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The classification of homotopy types of finite polyhedra is a classical and fundamental task
of topology. Here we mean a classification by minimal algebraic data which for example
allows the explicit computation of the number of homotopy types with prescribed
homology. The main result on this problem in the literature is due to J.H.C. Whitehead
(1949) who classified (n—1)—connected (n+2)—dimensional polyhedra. In this paper we
consider the next step concerning finite (n—1)—connected (n+3)—dimensional polyhedra. In
the stable range, n 2 4, they are classified by the following decomposition theorem, see

(3.9).

Theorem: Fach finite (n—1)—connected (n+3)-dimensional polyhedron X,

n2 4, admits a homotopy equivalence

XzXIV...V Xr

where the right hand side is a one point union of indecomposable com
plexzes which is unique up to permutation. Horeover a complete list of
these indecomposable complezes is given by the corresponding spheres
and Hoore-spaces of cyclz’é groups E/pk, p prime, and by the complexes
X(w), X(w,p) which are in l-1—correspondence to special words, see (3.1).

Such words as well can be described by graphs as in Figure 2.

For example the real projective 3—space [RP3 has the stabilization

n—1
E  (RP,)=S""2v M(Z/2,n) where M(Z/2,n) is a Moore space while

n—1
£ (RP 4) ~ X(lg 1) is an indecomposable complex given by the special word 1{ 1

Considering the homology of indecomposable complexes one for example gets the
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Corollary: Let n>4 and let X be an (n—1)—connected (n+3)—dimensional
finite polyhedron with Bettt numbers ﬂi(X). If

2 < B,(X) + ﬁn+1(X) + ﬂn+2(X) + ﬁn+3(X) or tf Hn+1(X) contains the

direct sumof two cyclic groups then X is decomposable.
A further application is the following

Example: There are exactly 4732 simply connected homotopy types X which have the re-
duced homology groups (n 2 4)

(Z/4@ T[40 ,i=n
I/set , i = n+l
ﬁi(x) ={7200/487 ,i=n+2
/4 ,1 = 1n+3
L 0 otherwise

The example indicates that a homotopy type is not nearly determined by its integral homo-
logy. Still the Whitehead theorem shows that the homology is the basic homotopy invari-
ant of a simply connected polyhedron X. Therefore one wants to represent the homotopy
type of X directly in terms of a suitable natural algebraic structure on the homology of
X. Such a structure was obtained in 1949 by J.H.C. Whitehead for 1—connected 4—dimen-
sional polyhedra [39], [41] and later also for (n—1)—connected (n+2)—dimensional polyhe-
dra, n 2 3, see [40]; it was used by Chang {6], [7] for the computation of the corresponding
indecomposable polyhedra. Since then various authors studied the classification of
(n—1)—connected (n+3)—dimensional polyhedra, n 2 4, in terms of primary and secondary
cohomology operations, see [8],[9],[10],[11],[12},{13},[14],[31),[36]. The classifying data still
remained intricate. The proof of the decomposition theorem above is based on a new kind

of invariant which simplifies the algebraic representation considerably:
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Clagsification theorem (see (4.10)): Let n24. Then the homotopy types of
(n—-1)—connected (n+3)—dimensional polyhedra are in 1-1 correspondence

to the 1somorphismclasses of stable Ai—systems, see (4.7).

The restriction of this result to (n+2)—dimensional complexes is literally Whitehead’s clas-
sification in [42] which is the easy part of the theorem; the main new feature in Ai—sys—

tems is the 'boundary invariant’ 8.

Finally we remark implications of our results for manifolds. Each (n—1)—connected
(2n+3)—dimensional compact manifold M, n 2 4, admits a homotopy equivalence M =~ Cg
where C g is the mapping cone of a map
g: 82 X v.v X =X

Here X is a one point union of indecomposable complexes Xi as in the decomposition
theorem. For n 2 5 this one point union has the additional property that the space X is
self dual with respect to Spanier—Whitehead duality, see [33). Since the dual of X is given
by DX, v..v DX_, self duality of X means that DX,,...DX is a permutation of
X;5--»X . This can readily be checked by the determination of dual complexes in (3.10).
The authors would like to acknowledge the support of the Max—Planck—Institut fir

Mathematik, Bonn.
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§ 1 The decomposition problem in representation theory and topology

Let C be a category with an initial object * and assume sums, denoted by A v B, exist
in C. Anobject X in C is decomposable if there exists an isomorphism X2 Av B in
C where A and B are not isomorphic to *. Whence an object X is indecomposable if
X~ Av B implies A~ * or B2 *. A decompogition of X is an isomorphism

(1.1) XvA,v..vA n<o,

in G where A, isindecomposable for all i € {1,...,n}. The decomposition of X is unique
if B1 V...V Bm v X A1 V.Y An implies that m = n and that there is a permutation

o with Ba. gAi for all i. A morphism { in C is indecomposable if the object f is in-
i

decomposable in the category Pair (C). The objects of Pair (C) are the morphisms of C
and the morphisms f— g in Pair (C) are the pairs (@,8) of morphism in C with
ga = Bf. The sum of f and g is the morphism fv g = (i f,ipg). The decomposition prob-
lem in C can be described by the following task: Find a complete list of indecomposable
isomorphism types in C and describe the possible decompositions of objects in C! We
now consider various examples and solutions of such decomposition problems. These ex-

amples originated in representation theory and topology.

First let R be a ring and let C be a full category of R—modules (satisfying some finite-
ness restraint). The initial object in C is the trivial module 0 and the sum in C is the
direct sum of modules, denoted by M @ N. With respect to the decomposition problem for
modules in C Gabriel states in the introduction of [21]:

"The main and perhaps hopeless purpose of representation theory is to find an efficient

general method for constructing the indecomposable objects by means of simple objects,
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which are supposed to be given". Various results on such decomposition problems are out-

lined in [21]. In this paper we shall use only the following examples.

(1.2) Example: For R=17 let C be the category of finitely generated abelian groups. In
this case the indecomposable objects are well known; they are given by the cyclic groups Z

and ll/pi where p is a prime and i 2 1.

(1.3) Example: Let k be a field and let R be the quotient ring R = k<X,Y>/(X2,Y2).
Here (X2,Y2) stands for the ideal generated by X2 and Y2 in the free associative alge-
bra k<X,Y> in the variables X and Y. Let C be the full category of R—modules which
are finite dimensional a8 k—vector spaces. C.M. Ringel [30] gave a complete list of indecom-
posable objects in C. These objects are characterized by certain words which are partially

of a similar nature as the words used in §2 below.

(1.4) Example: In topology we also consider graded rings like the Steenrod algebra and
graded modules like the homology or cohomology of a space. Let R = le be the mod p
Steenrod algebra and let k 2> 0. We consider the category C of all graded R—modules H
for which H, is a finite I /p—vector space and for which H,=0 for i<0 and i>k It
is a hard problem to compute the indecomposable objects of C; only for k < 4p—5 the
answer is known by the work of Henn [22]. In fact, Henn’s result is highly related to the
result of Ringel in (1.3) above; to see this we consider the case p = 2. The restriction
k €3 then implies that the Q[z—module structure of H is completely determined by Sq1
and Sq2 with SqISq1 =0 and qusq2 = 0. Whence, forgetting degrees, the module H
is actually a module over the ring 72 <X,Y>/(X2,Y2) with X = Sql’ Y =Sq, and

such modules were classified by Ringel.



