an n-cocycle in [(A., [d.]), B], i. e. by a homotopy class [c] € [An, B]
with [cdn] = 0. One then chooses an actual representative ¢ : A, — B ofitinB and atracky : 0 = cd,.
It can be shown that the composite track I' = cdnoydne1 € Aut(Oa,,, s) satisfies I'dp g = 0, so it is an
(n + 2)-cocycle in the cochain complex Aut(O¢a, [d.1).8) = [(ZA., [2d.]), B], so determines a cohomology
class d(2)([c]) = [I'] € ExtI*2(ZA, B). It is proved in [4, 4.2] that the above construction does not indeed
depend on choices.

Now turning to our situation, it is straightforward to verify that a secondary chain complex in the sense
of [4] in the track category B-Mod is the same as the 2-complex in the sense of 1.3.1, and that the two
notions of exactness coincide. In particular then the notions of resolution are also equivalent.

The track subcategory b of free modules is generated by coproducts from a single object, so b..-
resolutions of any B-module exist. In fact it follows from [4, 2.13] that any B-module has a secondary
b-resolution too.

Moreover there are natural isomorphisms

AU'[(OM,N) = Homnog(ﬂo M, 71 N).

Indeed a track from the zero map to itself is a Bo-module homomorphism H : Mg — N; with 6H = 0,
Ho = 0, so H factors through My - moM and over 73N > Nj.
Hence the proof is finished with the following lemma. O
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(1.3.7) Lemma. For any B-modules M, N there are isomorphisms
Exta(M, N) = Ext] 5(moM, 1oN)

and
(Ra(Hom(mo(-), 71N)))(M) = Ext] g(moM, 71N).

Proor. By definition the groups Ext;(M, N), respectively (R3(Homg, (7o(-), 71N)))(M), are cohomol-
ogy groups of the complex [F., N], resp. Hom, g(mo(F.), 71N), where F, is some a-resolution of M. We
can choose for F, some secondary b-resolution of M. Then noF, is a free moB-resolution of 7oM, which
makes evident the second isomorphism. For the first, just note in addition that by 1.1.9 [F,, N] is isomor-
phic to Homg, (7o(F.), moN). O






CHAPTER 2

The pair algebra % of secondary cohomology oper ations

The algebra % of secondary cohomology operations is a pair algebra with X-structure which as a Hopf
algebra was explicitly computed in [3]. In particular the multiplication map A of % was determined in [3]
by an algorithm. In this chapter we recall the topological definition of the pair algebra 28 and the definition
of the multiplication map A. The main results of this work will provide methods for the computation of A
or its dual multiplication map A.. In terms of A we express the secondary Ext-groups Extg over the pair
algebra 4. This yields the computation of the E3-term of the Adams spectral sequence in the next chapter.

2.1. Thetrack category of spectra

In this section we introduce the notion of stable maps and stable tracks between spectra. This yields
the track category of spectra. See also [3, section 2.5].

(2.1.1) DeriniTioN. A spectrum X is a sequence of maps
Xi —r> QXi+1, ieZ

in the category Top* of pointed spaces. This is an Q-spectrum if r is a homotopy equivalence for all i.
A stable homotopy class f : X — Y between spectra is a sequence of homotopy classes f; € [Xi, Y]
such that the squares

Xi %Yi

l/r lr
in+1

QXijy1 —— Qi1

commute in Top*.. The category Spec consists of spectra and stable homotopy classes as morphisms. Its
full subcategory Q-Spec consisting of Q-spectra is equivalent to the usual homotopy category of spectra
considered as a Quillen model category.

A stablemap f = (fj, fi)i : X — Y between spectra is a sequence of diagrams in the track category
[Top*]l (i € Z)

Xi i Yi

l 7 l

QX1 ?Hl)' QY1

Obvious composition of such maps yields the category

[Specy -

It is the underlying category of a track category [Spec] with tracks (H : f = g) € [Spec], given by
sequences

Hiifi=>gi

11
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of tracks in Top* such that the diagrams

>(i f YI
r f,~/7| r
in+
QXHl - QYi+1
Qgi+1

paste to §;. This yields a well-defined track category [[Spec]. Moreover

[Spec].. = Spec

is an isomorphism of categories. Let [X, Y] be the groupoid of morphisms X — Y in [Spec], and let
[[X,Y]]‘{ be the set of pairs (f,H) where f : X — Y isamapand H : f = Oisatrack in [Spec],i.e. a
stable homotopy class of nullhomotopies for f.

For a spectrum X let %X be the shifted spectrum with (ZXX), = Xn.x and the commutative diagram

E*X)n ——= QE*X)ns1

Xnsk — s Q(Xn+k+1)

defining r for =KX. Amap f : Y — XXX is also called a map f of degree k from Y to X.

2.2. Thepair algebra % and secondary cohomology of spectra asa %-module

The secondary cohomology of a space was introduced in [3, section 6.3]. We here consider the corre-
sponding notion of secondary cohomology of a spectrum.
Let F be a prime field F = Z/pZ and let Z denote the Eilenberg-Mac Lane spectrum with

Z" = K(F,n)

chosen as in [3]. Here Z" is a topological F-vector space and the homotopy equivalence Z" — QZ™?! is

F-linear. This shows that for a spectrum X the sets [ X, 2Z | , and [. 2"2]]:, of stable maps and stable
0-tracks repectively, are F-vector spaces.

We now recall the definition of the pair algebra 4 = (0 : %1 — %) of secondary cohomology
operations from [3]. Let G = Z/p?Z and let

o =Ts(Ew)

be the G-tensor algebra generated by the subset

£ {Sql,qu,...} for p = 2,
[P P2 L us.aPh. B2, .} forodd p
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of the mod p Steenrod algebra <. We define %, by the pullback diagram of graded abelian groups
P4

B, — 12,2219

)
(2.2.1) al a
By —= 2,2 Zlo

o

in which the right hand column is an exact sequence. Here we choose for @ € E ., a stable map s(a) :
Z — Y47 representing « and we define s to be the G-linear map given on monomials a; - - - a, in the free
monoid Mon(E ) generated by E ., by the composites

s(a1---an) = s(az) -+ - s(an).
Itis proved in [3, 5.2.3] that s defines a pseudofunctor, that is, there is a well-defined track
I':s(a-b)= s(a)osh)
for a,b € %, such that for any a, b, ¢ pasting of tracks in the diagram

s(a-b-c)
s(a-h) of
rf}
s@) s(b) s(0)
Jr
s(b-c)
Jr
s(a-b-c)

yields the identity track. Now 2 is a %y-%-bimodule by defining
a(h,z2)=(a-h,ae2)

with a e z given by pasting s(a)z and I'. Similarly
(b,2Ja=(b-a,zea)

where z e a is obtained by pasting zs(a) and I'. Then it is shown in [3] that Z = (0 : %1 — %) is a
well-defined pair algebra with 702 = <7 and Z-structure m1.% = .o/ .
For a spectrum X let
A (X)o = %o [X.2°Z]
be the free %y-module generated by the graded set [ X, Z*Z]y. We define .72(X)1 by the pullback diagram

ZH*X
H(X)1 —= [X.TZI}

H(X)o — [X.Z*ZIo

H*X
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where s is the G-linear map which is the identity on generators and is defined on words a; - --a, - u by
the composite s(ay) - - - s(an)s(u) for a; as above and u € [X,X*Z]lp. Again s is a pseudofunctor and with
actions e defined as above we see that the graded pair module
a
HX) = (#0015 /(X))

is a ##-module. We call 7 (X) the secondary cohomology of the spectrum X. Of course 7 (X) has a
¥-structure in the sense of 1.2.3 above.

(2.2.2) ExampLE. Let G* be the Z-module given by the augmentation 2 — G* in [3]. Recall that G*
is the pair

G* = (]F osF % G)
with 3z the inclusion nad d|sx = 0. Then the sphere spectrum S © admits a weak equivalence of %-modules
VACH X
Compare [3, 12.1.5].



CHAPTER 3

Computation of the Ez-term of the Adams spectral sequence asa
secondary Ext-group

We show that the Es-term of the Adams spectral sequence (computing stable maps in {Y, X},) is given
by the secondary Ext-groups
Es(Y, X) = Extg(JX, SY).

Here J#X is the secondary cohomology of the spectrum X which is the %-module G* if X is the sphere
spectrum S°. This leads to an algorithm for the computation of the group

Es(S°,8°) = Ext»(G*, G%)
which is a new explicit approximation of stable homotopy groups of spheres improving the Adams approx-
imation
E2(S% S°) = Ext (F,F).

An implementation of our algorithm computed E3(S°, S©) by now up to degree 40. In this range our results
confirm the known results in the literature, see for example the book of Ravenel [16].

3.1. TheEsz-term of the Adams spectral sequence

We now are ready to formulate the algebraic equivalent of the E3-term of the Adams spectral sequence.
Let X be a spectrum of finite type and Y a finite dimensional spectrum. Then for each prime p there is a
spectral sequence E.. = E.(Y, X) with
E. = [Y,ZX]p
E, = Exty (H*X, H*Y).
(3.1.1) THeorem. The Es-term Ez = E3(Y, X) of the Adams spectral sequence is given by the secondary
Ext group defined in 1.3.5
Es = Extg (77X, 77Y).

(3.1.2) CororrLary. If X and Y are both the sphere spectrum we get
E3(S° S%) = Exts(G*, GY).
Since the pair algebra 2 is computed in [3] completely we see that E3(S°, S°) is algebraically deter-

mined. This leads to the algorithm below computing E3(S°, S©).
The proof of 3.1.1 is based on the following result in [3]. Consider the track categories

b c [[Spec]

b’ c (A-Mod)*
where [[Spec] is the track category of spectra in 2.1.1 and (%—Mod)* is the track category of Z-modules
with X-structure in 1.2.3 with the pair algebra % defined by (2.2.1). Let b be the full track subcategory of
[Spec] consisting of finite products of shifted Eilenberg-Mac Lane spectra £Z*. Moreover let b’ be the

full track subcategory of (%-Mod)* consisting of finitely generated free %-modules. As in [4, 4.3] we
obtain for spectra X, Y in 3.1.1 the track categories

{Y, X}b c [[Spec]
b'{AX, Y} c (B-Mod)*

15
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with {Y, X}b obtained by adding to b the objects X, Y and all morphisms and tracks from [ X, Z], [Y, Z] for
all objects Z in b. It is proved in [3, 5.5.6] that the following result holds which shows that we can apply
[4,5.1].

(3.1.3) Tueorem [3]. There is a strict track equivalence
(Y, X}b)® = b'{H#X, HY).
m}

Proor or 3.1.1. By the main result 7.3 in [4] we have a description of the differential d(y in the Adams
spectral sequence by the following commutative diagram

d
EXtp (X, )™ ———2—= ExtH?(X, Y)™1

a’P

d
EXtZ{(H*X, H*Y)m $ EXtr;Z(H*X, H*Y)n’Hl

where a = b.. On the other hand the differential d() defining the secondary Ext-group Extz (X, °Y)
is by 1.3.6 given by the commutative diagram

EXt) (X, YY" —— EXXI2(AXK, Y )™

Ext], (H*X, H*Y)™ —— Ext™?(H*X, H*Y)™1

where & = b’.. Now [4, 5.1] shows by 3.1.3 that the top rows of these diagrams coincide. m|

3.2. Thealgorithm for the computation of d(;) on Ext., (F, F) in termsof the multiplication maps

Suppose now given some projective resolution of the left .&7-module F. For definiteness, we will work
with the minimal resolution

(3.2.1) Fe o () « o (g7 In>0) « o/ (g3 |1i- jl#1) « ...

where g9, d > m, is a generator of the m-th resolving module in degree d. Sometimes there are more than

one generators with the same m and d, in which case the further ones will be denoted by ‘g9, g, - --.

These generators and values of the differential on them can be computed effectively; for example,
d(g?") = Sg*" g and d(gT) = Sqg* g™ }; moreover e. g. an algorithm from [9] gives
d(g3) = Sa 93 + So” g
d(3) = Sq* g; + Sq” Sa* o + Sa* 9
d(3) = Sa° g7 + (Sq* + Sq” Sa')gt
d(g3) = S g7 + (So° + Sq* Sq*)g7 + Sq' o}
d(g5°) = (Sa® +Sq° Sa” Sq*)gf + (Sa° Sq* + Sq* Sa?)gi + So? of
d(93") = (Sq™ +Sq” So” Sq* + Sa® Sq° Sq')g7 + (Sa® + Sa” Sa* + S¢° Sg*)g}
d(g3) = Sq* g5 + Sa’ g; + Sa' g5
d(g3”) = Sa® g + (Sq° + Sq* Sa*)g3 + Sq* g3
d(g3") = (Sq” +Sq* S¢* Sq*)g3 + Sa° g5 + S4” Sq' g
d(g5?) = Sq° g5 + (Sa° Sa* +Sq° Sa*)g5 + (Sq* + Sa® Sq*)g5 + Sa° g3 + S’ g°

)
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d(g3h) = Sa® g3 + (So® + Sq* Sa™)gs + Sq' g3’

d(g5%) = Sq® Sq? g + (Sq7 + Sq* S Sq*)gf + Sa? Sa* gi° + Sa? g3t
d(gs") = Sq'° g3 + Sa° Sq* g5

d(gs®) = Sa*? g3 + Sq* sq* g5 + So° g5

d(gz®) = Sa™ g2 + Sq? g’

etc.

By understanding the above formula literally (i. e. by applying y degreewise to them), each such
resolution gives rise to a sequence of %-module homomorphisms
(3.2.2) G* « Z(h) « B(g In>0) « B(Z* |li-jl#1) ..

which is far from being exact — in fact even the composites of consecutive maps are not zero. In more
detail, one has commutative diagrams

ZG € Rogggg T
G~ &% 0
in degree 0,
08 1 40 00 _0) o 1

F=— RK@QO @ o Og=<— R(@gl <~ Q=

I T

0 Biad BG ~— 0 ~— -
in degree 1,

R ©
0~—RLQ0®.arlg) <20 (RL, 0% @ R%,0%) © g} <— R%,03

] | |

d
0 B39 By91 © B0 Zih

OoO<—0

in degree 2, ...

(d 0) i i i o
0 ~— R0 ® " 1gf <= Py, R ¢ © Dy 9" ~—— -

_— |

0 2% Dy 2570

in degree n, etc.
Our task is then to complete these diagrams into an exact secondary complex via certain (degree
preserving) maps

6R
Om = (6;) : Bo <g”,m2 | n> - Rz®ZH)(gnmINn).
m

Now for these maps to form a secondary complex, according to 1.3.1.1 one must have 96 = dodo,
60 = didp, and di16 = 6dg. One sees easily that these equations together with the requirement that 6 be left
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HBp-module homomorphism are equivalent to

(3.2.3) oR = dd,
(3.24) 67 (bg) = n(b)6” (g) + A(x(b), dd(g)),
(3.2.5) ds“ = 67d,

forb € %y, g one of the g}, and A(a, rg) := A(a, r)g fora € &7, r € Rg. Hence § is completely determined
by the elements

(3.2.6) 53 (@) € D o™ (gk)
k

which, to form a secondary complex, are only required to satisfy
A6 (Ome2) = 0 1d(Rc0):
where on the right 627, is extended to %, (g;‘ml> via 3.2.4. Then furthermore secondary exactness must
hold, which by 1.3.1 means that the (ordinary) complex
— By (Gn1) © Rz © ) (G o) — Bo(G) © Res @ 27) (U1 ) — Bo (Gine) @ Rz © Z7) (G

with differentials

(5 % 8 ) 20 {2 0 Ros (G} 02 (Gs) = 0 () 0 Res (G 0 27 (02

is exact. Then straightforward checking shows that one can eliminate R  from this complex altogether, so
that its exactness is equivalent to the exactness of a smaller complex

B0 (U 1) @ T (U o) — Bo (@) @ T (Ui 1) — B (Giner) © T (@) —
with differentials
(%t ) o (Gnea) @2 (Ginr) = Zo (Grner) © T (G -
Note also that by 3.2.4 5 factors through = to give
S (Ghnra) = T (G-
It follows that secondary exactness of the resulting complex is equivalent to exactness of the mapping cone

of this 6, i. e. to the requirement that § is a quasiisomorphism. On the other hand, the complex (< {(g), d.)
is acyclic by construction, so any of its self-maps is a quasiisomorphism. We thus obtain

(3.2.7) Tueorem. Completions of the diagram 3.2.2 to an exact secondary complex are in one-to-one
correspondence with maps 6m : o7 (gy,,) — T/ (g satisfying

(3.2.8) ddg = édg,

with §(ag) for a € o7 defined by
6(ag) = as(g) + A(a, ddg)
where A(a, rg) for r € Rg is interpreted as A(a, r)g.

m]
Later in chapter 9 we will need to dualize the map 6. For this purpose it is more convenient to refor-
mulate the conditions in 3.2.7 above in terms of commutative diagrams.

Let
W, = P wy
>0

denote the free graded G-module spanned by the generators g?,, so that we can write
Zo (0} | 0> 0) = By W,
The differential in the %-lifting of (3.2.1), being %-equivariant, is then given by the composite

1d mel
o ®Wp+1 — By @ Ay ®Wp —_— @o@Wp,
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where
d: Wp+1 e @0 ®Wp

is the restriction of this differential to the generators. As a linear operator, this d is given by the same
matrix as the one giving the operator of the same name in (3.2.1), i. e. it is obtained by applying the map y
componentwise to the latter.

Moreover let us denote

so that similarly to the above the differential of (3.2.1) itself can be given by the same formula, with <7 in
place of %, and ¥} in place of %,. Then by 3.2.7 the whole map & is determined by its restriction

67 V2 = T @V,
(cf. (3.2.6)). Indeed 3.2.7 implies that ¢ is given by the sum of the two composites in the diagram

A LA @V

y m\

M%

o @Rz ® Vp
Here we set ¢ = dd ® F, where the map dd is the composite
d led me1
Wp+2 — Ay ®Wp+1 — By Ay ®Wp — %y ®Wp

whose image, as we know, lies in

In other words, there is a commutative diagram

By ® Wp+1 1ed By ® By ® Wp
/ &
Wp+2 - Py ® WP
(3.2.10) i e
dd” =~
S
A

Then in terms of the above diagrams of F-vector spaces, the condition of 3.2.7 can be expressed as
follows:

(3.2.11) CororLarY. Completions of 3.2.2 to a secondary resolution are in one-to-one correspondence
with sequences of maps

67 Vp2 > T ®Vp, p>0
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making the diagrams below commute, with ¢ defined by (3.2.10).

S @Vpy 2 S @ o @V,

sof
y &

(3.2.12) Vpis 7 ®Rz&Vy L2 =3/ 0V,

ﬂ@sz —>£7®2J27®Vp
1e6g”

m]

We can use this to construct the secondary resolution inductively. Just start by introducing values of
& on the generators as expressions with indeterminate coefficients; the equation (3.2.8) will impose linear
conditions on these coefficients. These are then solved degree by degree. For example, in degree 2 one
may have

8(93) = 75(Sq") Sq* g
for some ng(Sql) € .%. Similarly in degree 3 one may have
5(93) = m3(Sa") Sq* 07 + 13(1)gz.
Then one will get
da(g3) = n3(Sa*) Sq* d(g1) + n3(1)d(g) = 73(Sa") Sa Sq* g + n3(L) Sa” g = 13(1) So”
and

6d(g3) = 6(Sq* g2)
= Sq' 6(g3) + A(Sq*, dd(g3)) = n5(Sa™) Sa* St g + A(Sat, d(Sqt g1)) = A(Sa?, Sqt St gf) = 0;

thus (3.2.8) forces 73(1) = 0.

Similarly one puts 6(9%) = Ym 2<d<d-1 Lanh(@)agd ,, with a running over a basis in 791, and
then substituting this in (3.2.8) gives linear equations on the numbers »9,(a). Solving these equations and
choosing the remaining »’s arbitrarily then gives values of the differential § in the secondary resolution.

Then finally to obtain the secondary differential

dg) @ Ext? (F,F)™ — Ext™?(F, F)™*!

from this 6, one just applies the functor Hom (-, F) to the initial minimal resolution and calculates the map
induced by 6 on cohomology of the resulting cochain complex, i. e. on Ext’,(F,F). In fact since (3.2.1) is
a minimal resolution, the value of Hom _, (_, F) on it coincides with its own cohomology and is the F-vector
space of those linear maps <7 (g:) — F which vanish on all elements of the form ag: with a of positive
degree.

Let us then identify Ext’,(F,F) with this space and choose a basis in it consisting of elements §¢,
defined as the maps sending the generator g9 to 1 and all other generators to 0. One then has

(do @)@ = G76(gm).
The right hand side is nonzero precisely when g9, appears in 6(gﬁ;) with coefficient 1, i. e. one has

(3.2.13) da@n = >, G

g9, appears in 6(g%L

For example, looking at the table of values of & below we see that the first instance of a g4 appearing
with coefficient 1 in a value of § on a generator is

8(93") = 91° + Sa'? g7 + Sa™° Sq” gZ + (So° Sq* Sg? + Sa™° Sq° + Sq** Sgt)gy.
This means
d)(@1°) = 65’
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and moreover d)(§%) = 0 for all g¢ with d < 17 (one can check all cases for each given d since the number
of generators g4, for each given d is finite).

Treating similarly the rest of the table below we find that the only nonzero values of d(,) on generators
of degree < 40 are as follows:

Ol(z)(@i6 = @%7
d(2)(@41) = ggz
doy(87°) = @g?’
d(z)(@?’) = 9;4
d(Z)(gZ’O) = @gl
d(Z)(@gl) = g%’é
d(Z)(@%Z) = gg
d(z)(@%"") = @f;
0@y =%
@9 =4
do(G3) =6
d(z)(@g4) = @%8
do) (%) = @27
dy(@3) = 875

These data can be summarized in the following picture, thus confirming calculations presented in Ravenel’s
book [16].

m
........................ ° -
...................... ° °
.................. °o - ® 00 .
................. o0 . @\:@\:& o)
................ Y e - G)s.@@ o\e @
.............. o - 0 . ° . ) [
.......... o ...@.....\@..\@ \@...
......... o0 . 00 0 0 e . - . -0 . 000
........ ® - 0 . 0% .\O\O o0 - 00 . - . . . 0% . 0.
...... CE ) o0 0% ° ee® - - . . . .0\00060 -
° oo e o e o060 - @ - - . - . . .. @\-oo-
o0 eeoee@® . - . . . e\0 o @ « ¢ o e e e e e e e .\2. e -
° ° I T T I L L d_m

3.3. Thetable of values of the differential ¢ in the secondary resolution for G*

The following table presents results of computer calculations of the differential 5. Note that it does
not have invariant meaning since it depends on the choices involved in determination of the multiplication
map A, of the resolution and of those indeterminate coefficients 19,(a) which remain undetermined after the
conditions (3.2.8) are satisfied. The resulting secondary differential d(»y however does not depend on these
choices and is canonically determined.
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693 =0
5@} =0
5(g;) =0
5(g;) =0
6(92) =0
5(95) =0
5(93) =5q*gl
6(96) =
s@) =0
593 =0
5(gg) =0
6(92) =0
6(99) =0
59 =0
6(93°) = (Sq*So?Sq' +Sq)g?
+50° gf

5019 =0
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8(g3h) = (sq’ Sqt +Sqf)g?

+59° Sg® g7
89k =So° g}
+5q" Se? g5
s(gihy =0
6(9%?) =5q’Sq’gl
5(g13) =0
89 =Sq'dd
+(Sq” + Sq° Sq°)g3
+(Se® + Sa° Sa?)g;
+(Sq” Sq® + Sg? Sg? + Sg°)g3
s(013) =0
5(0s") = Sa*Sq?Sq' g3
+(Sq” S + Sq® S¢?)g3
5(g3) =0
5(9) =0
8(95°) =Sq° g3’
+ Sq4 gél
+Sg° gif
+5q"° Sq” 0
5 =0
5(g;) =0
8(g3) =g
+S0* gf
+5q"°Sq* o

+(Sq” Sg* S + Sg™° Sq® + Sg™ Sg*)g!
898 = (Sq° +Sq* sgh)glt
+(Sg™ + g™ Sq?)g;

6(g3%) =0
6(928) = (9™ Sq* + S¢® Sq* Sq° Sql)gg
+(Sq™ Sg* Sq? + Sg™ Sq° + Sg™ Sq* + Sg™ Sg? + Sg'°)gt
6(g5%) = (Sq°Sq* +Sq")gY°
+(Sq° S + Sq” Sg* + Sq°) g8
+50°Sq* g3
+(Sq™ Sg? Sq* + Sg™® + Sq'* Sg? + Sq*? Sg*)g;
+(Sq” Sg* Sq? + Sg™ + Sq*? S + Sq™° S¢°)g?
5(g¥®) =So¢”sq' gzt

695 =59°g3

+(5q" +Sq® Sq°)g8

+5q1t S gg

+(Sq™ Sq? Sqt + Sg™ Sg* + S Sq* So? + Sq™° Sq® Sqt)ga

+(Sq™ Sq? + Sq'° Sg* Sg? + S Sq*)g?
6(gs)) =Sq'gy

+ Sq4 SqZ g%Z

+ Sq4 SqZ Sql gél

+(Sq° g’ + Sq°)g3°

+(Sq® sq* +Sg** Sgh)g}

+(Sq™ Sg? + Sq'° S + Sq*° + Sg** Sq*)gs



24

3. COMPUTATION OF THE E3-TERM OF THE ADAMS SPECTRAL SEQUENCE AS A SECONDARY Ext-GROUP

5(95%)
5(95%)
5(92%)

5('g%)

5(92%)

8(95h)

s(95h)

5(g2

(957

5(92%)

6('9%%)

5(92%)

5(92%)

5(95%)

=0

= (S9" +Sq” Sq* S¢?)gs

+(Sq'2 Sg° + Sq** Sg* + Sq° Sg')g?