-6 -

*
Next we describe the decomposition problem of homotopy theory. Let Top /~ be the

homotopy category of pointed topological spaces. The set of morphisms X —Y in
T=QE’|l [~ is the set of homotopy classes [X,Y]. Isomorphisms in Tég*/z are called homo-
topy equivalences and isomorphism types in "I‘ég*/z are homotopy types. Let éﬁ be the
full subcategory of lgg*/m consisting of (n—1)—connected (n+k)—dimensional CW—com-
plexes, the objects of éﬁ are also called Ai—polyhedra, see [40]. The suspension ¥ gives

us the sequence of functors

(1.5) éll‘z—bég—-)—-aéﬁ—z—-béﬁ_l_l——;

which is the k—stem of homotopy categories. The Freudenthal suspension theorem shows
that for k + 1 < n the functor : éﬁ — éﬁ +1 is an equivalence of categories; moreover
for k + 1 =n this functor is full and a 1 —1 correspondence of homotopy types. We say
that the homotopy types of All: are gtable if k + 1 < n, the morphisms of =Alg, however,
are stable if k + 1 < n. The computation of the k—stem is a classical and principal prob-
lem of homotopy theory which, in particular, was studied for k < 2 by J.H.C. Whitehead
{39], [401, [42]. The k—stem of homotopy groups of spheres, denoted by L +k(Sn), n2 2
now is known for fairly large k; for example one can find a complete list for k <19 in
Toda’s book [35]. The k—stem of homotopy types, however, is still mysterious even for very
small k. The initial object of the category é}; is the point * and the sum in ég ig the
one point union of spaces. The suspension X in (1.5) carries a sum to a sum and
r: éﬁ——o éﬁ +1 yields a 1-1 correspondence of indecomposable homotopy types for
k + 1 <n. As in the case of modules we use a finiteness restraint, we consider the decom-
position problem only for finite (or equivalently compact) CW-complexes. Therefore we

introduce the full subcategory Qﬁ,

k- ,k .
(16) FAY C A¥ € Top /=,



.

consisting of (n—1)—connected (n+k)—dimensional CW—complexes with only fintely many
cells. The following results on the decomposition problem in .];‘éﬁ are known. Recall that
a Moore space M(A,m) is a simply connected CW—complex with homology groups
H M(Am)~A and ﬁiM(A,m) =0 for i#m. The sphere S™ is a Moore space
M(Z,m) and M(Z/k,m) is the mapping cone of the map ks :S™ — 8™ of degree k.
The glementary Moore gpaces of E&i are the spheres S™, n < m < n+k, and the Moore
spaces M(I/pi,m) where p is a prime, i 2 1, n { m < n+k. These are indecomposable
objects of 'F__‘_A;. The next result essentially follows from (1.2) by use of the Hurewicz

theorem.

(1.7) Proposition: (A) For n> 1 the sphere S" is the only indecomposable homotopy
type of FAO, and each object in &0 has a unique decomposition.
(B) Let n 2 2. The elementary Moore spaces of FA! are the only indecomposable homo-

topy types in E_f}_rll and each object in F=A‘111 has a unique decomposition.

It is known that there are 2—dimensional complexes in 11';% which admit different decom-
positions, see {18]. For the next result we define the glementary complexes of Chang which

we denote by

(1.8) X(#), X(na), X(;m), X(;7q)

where p,q, EN = {1,2,...}. They are given by the mapping cones of the maps
£ 08" g g, st g0ty g g™ty " 5™ and

fy: sitlygn_,gntlygn respectively; here f; =9 is the Hopf map, moreover
[ =1;2%) +ign, f3=(n2Pe), f; =(i,(2%) +iym, in(2P¢)) where i, resp. iy,

denotes the inclusions of S™T1 resp. %, into S®t!v S%. These complexes are also
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discussed in the books of Hilton [24], [25]. We visualize the words 7, 7q, p and pM by

the corresponding subgraphs of the graph in Figure 1 where the edge in this graph,
connecting the levels 0 and 2, is denoted by 7. e
co o S “ . e

R \

Figure 1

- = \U

—— e - e

-(.19#) Theorem of Cila—xlg [é]: Let n 2 3. The elementary Moore spaces and the elementary

complexes of Chang above are the only indecomposable homotopy types in &121 and each

object in &121 has a unique decomposition.

This result is based on Whitehead’s algebraic classification of Ai—polyhedra (40]. Our main
result (3.9) below gives a complete solution of the decomposition problem in .I'l_A_g. The
solution involves two main steps. First we obtain an algebraic classification of all
A —polyhedra, n 2 4, and then we solve the decomposition problem by use of the algebraic
invariants. The second step is purely algebraic and can be considered as a kind of genera-
lized decomposition problem of representation theory; at this point we also use the results

of Ringel and Henn described in (1.3) and (1.4) above. In addition Spanier—Whitehead dua-

lity turns out to be an important tool.
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An algebraic classification of all A:—polyhedra, n 2 5, i8 not yet known, though Unsdld [37]
gave an algebraic classification of such polyhedra if they have torsion free homology. It
would be very interesting to use Unséld’s result for the classification of all indecomposable
stable Ai-polyhedra. with fintitely generated torsion free homology. Since the primes 2
and 3 appear decomposition i8 not unique, see [20], [26], [27]. This is avoidable by
localization. There are many rings R which are wild in the sense that there seems to be no
hope for a complete classification of indecomposable R—modules, see for example [29). It is
not at all clear whether a similar kind of "wildness" appears in the decomposition problem
of stable homotopy types. In fact, it might be true that the Steenrod algebra itself is wild
in the sense of representation theory, nevertheless the collection of those indecomposable

modules over the Steenrod algebra which are actually realizable might not be wild.
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§2 Spanier—Whitehead duality and homotopy groups of Moore spaces

We here introduce certain generators of homotopy groups of Moore spaces which play an
essential role for the construction of the indecomposable Ai—polyhedra in the next sectioﬁ.
The generators chosen are compatible with Spanier—Whitehead duality. With respect to
Spanier—Whitehead duality we refer the reader to [32] and [34], we here only recall a few

facts needed in this paper.

In the stable range m < 2n —1 the Spanier—Whitehead (n+m)—duality is a contravariant

isomorphism of categories

(2.1) D:FAT " S FAT R,

This isomorphism carries X to DX = X* and carries the homotopy class f € [X,Y] to
the homotopy class Df = * e [Y*,X*]. The isomorphism D satisfies DD = identity that
is X* =X and f** =1 The functor D depends on the choice of (n+m)—duality maps
Dy : X*aX — S"T™  which satisfy certain properties, see [32] or [34]). The homotopy
type of X*, however, is well defined and does not depend on this choice. As an example we
have the dual D(S9) = S™ 9 for q<m—n, then the dual of f:S"Td—,g0¥q" 4
= Ekf M, gma iy k= m-n—q’—q. This shows that Moore spaces satisfy

(2.2) M(Z/r,n+q)* = M(Z/r,m—q-1).