+(Sq™ So° Sq? + Sg™° Sa + Sg™® + Sq*? Sg°)gt

— Sq4 SqZ Sql g%Z

+(Sq’ Sq* +Sq°)g3*

+(Sq™ g + Sq? Sg* sq* + Sg™2 + Sq* Sg?)gt

+(Sq™ g + Sq'° Sg* S” + Sg™ Sq° + Sq'? Sg*)gd

— Sq5 qu géz

+5q’ Sq” g3°

+(Sq™ Sg* +59'° Sg° + Sq® Sg* Sg* + Sq'° Sg? Sq' + Sg™ Sg?)gs
+(Sq™ Sg? + Sq** Sg* + Sq* Sg° + Sq*® + Sg'2 Sg*) gl
= (Sq° Sq? + Sq°)g3*

+(Sq™ Sg? + Sq* + Sg** Sq*)g;

= (Sq7° So” Sq* + Sq'" Sq" + Sq™* Sq°)gf
+(Sq™ Sg* S? + Sg™ Sq* + Sg™° Sq + Sg’ Sg? + Sq'?)g}
— Sq3 gl7
2
+(59'° + Sq° Sq*)g3°
+(Sq° Sq° + Sg™* Sg™)g}
+(Sa™ + Sg™® So? + Sq™° S°)g3
+(Sq™ Sg? Sq* + Sg™ S Sqt + Sg™ Sq* + Sg° Sq* Sq? Sg* + Sq™° Sq* Sg?)g?
+(S9™ Sq? + Sq*? Sg° + Sg™ Sg*)g?
= (Sq” +S¢° Sq*)gg®
+(Sq° +Sq® Sgt)gzt
+ Sqll SqS gi

- 5qt7 g

+(Sq*® Slq2 Sq* + 59 Sq° + Sg*? Sq* Sg? Sq* + Sq' SeP Sq*)g?
+(S9* Sq° Sq? + Sa’ Sg* + Sg™® Sg? + Sq** Sq* Sq?)gl
= Sqt gV’

+ Sqll g%O

+(89* + Sq” S¢°)g;

+(So” g + Sq** + Sq® Sg* Sq*)gd

+ Squ Sq4 gg

+5q" Sq° g3

+(Sq™ Sg* Sq? + Sg™ + Sq** S° + Sq™ S¢°)g?

— SqZ Sql g%S

+(S9° Sq* + 5q')g3

+(Sq° Sg* + 5q** + Sg*? Sq*) g8

+(S9" + 59" Sg°)g3

+(S9™ Sq? + Sq'° Sg* + Sg™* Sg* + Sg** Sq* Sq?)g;
+(Sq™ So° + Sq*° + Sg*’ Sq7)g3

= (Sq’ Sq? + Sq° Sg? Sg* + Sq° S¢°)gF?

+S0™ g3t + (So” Sg? + Sg® Sq + Sqt)gLP

+(Sq™* Sg* + Sq' Sg® g + Sg' Sq + Sq* Sg?)gs
+5q°° So° 3

_ 21

=Yy

+(Sq° Sg? + Sq® + Sq’ Sqt)g}

+ Squ gil

+(Sq™ Sg* + Sq*° S¢? + Sq*) g
— (Sq13 SqS + Sql4 SqZ + SqIG)gg



CHAPTER 4

Hopf pair algebrasand Hopf pair coalgebras representing the
algebra of secondary cohomology operations

We describe a modification %" of the algebra % of secondary cohomology operations in chapter 2
which is suitable for dualization. The resulting object 2% and the dual object % will be used to give an
alternative description of the multiplication map A and the dual multiplication map A.. All triple Massey
products in the Steenrod algebra can be deduced from ¥ or %= and from A and A.,.

We first recall the notions of pair modules and pair algebras from chapter 1 and give the corresponding
dual notions. Next we define the concept of M-algebras and N-coalgebras, where M is a folding system
and N an unfolding system. An M-algebra is a variation on the notion of a [p]-algebra from [3]. We
show that the algebra # of secondary conomology operations gives rise to a comonoid %" in the monoidal
category of M-algebras, and we describe the dual object %g, which is a monoid in the monoidal category
of N-coalgebras.

In chapter 6 we study the algebraic objects %* and % in terms of generators. This way we obtain
explicit descriptions which can be used for computations. In particular we characterize algebraically mul-
tiplication maps A, and comultiplication maps A¥ which determine %" and %= completely, see sections
8.1, 8.2, 8.3. For the dual object % the inclusion of polynomial algebras <7, c %, will be crucial. Here
<, is the Milnor dual of the Steenrod algebra and .%. is the dual of a free associative algebra.

4.1. Pair modulesand pair algebras

Let k be a field (usually it will be actually a prime field F = Fp, = Z/pZ for some prime p) and let
Mod be the category of finite dimensional k-modules (i. e. k-vector spaces) and k-linear maps. This is a
symmetric monoidal category via the tensor product A®B over k of k-modules A and B. A pair module is
a homomorphism

4.1.1) X = (x1 2 xo)

in Mod. We write mo(X) = cokerd and m;(X) = kerd. A morphism f : X — Y of pair modules is a
commutative diagram

X1$Y1

al l@
Xo —2> Yo
Evidently pair modules with these morphisms form a category M od.. and one has functors
mo,m1 : Mod, —» Mod.

A morphism of pair modules is called a weak equivalence if it induces isomorphisms on 7g and 5.

Clearly a pair module is the same as a chain complex concentrated in degrees 0 and 1. For two pair
modules X and Y the tensor product of the complexes corresponding to them is concentrated in degrees in
0, 1 and 2 and is given by

(4.1.2) Xi®Y1 2 X1 @Yo @ Xo®Y1 5 Xo®Yo
withdy=(0®1,1®9)and 1 = (’(ﬁ"). Truncating this chain complex we get the pair module

X®Y = ((Xé)Y)l — coker(dr) 5 Xo ® Yo = (xév)o)

25
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with d induced by do.
Clearly one has 7o(X®Y) = 7o(X) ® mo(Y). We will also need the following

(4.1.3) Lemma. For any pair modules X, Y there is a natural isomorphism
11(X®Y) = m1(X)®ro(Y) & mo(X)@m(Y).

Proor. By the Kiinneth formula, 71(X)®mo(Y) @ mo(X)®71(Y) is isomorphic to the middle homology
of the complex (4.1.2) above. But it is clear that for any homomorphisms d; : P — Q, dp : Q — R with
0001 = 0 the homology ker dy/ im 91 is isomarphic to the kernel of the induced map coker(d;) — R. In our
case this kernel is precisely 71(X®Y). O

We next consider the category Mod' of graded modules, i. e. graded objects in Mod (graded k-vector
spaces A" = (A"nez With upper indices, which in each degree have finite dimension). For graded modules
A, B we define their graded tensor product A" ® B' in the usual way, i. e. by

(A eB)=AsB!.
i+j=n
This tensor product has an interchange
(4.1.4) Tas  A®B SB®A
given on homogeneous elements by T (2 ® b) = (—1)%9@®IbOp g g,
A graded pair module is a graded object of Mod., i. e. a sequence X" = (9" : X{' — X{) withn € Z

of pair modules. We can also identify such a graded pair module X" with the underlying morphism o of
degree 0 between graded modules

X = (x-l 2, xb).
Now the tensor product X' ®Y" of graded pair modules X, Y" is defined by
(4.1.5) (X'®Y)" = @ Xi@Yl,
i+j=n

This defines a monoidal structure on the category Mod,, of graded pair modules, with morphisms maps of
degree 0. Again ® is symmetric.

For two morphisms f,g : X' — Y between graded pair modules, a homotopy H : f = g isa morphism
H : X, — Y; of degree 0 as in the diagram

f
X, —=Y,
91/
(4.1.6) al H la
s
Xy —= V¢
%

satisfying fo — go = dH and f; — g1 = Ho.
A pair algebra B is a monoid in the monoidal category of graded pair modules, with multiplication

u:B®B — B.
We assume that B’ is concentrated in nonnegative degrees, that is B" = 0 for n < 0.
More explicitly pair algebras can be described as follows.
(4.1.7) DeriniTion. A pair algebra B is a graded pair module, i. e. an object
0 : B} - By
in Mod, with Bl = B{ = 0 for n < 0 such that By is a graded algebra in Mod", B; is a graded By-B-
bimodule, and " is a bimodule homomorphism. Moreover for X,y € B; the equality

(4.1.8) a(x)y = xa(y)
holds in B;.
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It is easy to see that a graded pair algebra B" yields an exact sequence of graded B,-B,-bimodules

(4.1.9) 0— mB — B, 5 By = 1B — 0

where in fact 7oB" is a graded k-algebra, 71 B is a graded 7o B -moB'-bimodule, and By — moB" is a homo-
morphism of graded k-algebras.

The tensor product of pair algebras has a natural pair algebra structure, as it happens in any symmetric
monoidal category.

We are mainly interested in two examples of pair algebras defined below in sections 4.5 and 4.6
respectively: the G-relation pair algebra % of the Steenrod algebra .7 and the pair algebra 2 of secondary
cohomology operations deduced from [3, 5.5.2].

By the work of Milnor [14] it is well known that the dual of the Steenrod algebra <7 is a polynomial
algebra and this fact yields important algebraic properties of <7. For this reason we also consider the
dual of the G-relation pair algebra % of < and the dual of the pair algebra £ of secondary cohomology
operations. The duality functor D is studied in the next section.

4.2. Pair comodulesand pair coalgebras
This section is exactly dual to the previous one. There is a contravariant self-equivalence of categories
D = Hom(,, k) : Mod® — Mod
which carries a vector space V in Mod to its dual
DV = Hom(V, k).

We also denote the dual of V by V.. = DV, for example, the dual of the Steenrod algebra o7 is <7, = D(«7).
We can apply the functor Homy(_, k) to dualize straightforwardly all notions of section 4.1. Explicitly, one
gets:

A pair comodule is a homomorphism

4.2.1) X = (xl & x°)

in Mod. We write 79(X) = kerd and 71(X) = cokerd. The dual of a pair module X is a pair comodule
DX = Hom(X, k)
= (D4 : DXy — DXy)
with (DX)' = D(X;). A morphism f : X — Y of pair comodules is a commutative diagram

fl
XL ——v1

.
X0 _, YO,
Evidently pair comodules with these morphisms form a category Mod* and one has functors
% 7' Mod* — Mod.
which are compatible with the duality functor D, that is, for any pair module X one has
mi(DX) = D(xiX) fori =0, 1.

A morphism of pair comodules is called a weak equivalence if it induces isomorphisms on 7° and .
Clearly a pair comodule is the same as a cochain complex concentrated in degrees 0 and 1. For two
pair comodules X and Y the tensor product of the cochain complexes is concentrated in degrees in 0, 1 and
2 and is given by
dt d°
XYl — xteY? e X%eY! — XoY?

with d° = (‘1’2’;) and d* = (-1®d,d ® 1). Cotruncating this cochain complex we get the pair comodule

X®Y = ((XéY)l — ker(d) & X0 @ YO = (xév)o)
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with d induced by do. One readily checks the natural isomorphism
(4.2.2) D(X®Y) = DX&DY.
(4.2.3) Remark (compare 1.1.2). Note that the full embedding of the category of pair comodules into

the category of cochain complexes induced by the above identification has a right adjoint Tr* given by
cotruncation: for a cochain complex

c' = ( PG Y Ny e )
one has _
0
Tr(C*) = (ker(dl) L CO),
with d° induced by d°. Then clearly one has
X®Y = Tr (X ®Y).

Using the fact that Tr" is a coreflection onto a full subcategory, one easily checks that the category Mod"
together with the tensor product ® and unit k* = (0 « k) is a symmetric monoidal category, and Tr* is a
monoidal functor.

We next consider the category Mod. of graded modules, i. e. graded objects in Mod (graded k-vector
spaces A. = (An)nez With lower indices which in each degree have finite dimension). For graded modules
A, B. we define their graded tensor product A. ® B. again in the usual way, i. e. by

(A ®B)=PAcB
i+j=n
A graded pair comodule is a graded object of Mod*, i. e. a sequence X, = (dn : X3 — X}) of pair

comodules. We can also identify such a graded pair comodule X. with the underlying morphism d of degree
0 between graded modules

X = (x_1 & x,o).
Now the tensor product X.®Y. of graded pair comodules X., Y. is defined by
(4.2.4) (X&Y)n = P xi&Y;.
i+j=n

This defines a monoidal structure on the category Mod. of graded pair comodules. Morphisms in this
category are of degree 0.
For two morphisms f,g : X. — Y. between graded pair comodules, a homotopy H : f = gis a
morphism H : X! — YO of degree 0 as in the diagram
fl
X —=!
gl
(4.2.5) Td\H dT
X0 :fO; Yo
. go .
satisfying f° —g° = Hd and f* — g* = dH.
A pair coalgebra B. is a comonoid in the monoidal category of graded pair comodules, with the
diagonal B
§:B. — BeB.
We assume that B. is concentrated in nonnegative degrees, that is B, = 0 forn < 0.
Of course the duality functor D yields a duality functor

D:(Mod,)® — Mod?
which is compatible with the monoidal structure, i. €.
D(X'®Y') = (DX)®(DY).
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We also write D(X’) = X..
More explicitly pair coalgebras can be described as follows.

(4.2.6) DeriniTION. A pair coalgebra B. is a graded pair comodule, i. e. an object
d :B%— B!

in Mod* with BY = B2 = 0 for n < 0 such that B? is a graded coalgebra in Mod., B! is a graded B%-B°-
bicomodule, and d. is a bicomodule homomorphism. Moreover the diagram

Bl— - B0gBL!

l =

Bl @ BY *%. Bl @ B!

commutes, where 4, resp. p is the left, resp. right coaction.

It is easy to see that there results an exact sequence of graded B°-B°-bicomodules dual to (4.1.9)

(4.2.7) 0« n'B. « B! & B® — 7°B. < 0

where in fact 7°B. is a graded k-coalgebra, 7'B. is a graded 7°B.-7°B.-bicomodule, and B® « 7°B. is a
homomorphism of graded k-coalgebras.

One sees easily that the notions in this section correspond to those in the previous section under the
duality functor D = Homg(_, k). In particular, D carries (graded) pair algebras to (graded) pair coalgebras.

4.3. Folding systems

In this section we associate to a “right module system” M a category of M-algebras Algy, which is
a monoidal category if M is a “folding system”. Our main examples given by the G-relation pair algebra
Z of the Steenrod algebra <7 and by the pair algebra & of secondary cohomology operations are in fact
comonoids in monoidal categories of such type, see sections 4.5 and 4.6. This generalizes the well known
fact that the Steenrod algebra <7 is a Hopf algebra, i. e. a comonoid in the category of algebras.

(4.3.1) DeriniTiON. Let A be a subcategory of the category of graded k-algebras. A right module
system M over A is an assignment, to each A € A, of a right A-module M(A), and, to each homomorphism
f:A—- A in A, of ahomomorphism f, : M(A) — M(A”) which is f-equivariant, i. e.

f.(xa) = f.(x)f(a)
forany a € A, x € M(A). The assignment must be functorial, i. e. one must have (ida). = idma) for all A
and (fg). = f.g. for all composable f, g.
There are the obvious similar notions of a left module system and a bimodule system on a category of

graded k-algebras A. Clearly any bimodule system can be considered as a left module system and a right
module system by forgetting part of the structure.

(4.3.2) ExampLes. One obvious example is the bimodule system 1 given by 1(A) = A, f. = f forall
A and f. Another example is the bimodule system X given by the suspension. That is, XA is given by the
hift
i AV = (ZA)N
(n € Z) which is the identity map denoted by X. The bimodule structure for a, m € A is given by
a(zm) = (-1)%9@x(am),
(Zm)a = £(ma).
We shall need the interchange of £ which for graded modules U, V, W is the isomorphism

(4.3.3) cuvw U@ EV)eW S XU eV eW)

which carries u ® Zv @ w to (-1)®W(u® v e w).
Clearly a direct sum of module systems is again a module system of the same kind, so that in particular
we get a bimodule system 1 & X with (1 @ Z)(A) = A® ZA.
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We are mainly interested in the bimodule system 1 and the bimodule system 1 & X which are in fact
both folding systems, see (4.3.15) below.

(4.3.4) Dernirion.  For a right module system M on the category of algebras A and an algebra A from
A, an M-algebra of type A is a pair D. = (9 : D1 — Dg) with 7o(D.) = A and 71(D.) = M(A), such that Dg
is a k-algebra, the quotient homomorphism Dy -» moD. = A is a homomorphism of algebras, D; is a right
Do-module, 9 is a homomorphism of right Dg-modules, and the induced structure of a right 7o(D.)-module
on n1(D.) conicides with the original right A-module structure on M. For A, A" in A, an M-algebra D,
of type A, and another one D’, of type A’, a morphism D, — D’ of M-pair algebras is defined to be a
commutative diagram of the form

0 M(A) D, —2> Dy A 0
f*l l f1 l/ fo l f
0 M(A) D, D, A 0

4

where fy is @ homomorphism of algebras and f; is a right fo-equivariant k-linear map. It is clear how to
compose such morphisms, so that M-algebras form a category which we denote Algj,.

With obvious modifications, we also get notions of M-algebra of type A when M is a left module
system or a bimodule system; the corresonding categories of algebras will be denoted by Alg,‘;,I and Alg‘,i,l,
respectively. Moreover, for a bimodule system M there is also a further full subcategory

AlgR" Al

whose objects, called M-pair algebras are those M-algebras which satisfy the pair algebra equation (9x)y =
xay forall x,y € Dj.

(4.3.5) Remark. Note that if A contains k, then Algf\,I has an initial object given by the M-algebra
I = (0: M(k) — k) of type k. Moreover if A contains the trivial algebra 0, then Algf\,I also has a terminal
object — the M-algebra 0 = M(0) — 0 of type 0. Here ? stands for ¢, r or b if M is a left- right- or
bimodule system, respectively.

(4.3.6) DeriniTion. Let A be a category of graded algebras as above which in addition is closed under
tensor product, i. e. k belongs to A and for any A, A’ from A the algebra A ® A’ also belongs to A. A
right folding system on A is then defined to be a right module system M on A together with the collection
of right A ® A’-module homomorphisms

dan  AGKM(A) > MA@ A),
pan - M(A)ex A" — M(A e A)

forall A, A" in A which are natural in the sense that for any homomorphisms f : A — A;, f" 1 A” — Al in
A the diagrams

As M(A) —2 M(A @y A) M(A) @ A — > M(A @ A)

(4.3.7) f®f*¢ l(f@f’)* , f@f’l l(f@f’)*
/1A1.A’l , pAl_A/l ,

A1 ® M(A’l) — = M(A1 &« A’l) M(A1) ® Al — = M(A1 &« Al)

commute. Moreover the homomorphisms

Aka ke M(A) - M(k & A),

(4.3.8) pak - M(A) @k = M(A & k)
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must coincide with the obvious isomorphisms and the diagrams

Ay M(A’ @ A”)

A N A A e A
(4.3.9) y AN
)

A ’ A
A @A @ M(A” e M(A @ A’ @y A”),

/

M(A ®xk A') ®k A

M(A) &k A" @y A” kol M(A @ A’ @ A”),

/

M(A & A) @ A”

Apn®1 PhAgyA A7

(4.3.11) A M(A") @ A” M(A @ A’ @ A”)

g

1®pp NG

A M(A” @ A”)

must commute for all A, A’, A” in A. A folding system is called symmetric if in addition the diagrams

Apapn
A M(A) 25 M(A @ A')
Tam@) l M(Tan)
M(A") & A 225 M(A @y A)

commute for all A, A’, where T is the graded interchange operator given in (4.1.4).
Once again, we have the corresponding obvious notions of a left folding system and a bifolding system.

For a right folding system M, the category Alg,, has a monoidal structure given by the folding product
® below. Given an M-algebra D of type A and another one, D’ of type A’, we define an M-pair algebra
D®D’ of type A® A’ as the lower row in the diagram

00— A®M(A) ® M(A)®A" — > (DED'); — 2> (D&D')y — > A® A’ —> 0
(4.3.12) (A sPAA/)l push l H

00— M(A®A) ——— (D&D'); ——> Do ® Dj —= A® A’ —= 0.

Here the leftmost square is required to be pushout, and the upper row is exact by (4.1.3).

(4.3.13) ProrosiTion. For any right (resp. left, bi-) folding system M, the folding product defines a
monoidal structure on Alg}, (resp. Algl,, Algh,, Algh'"), with unit object 1 = (0 : M(k) — k). If moreover
the folding system is symmetric, then this monoidal structure is symmetric.

We only will use the monoidal categories Alg] . and Algﬁ’la“.

Proor. To begin with, let us show that & is functorial, i. e. let us for any morphisms f : D — E,
f’ . D’ — E’ in Alg,,, define a morphism f&f’ : D®E — D’®E’ in a way compatible with identities
and composition. We put (f&f’)y = fo®f; and define (f&f’); as the unique homomorphism making the
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following diagram commute:

BeM(B") ® M(B)®B’ (EQE);

W y
A®M(A) & M(A)®A” — (DeD’);

(1B PBR') (Aan pan) l l

MA®A") —— (D&D’);

~
~
-
(fof). (&)1 ~

M(B ® B) (E®E):

where the left hand trapezoid commutes by (4.3.7). Using universality of pushout it is clear that right
equivariance of f; and f; implies that of (f&f’); so that this indeed defines a morphism in Algy,. The same
universality implies compatibility with composition.

Next to show that I = (0 : M(k) — K) is a unit object first note that for an M-algebra D by (1.1.2) one
has

18D = Tr. (MK ® D, &2 b, & M@D, 2% Do) (Dl e MK)oA 22 Do).

From this using (4.3.8) it is easy to see that (I®D); is given by the pushout

M(A) @ M(K)oA "L D, & MK)®A

"

M(A) ———— (1&D)

so that there is a canonical isomorphism (I&D); = D; compatible with the canonical isomorphism k® Dg =
Do. Symmetrically one constructs the isomorphism D&®I = D.

Turning now to associativity, first note that the tensor product (4.1.2) can be equivalently stated as
defining (D®D’); by the requirement that the diagram

Di®D;

SN

Do ® D'1 push D ® D(’)

N

(DeD’);

be pushout. Then combining diagrams we see that (D&D’); can be equivalently defined as the colimit of
the following diagram:

Do® M(A) D:®D] M(A)® D)

SN

D0®D' M(A@A' D1®D/
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where the map Dy ® M(A”) — M(A ® A) is the composite Do ® M(A’) - A® M(A") - M(A® A’) and
similarly for M(A) ® Dy — M(A ® A’). Hence ((D®D’)®D"); is given by the colimit of the diagram

Do® Dj® M(A”) (D&D'); @D} M(A®A")® Dy

K25

Do8D,®D; MA®A ®A”) (D&D");® Dy.

Substituting here the diagram for (D&D’); we obtain that this is the same as colimit of a diagram of the
form

Do ® D] ® Dy
Do®D;®D!  Do® M(A) ® Dy

Do ® D, ® D} <— Dy ® D, ® M(A”) >~ M(A® A’ ® A”) D1® D) ® Dy

\

Di®D,®Dy  M(A)®Dj®Dy

I

D; ® Dy ® Dj.

Treating now (D&(D’®D"’)); in the same way we obtain that it is colimit of a diagram with same objects;
then, using (4.3.9), (4.3.11), and (4.3.10), one can see that also morphisms in these diagrams are the same.