In fact, for a mapping cone C, we can choose DC;=C g where g represents £,

We now consider maps between Moore spaces of cyclic groups. For the pseudo projective
plane P = sty re2 we have mi7l P_=M(Z/r,n). This yields the function
gL, [P.,P,] — [M(Z/r,n),M(Z/t,n)]  between sets of homotopy classes, see (1.5).
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(2.3) Proposition [3]: Let n 2 3. For ¢ € Hom (Z/r,Z/t) there exists a unique element
By € [M(Z/1,n), M(Z/t,n)] which induces ¢ in homology and which is in the image of the
function £ above.

Clearly B in (2.3) satisfies B(id) = id and B(y¥) = (By)(B¥) for compositions ¢¥; the
function B, however, is not additive. Let y: I/p’ — Zl/pt be the canonical generator of
Hom (H/pr,ll/pt) = ﬂ/pmjn(r,t) given by x(1)=1 if r2t and by x(1) = pt_r-l for

r < t. Using (2.3) we get for n 2 3 and a prime p the well known result

1/p™i R (58)p(y) for p# 2
(24) [M(Z/p" ), M(T/p" n)] = { /4 B(x) for p’ =p'=2

H/2mi n(r't)B(x) ®7/2inq otherwise
Here we write A=1Z/kB if A is a cyclic group of order k with generator B. The
generator inq is given by the inclusion i:S™C M(H/pt,n), the pinch map
q: M(Il/pr,n) — Sn+1, and the Hopf map 5 with [Sn+1,Sn] = I/2 5. Moreover we get

(2.5) (5% M(z/2 n)] = T/2in and [M(Z/2%0),5%] = T/2 nq

*
which are (2n+1)—dual groups with (ip) = 5q. On the other hand we get the
(2n+2)—dual groups, n 2 4,

Z/4 ¢ for t=1
2yt = |
I/2 ¢® T2 ing for t>1
(2.6)
I/s ot for t =1

M(Z/2',n+1),8") =
I/2 '®1/2 nnq for t > 1
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Here we choose a generator §; and we set £ = B( x)fl, moreover we set ql = ({l)*
*

and r;t = (¢ t) = nlB(x). The map nn is the double Hopf map with

[Sn+2,Sn] = I /2nn. Finally we get for n 2 4

'H/2519l’l/2qi for s=r=1

H/4§i®ﬂ/2ni for s>1=r
1 1

I/j2¢ @049 for s=1<r
r t

[ Z/2 € ©1/2 1} ®1/26° otherwise

(2.7)  [M(Z/2°n+1),M(Z/2"0)] = -

Here we set £ =B(x)€,q, n° =in'B(x) and ¢® = innq. We have the (2n+2)—dualities

(&) =75 and (&) = ¢~

(2.8) Proposition: The groups (2.4), (2.5), (2.6) and (2.7) determine exactly all non trivial
groups [X,Y] where X and Y are elementary Moore spaces of L&i, n?24

This essentially is proved in [5], a complete proof is also given by Jaschke [28]. The explicit
definition of generators above as well determines all compositions of maps between elemen-

tary Moore spaces in &i.



In this section we describe the main result of this paper which solves the decomposition

problem in the category F_A‘i, n 2 4, see (1.6).

For the description of the indecomposable objects we use certain words. Let L be a set,
the elements of which are called ’letters’. A word with letters in L is an element in the
free monoid generated by L. Such a word a is written a = 3,3q..-2) with a, €L, n20;
for n =0 this is the empty word ¢. Let b= bl"'bk be a word. We write w=..b if
there is a word a with w = ab, similarly we write w = b... if there is a word ¢ with
w = bc and we write w = ...b... if there exist words a and ¢ with w = abc. A gybword
of an infinite sequence ... a_gd_ 13538y ... with 3, €L,i€Z, is a finite connected sub-
sequence 8.8 .3 L, D € IZ. For the word a= 3.8, we define the word

—a=a.a ,..3; byreversing the orderin a.

(3.1) Definition: We define a collection of finite words w = w,w,, ... w;. The letters w; of
w are the symbols ¢,7,¢ or natural numbers t,8,T;, i € Z. We write the letters 5, as
upper indices, the letters I, as lower indices, and the letter t in the middle of the line
since we have to distinguish between these numbers. For example r/5£2r/3 is such a word

with t =5,1, =3,8; =2 A basic sequence is defined by
8 8
1 2

8.
This is the infinite product a(1)a(2)... of words a(i) = ¢ lﬂr_, i 2 1. A basic word is any
i

subword of (1). A central sequence is defined by
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8 o | ST
(2) v ko fr_lfltf ﬂrlf RS

A central word w is any subword of (2) containing the number t. Whence a central word

w is of the form w = atb where —a and b are basic words. An e—sequence is defined by

8 8 8 5
—2 -1 1 2
(3) "t fr ﬂ EI 16 nrlf ﬂrz"'

An e—word w is any subword of (3) containg the letter ¢; again we can write w = aeb

where —a and b are basic words.

A general word is a basic word, a central word or an e—word. A general word w is called
special if w contains at least one of the letters £, or ¢ and if the following conditions
(i), D(i), (ii) and D(ii) are satisfied in case w = aeb is an e—~word. We associate with b

the tuple

S(b)=(811),83,-.-)= (8sBy®0,0,00) i b = f
(815--18,0,0,0,...) otherw i se

() = (0, = [ Crorem00) 3L =
(rl,...,rl,0,0,0,...) otherwise

where s,..s  and r,-.T, are the words of upper indices and lower indices respectively
given by b. In the same way we get s(—a) = (s'l'a',s'z'a,...) and r(—a) = (rIa,rga',...) with
s;a' € {s_i,m,[)} and ri'a' € {r_i,m,O}, i € N. The conditions in question on the e—word

w = a€b are:
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() b=¢ 3 atg
D(i) a=¢ 3 bily
(ii) s;=14r1_,22 and
b_bb_bb b_b
(11,B9:Tg, 83,5, =B, 4T ) < (r?—l,—ﬂ?,r;a,—sga,rga,—s-a,—sga,...,ri'a,—si'a,...)

D(ii) r,=13522 and

(—sll) + 1,rtl’,-sg,rg,—sg,rg,...,—ali),rli’,...) < (—sIa,rEa,—sEa,rga,—s_a’,...,r;a,-si'a‘,...)

In (ii) and D(ii) we use the lexicographical ordering < from the left and the index i runs

through i = 2,3,... asindicated.

Finally we define a cyclic word by a pair (w,p) where w is a basic word of the form
(p21)
8

8 8
1 2 P
(4) w=§n £ .. £
Il 1'2 Ip

and where ¢ is an automorphism of a finite dimensional 7/2—vector space V = V().
Two cyclic words (w,y) and (w’,p’) are equivalent if w’ is a cyclic permutation of w,

that is
8

: 8 8 8,
1 -1
w =¢ €l £ T
1 p 1 1-1
and if there is an isomorphism ¥ : V(p) & V(p’) with ¢ = i_lga’ ¥. A cyclic word (w,p)
is a special cyclic word if ¢ is an indecomposable automorphism and if w is not of the
the foorm w=w’w’...w’ where the right hand side is a j—fold power of a word w’ with

> L
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The sequences in (2.1) can be visualized by the infinite graphs in Figure 2. The letters 8,
resp. correspond to vertical edges connecting the levels 2 and 3, resp. the levels 0,1.
The letters §, resp. 7, correspond to diagonal edges connecting the levels 0 and 2, resp.
the levels 1 and 3. Moreover € connects ihe levels 0 and 3 and t thelevels 1 and
2. We identify a general word in (3.1) with the corresponding subgraph of the graphs in
Figure 2. Therefore the vertices of level i of a general word are defined by the vertices of
level i of the corresponding graph, i € {0,1,2,3}. We also write |x| =i if x is a ver-

tex of level i.
| e it e =

th'

O - N oW
™~
Ve

AR |

3

2 S.2 5_7 57 52 53

] e & @ t L X ]

0 "3l T2 -1 1 g
central sequence

3 — .