Finally suppose that M is a symmetric folding system. Then for any M-algebras D, D’ of type A, A’
respectively, there is a commutative diagram

M(A® A")

M(A’ ® A)

Do ® M(A') M(A) @ D

yd
M(A’) ®Dy Dj® M(A)

[\

D1®D0<—D1®D1—>D6®Dl
et 4 ™~

Do®D, < Di®Dj— . D;®D

which induces a map from the colimit of the outer triangle to that of the inner one, i. e. by (4.3.14) a map
(D&D’); — (D’®D);. It is then straightforward to check that this defines an interchange for the monoidal
structure. O
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(4.3.15) ExampLes. The bimodule system 1 above clearly has a structure of a folding system, with A
and p both identity maps. Also the bimodule system 1&X is a folding system via the obvious isomorphisms

(4.3.16) dan I A® (A ©IA) = AQA & ASIA —% AQA’ @ S(ABA),
(4.3.17) pan  (ABTA) @A = ARA’ @ (SA)RA" = AgA’ & S(ARA)

where in (4.3.16), the interchange (4.3.3) for X is used.

(4.3.18) Lemma. The isomorphisms (4.3.16), (4.3.17) equip the bimodule system 1 & X with the struc-
ture of a symmetric folding system on any category A of algebras closed under tensor products.

Proor. It is obvious that 1 with the identity maps is a folding system, and that a direct sum of folding
systems is a folding system again, so it suffices to show that X is a folding system.
The right diagram in (4.3.7) is trivially commutative, while commutativity of the left one follows from

oama(f@ @ 2f (@) = (-1)™@x(f(a) ® f'())
=3(f ® ')((-1)™@L(a®a)) = Z(f ® f')oama)(@® Za’)

foranya e A,a’ e A, f 1 A — A, 1 A — Al. Next, the diagrams (4.3.8) commute since k is
concentrated in degree 0.

The diagrams (4.3.10) commute trivially, as only right actions are involved. Commutativity of (4.3.9)
follows from the obvious equality

(-1)®9@3(a @ (-1)*@)g’ @ a”) = (-1)*9*) 3 (aga’ @ a”)
and that of (4.3.11) is also obvious from

(-1)@3a@a’)®a”

7N

a®X(a)e®a” (-1)9@3(a®a’ ®a”)

NS

a®i(@ ®a’)
m}

Thus by (4.3.13) the folding system 1 & X yields a well-defined monoidal category Algf .5 of 1 & X-
algebras as in (4.3.4). The initial object and at the same time the unit for the monoidal structure of Alg] .«
is by (4.3.5) and (4.3.13)

liex = (F@EFi F).
For Algj it is
I, = (F 5 F).
The projections g : A@® XA — A can be used to construct a monoidal functor
(4.3.19) q: Alg.s — Alg)
carrying an object D in Alg] ;5 to the pushout in the following diagram

AaZA Dy Do A

S

A a(D)1 a(D)o A.

Evidently q(l1es) = 11.
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4.4. Unfolding systems

It is clear how to dualize the constructions from the previous section along the lines of section 4.2. We
will not give detailed definitions but only briefly indicate the underlying structures.

We thus consider a category C of graded k-coalgebras, and define a right comodule system N on C as
an assignment, to each coalgebra C in C, of a C-comodule N(C), and to each homomorphism f : C — C’
of coalgebras of an f-equivariant homomorphism f. : N(C) — N(C’), i. e. the diagram

N(C) coaction N(C)®C

f. f.of

coaction

N(C’) 249 N(C) @ C’

is required to commute. Similarly one defines left comodule systems and bicomodule systems. As before,
we have a bicomodule system 1 given by 1(C) = C and also , 1 @ X defined dually to (4.3.2).

Then further for a right comodule system N on C and for a coalgebra C from C one defines an N-
coalgebra of type C by dualizing (4.3.4). It is thus a pair D* = (d : D° — D) where D° is a coalgebra,
D! is a right D°-comodule and d is a comodule homomorphism. Moreover one must have 7°(D*) = C,
at(D*) = N(C), and the C-comodule structure on N(C) induced by this must be the one coming from the
comodule system N. With morphisms defined dually to (4.3.4), the N-coalgebras form a category Coalgy.
Similarly one defines categories Coalgy and Coalgl" c CoalgR for a left, resp. bicomodule system N.
These categories have the initial object 0 : 0 — N(0) and the terminal object 0 : k — N(k).

Also dually to (4.3.6) one defines unfolding systems as comodule systems N equipped with C ® C’-
comodule homomorphisms

I¢ . N(C®C’) -» C®N(C)

r¢ :N(C®C’) - N(C)®C’
for all C,C’ € C required to satisfy obvious duals to the diagrams (4.3.7) — (4.3.11). Also there is an
obvious notion of a symmetric unfolding system.

Then for an unfolding system N we can dualize (4.3.12) to obtain definition of the unfolding product
D®D’ of N-coalgebras via the upper row in the diagram

0—>C®C —>D°gD?® ——= (D&D') — > N(C®C) ——>0

e e

® -

0—>C®C’ —> (D&D)° —> (D&D’)! —> CaN(C’) & N(C)&C’ — 0

where now the rightmost square is required to be pullback and the lower row is exact by the dual of (4.1.3).

It is then straightforward to dualize (4.3.13), so we conclude that for any unfolding system N the
unfolding product equips the category Coalg",’“ with the structure of a monoidal category, symmetric if N
is symmetric. Here, “?” stands for “r”, “I”, “b” or “pair”, according to the type of N. Obviously also the
dual of (4.3.18) holds, so that the categories Coalgﬁ’la’r and Coalg} s have monoidal structures given by the
unfolding product.

45. TheG-relation pair algebra of the Steenrod algebra
Fix a prime p and let G = Z/p?Z be the ring of integers mod p?, with the quotient map G —» F = F =
Z/pZ. Let o7 be the mod p Steenrod algebra and let

e {Sql,qu,...} for p = 2,
~|{Pt. P2 u{s.aPL. B2, .} forodd p
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be the set of generators of the algebra 7. We consider the following algebras and homomorphisms

q: %o Fo—Z > o
(4.5.1) ‘ H

To(Ew) Tr(Ew)

Here Ty(S) for a commutative ring k denotes the free associative k-algebra with unit generated by the set
S, i. e. the tensor algebra of the free k-module on S. The map gz is the algebra homomorphism which is
the identity on E . For f € %, we denote the element q4(f) € <« by

f=az(f).
Let R4 denote the kernel of q, i. e. there is a short exact sequence

This short exact sequence gives a long exact sequence

TOf(RE@, F) s TOF(%o,F) —_— TOI'(%, F) I—> Rz ®F —— %, ®F — o/ ®F.

Here A®F = A/pA and Tor(A, F) is just the p-torsion part of A for an abelian group A, so the connecting
homomorphism i sends a = q(b) + p%, to pb + pR4. It follows that the second homomorphism in the
above sequence is zero. Moreover clearly we can identify %, ® F = .%, and Tor(«/,F) = </, so that there
is an exact sequence

oA = R

9 %g ,Q{
(45.2) H H
Fo

Rz ®F
One has

(4.5.3) Lemma. The pair 2" = (9 : #; — %) above has a pair algebra structure compatible with
the standard bimodule structure of .7 on itself, so that %" yields an object in Algb®", see (4.3.4).

Proor. Clearly mod p reduction of any pair algebra over G is a pair algebra over F. Then let ZF be the
mod p reduction of the pair algebra R4 > %y. Thus the .%y-.%y-bimodule structure on ,@f =Rgz/pRx is
just the mod p reduction of the %y-%y-bimodule structure on R, i. €. b’ + p%y € %’{f = By pA acts on
I+ pRa € Z; = Ru/pRy via

(b + pZAo)(r + pRz) = b'r + pRx.
Moreover the above inclusion <7 > Rg/pR4 sends an element q(b) to pb + pR4. Then the action of
a’ =q(b’) e & oni(a) = pb+ pRg € i(«/) = ker d induced by this pair algebra is given as follows:
a'i(a) = gz (b’ + pZo)(pb + pRx) = pb’b + pR = iq(b’b) = i(a’a)
and similarly for the right action. ]

pair

We call the object Z* of the category Alg)™" the G-relation pair algebra of 7.

(4.5.4) Treorem. The 1-pair algebra %~ has a structure of a cocommutative comonoid in the sym-
metric monoidal category Algh®"

Proor. Forn > 0, let R(g';? denote the kernel of the map g®", so that there is a short exact sequence

RO > 720 T yen

and similarly to (4.5.3) there is a pair algebra of the form

g —=RO@F FE A
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determining an object 2 in Alg'f". Then one has the following lemma which yields natural examples of
pair

folding products in Algy

(4.5.5) Lemma. There is a canonical isomorphism 2™ = (%)% in Algf®".

Proor. Using induction, we will assume given an isomorphism ay : (%5)%" = 2™ and construct .1
in a canonical way. To do this it clearly suffices to construct a canonical isomorphism Z27&%™ = (™1
as then its composite with Z7&a, will give an, 1.

To construct a map (ZF&#™); — %’f‘*l) means by (4.3.14) the same as to find three dashed arrows
making the diagram

) (n)
Rz ® R(@ ®F

/\

§O®R2 Rz ® 7;"
AN 7/
N /
N>
RO
A

|
Fo® A — yotl) <« 7 ® 983’”

commute. For this we use the commutative diagram

Rz ® Rg
%o ®RY) R ® 25"

/ Nt
i

By @ A" —— o78wl) < of @ B,
This diagram has a commutative subdiagram

p(Rz ®RY)

/\

p%®RY  Rzp®pZ"

NS

(n+1)
PR

!

pBy ® /" 0 o ® pAY",

It is obvious that quotient by this subdiagram gives us a diagram of the kind we need.
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We thus obtain a map (#°@%2™); — R"™ @ F. Moreover by its construction this map fits into the
commutative diagram

oy®M+) >~ (%Féﬁ(n))l — 3568(”"'1) — oy®(n+])

| \

of®MHl) >~ Rg;'l) QF —— ggb(ml) —> gye(n+l)

with exact rows, hence by the five lemma it is an isomorphism. O

Using the lemma we next construct the diagonal of Z* given by

R ©F e ] e i e 5

~ A g
RY @ F — (%%, — %} ® %5 Fo ® Fo.
Here A% is defined by the commutative diagram
Rz —— %
(4.5.6) Aﬁl A’f"l
R(gzg) - PBo @ By,
where the diagonal A® on %, is defined on generators by
n
A%(Sq") = Z Sq' ® Sq™! forp = 2,
i=0
ASB)=Bo1+188,
AP = ) P'®Pl,
i;n for odd p

AC(PY) = Z (P, @PI+P ®P))
i+j=n
(with Sg° = 1, P® = 1 as usual) and extended to the whole %, as the unique algebra homomorphism with
respect to the algebra structure on %, ® %, given by the nonstandard interchange formula

PBo @ By @ By @ By

He

PBo @ By @ By @ By PBo @ By

with
TO: By ® Bo — B ® By
In particular, clearly for all p one has T®A® = A®, i. e. the coalgebra structure on %, is cocommutative.
The counit for Z* is given by the diagram
o ——>Rzg®F —— Fyg ——> o/

[
(4.5.7) le [ le le

¥ 0

where the map Rz ® F — F sends the generator (plg,) ® 1 in degree 0 to 1 and all elements in higher
degrees to zero. It is then clear from the formula for A® that this indeed gives a counit for this diagonal.
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Finally to prove coassociativity, by the lemma it suffices to consider the diagram
R%

AC
2 2
RY s 552 A <—RY
N
3
75

)
R(@

4.6. The algebra of secondary cohomology operations
Let us next consider a derivation of degree 0 of the form
n.od — X,
uniquely determined by
%xSq" =xSq"?t forp =2,

(4.6.1) xB =X,
: for odd p.
#(P)=0,i >0 P
We will use x to define an <-4 -bimodule
o &, XA

as follows. The right .o/-module structure is the same as on .« & X above, i. e. one has (x,Xy)a =
(xa, Zya). As for the left .o7-module structure, it is given by
a(x, 2y) = (ax, (-1)*9@xay + x(a)x).
There is a short exact sequence of .« -.o7-bimodules
00X > A &2 > o -0
given by the standard inclusion and projection.

(4.6.2) Remark. The above short exact sequence of bimodules and the derivation x correspond to each
other under the well known description of the first Hochschild cohomology group by bimodule extensions
and derivations, respectively. Indeed, more generally recall that for a graded k-algebra A and an A-A-
bimodule M, one of the possible definitions of the Hochschild cohomology of A with coefficients in M
is

HH"(A; M) = Ext, A (A, M).

On the other hand, HH(A; M) can be also described in terms of derivations. Recall that an M-valued
derivation on A is a k-linear map x» : A — M of degree 0 satisfying

#(xy) = #(X)y + (=1)*9%x(y)
for any x,y € A. Such derivations form a k-vector space Der(A; M). A derivation x = ¢, is called inner if
there is an m € M such that
%(x) = mx — (=1)%90xm = 1(x)



40 4. HOPF PAIR ALGEBRAS AND HOPF PAIR COALGEBRAS

for all x € A. These form a subspace Ider(A; M) c Der(A; M) and one has an isomorphism HH(A; M) =
Der(A; M)/ Ider(A; M). Moreover there is an exact sequence

0 — HH(A: M) = M = Der(A; M) — HH(A; M) — 0.
Explicitly, the isomorphism
Der(A; M)/ Ider(A; M) = Exti (A, M),
can be described by assigning to a class of a derivation » : A — M the class of the extension
0O-M-Ap, M>A->0

where as a vector space, A&, M = A® M, the maps are the canonical inclusion and projection and the
bimodule structure is given by

a(x,m) = (ax,am + x(a)x),
(x,m)a = (xa, ma).
Obviously the o7 @, X7 above is an example of this construction.

(4.6.3) DermnrTion. A Hopf pair algebra ¥ (associated to <) is a pair algebra d : ¥1 — ¥ over F
together with the following commutative diagram in the category of .%,-.%,-bimodules

T
(4.6.4) A &, Tl h—2 o

]

o Py Ny

with exact rows and columns. The pair morphism q : ¥ — %" will be called the G-structure of ¥
Moreover ¥ has a structure of a comonoid in Alg}.; and q is compatible with the Algh®"-comonoid

structure on %" in (4.5.4), in the sense that the diagrams
h—L e (V&)

(4.6.5) ql lqéq
Ry (HEH N

and

(4.6.6) ql l

commute.

We next observe that the following diagrams commute:

% %

o zof o Tof
5l lz(s 6l/ lm
gf@,d&zg{@d:ﬂﬂ@%% d@dﬂﬂ®2d—g>2(%®ﬂ)

where o is the interchange for X in (4.3.3). Or, on elements,

(46.7) D @) ear =) x@)ox@) = ) ola e xa)).
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where we use the Sweedler notation for the diagonal
5(X) = Z X¢ ® X

(4.6.8) Remark. The above identities have a simple explanation using dualization. We will see in
(5.1.7) below that the map dual to x is the map Lo/, — <7 given, for p = 2, by multiplication with the
degree 1 generator /; € <7 and for odd p by the degree 1 generator . Then the duals of (4.6.7) are the
obvious identities for any x,y € <

(&1X)y = &1(xy) = X(41y)
for p=2and
(roX)y = To(xy) = (-1)*Xx(70y)
for odd p (recall that <7 is graded commutative).

Using (4.6.7) we prove:

(4.6.9) Lemma. For a Hopf pair algebra 7 there is a unique left action of .%, on (¥ ®7); such that
the quotient map
(YY) - (V&)1
is .Zo-equivariant. Here we use the pair algebra structure on #®% to equip (¥ ®%); with an .%y ® .%o-
bimodule structure and then turn it into a left .%p-module via restriction of scalars along A : %y —
Fo® Fy.

Proor. Uniqueness is clear as the module structure on the quotient of any module M by a submodule
is clearly uniquely determined by the module structure on M.
For the existence, consider the diagram

Fo® (o &, T) NN (o &, 2) @ F
(46.10) i X X |
FoQ® N A QA By (A ®) QR .

whose colimit, by (4.3.14), is (¥ &)1, with the right .%, ® .%y-module structure coming from the category
Alg] - It then suffices to show that all maps in this diagram are also left .Zp-equivariant, if one uses the
left .%y-module structure by restricting scalars along the diagonal .%y — %y ® %.

This is trivial except possibly for two of the maps involved. For the map

D: Fo® (A B, 2) > AR Brgy XA )

given by _ )
(' @ (x.2y)) = (f' @ x, ()™Mt @y),
this amounts to checking that for any f, f’ € %y and x,y € < one must have

D(fr@ f)(F ®x, (-1 By) = D(-1)EOE $ 1,7 & (fx, (~D)*UDzhy + x(F)x)),
where again the above Sweedler notation
A(f)=) fref,

is used for the diagonal of .%; too, and f denotes g.#(f’) by the notation in (4.5.1).
The left hand side expression then expands as

Z((_l)degur)deg(f') f,f ®fx,
(—1)deatf) dea(t") (_1ydea(D) (_1)dea(M) 5§, £/ @ fry + (=1)0e0() (M) () §” @ f,x)
and the right hand side expands as
(~1)®09U) S (7 & fx, (~D)*H (1)U @ oy + Fo © ().
Thus left equivariance of @ is equivalent to the equality

S il @ fix= D (-)FU L @ u(f)x.
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This is easily deduced from o . )
DAt e fr = 3 () Vi @x(t).

which is an instance of (4.6.7).
For another map

VY (o @, 2) Q@ Fy > A QA Brgey 2(A Q)
given by - -
P((x,Zy)® ) = (x® f',Ty® )
the equality to check is
(o f)x® .5y @ 1) = (-1)*AD 0 N (fx, (-5 Ry + x(f)x) ® ).
Here the left hand side expands as
Z((_l)deg(fr)degm fxef f, (—1)ea() deg(=y) (_1ydea() £y T (—1)0e9() e £ )x @ f, fz’)
and the right hand side expands as
(-1 N (fx@ f, 17, (-1)*UDEhy @ f 7+ (f)x® 1),

these two expressions are visibly the same. m|

Given this left module structure on (¥ ®7')1, one can measure the deviation from left equivariance of
the diagonal Ay : 71 — (¥ &%¥);. For that, considerthe map L : % ® %1 — (¥ &), given by

L(f®x) 1= Ay (fX) = f - Ay (X),

forany f € %y = ¥, x € ¥4, where - denotes the left .%y-module action defir)ed in (4.6.9). Since the
diagonal A of ZF is left equivariant, it follows from (4.6.5) that the image of L lies in the kernel of the
map q&q, i. e. in Z.o7 ® 7. Moreover if f = dv; for some v, € 74, then one has

Ay (0(V1)X) = Ay (ViOX) = Ay (V1)Az(9X) = Ay (V1)IgAy (X) = 9gAy (V1)Ay (X) = Az (V1)Ay (X),
so that the image of 0 ® 71 : ¥1 ® ¥1 — ¥ ® # lies in the kernel of L. Similarly commutativity of

1 —= (V&)
(4.6.11) al la@
Yo —= %® %%
implies that %5 ® ker d is in the kernel of L. It then follows that L factors uniquely through a map
o @Rz = (%/imd) ® (#1/ kerd) — ker(q®q) = *o/ ® o .
(4.6.12) DerintTiON.  The map

Ly : %/ Q®Rgz - Lo @«

given by the unique factorization of the map L above is characterized by the deviation of the diagonal A
of the Hopf pair algebra ¥ from left equivariance. That is, one has

Ay (fX) = f - Ayp(X) + Ly (f ® %)
forany f € %, = %, x € #1 and the action - from (4.6.9).
Similarly one can measure deviation of Ay : ¥; — (¥ &%), from cocommutativity by means of the
map S : ¥ — (¥ &7); given by
S(X) == Ay (X) = TAy(x),
where T : (#&7)1 — (¥®¥), is the interchange operator for Alg] ., as constructed in (4.3.13). Then

similarly to L above, S admits a factorization in the following way. First, by commutativity of (4.6.5) one
has

@®NTAy = T(A®YAy = TA%q = Azq = (G®Q)Ay,
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since the Algﬁ’la"-comonoid ¥ is cocommutative. Thus the image of § is contained in ker(q&q) = Lo/ ®.47.
Next, commutativity of (4.6.11) implies that ker g is contained in the kernel of S. Hence S factors uniquely
as follows

Rg = 71/ kerd — ker(q@q) = .o/ ® o7 .

(4.6.13) DeriniTION. The map
Sy :Rg > 2o/ @ of
given by the unique factorization of the map $ above is characterized by the deviation of the diagonal A
of the Hopf pair algebra ¥ from cocommutativity. That is, one has

TA"}/(X) = A«//(X) +S y(@X)
forany x € 7.

It is clear from these definitions that L and S 4 are well defined maps by the Hopf pair algebra ¥".
Below in (6.1.5) we define the left action operator L : & ® R — &7 ® o7 and the symmetry operator
SRy - X2d @/ withL =0andS = 0if p is odd. For p = 2 these operators are quite intricate but
explicitly given. We also will study the dualization of S and L.

The next two results are essentially reformulations of the main results in the book [3].

(4.6.14) Tueorem (Existence). There exists a Hopf pair algebra ¥ withLy = LandSy =S.

(4.6.15) Tueorem (Uniqueness). The Hopf pair algebra ¥ satisfying L+ = L and S+ = S is unique
up to an isomorphism over the G-structure ¥ — %" and under the kernel o7 @, Lo/ > 7.

The Hopf pair algebra appearing in these theorems is the algebra of secondary cohomology operations
over F, denoted by %" = (%] — %4;) = % ® F. The algebra 2 has been defined over G in [3].

ProoF oF (4.6.14). Recall that in [3, 12.1.8] a folding product & is defined for pair G-algebras in such
a way that %8 has a comonoid structure with respect to it, i. e. a secondary Hopf algebra structure. Let

Ap: %1 d (33@33)1

be the corresponding secondary diagonal from [3, (12.2.2)]. It is proved in [3, 14.4] that the left action
operator L satisfies
A1(bx) = bA1(X) + L(q(b) ® (0x® 1))
forbe %y, x € %1,0x®1 e Rg QF = %f. Also in [3, 14.5] it is proved that the symmetry operator S
satisfies
TA1(X) = A1(X) + S(Ox® 1)
for x € %,. Moreover it is proved in [3, 15.3.13] that the secondary Hopf algebra £ is determined uniquely
up to isomorphism by the maps », L and S.
Consider now the diagram

|

A, S~ B @F e By @F —> o7

q i g=0®1 i

o >Rz QF Fo .

Here the inclusion i,, : & @, X.o/ »> 9, Q@ F is given by the inclusion X« c %; and by the map
o — B ®F

which assigns to an element q(b) € o7, for b € %y, the element [p] - b ® 1. Then it is clear that i, is a
right «7-module homomorphism. Moreover it also is a left .27-module homomorphism since for b € %,
the following identity holds in %;:

b-[p] - [p]- b = x(b).
Compare [3, A20 in the introduction]. Now one can check that the properties of .2 established in [3] yield
the result. O



44 4. HOPF PAIR ALGEBRAS AND HOPF PAIR COALGEBRAS

(4.6.16) Remark. For elements @, B,y € o/ with o8 = 0 and By = 0 the triple Massey product
(@.B,y) € o [(ad + o)
is defined. Here the degree of elements in (a, B, y) is deg(a) + deg(B) + deg(y) — 1. We can compute {a, B, y)
by use of the Hopf pair algebra #F above as follows. For this we consider the maps
M‘«ﬂﬁo ) R@i»Rgg@]F.

We choose elements ¢, B,y € %y Which g carries to @, 3, y respectively. Then we know that the products
ap, By are elements in R for which we can choose elements x,y € %; ® F with

a(x) = ar(aB),

q(y) = ar(8).
Then the bimodule structure of %, QF yields the element ay — xy in the kernel =<7 of q : %, ®F — R4 QF.
Now ay — xy € X represents (a, 8, y), see [3].

4.7. Thedual of the G-relation pair algebra

We next turn to the dualization of the G-relation pair algebra of the Steenrod algebra from section 4.5.
For this we just apply the duality functor D to (4.5.2). There results an exact sequence

d

o, K2 Ry .,
i. e. the sequence
e D(B) — 2 D) o,
]
Hom(%y, F) Hom(Rz, F).

In particular, by the dual of (4.5.3) one has
(4.7.2) Lemma. The pair 5 = (d : ,92]2 — %) has a pair coalgebra structure compatible with the

standard bicomodule structure of <7, over itself, so that % yields an object in Coalg‘;la", see section 4.4.

Moreover the dual of (4.5.4) takes place, i. €. one has
(4.7.3) Tueorem. The pair coalgebra %= has a structure of a commutative monoid in the category
Coalgi®™" with respect to the unfolding product &.

O
The proof uses the duals of the pair algebras 2™, n > 0, from (4.5.4). Namely, applying to the short
exact sequence
S — R
the functor D = Hom(_, F) gives, similarly to (4.7.2), a pair coalgebra
(n _ (n)
%*n - ( %@»n yfz»n R%* %@)n )

such that the following dual of (4.5.5) holds:

(4.7.4) Lewma. There is a canonical isomorphism 2" = (%z)®" in Coalg™".

Using this lemma one constructs the ®-monoid structure on % by the diagram

Fo® F. == A ® A — = (Rebs) ——=RY,

L ] Lk

- 0 1
F——— " R =Ry,
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with A€ as in (4.5.6).
Moreover the unit of % is given by the dual of (4.5.7), i. e. by the diagram

F F—> >F F
|

ll ll | ll
Y

o, Z. Ra. o,

so that the unit element of Rz, is the map Rz — F sending the generator plg, in degree O to 1 and all
elements in higher degrees to zero.

4.8. Hopf pair coalgebras

We next turn to the dualization of the notion of a Hopf pair algebra from (4.6.3), using the dual % of
2" from the previous section.

(4.8.1) DermNiTioN. A Hopf pair coalgebra # (associated to <7,) is a pair coalgebrad : #° — #1
over F together with the following commutative diagram in the category of .%.-.%.-bicomodules

o, %3 R .
d (zr’;)
o, w0 Wl A By, X,

]
with exact rows and columns. The pair morphism i : %= — # will be called the G-structure of %". More-
over % must be equipped with a structure of a monoid (my, 1) in Coald) .y such that i is compatible

pair

with the Coalg;" -monoid structure on % from (4.7.3), i. e. diagrams dual to (4.6.5) and (4.6.6)

le

(Reole)t — =Ry B}
Lo b
Wew L -yl FeoIF—2> pt
commute.
We next note that the dual of (4.6.9) holds; more precisely, one has
(4.8.2) Lemma. For a Hopf pair coalgebra # the subspace
W) c(wew)

is closed under the left coaction of the coalgebra .%, on (#®#')! given by the corestriction of scalars
along the multiplication m, : .%, ® ., — .%. of the left .Z, ® .%. = (#' ®# )°-comodule structure given
by the pair coalgebra # ®# . In other words, there is a unique map m’ : (#@# ) — .7, ® (W &W)*
making the diagram

HSW)Y—————— =T — -~ — - - T, @ (W)

| |

WW) —— F. 0 F. 0 (WaW) = Z. o (W oW)

commute.
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O

Given this left coaction, one can define the dual of the left action operator in (4.6.12) by measuring
deviation of the multiplication (#ew)t — w1 from being a left comodule homomorphism. For that, one
first observes the map L : (# &%) — .Z. ® #'* given by the difference of two composites in the diagram

W EW) —"= Z. 0 (VW)

My l l 1My,

Wl L y* ® 7/1.

Then by the argument dual to that before (4.6.12) one sees that the map L factors uniquely through
coker(i&i) = ((# &#)! » L. ® /) and into ker(d) ® im(d) = (7 ® Rz, = #° @ #*) to yield a map
Yo, ® o, — . ® Rg.. We thus can make, dually to (4.6.12), the following

(4.8.3) DeriniTiON. The map

Ly 324, @ o, > o, @R %,
given by the unique factorization of the map L above is characterized by the deviation of the multiplication
m. of the Hopf pair coalgebra % from being a left .%.-comodule homomorphism. That is, for any
te (# %) one has
(L@ my )m(t) = m‘my (1) + Ly (rs@ms)(t).
Next, we define amap S  in a manner dual to (4.6.13), measuring noncommutativity of the Coalg’ s
monoid structure on /. For that, we first consider the map S : (# @#)* — #* given by
S =my T - my(t)
fort e (# @#)! and then observe that, dually to (4.6.13), this map factors uniquely through coker(i®i) =
((w&w)t » o, ® o) and into im(d) = (Rz. = #*) so we have
(4.8.4) DeriniTioN. The map
Sy X4, ® . > Rz,
given by the unique factorization of the map S above is characterized by being the graded commutator map

with respect to the ®-monoid structure on the Hopf pair coalgebra #/. That is, for any t € (# @#)! one
has

My T (1) = My (1) + S (re@ms)(0)-
We now dualize the left action operator (6.1.5) and the symmetry operator (6.2.1).
(4.8.5) DeriniTion.  The left coaction operator
L. A ®d — d.8Rz,

of degree +1 is the graded dual of the left action operator (6.1.5).

(4.8.6) DeriniTioN.  The cosymmetry operator

S, d.®d. — Rz,

of degree +1 is the graded dual of the symmetry operator (6.2.1).

It is clear that the duals of (4.6.14) and (4.6.15) hold. Let us state these explicitly.

(4.8.7) Tueorem (Existence). There exists a Hopf pair coalgebra % with Ly = L. and S =S..

(4.8.8) Tueorem (Uniqueness). The Hopf pair coalgebra # satisfying L = L. and Sy = S. is
unique up to an isomorphism over # —» o, &, X4/, and under Zg — ¥ .

The Hopf pair coalgebra appearing in these theorems will be denoted by %r = (@g - %%) = D(#Y).



CHAPTER 5

Generators of % and dual generators of %"

In this chapter we describe polynomial generators in the dual Steenrod algebra <7, and in the dual of
the free tensor algebra Tx(E o) with the Cartan diagonal. We use these results to obtain generators in the
dual of the relation module R .

5.1. TheMilnor dual of the Steenrod algebra

Here we recall the needed facts from [14]. The graded dual of the Hopf algebra <7 is the Milnor
Hopf algebra o7, = Hom(<7,F) = D(&7). It is proved in [14] that for odd p as an algebra <7 is a graded
polynomial algebra, i. e. it is isomorphic to a tensor product of an exterior algebra on generators of odd
degree and a polynomial algebra on generators of even degree; for p = 2 the algebra <7, is a polynomial
algebra. Moreover, in [14], explicit generators are given in terms of the admissible basis.

First recall that the admissible basis for <7 is given by the following monomials: for odd p they are of
the form

M :ﬁfop&ﬁﬁpsz . pSnIBGn
where g € {0,1} and
Sy > €1+ PS2,S2 = € + PS3,...,5n-1 = €1 + PSn, Sn = 1.

Then let & € o 1) = Hom(72P D F), k > 1 and 7 € oy q = Hom(«72" 1, F), k > 0 be given on
this basis by

1, M =PpP pr...prpl
51.1 M)={" ’
( ) (M) {0 otherwise
and

1, M =PpP7pPT...prpig
5.1.2 M)=<{" ’
( ) (M) {O otherwise.

As proved in [14], <7 is a graded polynomial algebra on these elements, i. e. it is generated by the elements
& and 1y with the defining relations

&gy = &iéi,
&ty = 1k,
TiTj = =TT

only.
For p = 2, the admissible basis for <7 is given by the monomials

M = Sg® Sg%---Sg*™
with
S1 > 25,5 >283,...,5-1 =25, 5h =1

and the polynomial generators of <7, are elements ¢y € @%«_; = Hom(«721, F) given by

2k—l 2k72

M = Sq
otherwise.

Sg? -+~ Sg? Sqt,

(5.13) G(M) = {é

47
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In terms of these generators, also the coalgebra structure m,. : o7, — 7, ® <7 dual to the multiplication
m of o is determined in [14]. Namely, for odd p one has

2 k-1
5.14) M) =@ L+E, @&+, 06+ +& &1 +1®&
m..(7x) =§k®To+§E_1®Tl +§kpi2®72+~-~+§fkil®Tk,1+1®7k+7k®1.
For p = 2 one has

(5.1.5) M) =k®1+ 2, @0+ 0,80+ +0 ®4a+18%4

We will need expression of the dual Sq* : <% — . to the map Sq*- : =&/ — < given by
multiplication with Sg* from the left.

(5.1.6) Lemma. The map Sq? is equal to d% That is, on the monomial basis it is given by

e, np=1 mod 2

S 1/ M o ) =
(a'G ) {0, n=0 mod 2.
Proor. Note that Sq? is a derivation, since Sq! - is a coderivation, i.e. the diagram

Sqt-
p-4 of

Ea‘l . lé
Caset)
S @A —— ARA X ARDA ——> o ® o
commutes: indeed for any x € & one has
8(Sqt x) = 6(SqH)d(x) = (Sq* @1 + 1 ® Sqh)s(x) = (Sq* ®1)6(x) + (1 ® Sqt)s(x).

On the other hand, on the Milnor generators the derivation Sq* acts as follows:

on-2

1’ Sql X = qun?l Sq . Sql’

S 1 — S 1 = n— n—
q*((ﬁ)(x) gn( q X) {o’ Sql X # qu 1 qu 2 e Sql .

It follows that Sgl(1) = 1; on the other hand for n > 1 the equation Sg* x = Sg2" Sq?" - --Sq' has no
solutions, since it would imply Sq* Sg?"~ Sq?"" - - - Sg* = Sqt Sqt x = 0, whereas actually
Sqtsg? Sg? - Sqt = Sgtt2 sg? -+ Sqt # 0.
But % is the unique derivation sending 3 to 1 and all other £,’s to 0. O

We will also need expression of the dual x. of the derivation » from (4.6.1) in terms of the above
generators.

(5.1.7) Lemma. The map x. : 2<% — <7 is equal to the left multiplication by o for odd p and by &;
for p = 2.

Proor. For any linear map ¢ : &/" — F the map ».(¢) : oh1 — F is the composite of ¢ with
% . @py1 — <p. Thus for p odd one has
(5.18)  #.(P)(BOPSLUPT - PSBT) = ) (~1)orat i p(opSpa .. fioPSPS gt . pSgT).
=1
On the other hand, one has for M as above

(To)(M) = > 7o(M)p(M:) = > co(My),

M,=c3
0#ceF

5(M) = Z M, ® M;.
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On the other hand one evidently has

5(,350P511351P32 . Psnﬁfn) - Z (_1)Zo<y<vgn(€,ﬁly)lvlglophﬁll . pinlgtn ®ﬁ50*10P31*i1ﬁ€1*ll . Psn*inﬁfn*ln
0<w<e
0<ii<sy
0<u<e
0<in<sy
0<tn<en

so that for M = goPs34 ... PS54 one has

Z co(M,) = Z Z (_1)20<y<v<n(fﬂﬂy)“/¢(ﬁfoﬂoPi*hﬁﬁ*ﬂ ,,,psrinﬁen—tn)

M[=Cﬁ Ek=l L0=0
0#ceF i1=0
ix=0
w=l

iks1=0

in=0
=0

- Z(_l)Zosmk Ep¢(ﬁfﬂpslﬁ€1 .. pSkpSmlBEm . Psnﬁfn)
=1

which is the same as (5.1.8) above.
Similarly for p = 2 the map x..(¢) is given by

(5.1.9) #.(#)(Sq% -+ SA%) = 9((Sq™ - -Sq™)) = » #(Sq* -+ Sq*~* -+ Sq)
k=1
and the map {1 ¢ is given by
(@HM) = > aMIgM) = > ¢(My).
M,=sq*
On the other hand one has
5(Sq51 .. quﬂ) = Z Sqil .. Sqin ®Sq51—il . qun—in’

0<i1<s1

0<in<s

so that for M = Sg™ - - - Sq™ one has

n
DL M) =D > g(SgnT - SgT)
M,=Sq* k=1 i;=0
ik 1=0
k=1
iks1=0
in=0

which is equal to (5.1.9). ]

It is clear that with respect to the coalgebra structure on <7, the map . is a coderivation, i. e. the
diagram

DA - A,

ml lm
1
E(M®M)L>ZM®MEBM®ZM A ® .
is commutative. Here ¢ is the interchange of £ as in (4.3.3). Then using dual of the construction mentioned

in (4.6.2) one may equip the vector space <7, & .7 with a structure of an .<7-</.-bicomodule, in such a
way that one has a short exact sequence of <7, -<7,-bicomodules

(. ®1,1®2.)
_—

(5.1.10) 0> . » A&, L —> X, — 0.
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Explicitly, one defines the right coaction of <7, on <7 @, X7 as the direct sum of standard coactions on
<, and on .7, whereas the left coaction is given by the composite

( 1 %1 )
m.eXm, 0 o

d ® T, —— A, 0, ® LA QA ——— R, ® A QL = o, (., ®LL,).

5.2. Thedual of thetensor algebra %y = Tr(E /) for p =2

We begin by recalling the constructions from [11] relevant to our case.
The Leibniz-Hopf algebra is the free graded associative ring with unit 1 = Z,

(5.2.1) Z =TzZ1,2,, ...}

on generators Z,, one for each degree n > 1. Here we use notation as in (4.5.1). Then 2 is acocommutative
Hopf algebra with respect to the diagonal

n
A(Zy) = Z Zi®Zni.
i=0

Of course for p = 2 we have Z ® F = .%, = Tz(E.) by identifying Z; = Sq', and moreover the diagonal A
corresponds to A® ® F in (4.5.6). The graded dual of 2 over integers is denoted by ./ it is proved in [11]
that it is a polynomial algebra. There also a certain set of elements of .# is given; it is still a conjecture
(first formulated by Ditters) that these elements form a set of polynomial generators for .# . If, however,
one localizes at any prime p, then there is another set of elements, defined using the so called p-elementary
words, which, as proved in [11], is a set of polynomial generators for the localized algebra .#. This in
particular gives a polynomial generating set for .%. = Hom(%y, F,) = .# /2.4 . Moreover it turns out that
the embedding «7,. » %, given by Hom(«/,F;) »» Hom(.%y, F;) (dual to the quotient map %y -» &)
carries the Milnor generators of o7, to a subset of these generators.

One chooses a basis in .# which is dual to the (honcommutative) monomial basis in Z: for any
sequence a = (di, ..., dn) Of positive integers, let M, = Mg, 4, be the element of the free abelian group

1, (ki,....,km) = (dg, ..., dn),
0 otherwise.

Since Z is a free algebra, dually . is a cofree coalgebra, i. e. the diagonal is given by deconcatena-
tion:

n
(5.2.2) A(Mg,...d,) = Z Md,....d ® Md,,.....dy-
i=0
Itis noted in [11] (and easy to check) that in this basis the multiplication in .# is given by the so called
overlapping shujfle product. Rather than defining this rigorously, we will give some examples.

MsM2419 = Ms2419+ M7419+ Mosa19+ Mag19+ Masasio+ Mogsg

+ Moa159 +Mog114+Mogi9s;
MgsMi2 = Mgs12 + Mggo + Mg 152+ Moso + Mg17 + Mg7 + Mygs»
+ Myg7+ Migos + Mgos + Miogs + My1os + Mg 125

Thus in general, whereas the ordinary shuffle product of the elements, say, Mg, a,.a, @d My, b, bs.0,.bs CON-

,,,,,,

Mb, a1 ,a0.00,bs-+26,05,b5 1 Mby.a1,80.00.b5,85+0,bs» Mby+ay,80+by.05.20.05,bs @Nd SO 0N, obtained by replacing an a; and a
b; standing one next to other with their sum, in all possible positions.

Note that the algebra of ordinary shuffles is also a polynomial algebra, but over rationals; it is not a
polynomial algebra until at least one prime number remains uninverted. On the other hand, over rationals
./ becomes isomorphic to the algebra of ordinary shuffles.

To define a polynomial generating set for .#, we need some definitions. To conform with the admis-
sible basis in the Steenrod algebra, which consists of monomials with decreasing indices, we will reverse
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the order of indices in the definitions from [11], where the indices go in the increasing order. Thus in our
case statements about some Mg, 4, Will be equivalent to the corresponding ones in [11] about Mgy, .4,

q for all

...............

A basis element My, .. q, is Z-elementary if no number > 1 divides all of the d;, i. e. gcd(d, ..., dn) = 1.
The set ESL(Z) is the set of elementary basis elements of the form My, d.d,...d,....dp...d, (I- € d1,....dn
repeated any number of times), where Mg, .4, is a Lyndon element.

For a prime p, a basis element Mgy, g, is called p-elementary if there is a d; not divisible by p, i. e.
p 1 gcd(dy, ..., dn). The set ESL(p) is defined as the set of p-elementary basis elements of the form

Ma,.....dndh....Chyerosh,oonl

p' times

For example, M15 6156156156 IS in ESL(2) but not in ESL(Z) or in ESL(p) for any other p, whereas
Maso6.6 IS in ESL(p) for any p # 2, 3 but not in ESL(2), not in ESL(3) and not in ESL(Z).
One then has

(5.2.4) Tueorem ([11]). The algebra ./ is a polynomial algebra.
(5.2.5) Consecture (Ditters, [11]). The set ESL(Z) is the set of polynomial generators for . .

(5.2.6) Tueorem ([11]). For each prime p, the set ESL(p) is a set of polynomial generators for .#(p) =
M ® L), i. €. if one inverts all primes except p.

In particular, it follows that ESL(p) is a set of polynomial generators for .# /p" over Z/p" for all n.

Here are the polynomial generators in low degrees, over Z and over few first primes. Note that the num-
bers of generators in each degree are the same (as it should be since all these algebras become isomorphic
over Q).

| t]2] 3 | 4 | 5

Z My | My1 | Mo, My11 | M1, Ma11, M1111 | Mg, Map, M311, Moo, Ma111, M11111

©
1l
N

My | Mya | M3, Mag | Ma1,Mo11, My Ms, M41, M32, M3 11, M221, M2 111

©
1l
w

My | M2 | M21, M1 Mg, M31, M211 Ms, M41, M3 2, M3 11, Moo 1, M2 111

p=5| M| M M3, M2 Ma, Mz 1, M211 | Ma1,M32,M311,M221,M2111,M11111

It is easy to calculate the numbers of polynomial generators in each degree. Let these numbers be my,
my, - - -. Then the Poincaré series for the algebra .# (or %, or %, or .%,, it does not matter) is

DMt = (L - ™ (L)L)

on the other hand, we know that it is a tensor coalgebra with one generator in each degree n > 1; this
implies that dim(.#,) = 2" for n > 1 (and dim(Mo) = 1). Thus we have equality of power series

1 1-t

1-2t 1-2t

l_[(l—tk)‘w=1+t+2t2+4t3+8t4+~-~=l+t(1+2t+(2t)2+(2t)3+-~-)=1+t
k=1
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Then taking logarithmic derivatives one obtains

t
= - t=t+3t2+7t3+~-~+(2”—1)t”+~-~

It follows that for all n one has

ded=2”—1,

dn

which by the M&bius inversion formula gives

1 n
M = > u(d)(@ - 1).

din

The latter expression is well known in the literature on combinatorics; it equals the number of aperiodic
bicolored necklaces consisting of n beads, and also the dimension of the nth homogeneous component of
the free Lie algebra on two generators. See e. g. [17].

5.3. Thedual of therelation moduleR &

We now turn to the algebra %, = Hom(.#,F,) = .# /2. By the above, we know that it, as well as .#Z(2),
is a polynomial algebra on the set of generators ESL(2). As an illustration, we will give some expressions
of the M-basis elements in terms of sums of overlapping shuffle products of elements from ESL(2). We
will give these in .#) and then their images in ...

Mz = M2 — 2M 4
=M? mod 2
Miz = M§ = M = Ma1 — 2M; My
= M3+ M3+ My mod 2

1 1
Mi11 = MMy - §Mf + §M3
= MiMy1 + M3+ M3 mod 2
4 1
M, = §|\/|1|v|3 - §Mg‘ +2M$, —4Myg14
=M; mod 2
2 2 2 2\
szz = Ml,l - 2Ml Ml,l - §M1M3 + §Ml + 2M1,1,1,1
=M?, mod 2
14 1 2
Ml,g = §M1 - §M1M3 - 2M1,1 - M3,1 + 4M1,1,1,1

= M; + M;M3 + M3; mod 2
2 2
Mi21 =MiMp1 — Mg — Mfl +2M2My ;1 + §|V|1 Ms - 3 M? —2My111 - 2Ma1 g
= Mle,l + M3,1 + MJZ.,l mod 2
1 1
Myi2 = Mil ~ M2My 4 — 3 M1 M3 + 3 M? —2My111 + Mag — MiMag + M4
= M%l + M%Ml,l + M;M3 + Mi + M3,1 + My MZ,l + MZ,l,l mod 2
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Moreover it is straightforward to calculate the diagonal in terms of these generators. For example, in
Z. one has

AM) =10 M; + My ®1,
AM11))=1®Mi1+ M@ My + M1 ®1,
AM3g) =1 M3+ M3®1
AMp1) =1® Mg + M2@ My + Mpy ® 1
AM31)=1®Ms1+ M3®@M; + M3 ® 1
AMz11) =1®Ma11+ MZ@Myg+Mays @ Mg+ Myp1®1
AM1111) =10 Mp111+ M@ MiMp1 + M ® Mf + M1 ®Ms+ My ®Mpg+ MMy @ My
+ MM+ M3®M; +Mg11®1
AMg1) =1®Mg1 + M@ My + Mg1 ® 1
AM3g2) =1® Mz + Mg®@ M? + M3, ® 1
AMz111) =1®Mp111+MZ@MiMyg + M2 @ M3 + M2 ® Mg + Mo ® Myg + Mp11 ® Mg
+My111®1
AMs) =1® Ms + M5 ® 1
AM311) =1®Mg11+Mg®Myg +M31® My + Mg11®1
AM221) =1®Ma21 + MZ®@ May + M2, @ My + M1 ® 1.
Also it follows from the results in [11] that one has
(5.3.1) Lemma. For any prime p, in .y one has
Mopd,....pd, = Mgl 4 Mmod p.

.....

To identify the elements to which the Milnor generators ¢ of .7, go under the isomorphism %, =
A |2, we first identify <7, with the graded dual of .<7; then /x corresponds to a linear form o%«_; — F
given by (5.1.3).

(5.3.2) Prorosrtion. Under the embedding <7, > .# /2, the Milnor generator £, maps to the generator
Ma1 ok2, 5 1. In particular, this generator is in ESL(2), i. e. is one of the polynomial generators of .%..

Note how this together with (5.2.2) and (5.3.1) implies the Milnor formula (5.1.5) for the diagonal in
.. ldentifying ¢, with its image in .# /2 by (5.3.2), one obtains

(5.3.3) =0 "
DN ALY
i=0
Thus the set {{1, {», ...} of polynomial generators for 7. can be identified with the subset

Q={M1,M21,Ms21,Mg421,...}

of the set of polynomial generators ESL(2) for .# /2 = .%,. This in particular gives an explicit basis for
R#.: it is in one-to-one correspondence with those monomials in the generators Mg, g, from ESL(2)
not all of whose variables belong to Q. For example, in first few low dimensions this basis contains the
following monomials:

2 2
MIMy1, MiM3, M7, M3, M211, M1111,

M3My 1, M2M3, My Mil, MMz 1, M1M2 11, M1M1 111, M11 M3, My 1M2 1, Ms, Ma 1, M3 2, M3 11, M2 1,
M2111.
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We next note that obviously the embedding <7, > Z. identifies .%, with a polynomial algebra over <,
namely one has a canonical isomorphism
(5.3.4) F. = A [ESL(2) \ Q.

In particular, as an .7,-module .Z, is free on the generating set NESL\Q) (= the free commutative monoid

on ESL(2) \ Q). Then obviously the quotient module R #, is a free «Z.-module with the generating set
NESL@\Q) \ (1},

We will need the dual .#=? of the subspace 3’52 C %o spanned by the monomials of length < 2 in the

generators Sq'. Observe that 54‘52 is a subcoalgebra of .%;, so that dually .%, -» .Z=? is a quotient algebra.
We have

(5.3.5) ProrosiTion. The algebra .Z =2 is a quotient of the polynomial algebra on three generators My,
M1.1, M21 by a single relation
M1 Ml,l MZ,l + Mil + M%l =0.

Proor. First of all, it is straightforward to calculate in .%. the sum of the overlapping shuffle products

3 2
M, M1,1M2,1 + Ml,l + M2,1 =
Mia1+Mooo+Moz1+Mz12+Mszp1+Ma1o1+Mszr11+Mi131+Mizi11+ M1+ M1

so that indeed this gives zero in .Z=2. Let
X = Flx1, X2, X3]/(X1X2Xa + X5 + X3)

be the graded algebra with deg(x;) = i, i = 1,2, 3, so that there is a homomorphism of algebras f : X —
Z=2 sending X; = My, Xo = My, X3 = May. It is straightforward to calculate the Hilbert function of X,
i. e. the formal power series

Z dim(X)t";

it is equal to
1-18
Q-1 -ty -t3)°

On the other hand .#=? is dual to 34‘52 and it is straightforward also to calculate dimensions of homoge-
neous components of this space. One then simply checks that these dimensions coincide for X and for
Z=2, Thus it suffices to show that f is surjective, i. e. that .Z =2 is generated by (the images of) My, My
and My ;.