9 S\ 5 %) %

1 ® @ @ /é_ \ * s 0

0 3l olf T " g

£-sequence

Figure 2
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(3.2) Remark: There is a simple rule which creates exactly all graphs corresponding to
general words. Draw in the plane R? a connected finite graph of total height at most 3
that alternatingly consists of vertical edges of height one and diagonal edges of height 2 or
3. Moreover endow each vertical edge with a natural number. An equivalence relation on
such graphs is generated by reflection at a vertical line. One readily checks that the

equivalence classes of such graphs are in 1-1 correspondence to all general words.

(3.3) Definition: Let w be a basic word, a central word or an e—word. We obtain the dual
word D(w) by reflection of the graph w at a horizontal line and by using the equivalence
defined in (3.2). Then D(w) is again a basic word, a central word, or an e—word respec-
tively. Clearly the reflection replaces each letter ¢ in w by the letter % and vice versa,
moreover it turns a lower index into an upper index and vice versa. We define the dual

cyclic word D(w,p) as follows. For the cyclic word (w,p) in (3.1)(4) let

-1
D(w,p) = (w’,(¢%) ). Here we set

and we set ¢ = Hom(y,Z/2) with V(go*) = Hom (V(y),Z/2). Up to a cyclic permuta-
tion w’ is just D(w) defined above. We point out that the dual words D(w) and

D(w,p) are special if w and (w,p) respectively are special.

We are going to construct certain Af’l—polyhedra, n 2 4, associated to the words in (3.1).

To this end we first define the homology of a word.

(3.4) Definition: Let w be a general word and let Ty Tg and BBy be the words of

lower indices and of upper indices respectively given by w. We define the torsion groups of
w by
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I l'ﬂ
(1) To(w) = I/2 %9 .017/2 7,
(2) T,(w)= Zi.'/2t if w is a central word,
8 B
(3) T(w)=1/2 0. 01/27
and we set Ti(w) = 0 otherwise. We define the integral homology of w by
L.(w) R.(w) "
(4) H(w)=Z' "®T(wer " .

Here fi(w) = L;(w) + R,(w) is the Betti number of w; this is the number of end points of
the graph w which are vertices of level i and which are not vertices of vertical edges; we
call such vertices x gpherical yerticeg of w. Let L(w), resp. R(w), be the left, resp. right,
spherical vertex of w in case they occur. Now we set L.(w)=1 if |L(w)| =i and

Ri(w)=1if |R(w)| =i, moreover L.(w) =0 and R(w)=0 otherwise.

Using the equation (4) we have specified an ordered basis Bi of Hi(w). We point out that

(5) ﬂo(w) + ﬂl(w) + ﬁz(w) + ﬂ3(w) <2
For a cyclic word (w,p) we set
(6) Bi(w,g) = @ Ti(w)

where v =dim V(y) and where the right hand side is the v—fold direct sum of T(w).

(3.5) Definition: Let n > 4 and let w be a general word. We define the Ag—polyhedron
X(w) = C; by the mapping cone C; of a map f(w): A— B where

" {A: M(H,n+2) v M(Hgn+1) v S0t
1
_ n+1 n+l
B=M(Hyn) v S, v 5y
Here H, = Hi(w) is the homology group in (3.4) above. We set SICH'1 =s" if wisa
central word and we set Sg+1 = * otherwise, moreover we set S§+1 = S'1+1 if wisa

basic word of the form w = £ ... and we set Sg+1 = * otherwise. For the following short

words w we can describe f(w) directly in terms of the generators defined in §2:
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(2) f(n)=n=n " 5",
f(§)=n= Tatl'
f(e) = nn: got2 _, g0 ,

f(t) = to - ST g0FL

Sn+2 — Sn+1 ,

(&%) = &, i(*n,) = nf, {(,€") = e = inmq,
(6 =&, i(°n) =", f(;e) = e =inm,
(&) =m0 fn)=in, f(e") = € = nnq.

In general we obtain f(w): A — B as follows. For this we first describe B and A in (1)
as one point unions of elementary Moore spaces. For each letter =g of r ..r 8 (see 3.4)

we have the inclusion

I
3) i(rg): M(T/2 °n) C B

Moreover for each spherical vertex x of w with |x| <1 we have the inclusion
(4) ix): st Ixl B

This is the inclusion of Sﬂ‘*’l if |[x] =1. The space B is exactly the one point union of
the subspaces (3), (4) and of j, : Slé+1 C B. Next we consider the space A in (1). For
each letter 5_ of s u By (see (3.4)) we have the inclusion

8
(5) j(s.): M(Z/2 " +1) CA
Moreover for each spherical vertex x of w with |x| 2 2 we have the inclusion
(6) jx) s sPEIXIL g

The space A is exactly the one point union of the subspaces (5), (6) and of j, : Sg+1 CA.

We now define f=1f(w) by the following equations. For a letter s, as above and for

6=71—1 weset
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8 8 8
(M fi(s,) = fj(ra)er;+ J'(r,,)nr: if W= £ anT
8 8 8
: T : T . _ T
J(rb')"r& + J(IT)EIT if w=... rbﬁ fr—r
. . 5 _ 8y
JeTp41at J(Tl)ﬂrl if w=...1t§ nrl. .. andT=1
- o D | . 8
J(f_l)fr_l + J(Il)ﬂrl ifw=.. r_le r)rl... and 7=1

‘ 8
The first equation also holds if the letters r 5 Or I, are empty thatisifw=¢ "5.. or

if w=.. fsfn respectively. In this case we set j(’g) = j(x), if x=L(w), resp.
i(r.) = i(y), if y=R(w), see (3.4). We use a similar convention for the other equations in
(7). Using (2) and (7) we see that fj(s_) is well defined for all general words w. Next we
define fj(x) where x is a spherical vertex of w with |x| 2 2.

i(r )€ if w=¢§¢ .., |x| =3, x=L(w)
e (oo I
i(r )in if w=mnq_ .., |x| =2,x=L(w)
(8) filx) = 1 ‘a .
i(ra)é if w=..._¢§ |x|]=3x=R(w)
Y Y
j(r_l)im] fw=.._ ¢ |x| =3, x=R(w)
-1
Using (8) and (2) the element fj(x) is well defined for all general words w. Finally we de-
fine fjc by
Hr_y)int j(te) if W= 1171;
(9) fi= {30+ igfte) it W= gt x = L(w)

jo(te) if w=t..
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This completes the definition of f=f(w) and whence the definition of X(w) = C,.