We will show by induction on degree that every M, and M; ; can be obtained as a polynomial in these
three elements. In degree 1, My is the only nonzero element. In degree 2, besides M 1 we have M, which
is equal to M? by (5.3.1). In degree 3, we have

MiMig = Mgz + Mp1 + Mygg = Mip+ My mod 722
and
M::f = M3 + Ml,Z + MZ,l,
so that in .#=? we may solve
M1z = MMy + My
and
M3 = Mf + MlMl,l-
Given now any degree n > 3, we can obtain any element M; ; with i > 1, j > 1, i+ j = n from elements of
lower degree since
Mi,j = My1iMi_g j-1.
Next we also can obtain the element Mp_; 1 from
Mn-11 + Man2 = M2 1My 3.

Then we can obtain My n_; from
Min-1 + Mp_11 = MyaiMooo,
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and finally we can obtain My, from
Mn + Mip-1 + Mpo11 = My Mpg.

Let us also identify the dual of the product map
Fle st - 952
in terms of the above generators. By dualizing it is clear that this dual is the unique factorization in the
diagram
7. Q Z,

3;52 - — > 5‘<1 5‘<l

<<—Q¥\§

In particular, it is an algebra homomorphism. Moreover the algebra .# <! may be identified with the poly-
nomial algebra on a single generator My = ¢, with the quotient map .. — Z=! given by sending M to
itself and all other polynomial generators from ESL(2) to zero. From this it is straightforward to identify
the map .72 — .71 @ .Z=! with the algebra homomorphism

F[X1, X2, X3]/ (X1 X2 X3 + X3 + X3) — Fly1,21]

given by
X1 Y1 +2;
(5.3.6) X2 P Y12y
X3 > Y37).

Let us identify in these terms the map .Z~2 —» R~ 2. One clearly has
RZ =Rz N.Z5°

in %, so that dually one has that the diagram

F. —> Rz,
§<2 R<2

is pushout. Thus Riﬁ* is isomorphic to the quotient of .Z =2 by the image of the composite <7, > %, -
Z=2, That image is clearly the subalgebra generated by M; and My ;.
We can alternatively describe R<2 in terms of linear forms on R<2 C f/“<2. It is clear that the latter

subspace is spanned by all Adem relatlons [n,m], n < 2m. The map r : 0‘52 Riﬁ* assigns to a linear
form on .7 its restriction to RSZ. One then clearly has
(5.3.7) (M) = n(M§ ) =0
forall k > 0; moreover 7(My 1) is dual to [1, 1] in the basis given by the elements [n,m], i.e. M11([1,1]) =1
and My 1([n, m]) = O for all other n, m. Moreover for x,y € .%=? we have
(5.3.8) ), ml) = > x(In, ml)y([n, m];)
in the Sweedler notation
A(n, m]) = " [n, m], @ [n, m]..
For example, we have
A([L,2) = 1+ T)(L@[1,2] + Sq* @1, 1])
which implies that M; My 5 is dual to [1, 2] in this basis, i. e. (M1M11)[1,2] = 1 and (M1Mj1)[n,m] =0
for all other n, m. Similarly
A([L,3]) = 1+ T)(L®[1,3] + Sq* ®[1, 2] + S @[, 1])
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and
A2,2]) = A+ T)A®[2,2] + Sq' ®[1,2] + Sg? ®[1,1]) + [1, 1] ® [1,1]

imply that MZ , is dual to [2, 2] whereas (MZM11)[1,3] = (MfM11)[2,2] = 1, so that dual to [1,3] is
MJZ_M]_,]_ + M]2.l

We will also need a description of the dual R.ofR = R4 /(R#-Rg). For this first note that similarly to
the above .Z, ® .Z, is a free <7, ® <7,-module on N(ESL@\Q) 5 N(ESL@\Q) and R, @ R, is a free o7, ® o7;-
module on (N(ES'-(Z)\Q) \{1}) X (N(ESL(Z)\@ \ {1}). Moreover the diagonal Ay : %, — Z. ® .Z. and its
factorization Ar : Rz, — R#, ® R#, through the quotient maps %, » Rz.,, #.® %, » Rz, ®R4, are
obviously both equivariant with respect to the diagonal 6§ : <7, — < ® <, i. e. one has
(5:3.9) Ag(af) = o(a)Az(f),

Ar(ar) = 6(2)Ar(r)

foranyae o, f € #,,reRz,.



CHAPTER 6

TheinvariantsL and S and thedual invariantsL, and S. in terms of
generators

As proved in the book [3] there are invariants L and S of the Steenrod algebra which determine the
algebra % of secondary cohomology operations up to isomorphism. Therefore L and S and the dual
invariants L, and S, also determine %" and % respectively. In this chapter we recall the definition of L
and S and we discuss algebraic properties of L. and S ..

6.1. Theleft action operator L and itsdual

We next recall constructions of certain maps L and S from [3, 14.4,14.5] of the same kind as the
operators in (4.6.12) and (4.6.13) respectively. For that, we first introduce the following notation:

(6.1.1) R:=Rz/(Rz -Rz),

with the quotient map R — R denoted by r - . There is a well-defined .o7-.<7-bimodule structure on R
given by

fr="fr, rf=rf

for f € F, r € Rgz. As we show below R is free both as a left and as a right <7-module (but not as a
bimodule). A basis for R as a right .7-module can be found using the set PAR c R4 of preadmissible
relations as defined in [3, 16.5]. These are the elements of R & of the form

Sq™ - --Sq™[n, m]

alll

where [n,m], n < 2m, is an Adem relation, the monomial Sq™ ---Sg™ is admissible (i. e. ny > 2n,,
Ny > 2ns, ..., Nk_1 > 2n), and moreover ng > 2n. It is then proved in [3, 16.5.2] that PAR is a basis of R &
as a free right .%;-module.

It is equally true that R & is a free left .#,-module. An explicit basis PAR’ of Rz as a left .%;-module
consists of left preadmissible relations — elements of the form

[n,m]Sq™ ---Sq™

where [n,m], n < 2m, is an Adem relation, the monomial Sq™ - - - Sg™ is admissible, and moreover m >
2m;.
Using this, one also has

(6.1.2) Lemma. Both as a right .»7-module and as a left .<7-module FE_is free. Moreover, the images p
of the preadmissible relations p € PAR under the quotient map Rz — R form a basis of this free right
o7-module, and the images of left preadmissible relations form its basis as a left <7-module.

Proor. This is clear from the obvious isomorphisms
%@gORyEIiERg®L%%

of left, resp. right .<7-modules. m|
In particular we see that every element of R can be written in a unique way in the form

(6.1.3) P + Z ai[ni, mi15i

57
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with p@ € Rz - R, ai[n;, m] € PAR and g; an admissible monomial. Moreover it can be also uniquely
written in the form

(6.1.4) 0@+ " of[ni, mi15;
i

with 0@ € R - R, admissible monomials o/ and [n/,m/]5/ € PAR’.
(6.1.5) DerinitioN. The left action operator
L:®Rz - Qo

of degree —1 is defined as follows. For odd p let L be the zero map. For p = 2, let first the additive map
Ly : F52 > o ® o/ be given by the formula

Lz(Sa"Sq™ = > Sq™Sq™ Sq™ Sq™
ni+Np=n
my+Mp=m
my, Ny odd

(n,m > 0; remember that Sq° = 1). Equivalently, using the algebra structure on .7 ® </ one may write
L#(Sa"Sq™) = (1 ® Sq")s(Sq"™*)(Sa* ®1)5(Sq™ ).

Restricting this map to R}z c 3“52 givesa map Lg : Riﬁ — o/ ® of. Itis thus an additive map given on
the Adem relations [n, m], for 0 < n < 2m, by

m-k-1

min{n/2,m-1}
( n -2k

Leln,m] = Lz(Sa"Sq™ + >’

k=max{0,n—m+1}

)Lg: (Sqn+m—k qu)

Next we define the map ~ ~
L:®R—> g @A
as the right 7-module homomaorphism which satisfies
(6.1.6) L(a® a[n, m]) = 6(x(a)a)Lr[n, m]

with [n, m] € PAR; by (6.1.2) such a homomorphism exists and is unigue. _
Finally, L yields a unique linearmap L : &7 ® Rz — </ ® </ by composing L with the quotient map
7 @ Rgz » o/ @ R. Thus one has

L(«# ® Rz -Rz)) =0.
The map L is the left action operator in [3, 14.4] where the following lemma is proved (see [3, 14.4.3]):
(6.1.7) Lemma. The map L satisfies the equalities
L@a® [n, m]) = »(a)Lr[n, m]
L@®br)=L@bar) +s@)Lber)
L@®rb) = L@@a®r)s(b)
foranya,be o, r €R.

We observe that L can be alternatively constructed as follows. Let
L Ro7®d
be the map given by ~
L(r) = L(Sq* &).
Then one has
(6.1.8) Proposrtion. Foranya € o7, r € R4 one has
L@®r) = 6(«(a)L(r);

moreover L is a homomorphism of <7-.<7-bimodules, hence uniquely determined by its values on the Adem
relations, which are .
L([n, m]) = Lr[n, m].
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Proor. Forany a € o7, a[n, m] € PAR and B8 admissible we have
La® afn.m]g) = L(a®aln.m])3
= 6(x(2)a)Lr[n. m]oB
= sx(a)saLrn, m]B
= 6#(2)8((Sa")a)La[n. m]op
= 6x(a)L(Sq* ®a[n, m]B)
= 6x(a)L(an, m]B).

Then using (6.1.3) we see that the same identity holds for L(a® r) withany r € R .
Next for any a € <7, r € R we have by (6.1.7) and 2 Sq* = Sq° = 1,

L(ar) = L(Sq* ®ar)
= L(Sqta®r) +6(Sql)L(a® )
= 6(x(Sq" @) L(r) + 6(Sq* %(a)) (1)
= §(¢(Sq* a) + Sq* #(a))L(r)
= §(a)L(r).

Thus L is a left .»-module homomorphism. It is also clearly a right .»-module homomorphism since L is.
Finally by (6.1.6) we have

LrIn, m] = 6(<(Sq"))Lr[n, m] = L(Sq* ®[n, m]) = L([n, m]).
[}

Explicit calculation of the left coaction operator L. is as follows. For odd p it is the zero map, and
for p = 2 we first define the additive map Lg, : . ® &, — R#=2. It is dual to the composite map
RS — &/ ® & in the diagram

RZ>——>Ry

|

pull
m
T o Tt T Fo

A®A
It e I3t e Iyt e Tyt

(619) 1e0edel

|
|
|
|
I Le
|
Fste I3l e I3t e Iyt |
|
18T®l |
Y
mam
It I3l e Iyt @ Iyt —> F5l @ Fyl— Fo® Fo

where @ is restriction Z;t — Z5* of the map Fo — Fo given by
O(x) = Sqt %(x),

so that one has

Sg", n=1 mod 2

d(Sq") =
(Sa) {O, n=0 mod 2.



60 6. THE INVARIANTS L AND S AND THE DUAL INVARIANTS L, AND S, IN TERMS OF GENERATORS

Indeed by (6.1.5) we have
L#(Sa"Sq™) = (1® Sq")A(Sq™)(Sq" ®1)A(SA™ ™) = (1 ® Sq™)Ax(Sq")(Sq" ®1)A%(Sq™);
on the other hand we saw in (4.6.7) that one has
Ax = (@ 1)A = (L@ %)A,
so that we can write
L#(Sq"Sq™) = (1@ Sq' x)A(Sa")(Sq" » ® 1)A(Sq™) = (1 ® )A(SA")(® ® 1)A(SA™).

So the map dual of @ is the map ®. : F[/1] — F[/1] given by factorization through <7, - F[/,] of the
map @, : < — <, given on the monomial basis by

G-+, m=1 mod 2

O, (M. )y =471
GRS {0, np=0 mod 2.

Equivalently, by (5.1.6) and (5.1.7), @, = x, Sq_ is the map {1%.

Thus the map Lg, is the composite <7, @ <7, — Riﬁ* in the diagram

. ® o,

|

T8 F. —= T2 F2 1t 7l e Il e Tl @ FL
1eT®l

|
|
| ysl ® ggl ® g<l o‘~<1
|
|

(6.1.10) Lz, 190,80,81
|
| Il 7510 7519 750
* * * *

I
| A®A,
Y m,

Z. ny ﬁfl ® gfl

i push i

Now by (6.1.8) we know that L is a bimodule homomorphism, and moreover R is generated by
R<2 =~ R<2 c R as an .«7-</-bimodule, so knowledge of Lg (actually already of Lz whose restriction
it |s) determines L and, by (6.1.8), also L. Dually, one can reconstruct L, and then L, from L, via the
diagram

iy bicoaction

A Q@A ———~——-—>R, ————> A OR. @

- T

o ® (o, @ ) @ A, —— 1o o, ®R<2 Q@ o, <~— o, ®Rg, ® .
Here the bicoaction 7, ® 7, — o, ® (. ® .) ® <, is the composite

mPem?

o, @ oy, — (A, ® o, ® ) Q (A, ® o, ® F,)

l (142536)
5,.9191®4,

(. ® 2.) @ (o, ® .) ® (o, ® o.) — o, @ (A, ® o,) ® 4.

We next note the following
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(6.1.11) Lemma. The map L, is a biderivation, i. e.

L. (x1X2, ¥) = XL (X2, ) + Xo L (X1, ),
L. (% y2y2) = yaLa (X, ¥2) + Yo L (x,y1)

for any x, X1, X2, Y, Y1, Y2 € .

Proor.
|

It thus follows that L, is fully determined by its values L.(Z, ® v) on the Milnor generators. To
calculate the bicoaction on these first note that we have

i) = omm@) = ) & em@)= ), e ek

i+i’= i+j+k=n

where as always ¢y = 1. For the coaction on ¢, ® &y this then gives in succession

itk ok 2§ +K oK
n® Ly o Z Meoleaeld " ol ou
i+j+k=n
+)/+k'=n’
2i+k 2j'+k’ ok Zk'
i Z i®L 8l ®f ®k®lk
i+j+k=n
i+ +k=n

2i+k 2j’+k’ ok 2k’
), §TE T ed el e

i+j+k=n
i+ +kK=n’

so that for the values of L, we have the equation

~ j+k _oj/+K k K
Lo = )Y F'E" elal o)) e bl
i+j+k=n
i+ +kK=n’
where ¢ is the above embedding R, » 7 ® Rjﬁ* ® .. Thus we only have to know the values of L &, on

the elements of the form gj?k ® gjz,k/ for j > 0, k > 0. Obviously these values are zero for j > 2 or j’ > 2.
They are also zero for j = 0or j’ = 0 since ®.(1) = 0. There thus remain fourcases j=j =1, j=j =2,
j=1,j7=2,and j=2, jy =1. We then have under L z.

ok oK Mm.em ok oK
Gl M ((1el+14) 9((i®l+1h) =

Zole ol+Zeleler +1ef e ol+leZ olel®

leTel ’ , , ,
e 9lel+Zeleled +10 e 9l+leleld o

180,00.81 oK ok
F——=>0+0+10®.f ®D.{f ®1+0

A®A, Zk/ ok
= 0.% @ 0.7
We thus have

k K’
Le.(? e

,)_ M1, k=k'=0
o otherwise.
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We next take j = j’ = 2; then
Kk K m.@m, Kk K k+1 Kk K +1 K
ol —Genfe@en) =" of el of

1eT®l k+1 K +1 k K
2 2 2 2
= ®{ o e

100,881 ki1 K +1 k K’
O 0,8 50, 0 =0
A®A,
——0,

so that
Lo ®5)=0

forall k and k’. Next for j = 2, j = 1 we have

2k+1

2o s ZeaPeel+len) =2 e e 01+ 2 e F 010

1eT®l k+1 K k kel Kk K
2 2 2 2 2
0 ®4 4 01+ 1ol ©f

1800,00.81 i1 K K
2 A 2
1 ®(D*§l ®CD*§1 ®1+0

A®A, k1 K k
0 0.8 9.4,

hence

il + M1M2,1, k=k' =0

k K M
Lz ®4F ) = {0 otherwise

Finally for j =1, j = 2 we get

2k’+1

2o s nel+ien)? e (@en) = elel Mo +10f 0 X 0

1eTel 2
— 4

100,.30,81
—

2k'+1 2k’+l

‘0ol r10 M 0 0
0+0

A.®A,
O’

so that
k K
Lz (2 ®)=0

forall k and k.
To pass to Lg, from these values means just nullifying all monomials which do not contain M 1; we
thus obtain

Lr.({1® 1) = My,
Lr.(2® 1) = M{,

and Lqu(gj?k ® gjz,k/) = 0 in all other cases.
From this we easily obtain

(6.1.12) ProposiTioN. (L.((n® &) = 2,82 ;@M@ 1+22 .02 | ® M2 ®1
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where now ¢n_, = 0 for n = 1 is understood. Solving L. (¢n, &) from these equations is then straightfor-
ward. In this way we obtain

L.(1.01) = Myg

L&, &) = M1

L.(¢2, &1) = Maa1 + M2,

L.(&2.2) = Mag1 + Mags + Ma21

L.(¢1,83) = Maps

C.(¢a,&1) = Maz11 + M3,

L.(&2,28) = Me211 + Maa11 + Mazgs + Mazia1 + Maazin

L&, 82) = Me211 + Maa11+ Mazgs + Mazi21 + Maazin
+ Mé + Mil + M%,z + M§,1,1,1 + M%Mg,l,l + MjM3

£.(83.43) = Mg 11+ Mg a1+ Mga121 +Magas + Magi21+ Ma2so1+Mazazs +Mazaias
+ Ma21421

C.(¢1,24) = Maa211

La(&a. 1) = Mgaz11 + M2, 4

L.(&2.&a) = M1oa211 + Mgg211+ Mgas11+ Mgazas + Msazi21+Msoaz11+ Magazin

Lu(Za,&2) = M104211 + Mgg211 + Mgaar1 + Msa231+ Msazi121+Msoazi1+Magazin
+ Mg + M%z + M§,4 + Mé,z,l + M§,4,1 + Mis,z + Miz,1,1,1 + M§,4,2 + M§,4,2,1
+ M%Miz,l,l + MfMg + Mg,lMg

L.(&3.&a) = Mizg211 + Mizaa11 + Miza2a1 + M12a2121+ Miz2a211 + Mggars + Mgg 231
+ Msgg2121 + Mgag31+ Mgag121+ Msgazs21+ Msganaszt+ Msazaio:+Mgao1421
+ Ma104211+ Mage211+ Magaarr +Maganst +Magazio1+ Magoazii+ Mazgania,

etc.
Having L. we then can obtain L, by the dual of (6.1.8) as

(6.1.13) L.xy) = D axeye ® L%, o)
for x,y € <7, with
M) = > X ® X%, M(y) = > Yo &Y.

6.2. Thesymmetry operator S and itsdual

(6.2.1) DeriniTion.  The symmetry operator
SRy > o Q4

of degree —1 is defined as follows. For odd p, let S be the zero map. For p = 2 letthe elements S, € &/ ®.47,
n > 0, be given by

S, = Z Sq™ ®Sq™ = (Sg* ® SqH)s(Sq™3),
m+np=n-1
ny, N, odd

Sa=0,
SZk+l — Z Sq2i+l ®Sq2(k7i)fl’

0<i<k
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k > 0. Then let the linear map S & : 34‘52 — o/ ® o/ be given by
S #(Sq"Sq™) = S16(Sa™) + 6(SAMS m + 6(SA™H)S et
= (Sq' ® Sq")é(Sa™* Sq™) + 6(Sq")(Sq* ® Sa')(Sa™ %) + 5(Sa™*)(Sq' @ Sq')s(Sa™ ),

n,m > 0. Next define the map Sg : R — & ® & by restriction to RS? ¢ .Zs2. Thus on the Adem
relations this map is given by

(6.2.2) SrIn,m] =S #(Sq" Sq™) +

min{n/2,m-1} m_k—1
-2k

)S z (Sqn+m—k qu)

k=max{0,n—m-+1}
Now let us define the map o
SR> QA
as a unique right «7-module homomorphism satisfying
S(afn, m]) = §(@)SrIn, m] + (1 + T)L(a ® [n,m])

for a[n,m] € PAR. Then finally this determines a unique linear map S : Rz — < ® </ by composing
with the quotient map Rz —» R.

The map S is the symmetry operator in [3, 14.5.2] where the following lemma is proved.

(6.2.3) Lemma. The map S satisfies the equations
S(In,m]) = SgIn, m]
S(r)=6(@)S(r)+(L+T)L(a®r)
S(ra) = S(r)s(a)
forany0 <n<2m,ae o/ andr e R.

We now turn to the dual S, : <% ® &% — Rz, of S (dually to the above, the image of this operator
actually lies in R, c R, and so defines the operator S. : <% ® o/ — R.). Since we know that S.. is a
biderivation, it suffices to compute the values S .(¢, ® £v). Now dually to the equation
S(a[n, m]b) = 6(a)Sr([N, m])é(b)+ (1+T)L(a®[n, m]b) = 6(a)S r([n, M])s(b)+(1+T) (6%(a)Lr([n, m])5(b))

we have
S (la®dn) =
Y, (@ esnd 08w ade +ad”

i+j+k=n
"+j+K=n"
21k pi+K 2k 2K 4 2 2 2 4 2
= Z GG @SR L) )@l + (1l oy 1 @M @1+ 041y, @M @1,

i+j+k=n
i+j+kK=n

Zj'+k'

& o[l 08 + L 0 ) 0 ddi)

with & = 1 and &, = 0 for n < 0, as before.
It thus remains to find the values S R*(gjzk ® gjz,k) — which in turn are images of the corresponding
values of S &, under the map .%, -» R #.. To find the latter, let us first define another intermediate operator

st I Aded
by the equation
SY(SU") = Snur = (Su" @SA)oxx(SA") = > Sq™ & Sq”,

ni+n=n
ng, np odd

so that we have
S #m(Sq"®Sq™ = S #(Sq"Sq™) = S (SAMS(SA™) + 5(SA™S T(SA™) + 6x(SA™S H(Sq™).

We have the dual operator
St . ®@o - F
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such that dual
Sz, : @, > F2
of S & is given by
m.S z.(x®y) =
D (@St ®Ye) ® ()™ + (xye) @ S @ i) + (Guxeye) ™ @ SHx @ Y1)
where as before we use the Sweedler notation

m,(X) = Z Xe ® Xr, M(y) = ny' Yy

(6.2.4)

and
(_)<1 L — gjl
sends ¢; to M and all other Milnor generators to 0. Thus we have

k K
mSz.(¢f ®¢) )=

1, ,2r+k 2r’+k’ ok 2k’ <1 or+k 2r’+k’ <1 1, .2k 2k’ or+k 2r’+k’ <1 1, .2k 2k’
D asiE el Ve E )+ (@ )t easi G el )+ (@l ) esiF o)
l+r=j
o=y

Now the operator S ! is obviously given by

Xy, Xx="y={% N, n;odd,

6.2.5 Slixey) =
( ) (xey) {0 otherwise,

so that Sg*(é'jzk ® gjz,k/) = 0 whenever k > 0 or k" > 0. And among the remaining values S #.({; ® ¢j) the
only nonzero ones are given by

S#.((1®4) =Mz + Mo =M+ Mgy,
S#.((1®0) =S 7.(L®01) = Maz + Map = MiMZ

S7.((®%) =Msz + Mgz = MMZ,.
Then further passing to Sg. means, as before, to remove the monomials not containing My 1, so that the
only nonzero values of the form S, (¢ ® ¢2°) are

Sr.({1®42) = Sru(l2® 1) = MIMZ .
Hence we obtain
(6.2.6) ProPOSITION.

1S (Ln®w) = Loy ,®MIMZ | @1+ 45,00 @ MIMZ @1+014n ,0% M2 @1+ Ly ,®MZ, @1

O
As for L, above, we then solve these equations obtaining e. g.

S:(41,41) =0,
S.(¢1.2) = $.(¢2,2) = Ma21 + MiMF
S.i(f2,82) =0,
S.(¢1.48) = S4(85. (1) = Magoa + MiMZ, 5,
S.(¢2,43) = Si(L3,£2) = Me221 + Maa21 + Mas221
+ MiMZ + MiMZ; + MiMZ, + MiM3 15 + MIM3; + M M3,
S:(£3.£3) =0,
S.(¢1,44) = S.(la. 1) = Mgaz21 + MiMf, 5,
S.(L2,4a) = Si(4as82) = Mioa221 + Msg221 + Mgaa21 + Mg24221+ Maga221
+ MiM§ + MiMZ, + MiM3, ; + MiMZ, + MiMZ,  + MiMZ 5, + MiM3, 1,

2 2 2 a2 3pn 2 9p2
+ M, M33432 + M, M2,4,2,1 + M, M2,1 M3 + M7 M4.2.1.1 + M Mg,
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etc.



CHAPTER 7

The extended Steenrod algebra and its cocycle

We show that the dual invariant S determines a singular extension of the Hopf algebra structure of teh
Steenrod algebra. We aslo give a formula for a cocycle representing the extension. Then we show that S ..
is related to a formula which describes the main result of Kristensen on secondary cohomology operations.
A proof of this formula did not appear in the literature yet.

7.1. Singular extensions of Hopf algebras

In this section we introduce a singular extension  of the Steenrod algebra .z which is determined by
the symmetry operator S.

(7.1.1) Deriniion. A singular extension of a Hopf algebra A is a direct sum diagram
i
? A=—= —= A,

i.e. onehas ps = ida, gi = idgand sp+iq |dA, such that A is an algebra with multlpllcatlony A®A — A
and A is also a coalgebra with diagonal 6 : A — A® A. (Here we do not assume that § is a homomorphism
of algebras, or equivalently that 1 is a homomorphism of coalgebras, so that in general A is not a Hopf
algebra). In addition p is an algebra homomorphism, and s is a coalgebra homomorphism. Moreover (i, p)
must be a singular extension of algebras and (g, s) must be a singular extension of coalgebras. This means
that the ideal R = ker i of the algebra A is a square zero ideal, i. . xy = 0 for any x,y € R, and the coideal
R = coker s of the coalgebra A is a square zero coideal, i. e. the composite

AL AsA L ReR
is zero.

It follows that the A-A-bimodule and A-A-bicomodule structures on R descend to an A-A-bimodule
and A-A-bicomodule structures respectively. _

Our basic example of a singular Hopf algebra extension is as follows. We have seen that R from (6.1.1)
has an «7-.</-bimodule structure. Now it also has an «7-<7-bicomodule structure as follows. On the one
hand, there is a diagonal Ag : Rz — R(Jf) = ker(q# ® q) induced in the commutative diagram

a9z

Rz Fo o

v

07 ®4s

RO 00 Fo—= o @ o/

with short exact rows. Moreover there is a short exact sequence

2 igel
©=('Z7%

Rz ®Ry —= F®Rz ®Rz®F —=R2,
where ig : Rg < % is the inclusion. Since the composite of the quotient map
Fy®Rz ®R7®.F) » o/ OR®R®.Y
with i® is obviously zero, we get the induced map
R? » /@R ORe.

67
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Moreover the diagonal of .7, factors through this map as follows

R Ry Fe Ty oy
| |
(3 la lA l(s
-V ¥ 47807
FIR®R®F <—RO —= Fy® F —> o7 @ .o/

(7.1.2)

giving the left, resp. right coaction A, resp. A of the desired .«7-.<7-bicomodule structure on R.

Note that the above construction is actually precisely dual to the standard procedure for equipping the
kernel of a singular extension with a structure of a bimodule over a base. In particular we could use the
dual diagram

S OR®RoY <~— RO = Ty 0 70K o
! |
(713 &) ' lm lm
Y v .
R Ry C 7 T az ps

to give R viam, and m, the structure of .«7-.o7-bimodule.

(7.1.4) Tueorem. There is a unique singular extension of Hopf algebras
_ .
1R ~5 o = A,

where <7 is the split singular extension of algebras, that is, as an algebra
o = &L 'R
is the semidirect product with multiplication
(a,n@,r) =(aa’,ar +ra’)

and the following conditions are satisfied. ~
The induced .«/-.<7-bimodule and «/-</-bicomodule structures on ~~!R are given by the ones indi-
cated in (7.1.2) above, and the diagonal ¢ of the coalgebra <7 fits into the commutative diagram

A d e A-Y4
(7.1.5) i lm
SIR—> A @ d > 0

where S is the symmetry operator in (6.2.1).

We will prove this theorem together with the dual statement. Note that clearly the dual of a singular
extension of any Hopf algebra A is a singular extension of the dual Hopf algebra A... Clearly then the above
theorem is equivalent to

(7.1.6) Tueorem. There is a unique singular extension of Hopf algebras
_ [oH ~
IR, =~ d, ~ = .,
iy 3

where 7, is the split singular extension of coalgebras, that is, as a coalgebra
o, = . & 'R,

with diagonal

m, 0

0 m.,

0 m.

dox R 12 dod o oS R ey R0 oI ReXIR,

where the diagonal m, is dual to the multiplication m : & ® &/ — & and m;,, m,, are the </, -</-
bicomodule structure maps dual to the .o7-.o7-bimodule structure maps m; : o ® ¥ 'R — X7IR, m; :
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> 1R® .« — T 'R in (7.1.3), where the induced .«7-.7-bimodule structure on R, is dual to the -~
bicomodule structure indicated in (7.1.2) above, and where the multiplication &, of the algebra o, satisfies
the commutation rule
P-()P-(X) = P.(X)p.(y) + S.(x®Y)
for any X,y € <7, where _
S.: d.®d — IR,
is the cosymmetry operator from (4.8.6).
ProoF oF (7.1.4) anp (7.1.6). The diagonal & can be written as follows

11 P12

21 $22

$31 ¢32

F oL IR, yed © 795 'Roy Reo &3 ReX IR,

Then the condition that s : &/ »> &/ @ 7R is a coalgebra homomorphism implies ¢11 = 6 and ¢p1 = 0,
¢31 = 0, p41 = 0. Moreover the condition that the .7 -.7-bicomodule structure induced on R coincides
with the one given in (7.1.2) implies ¢22 = A, ¢32 = A;. Next the condition that (s, q) is a singular
extension of coalgebras, i. e. the coideal R has zero comultiplication, implies ¢4, = 0. Finally, let us look
at the diagram (7.1.5). The lower composite in this diagram sends (a, r) € o7 ® 1R to

(5(r),0,0,0) € ¥®« & ZRE RO L 'Reo/ @ T 'R 'R.
The upper composite sends it to
(L+T)5(a,r) = (1 +T)(6(2) + p1a(r), Ac(r), Ac(r), 0)
= ((1+T)5(@) + (L + T)pra(r), Ae(r) + TAH(r), Ar(r) + TA(r), 0).

Since ¢ is cocommutative, one has (1+T)é = 0. Moreover cocommutativity of A : %y — %, ®.%, implies
TA; = Ar, TA: = Ap. Thus commutativity of (7.1.5) is equivalent to the condition

(7.1.7) 1+T)p2=S:T'R> 7 ® .

Equivalently, passing to the dual we see that the dual map &, = ¢12, : . ® . — IR, must satisfy
&E@+T)=S..

Now it is easy to see that &, is in fact the algebra cocycle determining the algebra extension

— o ~ S,
R*: > uQ{* >> »Q%*’

that is, in <7, = <7, ® 'R, one has

(@.B)(.B) = (aa’,af’ + o’ + &(a®a)).
Hence by (7.1.7) one has

(a/,ﬁ)(a/,ﬁ') - (a/ng/)(a/’ﬂ) = (0’ S *(a ® a/))'
Now recall that <7, is actually a polynomial algebra. Using this fact it has been shown in [3, 16.2] that
the algebra structure of any of its singular extensions such as 7. above is completely determined by its
commutator map, i. e. by S.. Thus ¢12, and hence the whole ¢;; matrix is uniquely determined. It
is then straightforward to check that indeed this matrix yields a coalgebra structure on </ with desired
properties. O

It follows immediately from (7.1.6) (and actually this was also deduced during its proof) that one has
(7.1.8) CoroLLARY. FoOr the cosymmetry operator S .. from (4.8.6) there exists a map
& @, — TR,
which is a 2-cocycle, i. e. for any X, y, z € <7 one has
XE: (Y, 2) + £4(X,y2) = 2€.(X, Y) + £.(xY, 2)
and such that its symmetrization is equal to S ., i. e. for any X,y € 7 one has

EXY) +E(Y,X) = S.(X,Y).
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Proor. This follows since any extension

of a commutative algebra A by a symmetric A-module M is determined by a 2-cocyclec : AQ A — M such
that for any x,y € A’ one has

xy — yx = i(c(px, py) — c(py, px)),

i. e. the commutator map for A’ is given by the antisymmetrization of c. Of course for p = 2 there is no
difference between symmetrization and antisymmetrization. [

(7.1.9) Remark. The above corollary is easily seen to be exactly dual to [3, Theorem 16.1.5].

Using the extended Steenrod algebra we can next compute the deviation of the cocycle &, from being
an .«7,-comodule homomorphism. Namely, let

Ve, A ® o, — A, @R,

be the difference between the upper and lower composites in the diagram

coaction

o, ® o, ——> o, ® I, ® I,
(7.1.10) & ll@@

coaction
_—

>IR, o, @ TIR,.

Thus on elements we have
(7.1.11) Ve.(6Y) = ) E06Y)r ®ECYIR= D XY ® 0%, Vi),
where again the Sweedler notation is used,

m,.(x) = Z Xe ® X

for the diagonal
m. : o — . ® .

and
a.(x) = Z Xor ® XC
for the coaction
a.:C-o>Z®C

of a left .«7.-comodule C.
Let us also denote by Vs, the similar operator but with S.. in place of £,. That is, we define

Vs.(6Y) = ) Su06Y)r ®S (G Y)R— D XeYer & (X, Yr).
We then obviously have
(7.1.12) Ve, (%Y) + Ve, (¥, X) = Vs.(X.Y)
forany x,y € ..
(7.1.13) Lemma. The map V., above is a 2-cocycle, i. e. for any X,y,z € <7 one has
M.()Ve,(¥.2) + Ve, (X, y2) = Ve, (X, Y)M.(2) + Ve, (XY, 2).
Proor. First note that the diagram

—m,®coaction

A, @R, — o, ® . ® . OR,

w

action M®M®M®F§*

l&@action

coaction

. @R,

A1
*
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commutes — this follows from the fact that the action and coaction of <7 on R, are induced from the
multiplication and comultiplication in .%. which is a Hopf algebra.
We thus conclude that the coaction map

R. » #®R,

is a homomorphism of .oZ,-modules, so that its composite with the cocycle &. is a cocycle. It thus remains
to show that the composite

A A, —> A, Q@A — o R,

in the diagram (7.1.10) is also a cocycle. Let us denote this composite by ¢.
Now observe that the Hopf algebra diagram for <7, expressing interchange of the multiplication and
diagonal can be written on elements as follows:

D00 ® W) = > XeYer @ XY,
Using this identity we then have for any x,y,z € <7
M.0)$W:2) = D XeYozer & Xeéu(yr, 2e0);
$06Y2) = > Xy ® £, (%, (y2)r) = (6. ®£) (D % ® (Y2)or & X & (y2)r)
= (6. ®&.) (Z Xe ® Yoz ® X ® Yp 2w ) = Z XY Zer ® & (Xe, YrrZen);
$(v,2) = > (W)eze ® () 20) = (6. ®£) (D () @ 20 ® () @20
=(6.® &) (Z XeYe ® Zpr @ XY @ zrn) = Z XeYeZer ® E(Xe Yy, Zr);
SOCYIM(2) = D XeYo2er @ E,(Ke, Yrr Y2
These indentities readily imply that ¢ is a cocycle as required. O
We next use the fact the cocycle V., is defined on a polynomial algebra and hence can be expressed by

its values on generators and by its (anti)symmetrization Vs,. Indeed the proof of [3, 16.2.3] works in this
generality, i. e. one has

(7.1.14) ProposiTion. Let P = K[{1, {2, ...] be a polynomial algebra over a commutative ring k, let M
be a P-module, let

vy:P®P->M
be a Hochschild 2-cocycle, i. e. one has

xy(y,2) — y(xy,2) + ¥(x.y2) - 2y(x,y) = 0
for all x,y,z € P, and let o be the antisymmetrization of y, i. e.

O-(X’ y) = Y(X’ y) - 7(y7 X)°

Then, up to coboundaries, y can be recovered from o, i. e. there is a cocycle y,, cohomologous to y which
depends only on ¢

Proor. To y corresponds a singular extension of k-algebras
M >I—> E —p»— P

whose isomorphism class uniquely determines the cohomology class of y. Let us choose for each polyno-
mial generator £, € P an element s(¢&,) € E with ps(¢n) = . Furthermore let us choose an ordering on
the polynomial generators of P, /1 < &, < ...; these data determine uniquely a k-linear section of p, by the
formula

Syl ) = S(n)S(Gny) -+

for any finite sequence ny < n, < --- of positive integers. Then we can use s to construct the cocycle vy,
cohomologous to y determined by

s(xy) = s(x)s(y) + iy (X.y)-
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But if x and y are monomials, then s(xy) and s(x)s(y) differ only by the order of terms, so that iy (x,y) is
contained in the ideal generated by commutators

Yo (dis £5) = 8(8)s(¢) — s(£7)s(&) = o(4i. &)
fori > j. So in fact one can express each y.(x,y) by a linear combination of elements of M of the form
zo(gi, ¢j) forz e P. O

(7.1.15) Remark. Obviously the above proof actually contains an algorithm for expressing the cocycle
ve interms of o. For X = ¢, &n, -+~ &n andy = {m dm, -+ - &m, With ng <y < <N, M <My < <m,
either one has nx < my, in which case y,(x,y) = 0 since s(x)s(y) = s(xy), or one has ng > my, in WhICh
case one can write

S(X)s(Y) = s(¢ny) - - - S(Lne1)S(Gmy)S(En)S(Emy) - - S(Em) + &ny +  Lnnes Sy ++* dn (s L )-

Applying the same procedure again several times one finally arrives at s(xy)+(a sum of elements of the
form zo (¢, ¢;)). In fact it is easy to see that one has

yff(.(nlgnz o 'gnk’ (ﬂhgmz e fm) = Z .an e {ni—lgnnl T {nk.(ffh e gmj—lgmj+l e fm O-(.(mj’ .(ni)’

ni>m;
In the characteristic p > 0 case further obvious simplifications occur. In particular we can choose the
cocycle &, in (7.1.8) in such a way that the formula

LG GG ) =
(7.1.16) Z (d1+e1 ) d. 1+e. 1{d.+e. 1{IdJir+ll+a+1 . é’jjjll"'e] 1(?]"’9] 1(?J,r+ll+e,+1_ -S.(Gn 4))

e, dJ odd
holds

The operator Vs, is readily computable. It is a symmetric biderivation, with Vs, (x, x) = 0 for all x,
thus uniquely determined by its values of the form Vs, (¢n, Zm) for n < m, which are expressed easily from
the corresponding values of S ... For example, one has

Vs.(l1. ) = 1@ M2y,
Vs.(l1, L) = 5 ®@ME + i@ M3, 4,

_ (7 2 2 3 2 2 2
Vs.((2.03) = (] + 03) @ ME + 5 @ ME 15 + 41 ® (MEM3 + MiMa11 + Ms + Mag + Maz + Ma11)
Vs, (1. &) = Ll ® Mil +4® Mg,l,l +4a® Miz,l,l’
Vs.((2.00) = (843 + 1) @ ME, + (@ M3,

+ (f ® (MJZ_M3 + M]_Mg,l,l + Ms + M4,1 + M3,2 + MZ,l,l 1) + (l ® M4211

+01® (Mst + Mil M3 + MZMg11 + Mg + M7 + Mg21 + Ms 4+ Maao + Masp + Maas

+Maa21 + Ma2111)%,
etc.
7.2. Theformula of Kristensen
We will next use certain elements defined in [12, Theorem 3.3] to derive more explicit expressions for

&., hence for S, Vs, and V. . We recall that Kristensen defines

A[a, b] — (Sql ®Sq0,1)6 Sqa—s qu—z + Sqa—z qu73 + Z (ba_ 12_J J)(Sqa+bj3 qu—z + SanrbfjfZ quf3) ,
; —

for natural numbers a, b. Obviously one has
Ala, b] = (Sq* ® Sq**)sk([a, b]),
where Kk is the operator determined by
k(xy) = #(2ex(X)2ex(y))
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for x,y € 3551. We then interpret A[a, b] as an F-linear operator of the form
K: FleFsl > d oo
given by
K(x®Yy) = (Sq" ® Sq**)ax (e (X)xx(y))

which is factored through 75! ® Z;* » Z;2 and then restricted to RS? — .#;2. We then can dualize K
to get

(7.2.1) Derinirion. We define an F-linear operator

K.: . ®d > RS,

as composite with the quotient map .#<2 - Rf; of the dual of K above (whose image lies in that of
m, : =2 F5L @ F5L

Thus explicitly, K, is the composite

Sqt-,@sq%t -, O G o M pe o<1 o<l MZoMZ <1 o<1
A QA —————— A @y — A — A > Fo — FQF » TS QIS —— FS QTS

*

landing in .72 — Z5' @ Z=* and precomposed with .# =2 - R$Z . Or on elements,

ox oy )
8(1 00>

ox 9y

K.(x®y) = (M? ® M{) (m (G 001 04

m.(M$; My — —)<!

One thus has

(7.2.2) Koy oaMmare.-) = {

We have

M MgE lel, ni, my odd, nj = m; = 0 fori > 2,

0 otherwise.

(7.2.3) ProrosrTion. Symmetrization of the operator K. dual to the operator Sg in (6.2.2), i. e. is given
by precomposing S . given in (6.2.4) with the restriction map .#<? » Rz=2.

Proor. From the above formula (7.2.2), for monomials x = £*¢?¢3" -+ andy = {5850 -+ we
have

Ny +Mmy Mn2+mz 1 M2

11> MMz +miny oddandnj =m; =0 fori > 2,

M;
K.(x®Vy) + K. (y ® X
(x®y) Vex) = {0 otherwise.

On the other hand, using the explicit expression (6.2.4) and the expression for the operator S X in (6.2.5) we
can write

mSz.(xey)= > ZM" eyt +@elvlen) > (xy)TtelM Y,
=2 X =2
Y=gt Y=g

From the expression (5.1.5) for the Milnor diagonal we thus see that for monomials x = §f1§£‘2{23 -~ and
y = g“f‘l{;“z(g“s ---onehasS #.(x®y) = 0 unless nj = m; = 0 for i > 2, whereas in the remaining cases one
has

m. 59*( ®{£Th(£n2) = Z ( : )( ){|+]+2(n2+mz)+1 ®(]f-‘1+ffh*ifj+n2+mz

o<i<n
0<j<my
i, j odd
N1\(M1) s L
+((1®1+11%) Z ( il)( j1)§|1+]+2(nz+mz) ® §?1+ml i~jnpmy

o<i<n
O<j<my
N —i+ny, m—j+modd

Let us now turn back to the symmetrization of K... We compute its image under the map m.,; by (5.3.6)
itsends Mito 1 ®1+1®¢1, Migto 1 ® {1 and My to 512 ® 1. Thus the nonzero values of this image
are, for nym, + myn, odd,

MKA+ TP G ) = (1 ®l+ 1) ™(Z o)™ Y (Z e ).
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Thenexpanding ({1 ® 1+ 1®)™™ = (1@ 1+1® )" (&1 ® 1+ 1® )™ via binomials we obtain

n m . . i
m*K*(l +T)({?l 22 ®(]r_nl{g]2) _ Z ( il)( jl)»l+1+2(n2+mz) ®{:rL11+m1 i ]+n2+mz+1.

o<i<n
o<j<m

It follows that nonzero values of the difference m.(S &, — K.(1 + T)) on monomials in Milnor generators
are equal to

(i+j+2(n2+m2)+1 ®{:rL11+m1—i—j+n2+mz

ogzgfwl (nll)(n}l)

1
0<j<my
i, j odd
nl ml itie2 1 i
4 Z ( : )( ' )§|1+J+ (ng+mp)+ ®§{n+ml i—j+np+my
0<i<n J
0<j<smy
n —i+np,m—j+m odd
ny\/mq\ P42 i 1
" Z ( : )( ' )gll+1+ (np+my) ®411+ml i—j+np+mp+
o<i<n J
o<j<my

N —i+m, m—j+meven

for nym; +myn; odd and m.S 9*(_({]1._(22 ® ¢"&5") for nym, + myn; even.
The first expression can be rewritten as

({% ® (l)n2+nb Z {]lf+l ® ({11+m1—k
k

o<i<n k=i o<i<n; k=i 0<i<n; P \k+1—i
O<k—i<my O<k—-i<my O<k+1-i<my
i, k—iodd N —i+n, m—Kk+i+modd n—i+n,m-k-1+i+neven

and in the second case we may write

M.S . (P e Mg = (o o)™ ) dt e ™
k

DR e Y 1) R ) e |

O<k—-i<my O<k—i<my O<k+1-i<my
i, k—iodd N —i+n,m—Kk+i+m odd m—i+n,m-k-1+i+m odd

One then shows that these expressions lie in the subalgebra of .7 <! ® .#<! generated by ¢? ® ¢; and

£H1®1+ 14, without involvement of £ ® £;. This means that the image of the difference S ., — K.(1+T)
under the restriction map .Z<? - R #=? is zero. O



CHAPTER 8

Computation of the algebra of secondary cohomology operations and
itsdual

We first describe explicit splittings of the pair algebra % of relations in the Steenrod algebra and
its dual Zr. Then we describe in terms of these splittings s the multiplication maps AS for the Hopf pair
algebra Z* of secondary cohomology operations and we describe the dual maps As determining the Hopf
pair coalgebra %x dual to %°. On the basis of the main result in the book [3] we describe systems of
equations which can be solved inductively by a computer and which yield the multiplication maps A® and
As as a solution. It turns out that As is explicitly given by a formula in which only the values Ag(¢n), n > 1,
have to be computed where ¢, is the Milnor generator in the dual Steenrod algebra 7.

8.1. Computation of Z* and %k
Let us fix a function y : F — G which splits the projection G — F, namely, take
(8.1.1) x(k mod p) =k mod p?, 0<k<p.

We will use y to define splittings of #Z% = (%Tf 1A %g) Here a splitting s of Z* is an F-linear map for
which the diagram

75
(8.1.2) > la
Ry s P9 —=%,

commutes with Rz = im(9) = ker(q# : % — ). We only consider the case p = 2.

(8.1.3) DerntTION (The right equivariant splitting of %%). Using y, all Adem relations

(3]

b-k-1
— acnb

[a,b] :=Sg?Sq° + E ( a— 2k

) Sqa+b—k qu
k=0

for a,b > 0, a < 2b, can be lifted to elements [a,b], € Rz by applying x to all coefficients, i. e. by
interpreting [a, b] as an element of 2. As shown in [3, 16.5.2], R« is a free right .%,-module with a basis
consisting of preadmissible relations. For p = 2 these are elements of the form

Sg* ---Sq*[ax,a] € Rz
satisfying a; > 2ay, ..., ak_2 > 2ax-1, ak-1 > 2ax, ak < 2a. Sending such an element to
Sq* ---Sg*[ax, al, € R

determines then a unique right .%y-equivariant splitting ¢ in the pair algebra %", that is, we get a commu-
tative diagram

RgiR@®F=%f

| ;

P — )

75
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For a splitting s of Z* the map s®1 @ 1®s induces the map s in the diagram

Y —2 o (BRRTY), ~—— T ® T ® Fo®RF

A A A
S| ia S| iﬁ@ | selolzs
\ \ |
(8.1.4) Ry —=—>R® Rz®.% & Zo®R >

L]

Fo—> Fo® T,
Then the difference U = sgAg — AS : Rz — (Z7®%™); satisfies 93U = 0 since
03S#AR = AR = AROS = 9gASs.
Thus U lifts to ker 93 = o7 ® o7 and gives an F-linear map
(8.1.5) US:Ry > 7 ®@d.

If we use the splitting s to identify ,@f with the direct sum < ® R, then it is clear that knowledge of
the map U*® determines the diagonal %, — (Z7&%"); completely. Indeed sy yields the identification
(Z"RFT), = A ® Rf;.), and under these identifications A : ZF — (#"&%"), corresponds to a map
which by commutativity of (8.1.4) must have the form

(%5 &)
(8.1.6) 7 Ry — 0 ®RY

and is thus determined by US.
One readily checks that the map U s for s = ¢ in (8.1.3) coincides with the map U defined in [3, 16.4.3]
in terms of the algebra . .
Given the splitting s and the map U3, the only piece of structure remaining to determine the Alg‘]{a"-
comonoid structure of 2% completely is the Zy-.%-bimodule structure on % = </ @ R4. Consider for
f € Zo, r € R the difference s(fr) — fs(r). It belongs to the kernel of d since

as(fr) = fr = fas(r) = a(fs(r)).
Thus we obtain the left multiplication map
(8.1.7) a’: Fo®Ry — .
Similarly we obtain the right multiplication map
bS: Rz ® %) — o
by the difference s(rf) — s(r)f.

(8.1.8) LEmma. For s = ¢ in (8.1.3) the right multiplication map b? is trivial, that is ¢ is right equi-
variant, and the left multiplication map factors through gq¢ ® 1 inducing the map

a¢:%®Rg—>d.

Proor. Right equivariance holds by definition. As for the factorization, R ® R »» Fy® Rz isin
the kernel of a% : %, ® R# — 7, since by right equivariance of s and by the pair algebra property (4.1.8)
for Z* one has forany r,I’ e Rz

s(rr’) = s(r)r’ = s(r)as(r’) = (9s(r))s(r’) = rs(r’).
Hence factoring the above map through (%, ® R#)/(R# ® Rz) = <7 ® R4 we obtain a map
o @Rz — .