We point out that X(w) in (3.5) coincides with the corresponding elementary complex in
(1.8) if w is one of the words 7, 74q, p™ pM: Moreover the suspension of such complexes
are given by

(36) EX(n) =X(¢), EX(nq) = X(¢%), EX(,m)=X(p€), EX(,7) =X(p¢Y).

The words pnq and pfq correspond to the two possible subgraphs in a central sequence
which both look like the graph in Figure 1. This precisely describes the embedding of inde-
composable Ali—polyhedra. (m =n,n+ 1) into the set of indecomposable Alal—polyhedra.
In a similar way indecomposable A;—polyhedra (m =n, n+ 1) are embedded in the set
of indecomposable Aﬁ—polyhedra; this already signifies the complexity of the decomposi-

. . 4
tion problem in FA .

(3.7) Definition: Let n 2 4 and let (w,p) be a cyclic word. We define the Ag—-polyhedron
X(w,p)=C ¢ by the mapping cone of a map f= f(w,p) where

o)) f: M(Hy,n+1) — M(H,;n)

with H, = H.(w,¢), see (3.4)(6). For u € {1,...,v} we have the inclusion (m=n,n+1
and i=0,2)

(2) i : M(Ty(w),m) C M(H,,m)

by the direct sum decomposition in (3.4)(6). Moreover we ha.ve for each letter ro and 8_

of ry..r_ and B8 (see (3.1)(4)) the inclusions

p

3) (g M@/2 S) CM(T (W),
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8
(4) (5.): MZ/2 "n + 1) C M(Ty(w)n+1) .
Compare (3.5)(3) and (3.5)(5). We choose a basis {b,,...,b_} of the vector space V()
v
and we define gof‘l € {0,1} by ¢(b )= 2 goﬁb ¢~ This yields a definition of { by the fol-
e=l1

lowing formulas (5) and (6).

8 8
(5) fj,i(8,) = iyli(r o) f,; +j(r,) ’71.:]

8
] _ T o
if w= ...raf N TE {2,...,p} and & = 71, see (3.1)(4). Moreover we set
8 v 8
.. e 1 e. . 1

(6) iy o)) = dy de)my + 21 Py Jel(r) frp :

e=
The spaces X(w) and X(w,p) are constructed in such a way that the integral homology
is given by '
(3.8) Hn+iX(w) = Hy(w), Hn+iX(w,¢) = H(w,¢)

where we use the homology of the words w and (w,y) in (3.4). For an elementary Moore
space M(H/2k,n+j) in E_Aﬁ we get X(w) = M(H/2k,n+j) if the graph w consists only

_ Sn+j

of the edge k connecting the levels j and j+ 1, moreover X(w) is a sphere if

the graph w consists only of a vertex at level j.

The next result solves the decomposition problem in &i, see (1.6), we prove this result in

§6 below.

(3.9) Decomposition theorem: Let n 2 4. The elementary Moore spaces in FA3, the com-
plexes X(w) where w is a special word, and the complexes X(w,y) where (w,p) isa

special cyclic word furnish a complete list of all indecomposable homotopy types in FAS.
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For two complexes X,X' in this list there is a homotopy equivalence X ~ X’ if and only if
there are equivalent special cyclic words (w,p)~ (w,¢') with X =X(w,p) and

X’ = X(w’,¢’). Moreover each homotopy type in FA3 has a unique decomposition.

Spanier—Whitehead duality of indecomposable complexes in FAS is completely clarified
by the next result.

(3.10) Theorem: Let n 2 5. For a general word w and for a cyclic word (w,p) let Dw
and D(w,y) be the dual words defined in (3.3). Then X(Dw) is the Spanier—Whitehead
(2n+3)—dual of X(w) and X(D(w,yp)) is the Spanier—~Whitehead (2n+3)—dual of

X(w,9).

Proof of (3.10): The result essentially follows from the careful choice of generators in §2
which is compatible with Spanier—Whitehead duality. This implies that there are
(2n+2)—dualities f(w)* = {(Dw) and f(w,p)* = f(D(w,p)). Whence (3.10) is a conse-

quence of the remark on mapping cones following (2.2).
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§4 Algebraic invariants

We describe algebraic stable Ag—systems which classify the homotopy types of Ai—polyhe—

dra, n 2 4. To this end we introduce the following notation.

Let F:C— K be a functor. We say that an object X in K is F—realizable if there is
an object Y in C together with an isomorphism a:FY ¥ X in K. Wecall Y or the
pair (a,Y) an F-realization of X. We say that F is a detecting functor if F is full, if
each object in K is F—realizable, and if F satisfies the following sufficiency condition: A
morphism § in C is an isomorphism if and only if the morphism F/J is an isomorphism
in K. One readily observes that a detecting functor F induces a 1-1 correspondence be-
tween isomorphism classes of objects; here a 1-1 correspondence i8 a function which is in-
jective and surjective. Moreover a detecting functor F induces a 1-1 correspondence be-

tween isomorphism classes of indecomposable objects if ¥ preserves sums.
We shall use graded abelian groups H with
(4.1) H.=0 for i<0, i>3 and H, free abelian.

For example the reduced integral homology H of an Ag—polyhedron X has this property;
here we set

(4.2) H o=H_(X) for i € L.

n+i

We now consider the following commutative diagram of additive functors, n 2 4, where

éﬁ i8 the homotopy category of Ai—polyhedra.
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The categories H, S, and G are purely algebraic and the functors Q and R which we
define below are detecting functors. The objects of the categories H, S, and G are given
by specifying additonal structure on "homology" groups H asin (4.1). Let FH, FS, and
FG be the full subcategories of H, S, and G respectively for which all objects have finite-

ly generated homology.

(4.4) Definition of H: Objects are triples Hg = (H,H(2),S) where H satisfies (4.1) and
where H(2) is a graded R—module with R = ﬂ/2<Sq1,Sq2>/(Sq§,Sq§) and

|Sq1| = -1, |Sq2 | = —2, compare (1.4). Moreover S is a short exact sequence
(1) H ® 1/2 >—L H(2) —2—i H+7/2

with degree | b | = —1 such that Sq is the composition

2) H(2) —2m H4Z/2 > H -9 H ® 7/2 >-14 H(2).

Here i is the inclusion of the 2—torsion and q is the quotient map. A morphism
HS—"Hé in H is a pair (F,G) of degree 0 homomorphisms F:H— H’,
G : H(2) — H’(2), such that G is R-linear and such that F and G are compatible

with respect to the sequences S and S’.

The functor [J: A3 — B carries an object X to J(X) = (H,H(2),S) where H is the

homology in (4.2), where H(2),=H__.(X,I/2) is endowed with the action of the

n+i
Steenrod operations Sql,Sq2, and where S is the universal coefficient sequence. The func-

tor I was considered by Henn [22], who showed that an analogous functor for the



Steenrod algebra le, p odd, is a detecting functor. In our case, however, we use the prime
2 so that §J is not a detecting functor since in general there are non trivial higher order
cohomology operations on spaces X in éﬁ , for example Adem operations, which are not
detected by JJ(X). We therefore need the better algebraic invariants of X obtained by the
functor Q in (4.3), see (4.11) below.