Summarizing the above, we thus have proved
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(8.1.9) Proposion. Using the splitting s = ¢ of % in (8.1.3) the comonoid % in the category Alg?"
described in (4.5.4) is completely determined by the maps

u?: Rg > o ®o
and

a’: 7 ®Rgs - o
given in (8.1.5) and (8.1.7) respectively.

We next introduce another splitting s = y for which US = 0. For this we use the fact that <7, =
Hom(<7, F) and

(8.1.10) Py = Hom(%By, G)

with 4, = Tg(E ) both are polynomial algebras in such a way that generators of <7, are also (part of the)
generators of As.
Using y in (8.1.1) we obtain the function

(8.1.11) Uy > By

(which is not F-linear) as follows. Each element x in <7 is uniquely an F-linear combination x = ,, n,a
where « runs through the monomials in Milnor generators. Such a monomial can be also considered as an
element in % by (5.2.6) so that we can define

() = D x(noa € B,

(8.1.12) DerintioN (The comultiplicative splitting of %F). Consider the following commutative dia-
gram with exact rows and columns

o, > F, — Hom(Rz, F)

N
N
'//X\§

By — > Hom(R, G)

ok

o, — F, —>H0m(Rj,F)—»—%

with the columns induced by the short exact sequence F > G - F and the rows induced by (4.7.1). In
particular g is induced by the inclusion Rz c . Now it is clear that v, yields a map gy, which lifts to
Hom(R 4, F) so that we get the map
QY - o — ,%’I%
which splits the projection 92; - of,. Moreover qy, is F-linear since for all x,y € . the elements
U (X) + ¢, (¥) — ¢, (X + y) € Py are in the image of the inclusion jq.z, : % — %4 and thus go to zero
under g.
The dual of gy, is thus a retraction (qy,)* in the short exact sequence

~ 7
N e

7
L7 @y

@i~
7
which induces the splitting ¢ = (qu,); of %" determined by
Y(m(x)) = X = ()" (X))
(8.1.13) Lemma. For the splitting s =  of 2% we have U¥ = 0.
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Proor. We must show that the following diagram commutes:

RQLR(;)

l/’l/ l‘/l#
Ry @ F —>> (%°@%"),.

Obviously this is equivalent to commutativity of the dual diagram

(B %5)+ —— Hom(R, F)

(y2)- l l/l/'*

AR.
RO R,

which in turn is equivalent to commutativity of

A @A — "~ o,
(8.1.14) @m:l l%
(R 5)t ——> HOM(R5, F).

On the other hand, the left hand vertical map in the latter diagram can be included into another commutative
diagram

i®1_
.4, ® A ®F, <ﬁ> A ® o,

ey, eay, &l l l ()
FRRE® Rr®F. < (Fe @ Hr)*
It follows that on elements, commutativity of (8.1.14) means that the equality

QU (xy) = 1(X)aw () + Qe (X)i(Y)

holds for any x,y € 7. By linearity, it is clearly enough to prove this when x and y are monomials in
Milnor generators.

For this observe that for any x € .o, = Hom(</,F), the element qy,(x) € Hom(R, F) is the unique
F-linear map making the diagram

Rgp > By —— o/
|
Ay (%) | %((X)l lx
\
F>—G—>F

commute. This uniqueness implies the equality we need in view of the following commutative diagram
with exact columns:

Rg———R?- - - - ~FgF———=F
I I 0 (80, ) I . I
By —2 > Byo By Y e G

N P

Xy

T <——

since when x and y are monomials in Milnor generators, one has ¥, (xy) = ¢, (X)y, (y). O
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Therefore we call ¢ the comultiplicative splitting of . We now want to compute the left and right
multiplication maps a” and b” defined in (8.1.7). The dual maps a, = (a”). and b, = (b”). can be described
by the diagrams

Gy
~ —
(R2)- o,
(8.1.15) mil lm
- i©ay,
and
Qy
<77 T~ ~
(Ra). o,
(8.1.16) mil lm
~_ _ _ —
Y @i

Here m, is dual to the multiplication in .« and m and m' are induced by the .%,-.%p-bimodule structure of
R% ® F. One readily checks

a, = mﬁq‘//)( -(i® C]d/)()m*
by = miayy, — (ay, ® )m..

We now consider the diagram

I

v

Here y? is defined similarly as ¢ in (8.1.11) by the formula

‘/’? [Z nar[ia' ®:8] = ZX(na/ﬁ)a ®ﬁ
a,B ap

where a, 8 run through the monomials in Milnor generators. Moreover m€ is the dual of the multiplication
map m® of %y = T(E).

(8.1.17) Lemma. The difference mSy, — g, lifts to an F-linear map v, : &, — . ® 7. such that
one has

aw = (1®7T)VX
by = (1@ 1)V,.

Here n : #. » R, is induced by the inclusion Rz c %.

Proor. We will only prove the first equality; the proof for the second one is completely similar.
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The following diagram

Ra. A,
\
R
Yy
PBy <——— 4,

mt m, m?l lm* m,

vy

By @ By <— o, Q o,
1en /

%#®R33# g*@ﬁ*

7. 9Ra. — @ .
X
%

g*®Rg7*

commutes except for the innermost square, whose deviation from commutativity is V,, and lies in the image
of #, ® Z. — Py ® Py, and the outermost square, whose deviation from commutativity is a, and lies in
the image of Z#. ® Rz, — %, ® R.. It follows that (1 ® 1)V, and a, have the same image under j ® jr,
and since the latter map is injective we are done. ]

Let us describe the map V,, more explicitly.

(8.1.18) Lemma. The map V,, factors as follows

Vx 1Ri

Proor. Let o c % be the subring generated by the elements M1, Ma1, Ma21, Mggo1, ... Itis then
clear that the image of ¢, lies in <% and the reduction % - %, carries 2% to <7.. Moreover obviously
the image of y®m, lies in <%, hence it only remains to show the inclusion

mE () € By ® .

Since mY is a ring homomorphism, it suffices to check this on the generators My, Ma1, Ma21, Mga, .... But
this is clear from (5.3.3). m|

(8.1.19) CoroLLarY. For the comultiplicative splitting y one has
aw = 0
Moreover the map b, factors as follows

Eﬂ 1ei
o, — Rg@@&f* —> Ry*®3‘\*.
Proor. The first statement follows as by definition z(.27,.) = 0; the second is obvious. m]

Using the splitting ¥ we get the following analogue of (8.1.9).
(8.1.20) Proposition. The comonoid ZF in the category Algﬁ’f" described in (4.5.4) is completely
determined by the multiplication map ~
b iRy ® o — o
dual to the map by, from 8.1.19. In fact, the identification

%:TZDQ{@RQ
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induced by the splitting s = y identifies the diagonal of Z* with A, ® Ar (see (8.1.5), (8.1.6)), and the
bimodule structure of ] with

f(a,r) = (fa, fr)
(@.0)f = (f - b¥(r, f).rf)
forf e %9, reRe, e .

8.2. Computation of the Hopf pair algebra #*

The Hopf pair algebra 7 = %" in (4.6.15), given by the algebra of secondary cohomology operations,
satisfies the following crucial condition which we deduce from [3, 16.1.5].

(8.2.1) TueoreM. There exists a right .%p-equivariant splitting
U:% =Rz ®F — #,0F = %,
of the projection #] — %}, see (4.6.4), such that the following holds. The diagram

o & Ll 3 73 o
/ /
q| Tu q| Tu H H
N N
o T T — o

commutes, where u is the inclusion. Moreover in the diagram of diagonals, see (4.6.5),
B 0 (BFRTF) ~— S ®
e
Ry " (R

the difference A»u — (U®U)AR lifts to Z.o7 ® .27 and satisfies

& = Al — (URU)AR : %;—7>>§—‘£>Zd ® o
where & is dual to &, in (7.1.8). Here 7 is the projection %z —» R — R. The cocycle & is trivial if p is odd.
(8.2.2) DerinTiON. Using a splitting u of %F as in (8.2.1) we define a multiplication operator
A: o/ ®Ryg > X
by the equation
Aa ® X) = u(ax) — au(x)
for & € %y, x € Rg. Thus —A is a multiplication map as studied in [3, 16.3.1]. Fixing a splitting s of %"
as in (8.1.2) we define an s-multiplication operator AS to be the composite
AS: of @Ry —2> of @ Ry—>3./ .
Such operators have the properties of the following s-multiplication maps.

(8.2.3) DermviTION. Let s be a splitting of %% as in (8.1.2) and let US, aS, b® be defined as in section
8.1. An s-multiplication map

Ao ® Re — of
is an F-linear map of degree —1 satisfying the following conditions with o, o’, 8,8’ € %o, X,y € R&
(1) A%, XB) = A(a, X)B + x()b3(X. B)
(2) AS(ac,X) = A(a, a’X) + x(a)aS(a’, X) + (—1)%* 9D aAS(e, X)
(3) 6A%(a, x) = Aj(a ® AX) + L(a, X) + Ve(a, X) + 5x(a)US(X).
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Here A : &/ ® R(Jf) — of ® of is defined by the equalities
Ad(e®X®p) = Z(-1)d99<ﬂr> ded) AS(ary, X) ® v B,
A(a®B®Y) = ) (~1)se) o)t oy g @ A%ar, y),
where as always
() = Zaw@a, €A Q.
Two s-multiplication maps AS and A% are equivalent if there exists an F-linear map
v:Rg » o
of degree —1 such that the equality
A(a, ) = A% (@, X) = y(ax) = (1) Pay(x)

holds for any @ € <7, x € R4 and moreover y is right .%p-equivariant and the diagram

@
Ry ——R%

commutes, with yg given by
Yo(X®B) = ¥(X) ® B,
Ye(@®y) = ()™ “a @ y(y)
fora,B € o, X,y € Rz.

(8.2.4) Tueorem. There exists an s-multiplication map AS and any two such s-multiplication maps
are equivalent. Moreover each s-multiplication map is an s-multiplication operator as in (8.2.2) and vice
versa.

Proor. We apply [3, 16.3.3]. In fact, we obtain by AS the multiplication operator
A:d Ry =d0d ® ARz — X

with
(8.2.5) Ala ® X) = AS(a ® X) + x(a)¢
where (X,£) € Rg & &7 = Rg ®F corresponds to X, that is s(X) + «(&) = xfort: &/ c Ry ®F. O

(8.2.6) Remark. For the splitting s = ¢ of ZF in (8.1.3) the maps
An,m A - A

are defined by Anm(@) = A?(a ® [n, m]), with [n, m] the Adem relations in Rz. Using formule in (8.2.3)
the maps A, determine the ¢-multiplication map A? completely. The maps Anm coincide with the corre-
sponding maps Anmin [3, 16.4.4]. In [3, 16.6] an algorithm for determination of A, is described, leading
to a list of values of A, m on the elements of the admissible basis of 7. The algorithm for the computation
of Anm can be deduced from theorem (8.2.4) above.

(8.2.7) Remark. Triple Massey products (a, 8, y) with @, 8,y € o7, & = 0 = By, as in (4.6.16) can be
computed by AS as follows. Let By € R be given as in (4.6.16). Then By ® 1 € R» ® F satisfies

By®1=s(X)+u&)
with X € R4, £ € & and (a, 3, y) satisfies
AS(a ® X) + x(a)é € (a,B,7).
Compare [3, 16.3.4].
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Now it is clear how to introduce via a5, bs, US, &, », and AS a Hopf pair algebra structure on

oA ®3d ®Ry — > o ®R5
|
By Ry
which is isomorphic to %¥, compare (8.1.9).

In the next section we describe an algorithm for the computation of a y-multiplication map, where y
is the comultiplicative splitting of %7 in (8.1.12). For this we compute the dual map A, of A”.

8.3. Computation of the Hopf pair coalgebra %g

For the comultiplicative splitting s = v of % in (8.1.12) we introduce the following y-comultiplication
maps which are dual to the y-multiplication maps in (8.2.3).

(8.3.1) DerniTION. Let 6«// be given as in 8.1.19. A y-comultiplication map
Ay d. - d.®Rz,
is an F-linear map of degree +1 satisfying the following conditions.
(1) The maps in the diagram

. @Rz, o,

1®le lm

o T
%@RJ*®J*<WM®M

satisfy ~
(1em))A, = (Ay ®i)m, + (x. ® by)m..
Here x.. is computed in (5.1.7) and m! is defined in (8.1.16).
(2) The maps in the diagram

. ®Rz, il o,

st |»

aF
M®J*®R§*WM®M®RQ*WM®R(}*

satisfy
(Lem)A, = (1eiel)(m o)A, - (toiel)(leA,)m,.
Here m’ is as in (8.1.15), and 7 : <7, — <7 is given by t(a) = (—1)%9@)q,
(3) For x,y € <7 the product xy in the algebra <7, satisfies the formula
Ay (xy) = Ay (M. (y) + (=1)* %M, ()A, (y) + L.(x.Y) + Ve, (x.Y).

Here L. and V,_ are given in 6.1.13 and 7.1.11 respectively, with L, = V,_ = 0 for p odd.

Two y-comultiplication maps Ay, A are equivalent if there is a derivation
Y« % = Rz,
of degree +1 satisfying the equality
A, -A, = mly, — (r®y.)m,.

As a dual statement to (8.2.4) we get
(8.3.2) Tueorem. There exists a y-comultiplication map A, and any two such y-comultiplication maps

are equivalent. Moreover each y-comultiplication map A, is the dual of a y-multiplication map A? in
(8.2.4) with A, = AY,.
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O
Now dually to (8.2.8), it is clear how to introduce via ay, by, &, ., and A, a Hopf pair coalgebra
structure on

By %
which is isomorphic to g, compare (8.1.20).
We now embark on the simplification and solution of the equations 8.3.1(1) and 8.3.1(2). To begin
with, note that the equations 8.3.1(1) imply that the image of the composite map
4 A ORs. s A @R, F.

actually lies in
A, QRz,® A C . Rz, ® F.;
similarly 8.3.1(2) implies that the image of

Ay lom
o, — . @Rz, — H. ® F. Rz,
lies in
. @9, ®Rz, C . ® F, ®Rz,.
Now one obviously has

(8.3.3) Lemma. The following conditions on an element x € R, = Hom(R ¢, F) are equivalent:

e M(X) € % ®Rz, C F. ®Rz.;
] mi(X_)ERy*@)MCRg*@y*;
e XeR,CRg,.

Proor. Recall that R = R /R#2, i. e. R, is the space of linear forms on Rz which vanish on R #2.
Then the first condition means that x : R — F has the property that the composite

mt
go@RyHRylF

vanishes on Rz ® Rz ¢ .%, ® Rz but the image of Rz ® Rz under m’ is precisely R 2. Similarly for
the second condition. O

We thus conclude that the image of A, lies in <7 ®R..
Next note that the condition 8.3.1(3) implies

(8.3.4) Ay(x%) = L.(X, X) + V. (X, X)
for any x € 7. Moreover the latter formula also implies

(8.3.5) Proposition. For any x € <7, one has

Ay(xh) = 0.
Proor. Since the squaring map is an algebra endomorphism, by 6.1.11 one has
LY = > axey ® L y2),
with
M) = X ®x, My)= > yr &y
But L. vanishes on squares since it is a biderivation, so L, also vanishes on squares. Moreover by (7.1.11)
Ve 0,0 = ) E0C YD ®E0CYIR = ) XYE ®E0G. V)

this is zero since £.(x?,y?) = 0 for any x and y by (7.1.16). m
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Taking the above into account, and identifying the image of i : <7, » %, with <7, 8.3.1(1) can be
rewritten as follows:

(L@ M)A = Ay(dn) ® L+ (Lot fn-1) + Ve (v, 4n1)) @ 1 + 2,:1,4%\ ® by (&),
or 7
(L& M)A () = (Lodn1,fn1) + Ve (G2, Gn1)) 8 Qo + 241,4%\ ® by ().
Still more explicitly one has 7

Lot = Y, adidol.o =) adiel@.a+ ), addol3.q),

0<i,j<k O<i<k O<i<j<k

2|+l

where we have denoted
L2 ¢) = L(g. &) + L@ 4
similarly

Ve (ko L) = Z 2.2 ]®S (& ).

O<i<j<k
As for by (&), by 8.1.17 it can be calculated by the formula
(8.3.6) by(4) = Z vZ ,-1 ®dj,
O<j<i

where vy are determined by the equalities

N Mgk 1ok2 1= =2v¢ mod 4

.....

in %s. For example,

Vi = Mgy,
Vo = Ma1 + Moz + Mooz + Magog,
V3 = Mga11 + Magoa1r + Meaoo + Mgotor + Magar + Mag2o + Mas1o1 + Maago + Maosor + Maass + Magazo

+ Ma2s121 + Mao1a21,

etc.
Thus putting everything together we see

(8.3.7) Lemma. The equation 8.3.1(1) for the value on £, is equivalent to

LoM)A ) = >, C o, ®
O<k<n
where

(n) Z gl r%H]l_ | L ((I?(I)"'VI Z glgn 1-i¢ n 1 J LS(§|’£])+ Z (n 1- |§n 1- ]®S (glagl)

O<i<n O<i<j<n O<i<j<n

and, for 1 <k < n,
K+i
Cg:) 2k+l E §1§r21 k_

O<i<n-k
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For low values of n these equations look like
(1em)A(L) =0,
(L@ M)A (Z) = &1 ® (1(M222) ® {1 + m(Ma2) ® £2) + {7 @ m(Mag + Mg + Marz + Miz2) ® 1
+ @My ® 4,

(1em)AL(L) = &1 ® (1(Mg222 + M2z + Magzz + Maaaz + Mazazz) ® &1
+71(Me22 + Magz + Maas + Maza2) ® {2 + 1(Mag) ® £3)

+ {1 ® 1(Me32 + Mgz + Mea1z + Meizz + Msaz + Masp + Mags + Maazz + Mazap + Maazo
+ Maszz + Magzz + Magaz + Maga12 + Masgiz + Matazz + Misaz + Musaz + Miaa2) ® &1

+ {7 ® Mgz + Mgz + Moo ® {1
+ 25 ® m(Msga + Mazz + Magz + Magiz + Mazzz + Maazo) ® 1 + (142 @ 1(Mazo) ® 41
+ g’f ® (m(M222) ® {1 + m(M22) ® ) + _{f{zz ® (Mg + Moz + M1z + M12) ® {1
+ 0305 @ n(Ma) ® 41,

etc. (Note that A, (£1) = 0 by dimension considerations.)

As for the equations 8.3.1(2), they have form
L@ M)A = (M @ DAL + & @ A(Gn1) + & ® Ap(ln2) + oo + (i ® AUG) + 2y ® A1)

(8.3.8) Lemma. Suppose given a map A, satisfying 8.3.1(3) and those instances of 8.3.1(1), 8.3.1(2)
which involve starting value of .27, on the Milnor generators i(£1), i({2), ..., where i : o/, — Z, is the
inclusion. Then 7, satisfies these equations for all other values too.

Proor. O

Now recall that, as already mentioned in 6.1, according to [3, 16.5] R is a free right «7-module gener-
ated by the set PAR c R of preadmissible relations. More explicitly, the composite

RPre ® o inclusion®1 FE ® of i} F_i
is an isomorphism of right .<7-modules, where RP'® is the F-vector space spanned by the set PAR of pread-

missible relations. Dually it follows that the composite

- om - 1

is an isomorphism of right .<7.-comodules. Here o : R, -» Ryre denotes the restriction homomorphism from
the space R, of F-linear forms on R to the space Ry Of linear forms on its subspace RP® c R spanned by
PAR.

It thus follows that we will obtain equations equivalent to 8.3.1(1) if we compose both sides of these
equations with the isomorphism 1 ® @} : <7, ® R, — % ® Ryre ® 7. Let us then denote

(L@ PDAG) = ) pr-pu() ® p
M

with some unknown elements p; (i) € (<% ® Rpre)j, Where y runs through some basis of .<7..
Now freedom of the right .«7.-comodule R, on Ry means that the above isomorphism @, fits in the
commutative diagram

_ o
R, —— Rpre ® m

l m, l lem,
' ®1

§*®£f* ;>Rpre®m®m.
It follows that we have
(1eleom)(1e @A) = (10, 1)(1®m)A, ().
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Then taking into account 8.3.7 this gives equations

D emw) = > pr @ eusl+ Yy 1e@)CY . )®d
H H

O<k<n

with the constants C,(P as in 8.3.7. This immediately determines the elements p;(u) for [u| > 0. Indeed, the
above equation implies that (1 ® ®L)A,(¢n) actually lies in the subspace .7, ® Ryre ® IT C 27 ® Rpre ®
where I1 c 7, is the following subspace:

H:{xem | m*(x)e@d,F@»F{k}.

k>0

It is easy to see that actually

1= P Fa,

k=0

SO We can write

(1@ PDAN) = ) pon-21 (6 ® di

k>0

where we necessarily have

K K
Pn-2:1(Lk) ® 1 + pon_pks1 41 (Skr1) ® (12 + pan_givks1(Ckr2) ® {22 +..=(1® (Dr)(cg:)_zk_'_l)'

for all k > 1. By dimension considerations, pn_ox,1(k) can only be nonzero for k < n, so the number of
unknowns in these equations strictly decreases as k grows. Thus moving “backwards” and using successive
elimination we determine all pon_sx,1 (k) for k > 0.

It is easy to compute values of the isomorphism 1 ® @, on all elements involved in the constants CE”).

In particular, elements of the form ¢>§(vl?k) can be given by an explicit formula. One has
L) = Y (Sa? se? - 8?7 [2,2]) @ &
O<i<k
and

o) = ) (g s sq? 2 24 e g

O<i<k
so our “upside-down” solving gives
,02"*1+l(§nfl) = .(l ® [2n72’ 2n—2]*,

por-zmra(ln) = 47 @ [272,2), + G @ (g7 23,27,
praonllns) =08 @742 + 47 @ (ST 27), +ae (SaT SaT [ ),

pr-aa(ln) = Y Gl @ (SaT s s M 2 k)

1<igk

fork <n-1.



88 8. COMPUTATION OF THE ALGEBRA OF SECONDARY COHOMOLOGY OPERATIONS AND ITS DUAL

As for pan_1({1), here we do not have a general formula, but nevertheless it is easy to compute this
value explicitly. In this way we obtain, for example,
p1(&1) =0,
p3(l1) =0,
p1(0) =5 2,2+ ©([3,2]. +[2,3].),
p15(1) = 53 ©[2,2] + 41 @ (13, 2). + [2,3].) + 18 ©(Sa*[2,2]), + & @ ((Sa°[2, 2]). + (Sa*[2, 3]).)
+4; @ (Se°[2,2]), +¢f ® ((Sa'[2. 2]). + (Sa°[3, 2). + (Sa°[2,3]). ),
pa(4) = 658 ©12,2] + 532 @ ([3.2). +[2,3].) + 5 © (Sg*[2. 2]),
+ 282 ©((Sa°[2. 2)). + (Sq°[2.3]).) + {13 ® (Sa°[2.2]).
+ 2543 ®((Sa[2. 2]). + (Sa°[3, 2]). + (Sq°[2. 3]).) + &1 ® (SoP Sq*[2, 2]),
+ 2 @ ((Sa” Sg*[2, 2]). + (So® Sq*[2,3]).) + &145 ® (Sa™ Sq*[2,2]),
+ 23 ® ((Sa™ Sq*[2, 2]). + (S Sa°[2. 2]). + (Sq™° Sq'[2. 3]).) + &7 ® (Sq™? S°[2, 2])
+ ¢ ((S9™ Sq°[2, 2]). + (S S°[3, 2]). + (S Sa°[2, 3]). ).,
etc.

To summarize, let us state

(8.3.9) Proposrtion. The general solution of 8.3.1(1) for the value on ¢, is given by the formula

Au(fn) = (L8 D)™ D pon 50.1(6 ® i

k>0

where the elements p;j(li) € (<% ® Rpre); are the ones explicitly given above for k > 0 while p»(1) €
(. ® Rpre)2n is arbitrary.

(]

Let us now treat the equations 8.3.1(2) in a similar way, now using the fact that R is a free left o7~
module on an explicit basis PAR’ (see 6.1.2 again).
Then similarly to the above dualization it follows that the composite

@f:ﬁ*ﬁmm‘e*ﬁm@w

pre

is an isomorphism of left .7.-comodules, where o” : R, —» Rje denotes the restriction homomorphism from
the space R. of F-linear forms on R to the space R}, of linear forms on the subspace R”®’ of R spanned by
PAR’.