In the definition of the category § we use the following notation on abelian groups K and
L. We have the natural isomorphism ¥ : Ext(K,L ® Z/2) ~ Hom(K*Z/2,L®Z/2) which we
use as an identification. Here ¥ is defined as follows. Let {E} be the class of the exten-
sion L®Z2>4E-P+sK and le¢ x€K with 2x=0. Then we set
¥{E}(x) = i }(2p"x). The element qi € Hom(K+Z/2,K®1/2) = Ext(K+1/2,K®L/2), de-
fined as in (4.4)(2), yields an extension of abelian groups

(4.5) K&1/2 >4 G(K) -2 Kx1/2 .

For each homomorphism ¢ : K — L there is a homomorphism ¢ : G(K) — G(L) with
(p*1)A = Ay and pu = p(p ®1). Moreover we obtain for G(K) = Hom(G(K),Z/4) the
extension

(4.6) Ext(K,1/2) >~ G(K) = Hom(K,7/2)

where & and u can be identified with Hom(A,Z/4) and Hom(u,Z/4) respectively.

(4.7) Definition of §: Objects in § are stable AS—gystems

A= (H,:rl,D,ﬂ) = (HA,w‘%,DA, ). Here H satisfies (4.1) and 7, is an abelian group.

Moreover D is a diagram of unbroken arrows in Ab as follows:
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x ®L/2
b3 I ’ by i h
(1) Hy—— T - —a75——oH,— > H,®I2 " =+ H, .
A
Hy*Z/2

The row is an exact sequence; (the group 7, in this row is considered in (4.8) below).

Moreover the column is the short exact sequence defined by the following push out in Ab:

i ®1

H,®1/2 - 7,81/2
(2) B I push I b
G(H,) @ ~+T T cok(bg) .

Here we use (4.5) and the homomorphism i in (1). The map A in (1) is induced by A in
(4.5) and q is the projection for the cokernel of b, in (1). We use the composition
v=qu(i ®1) in (2) for the definition of the push out I'(K;A) in Ab defined by the fol-

lowing diagram (3); here we use the exact sequence (4.6).

Ext(K,Z/2)8H, 221, G(K)6H, 2L+ Hom(K , 7/2)8H,

|

(3) Ext(K,H,®Z/2) push

V*l

Ext (K, cok bg) >—2— P(K;A) —£— Hom(K,H®1/2)

The map u is induced by z ® 1. Finally 4 in the object A = (H,rl,D,ﬁ) is an element
(4) B € T(Hy;A) with u(f) =b,
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where b, is given by (1). A morphigm ¢:A — B in § is a tuple of homomorphisms

A

. A
v Hy

B . B A B
—-oHi, ppiT Ty, gaF.F — I,

such that ¢ is compatible with all unbroken arrows in (1) and such that

—
(5) 0,8 = 73(8°)
Here ¢, : I‘(Hé;A) — I‘(H‘;;B) is induced on the push out (3) by

Ext(H‘%,”éF) @ @(H‘g) ® p, where ?;’I‘ : cok b% — cok blg is induced by pp. Moreover

¥y isamap B,: G(HA) — G(HD) asin (45) and ¥} : '(HD;B) — I'(HY;B) is given
on the push out (3) by Ext(p,,cok blg’) ® Hom(yp,,Z/4) ® ng, see (4.6).

(4.8) Remark: The "homotopy group" =, = r‘g in the exact sequence (4.7)(1) is deter-
mined by the element 8= ﬁA as follows. The inclusion ¥ : ker b2 C H2 induces a map

¥* . I(H,y;A) — D(ker byA) as in (4.7)(5). Now we get p¥ =" pf=¥"by=0 by
(4.7)(4). Whence an element

(1) {ry} = A7 € Ext(ker by,cok b,)

is well defined by the exact sequence in the bottom row of (4.7)(3) where we set
K = ker(b,). This element {,} determines the extension
in the exact sequence (4.7)(1).

Recall that J.H.C. Whitehead [42] introduced for an (n—1)—connected space X, n 2 3, the

exact sequence

(4.9)

h

b
X——an

i
— H X®I/2 — LT

b j h
H o 3X— T X - Tat+2 +oX ~Hp X
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where h is the Hurewicz homomorphism and where b is the secondary boundary operator
with T_X =im{r_X™"" — r_X™}, X™ = m-skeleton of X. Compare also (XIL3) in

[38]. We are now ready to state the following result which we prove in (5.18) below.

(4.10) Classification theorem: Let n 2 4, then there exists a detecting functor Q : éi —§
such that Q(X) = (H,,,D,5) has the following properties. The homology H is given as
in (4.2), the groups 7; and =, in D are the homotopy groups =7 +1(X) and
YT +2(X). Moreover there is a natural isomorphism I' @ I' +2(X) such that the row
of D in (4.7)(1) is naturally isomorphic to Whitehead’s exact sequence (4.9).

A complete definition of the functor @ is given in (5.13) below. The main new feature of
the functor Q is the invariant 4 in Q(X) which we call the boundary invariant of X.
As pointed out in [4] the boundary invariants are the true Eckmann Hilton dual’s of the
Postnikov invariants; a further discussion of these invariants will appear elesewhere. In
Part II of [4] the objects of § are called Aﬁ—systems, n 2 4, here we use the convention

that we omit n in the description of objects in § since we are in the stable range.

The functors Q and Y in (4.3) have the following connection which we prove in (5.19)
below.

(4.11) Proposition: Let X be an object in A3 and let

U(X) = (H,H(2),S) and Q(X) = (H,r,,D,5).

Then there is a natural isomorphism y such that the following diagram commutes.



— 30—

by b i
H3 [ ————— - > 1g———>H, = Ho@ll/2 =7y H1
q la
H,® 7/2 y H,®1/2
RN N
Hy(2) ——gg H1(2) cok 4(i ® 1) By(2)gg Hy(2)
5 o v e
Ho*I /2 ——r— cok (Sq,1r) & cok(7b,) H,*I/2-—~ cok Sq,r= cok b,
X

We shall use x for the identification H,(2) = cok p(i ®1). The map 7 and the arrows

q denote quotient maps. The top row is given by D and coincides up to isomorphism with

4.9). The maps Sq,,T and b are given by U(X). Moreover we obtain the maps « in
2 g8

the diagram by the elements

(1) &= {=} € Ext(H,,cok by) = Hom(H,*Z/2,cok b,) and

(2) s={B}E€ Ext(H,,cok 7bs) = Hom(Hy*Z/2,cok 7bg) respectively.

Here {x;} is given by the extension cok b, >— #; —— H; which is part of the top
row of the diagram. Moreover let 7, : cok b3 — cok 7b3 be induced by 7 above, then
we observe that 7,v = 7,qu(i ® 1) = 0 is trivial since yu(i ® 1) = 0 by definition of 1.
Whence we obtain the map (H, = HA)

(3) Ty = (Ext(Hg,74),0) : [(Hy;A) — Ext(Ho,cok 7 by)

on the push out in (4.7)(3). Using this map we define {B} = 7 #ﬁ where 3 is the boun-
dary invariant given by Q(X). The diagram in (4.11) shows us exactly the connection be-
tween the Steenrod squaring operations and Whitehead’s certain exact sequence (4.9). The
commutativity of the right hand side of the diagram is actually an old result of
J.H.C. Whitehead, compare [41] and (XII. 4) in [38].
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We are now ready for the definition of the category G and of the functors § and V.

(4.12) Definition of G: Objects are tripies W = (H,D;,D,) where H satisfies (4.1) and

where D; and D, are the following diagrams (q denotes the quotient map).

H,®T/2 -+ H®1/2 L cok A £ H x/2 ,
H,®1/2

I
H,87/2 2 H (2) S cok ) % H *1/2

1 b
Ho*17/2

A morphism p: W —W'in G is a homomorphism ¢: H— H’ of degree 0 for which
there exists a morphism ¥ : H,(2) — H{(2) such that y and ¥ are compatible with the
diagrams D, and D,,. Sometimes we write H" and H(W) for B in W = (H,D,,D,).

Using diagram (4.11) we obtain obvious functors R: H-— G and V:S — G. Namely for

an object Hg = (H,H(2),S) in H weget W= B(HS) by A= Sq2f and by kb = q5q,.
For an object A in § weget W=Y(A) asfollows. In D, wedefine A and s by

Aq=by, £={m} andin D, we define A and x by Aq= by, K= {B}. Now

Proposition (4.11) exactly shows that the diagram of functors (4.3) commutes.
All categories in (4.3) are in an obvious way additive categories and all functors are addi-
tive. The direct sum in H,S and G respectively is defined via direct sums of abelian

groups.

(4.13) Lemma: R is a detecting functor.
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Proof: Let W = (H’Dl’Dz) be an object in SH. We get an R-realization '
Hg = (H,H(2),S) as follows. Hy(2) = H, ® /2. H,(2) and the corresponding part of § is
given by D,. Let Hi(2) =H,®7/2®H, , * /2 for i=2_3. Then S is completely de-
fined. Now Sq, can be chosen such that B(Hg) = W.If y: R(Hg) — R(H§) is a mor-
phism in G we can choose ¥:Hg— Hg with R(¥) = p, since the involved exact se-

quences are split.
(4.14) Lemma: Each object in G has a Y—realization.
(4.15) Corollary: Each object in H has a [J-realization.

The corollary follows from (4.14) and from the fact that @ and R are detecting functors

and that (4.3) commutes.

Proof of (4.14): Let W =(H,D;,D,) be an object in G. We get a Y-realization
A= (H,zrl,D,ﬂ) by b, = Aq; we choose the extension x; such that {xl} =K asin
(4.11)(1). This gives us I' by (4.7)(2), such that there is an isomorphism
X: H1(2) o~ cok u(i ®1). We choose b3 such that 7b3 = yAq, see (4.11). Tt in (4.11)(3)
is surjective. We can choose g with 7 #ﬂ = k. This completes the definition of A. The
isomorphism ¢ : W & Y(A) is given by the identity on H. '
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§5 Proof of the classification theorem

In this section we first define the functor Q : AS — §, n 2 4, and we show that Q has
the properties in (4.11). Then we show that Q is a detecting functor. The definition of

Q(X) uses Whitehead’s exact sequence (4.9) and a new ’boundary invariant’.

We first consider Whitehead’s group I' +2(X). Let X be an (n—1)—connected CW-space

with n 2 4. Then we have the following natural short exact sequence which we denote by

Sp(X):

A
(5.1) X®Z/2>E4T X = H X x7/2.

l’n_l_

We define 4 by u(x®1)= n*x, x € L X, where 7#: si+2 _, g0+l o ipe Hopf

+1
map. Moreover we define A by the first k—invariant f: X — K(Hg,n) =K of X with
Hy=H X=X Now A is the composition of I’ +2(,6) and of the isomorphism

I oKg @ H | Ky & Hoxl/2, compare [19]. These definitions show that x4 and A are

n+2 n+3
natural. For the exactness it is enough to consider the case when X is (n+1)—dimensional
and whence of the form X ~ M(H,,n) v M(F,n+1); here F is a free abelian group. There-
fore (5.1) follows from the special case (5.2) below. For a Moore space X = M(K,n) of an

abelian group K we have the exact sequence GK:
(5.2) K@ 17/2 >4 x_, M(K,n) S Knll/2

where (4.9) shows that K® Z/2 = rn+1M(K,n), compare [1].

The extension (5.2) conicides with the extension (4.5) so that we may set
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(5.3) G(K) = 7, ,M(K,n),

compare [1]. The group G(K) can be used for the following algebraic characterization of
maps between Moore spaces

(1) [M(X,n),M(L,n)]  Hom(G,Gy), n 2 3.

Here Hom(Gy,Gy) is the set of all pairs (p,¢) where ¢:G(K)— G(L) and
¢:K-—L are homomorphisms with Ap=(p*1)A and p(p®1)= pu. The natural
isomorphism (1) carries a map y: M(K,n) — M(L,n) to the pair (x, +2To,Hn@, we use
this isomorphism as an identification; compare (V. 3a. 8) in [2].

For Hy=H (X) we choose a map a:M(Hyn)— X which induces the identity
H_(a) = 1. Using (5.1), (5.2) and (5.3) one gets the following commutative diagram.

i ®1 B h L
H,®1/2 7, X8I/ 2 —H (X)®L/2
push _
boo, X B ; T
(5.4) G(H,) 4 Tl oX —H (X, 1/2)
A A | ®
Hy¥I/2 ———— H_Xx*I/2 H X+Z/2

The left hand side of the diagram is given by ax : S(M(K,n)) — Sp(X); since the
columns are exact we see that the subdiagram push is actually a push out of abelian
groups. One gets the right hand side of the diagram by the map j« : Sp(X) — SF(SPmX)
induced by the inclusion j: X — SPmX where SPmX ig the infinite symmetric product
of X. We use the theorem of Dold—Thom [17] for the identification x, : S(SP_X) ¥ §
where S is the right hand column of (5.4) which is also part of [J(X), see (4.4). This way

we define the natural map 4 in (5.4) by the composition 7 = xOFn +2( j). The top row of
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(5.4) is obtained by the exact sequence (4.9); therefore diagram (5.4) yields the isomor-
phism

(5.5) x:cok u(i®1) Hn+1(X,IZ/2) .

Next we need homotopy groups with coefficients defined by = (K;X) = [M(K,n),X]. One

has the universal coefficient sequence

A

(5.6) Ext(K,7_ ,X) >~ 7 (K;X) £ Hom(K,7_X),

n+1
compare [25]. As a special case one gets for T _H(K;Sn) the sequence

(5.7) Ext(K,2/2) >~ x_,  (K;S") -+ Hom(K,1/2)

which is naturally isomorphic to the sequence (4.6 ), in particular, there is an isomorphism

(5.8) G(K) = 7 ,(K;S") & Hom(G(K),Z/4)

which we use as an identification. For the definition of this isomorphism we first observe

that the maps £, and nl in (2.6) induce isomorphisms

(1) &6 - [M(@/2,0), M(K,0)] 2 [ T2 M(K,n)] = G(K)

(2) 7l : [M(K,n+1)M(Z/2,0+1)] & [M(K,n+1),5" = G(K).

This is readily seen by comparing the corresponding short exact sequences for these groups.

Now the isomorphism (5.8) carries x € 7 +1(K;Sn) to the homomorphism
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n+2

'l'x :x o M(K,n) —I/4= Tn+1(H/2;M(H/2:n+1)):
(3) { , 141 *y~1
with ¥ _(y) = (n,) (x) o B(£) (¥) -

Obviously (5.8) is natural in the semse that ¥:M(K’,n)— M(K,n) induces
X *
(Xp)" = Hom(x  ,(p), I/4) where (Ep) (x) = x o (L), compare (5.3)(1).