Thus similarly to the above the equations 8.3.1(2) are equivalent to ones obtained by composing them
with the isomorphism 1 ® @ : 7, ® R, — o, ® /. ® Ry. Let us then denote

Le0)AG) = > oapm@er
nePAR’
with some unknown elements o j(7) € (7 ® <7.);, where r, denotes the corresponding element of the dual
basis, i. e. the unique linear form on Ry, assigning 1 to = and 0 to all other elements of PAR’.
Now again as above, freedom of the left .Z.-comodule R, on Rf,. means that the above isomorphism
®! fits in the commutative diagram

_ of ,
R. M®Rpre
lmﬁ lm@l
_ 3
o, ®R. &MF@MF@R&E.
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In particular one has
(1®1®d)(1emi)A,(LH) = Lem. ® 1) (1o P)AL(L).
Using this, we obtain that the equations 8.3.1(2) are equivalent to the following system of equations
(Iem,—m. ®L)(ocar-n(7)) = 1 ® oon_r(7) + 20— (),
where we denote
Sp(m) = 8 @ o1 (1) + 2 @ o (M) + e + Ly ® Taciu (1) + L2y ® o).
We next use the following standard fact:

(8.3.10) Prorosition. For any coalgebra C with the diagonalm,. : C - C ® C and counite : C —» F
there is a contractible cochain complex of the form

d; d ds ds
®2 ®3 ®4 oo
c N C ~— C ~— C ~— ’
St S S3 S
i. e. one has
Sndn + dnflSnfl = lc®n
for all n. Here,

di =m,,
d=1em -m®1,
d3=1®lem. -1emel+m.elel,
dy=101®1legm, -11leme1l+1emelel-melelel,
etc., while s, can be taken to be equal to either
Sp = &® lgen
or
Sn = lcen ® €.

m]

Now suppose given the elements o-px_, (), k < n, satisfying the equations; we must then find o-on_i ()

with
U200 () = 1 ® 0on 1 (1) + Zon i (),
with Xon_i(7r) as above. Then since dsd, = 0, it will follow
d3(1® ganr(7) + 20— () = 0.
Then
1® oon () + Zoni(m) = (8303 + d252)(1 ® 0an_r (1) + Zon_yr (1)) = d252(1 ® T on— iz (1) + Zon— iz (7))
Taking here s, from the second equality of 8.3.10, we see that one has
1® ooniri(m) = Zon_j () + d2 (1 @ (1 ® &) (2n- (7)) + (1 ® 1 ® &) (Z2n_ii())) -

It follows that we can reconstruct the terms oan_i () from (1 ® &)oon_jy(7), i. €. from their components
that lie in &7, ® F C <. ® ..

Then denoting

Toni| () = Xor_iz (1) ® 1 + 07n_(7),
with .
Ton_y(7) € A ® .,
the last equation gives
1® Xor_ (M) ® L+ 1 ® 0po_py (1) = Zpn_pg(m) + (M. ® L+ L@ M,) Z 22 @ Xoi i ().
i>0
By collecting terms of the form 1 ® ... on both sides, we conclude that any solution for o~ satisfies
Ton-p () = M. (on iy (1)) + Y &7 © Yoy ().

i>0
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Thus the equations 8.3.1(2) are equivalent to the system of equations

lem.+m, 1) Z _Ziznii ® infi_w(ﬂ') =1Q® m*(in,w(ﬂ')) + Z 1®¢ ™ ® in—i_|7r|(71') + Zzn,|,,|(71’)
i~0 i>0
on the elements x;(rr) € «7}. Substituting here back the value of 2n_,(7) we obtain the equations

DU @ m (o) + D MG @ o (1) = 1@ M (Kon (1) + D 1@ @ Xori_in(7)

i>0 i>0 i>0

+ Z (I " ® m*(infi_w(ﬂ')) + Z é/iz/nii/ ® é‘jzn?i/ii ® in—i’fj_w(ﬂ').

i>0 i>0,j>0
These equations easily reduce to
n-i n-i n—(i-j) n—i
m@* =10+ Y E el
o< j<i
which is identically true. We thus conclude

(8.3.11) Proposrrion. The general solution A, (¢n) of 8.3.1(2) is determined by

Al/,(_fn) =(1® q)f)fl Z X2n,|7,|(71') ®1+ m*(Xgn,w(ﬂ')) + Z é’izn?i ® infi_|,r|(71') ® 1y,
nePAR’ i>0

where x;(rr) € 27 are arbitrary homogeneous elements.

Now to put together 8.3.9 and 8.3.11 we must use the dual
(I)* . Rpre ® m i m ® R;)re
of the composite isomorphism

o eRY LR R
We will need
(8.3.12) Lemma. There is an inclusion
@, (Rye ® F1) € # ® Ry,

where

R;Jregz c R;Jre
is the subspace of those linear forms on RP®” which vanish on all left preadmissible elements [n, m]a € PAR’
with a € &7

Similarly, there is an inclusion
@ (F1® RYye) C Ry ® 7,

where

Rpre<2 C Rpre
is the subspace of those linear forms on RP"® which vanish on all right preadmissible elements a[n, m] with
aed.

Proor. Dualizing, what we have to prove for the first inclusion is that given any admissible monomial
a € o/ and any [n, m]b € PAR’ with b € 7, in R one has the equality

a[n, m]b = Z ai[ni, mi]b;

with a;[n;, m;] € PAR and admissible monomials b; € /. Indeed, considering a as a monomial in %, there
is a unique way to write

a[n,m] = Z ai[ni, miJci
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in %y, with aj[n;, m;] € PAR and c; some (not necessarily admissible or belonging to 350) monomials in
the Sq* generators of .%. Thus in .%; we have

a[n, m]b = Z a; [ni, mi]cib.

In R we may replace each cib with a sum of admissible monomials of the same degree; obviously this
degree is positiveas b € .«
The proof for the second inclusion is exactly similar. O

This lemma implies that for any simultaneous solution A, () of 8.3.1(1) and 8.3.1(2), the elements in
. ® Rpre ® o7, and o7, ® o7, ® Ry, corresponding to it according to, respectively, 8.3.9 and 8.3.11, satisfy

> [in-k-l-laj([k, a) @ 1+ M. (o cralk, 1) + D & @ Xorioira([K I]a)) ® ([k. 1]a).
ace i>0
[k.l]JacPAR’

= (leleg?)(le®) [Z por-21(0) @ 4k),
k>0
where
Q>2 : R;)re > R;Jre>2
is the restriction of linear forms on RP"®’ to the subspace spanned by the subset of PAR’ consisting of the
left preadmissible relations of the form [k, I]Ja with a € 7. Indeed the remaining part of the element from
8.3.9is
pn(l)®1,
and according to the lemma its image under 1 ® ®, goes to zero under the map o2
Since the elements pn_».1 (k) are explicitly given for all k > 0, this allows us to explicitly determine
all elements x;([k, 1]a) for [k, I]a € PAR” with a € <. For example, in low degrees we obtain
x2([2,3150") = %([3,215q") = &3,
xa([2,2]Sq") = 3,
x10([2, 31 Sq") = x10([3, 21 Sq") = 123,
xu([2,2150") = {343,
x26([2, 31 SA") = X2s([3, 21 Sq") = 323,
x2r([2,2]S0%) = (14343,
with all other x;([k, IJa) = 0 for j < 32 and [k, I]Ja € PAR” with a € .

(8.3.13) Remark. Calculations can be performed for larger j too. But in fact a pattern is clearly
apparent here. It suggests itself to conjecture that actually all elements x;([k, [Ja) for [k, I]Ja € PAR" with
a € o/ can be chosen to be

Xor-6(12,3150") = Xan-6([3, 21 SG") = {1307,
Xor-5(12, 21 S0) = &1d sz
for n > 3, with all other x;([k, IJa) = 0.

It remains to deal with the elements x;([k, I]). These shall satisfy

> Pk D@1+ m, (o[ D) + D 2 @ X[k, |])) ® [k, I].

k<2l i>0

- 1e0) rM el +(lelee?)(led.) [Z pr-2a(d) @ .zk],

k>0

where now
<2 .p/ ; <2
o - Rpre » Rpre
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is the restriction of linear forms on RP™®’ to the subspace spanned by the Adem relations. The last summand
Dh=(10180%)(1®d.)(Z0pa_2:1(Zk) ® &) is again explicitly given; for example, in low degrees it
is equal to

D; =0,

D, =0,

Ds = (G ® &) ®[2,2].,

Dy = (.Zfé“z ®U+0L®L+(® §1§2)2 ®[2,2].,

Ds = (BR@a+{Gen+{Eenan+000h+n8n+E0as) 8[2.2].

Then finally the equations that remain to be solved can be equivalently written as follows:

1e1®3)(led,)? [Z (xzn“ (kD@ 1+ M, (o (kD) + Y & @ X (I, |])) ® [k, |]*)

k<2l i>0
= (191981 0.) (D),
where
& o > .
is the projection to the positive degree part, i. e. maps 1 to 0 and all homogeneous positive degree elements

to themselves. Again, the right hand sides of these equations are explicitly given constants, for example, in
low degrees they are given by

0, n=1;
0, n=2;
Gel22.04 n=3;
(¢t @[2.2]. + £ ® (S9*[2,2]). + &f ® (So[2.2]).) ® 2, n=4;
(2 el2,2]. + 88 @ (Sa'[2,2]). + {523 ® (Se°[2, 2]). + 23 ® (Sq° Sq[2, 2]).
+43 ® (Sq™° Sg*[2. 2]). + £ ® (9™ S¢°[2. 2]).) ® 2, n=5.

One possible set of solutions for ¢ with k < 5 is given by
xs([1,2]) = £ito,
xa([L,3]) = &1,
x13([1,2]) = £545.
x12([1,3]) = &,
X20([1. 2]) = £52a
x2s([1,3]) = £3

and all remaining x;j([k,1]) = 0 for j+ k + 1 < 32.
Or equivalently one might give the same solution “on the other side of ®” by

p2(1) =0,
pa(1) =0,
pe(1) = {22 ®[1.2]. + £{ © [1,3). + &2 ® (S4*[L.2]). + £ ® (SA°[L. 2])..
pi6(1) = 303 @ [1.2). + & ®[1.3). + (14 © (SA[1.21), + ¢145 & (Se°[1. 2]),
+23®(Sq* Sq°[1.2]), + & ® (Sq° SaP[1.2]), + &7 ® (S° Se°[1.2]),.
pa2(1) = 3L @ [1.2].. + 43 ® [1.3]. + 52 ® (Sa?[1.2]), + 53 ® (Sa’[1.2]),
+ 2} e (So* Sq?([1.2]), + (145 @ (SoP Sa*[L.2]), +¢743 ® (SoP Se’[1.2]),
+ £ ® (So® Sq* Se?[1.2]) + 45 @ (Sa? Sq* Sa?[1.2]) + 43 ®(Sq™° Se° Se?[L.2]) + 45 @ (Sq'? S Se®[1,2]).
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(8.3.14) Remark. As in 8.3.13, here one also has a suggestive pattern which leads to a conjecture that
a simultaneous solution of (1) and (2) is determined by putting

Xon-3([L, 2]) = 3 pdn1,
xon_a([1,3]) = {1,

for n > 3, with all other x;([k, I]) = 0.

This then gives the solution itself as follows:

Ay(&1) =0,
Ay(L2) =0,

Ay(Ls) = 52 ® Mg
+{1 ® (Ma1 + {1 M3)
+3 ® Moz
+H® (Ms + Mg + M3 + §12M3)

+® (M51 + M3zt + Mags + Marar + {1(Ms + Mag + Mg + Mop1) + EMZ + (8 + {2)M3)
+{1 ® Moo,

Ay(La) = 503 © Mg
+{5 ® (Ma1 + {1M3)
+{705 ® Moo
+{1(3® (Ms + Mgy + Mz + §12M3)
+E® (M51 + Maz1 + Magg + Marar + {1(Ms + Mag + Mg + Mag1) + M2 + (83 + §2)M3)
+7 ® Moz
+{1.83 ® Maon
+(3® (Mg + M7z + Me21 + Msg + Mya1 + Mgz + Magz + Magor + 7 Ms + §22M3)
+35® (M721 + Mast + Magz1 + Maga1 + Mazio1 + Magar + (Ms + Mag + Maz + Mag11)?
+01(Mg + M7z + Mea1 + Msg + Maag + Mazz + Magor + Magz + Magar) + (M3 + 8Ms + (G 82 + fa)Ms)
+3 ® (Me2o1 + Maaz1 + Masga1)
+{7 ® (Mga1 + Mai21 + Mgs1 + Meao1 + Mezst + Me121 + Masor + Magzt + Maaizn + Masaor
+ Ma721 + Mass1 + Maagor + Maags1 + Maaziz1 + Magaz
+ ¢1(Me221 + Maazr + Maaza1) + &2 (Ms + Mag + Mz + Ma111)?
+ (Mg + M7z + Mga1 + Msg + Maag + Magp + Maaz + Mag1) + (M3, + EOM3 + £3(Ms + Myg + Mzo)
+6Ms + (303 + 33)Ms)
+{1 ® (Ma2221 + Maaao1 + Magaor + Magazzn) ,
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Ay(gs) = G54 ® My
+{3 ® (May + {1 M3)
+014305 ® Mo

+4304® (Ms + Mag + M3 + {ZMs)

+0HG® (M51 + Maa1 + Mag1 + Maiz1 + &1(Ms + Mag + Mgz + Maar) + E2M2, + (83 + §2)M3)

+{143 ® Mo

+0145 ® Mazn

+080® (M9 + M7z + Me21 + Msg + Maa1 + Mgz + Magz + Magzq + 7 Ms + {22|V|3)

+005® (M721 + Mas1 + Mazar + Mazar + Magazr + Maszr + (Ms + Mag + Maz + Ma111)?
+ £1(Mg + M7z + Mgz + Msg + Maag + Mazz + Magor + Mago + Mogo1)
+IME + s + (08 + 53)M)

+{145 ® (Me2a1 + Magzs + Masgon)

8 44
+47¢5 ® (Mga1 + Mgio1 + Mgs1 + Mgzo1 + Mezar + Mez121 + Maspr + Maazi + Masrzr + Magant

+ Ma721 + Magss + Maazar + Masgsr + Magai21 + Mazazn
+{1(Mg221 + Maazr + Maaz1) + £Z(Ms + Mag + Mz + Ma111)?
+ (Mg + M7 + Meg1 + Msg + Maag + Mazz + Magz + Magp1) + G M3, + £EM3
+{302Ms + £5(Ms + May + Mag) + (£34s + £3)Ms)

+{1" ® (Ma2221 + Massar + Maszz1 + Mazazo1)

+® (Mg + My3s4 + My1g2 + Myoaz1 + Meg + Mgz + Mgeor + Mssg + Maagr + Maazz + Mgzaz + Msagns
+Mesgs + Magap + Magapt + (EMg + (3 Ms + 22 Ms)
+{183 ® Maazon
+5® (Mg421 + Mg721 + Maas1 + Maaza1 + Maazar + Maazi21 + Mgaazr + Magazn

2
+ (Mg + M72 + Meo1 + Mss + Magz + Mazo + Maz111 + Masp + Mosz1)
+ {1(M17 + Myas + My1go + Migazs + Meg

+ Mg72 + Mggo1 + Mesa + Mgaar + Mgazo + Mgazo1 + Mgzaz + Mgoazr + Msga + Magaz + Magan1)
8pp2 L #9 4ng2 4 2
+{ Mg + (T Mg + £ M3 + 814, Ms + (4183 + 4a) Ms)
+0145 ® (M1_04221 + Mgg221 + Maasz1 + Meaazor + M284221)

+0 ® (M1_2521 + M12431 + My2a121 + Myg1421 + Mio721 + Maosss + Migaszr + Miosazsr + Mioazio1 + Miosazn
+ Magga1 + Mggi21 + Mggs1 + Mggsz1 + Mgszs1 + Mgga121 + Maaszn + Mgags1t + Maaaro1 + Maaian:
+ Mag2451 + Msg2721 + Ma23ao1 + Mg2azor + Ma2a231 + Ma2az121
+ Maga1 + Magspr + Magasz1 + Magaro1 + Magiap1 + Magapt
+ M211421 + Mogra1 + Maogasy + Mogaszzr + Mogazar + Mogazio1 + Magsazt + Mazgans
+ {1(M1o4221 + Msg221 + Maaso1 + Ma2az21 + Magaoo1)
+ (Mg + M7, + Megt + Msg + Maar + Magz + Mag111 + Maaz + Magz1)?
+ (M7 + Myzg + Mu1go + Migazs + Mog + Mg7o + Mgso1 + Mgss + Mgaas + Maazo + Mazaz + Mgoao1
+ Msgg + Magsr + Mogsn1)

+IMZpy; + GOME + BMo + Z5MS + 5Ms + La(Ms + May + Map) + (£a + £o25)Ms)
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9
+® (Mgezzl + Myaaaz1 + My22a221 + Magoa221 + Magazr + Mageozr + Magaszr + Magoazor + M4284221)

+3 ® (Mgesl + Muge121 + Mugzsa1 + Mugoast + Muazaror + Mygp1421
+ Myoga1 + My2gi21 + Myggs1 + Mi2es2r + Mizg2sr + Migs2121 + Mi2asor + Mi2agar + Migagio1 + Mi2aianr
+ M122721 + M122451 + M1224321 + M1224231 + M12242121 + M1223421
+ Magses1 + Msgs121 + Msgos21 + Meg2az1 + Meg2a121 + Mgs1421
+ Magaaso1 + Maaaszs + Maaaar21 + Meagia21 + Maazesr + Maaze121 + Meazzan: + Maaz12421
+ Me10s21 + Me10431 + Me1oa121 + Me1o1421 + Mesges1 + Megs121 + Meg2s21 + Meg2431 + Meg2a121 + Mego1421
+ Me29421 + Me2gso1 + Mezgass + Mezga121 + Meg1421 + Me21saz1
+ Magzs21 + Mag2szr + Magaar1 + Mag21421 + Magozor + Magoss: + Magoaszr + Mazoazar + Magoario1 + Magozann
+ Muaggs1 + Maggi21 + Magesy + Maggsor + Magsar + Masge2121 + Magas21 + Magaasr + Magaaror + Magaraz
+ Muaga721 + Magosst + Magaasar + Mag2azsr + Magaazi21 + Magoaazn
+ Masgaz1 + Maagsor + Masgazs + Masgar21 + Masgia21 + Magigan
+ Maz11421 + Maggz1 + Maggast + Mazgazor + Mazgazar + Magazi21 + Maogaao1 + Mazsgaz:
+ (Mga1 + Mgi21 + M7a11 + Mot + M71211 + Mesy + Meats + Mgzt + Meaiar + Mez211 + Mei12111
+ Mazz11 + Mazoor + Mazio11 + Mazao1n + Mazis1n + Mazizo1 + Magaz:
+ Mas211 + Magz1n + Masazor + Magio11 + Maisons
+ M2721 + Mag211 + Masai11 + Magst + Maaarns + Maazar + Magzian + Magzorr + Magioinn
+ Maaap1 + Maaso11 + Marazin1)?
+ (Msg + Magq + Mgp1)* + M8
+ {1(M126221 + Mi2aso1 + Miooazo1 + Magazy + Maigazo1r + Mageoor + Magaazr + Magoazo1 + Maogazot)
+¢7 (Ms + My + Mgp)*
+ 25 (Mg + My + Mgt + Mss + Magz + Mago + Masz + Masp1)?
+ ¢3(M17 + Myzq + My142 + Mioao1 + Mog + Mg72 + Mgg21 + Mgss + Maaas + Maasz + Mgaaz + Mgoaos
+ Msgq + Magsz + Mogao1)
+ 3ZME + Z5(Ms + Mag + Mg2)? + £503Mo
+ Z4(Mg + M72 + Meo1 + Mss + Magz + Mazo + Mag2)

+(G2 + MG + (GG + BIME + (G + 58)Ms + (G + 35)Ms)
+0® (Mgszzzl + Myeas201 + Migaasor + Migazazor

+Ma124421 + Mgi26201 + Mg1224221 + Maggar1 + Maaoazo1 + Maage2o1 + Maagasz1 + Msagoszor + M84284221)

The formulee above were obtained via computer calculations. They lead to the general patterns in
8.3.13 and 8.3.14 which would determine the map A, completely.






CHAPTER 9
Thedual dy) differential

In this chapter we will compute the dy differential in the E? term
Ey? = Cotor?, (F,F)? = Ext’ (F, F)

of the Adams spectral sequence. For this we will first set up algebraic formalism necessary to carry out an
analog of the computations in Chapter 3 in the dual setting. First let us recall how the above isomorphism
is obtained.

9.1. Secondary coresolution

One starts with a projective resolution of the .o/-module F, e. g. with the minimal resolution as in
(3.2.1). Its graded F-linear dual
21 42i

(9.1.1) o8 @m{gﬁ”} as m{gz b

n=0 li—jl#1

is then an injective resolution of F in the category of right .oZ.-comodules. (This is not entirely trivial
since we take graded duals. However all (co)modules that we encounter will be degreewise finite, i. e.
having generating sets with finite number of elements in each degree. Obviously then graded duality is a
contravariant equivalence between the categories of such (co)modules.)
There are isomorphisms
Homd(M, N) = M,Oy N

for any left o7-modules M and N of the above kind (i. e. of graded finite type), where on the right the
graded dual M., is considered as a right .«Z.-comodule and N as a left «7.-comodule in the standard way.
It follows that applying Hom (-, F) to (3.2.1) and applying — O, F to (9.1.1) gives isomorphic cochain
complexes (of F-vector spaces). But by definition cohomology of the latter complex is given by

HP((9.1.1) 0., F)* = Cotor®, (F, F)%.
It then follows from (3.2.13) that in these terms the secondary differential
dfy : Cotor?, (F, F)? — Cotor®'?(F, F)T*

) - o,
is given by
(9.1.2) dyeh =" >, G5 =0.6D"
gy appears in 6(9?):;
Here,

5. @Zdjgﬁ} R @m{g‘;ﬂ}
q q

6o (g’;+2> — X/ (g;>
{g}

determined in 3.2.7, whereas §; denotes the dual basis of g:, i. e. §j3 € <" is the vector with the gj-th
coordinate equal to 1 and all other coordinates equal to zero. Moreover by 6*(9?,)0 is denoted the zero
degree component of ¢, (gg), i. e. the result of applying to the element

is the dual of the map

q+j+1

5*(@3) e @ %{gmz }

j>0

97
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the projection to the (j = 0)-th component

q+J+1 { q+l}

@ bQ{ gp+2 gp+2

>0

Instead of directly dualizing the map ¢, it is more convenient from the computational point of view to
dualize the conditions of 3.2.7 using (3.2.12) and determine §, directly from these dualized conditions. In
fact using 8.2.5 we can further detalize the diagram (3.2.12) in the following way:

S @V —s S @ . @V,

591
/ y &

(9.1.3) Vi3 7 ® o @V, 7Rz eV, 2 s 3 @V,

Slee

where AS is the multiplication map correspondmg to a splitting s of the G-relation pair algebra used, as in
8.1, to identify Rz with &7 @R &, and (¢S, oR9) are the components of the corresponding composite map
Vo2 5 Rz®V, = 78V, ®RzaV,,

with ¢ as defined in (3.2.10).
Moreover just as the map ¢ is completely determined by its restriction to V., its dual ¢, is determined
by the composite §; as in

Hom(Vp,2.€)

Hom(Vp, Z.47) o, Hom(Vp,2, 7) —_— Hom(Vp,2, F),

where graded Hom is meant, and ¢ is the augmentation of .<7.. In fact we only need this composite map o
as by (9.1.2) above we have

(9.1.4) di (@) = 6o(Gp)-
Now the dual to diagram (9.1.3) is easy to identify; it is

~ 1ed. ~
2o, ® Ve ~———— 5.0/, ® . ®vp

(9.1.5) Vi3 A.® AV A @Rz, ®Vp < 5o, ®

18RS
18p7 S v
d. m.®1

M®VP+ZWM®ZM®VF,

where V,, are the graded dual spaces of V.
Itis straightforward to reformulate the above in terms of elements: the values of the map 6, on arbitrary
elements a® g € 2. ® V|, must satisfy

016 50() ar@d.(ar ®g)) = d.() | a @ do(ar ©9))
a +d.(Q aa0e?(a @) +d.) | ay @ ¢R¥(are 9)),

where we have denoted by
A(@) = Z ar®ar
the value of the diagonal A : <7, — &, ® <7 and by
As(a) = Z ay ®aR

the value of the comultiplication map As : o7, — o7 ® Rg, Ona € 4.
We thus obtain
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(9.1.7) Proposrrion. The d(y) differential of the Adams spectral sequence is given on the cohomology
classes represented by the generators § in the minimal resolution by the formula

d2)(8) = 6o(Z1 ® §),
where A A
00 : 29, ® Vg — Vg2
are any maps satisfying the equations (9.1.6).

We will next describe the actual steps of the computation of the map 6o and its outcome.
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