We now use the groups G(K) and G(L) above for the computation of the group
T +1(K;M(L,n)). This group is embedded in the following commutative diagram in which

the rows are exact sequences

Ext(K,Z/2)0L —28L , §(x)eL #81 ., Bom(K,Z/2)®
(5.9) Ext(‘Kl,LGH/Z) push
Ext (K, 4) ‘

Ext(K,G(L)) >——8— 7 (K;M(Ln) —£— Hom(K,181/2)

The bottom row and the top row are given by (5.6), (56.7) and x is induced by z in (5.2).

Moreover the homomorphism t is defined for x € G(K), y€EL=1n ,M(L;n) by the
composition t(x ®y) =y o x, see (5.8). One readily checks that the diagram commutes.
Whence exactness of the rows implies that the subdiagram push in (5.9) is a push out dia-

gram of abelian groups. All maps in (5.9) are natural in the obvious fashion.

Recall that Whitehead’s '—groups T Y of a CW—complex Y are given by

r Ym—l

Y = image {i, — 7 Y™}, Whence we have the inclusion

. m T . m—1
i: FmY C me and the projection p: rmY

-—-HI‘mY. We now introduce the
T—groups I‘m(K;Y) with coefficients in the abelian group K by the commutative dia-

gram
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Ext (K,Tp 1Y) 7 Ext(K,wm+1Ym)
AI push A

(5.10) I (K;Y) & by ﬁ > :1rm(K;Ym)
#l l pull i l B
Hom(K,I_Y) = Hom(K,T_Y) >3 Hom(K, r_ Y™

Here push and pull denote a push out diagram and a pull back diagram respectively. The
right hand side is given by the m—skeleton Y™ of Y and by (5.6). By definition the left
hand column is a short exact sequence, which is the universal coefficient sequence for the
group Fm(K;Y). This sequence is clearly natural with respect to cellular maps
f:Y'—Y; in case Y and Y’ are simply connected the induced map

f :T

" m(K;Y’ ) — I (K;Y) depends only on the homotopy class of f. This shows that the

group ' (K;Y) is actually a new homotopy invariant of the space Y. We shall discuss
the properties of these groups elsewhere; here we are only interested in the group

I' | (K;X) where X is an (n—1)—connected space. In this case the map a in (5.4) in-

n+1
duces the commutative diagram

Ext(K,G(Hy)) >—2— r (KM(Hn)) £+ Hom(K,H81/2)

(5.11) ; Bxt(K,a,) push 1 a, [
Ext(K,T _ ,X) >—— [ (KX) —1“——»-»Hom(K,Hoeﬂl2)

with short exact rows. This follows from the naturality of (5.10) since for an (n+1)—dimen-
sional complex M we have = +1(K;M) =T, +1(K;M). Since the rows are short exact
sequences we see that (5.11) again is a push out of abelian groups. This push out can be

combined with the push out in (5.9) so that one gets an explicit formula for the groups

I +1(KX) in terms of G(K) and T poX
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The natural quotient map q:I' +2(X) —cok b . 4, see (4.9), yields the push out group
l"g +1(K;X) given by the diagram

Ext(K,T,, ,

(5.12) %Ext(K,q) push l e ”
Ext

b

X) >—>3— I‘n+1(K;X) —_— Eom(K,HOGH/2)

K,COk bn+3) >-A——}P

We are now ready for the definition of the functor @ in the classification theorem.

(5.13) Definition: Let X be a CW—complex in éﬁ . Then we define the object
Q(X) = (H,7,D,8) in §, see (4.7), as follows. The graded group H is the homology
(4.2); the group 7, is the homotopy group = +1(X). Moreover, diagram D is defined by
the exact sequence (4.9) and by (5.1); here we use the identification I' =T 49X given by
(4.7)(2) and (5.4). Combining the push out diagrams (5.9), (5.11) and (5.12) we get the
identification T'(K;Q(X)) = PE+1(K;X)’ compare (4.7)(3) where v = qu(i®1) = qayu
by (5.4). Finally the boundary invariant 8 € I‘E +1(K;X) is obtained by the next lemma,
see (5.14)(3) below.

Let X bea CW—complexin A3. The homology H = HX with H} = H, (X) is given

by the cellular chain complex C,=CX with CXx=m_  (xX*Hx2H1) re

n+i(
Bi CZ, CC,; be the subgroup of boundaries and cycles respectively. Then we have the one

point unions of Moore spaces:
{X’ = M(Hyn) v M(Z,,n+1)
X" = M(Hgn+2) v M(Hy,n+1) v M(By,n+1)
(5.14) Lemma: There is a map f: X" — X’ such that the mapping cone C; is homotopy
equivalent to X.



We point out that the complexes X(w) and X(w,y) in (3.9) are special examples of such
mapping cones Cf.

n+1 and

Proof: We first observe that we have the homotopy equivalences X’ ~
X" > X/Xn+1. Now f is the desuspension of the boundary map X/}'(IH'1 —exttl oy
the cofiber sequence of the inclusion xot+l C X. Since we assume n > 4 the desuspension

is well defined up to homotopy.

The map { comstructed in the proof of (5.14) has the additional property that the induced
homology homomorphism Hy(f) is given by the inclusion B, CZ,. Moreover the in-
clusion i, : M(H,,n+1) C X" yields the element

(1) fiy € [M(Hyn+1),X"*!) with

L 1
(2) p(fiy) = ixby € Hom(H2,7n+ 1Xn+ )
Here i:T, X =Hy®7/2Cx,X"*" is the inclusion as in (5.10) and b, is given by
(4.9). Equation (2) shows that fi, is an element in l‘:ff 41 5ee (5.10) where we set
m=n+1, Y =X""! and K = H,,. Therefore the boundary invariant

\ b

(3) B=B" = ap,(fiy) €TL, (HyX) = T(HyQ(X))

is defined with u(f) = b,. Here we use the maps 4y and Py in (5.11) and (5.10) res-
pectively. Though the map f in (5.14) is not canonically given by X the element F isa

homotopy invariant in the following sense. Let F:X-—Y be a map in éﬁ and let

- X Y .
= Hn+2(F) : H}zc — Hg. Then any map ¢: M(Hz,n+l) — M(Hz,n+1) which in-
duces ¢ satisfies the equation

—k, Y
(4) F (80 =%(8).

. . . 3
This, in fact, shows that Q in (5.13) is a well defined functor A — §.

(5.15) Proposition: Each object in § is Q—realizable.
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Proof: Let A = (H,r;,D,) be an object in §.We define X =C; with QX)2 A as
follows. First we choose a free resolution B1 >— zl —_— H1 of Hl and we define X’

and X" asin (5.14). Let ij:M(Hgyn) CX’ and iy :M(Z;,n+1) CX’ be the inclus-

ions. Then we have the obvious coordinates of {,

m {f = (f3,f,,fg) with : .
f, =igf) + i,f2 and fp=igf +iyfa.
The map fg is given by the inclusion B; >—— Z;. Next we choose a commutative dia-
gram
by
H,——H

(2) c

® H/2-—i———§7l'1——HH1
I 1
| | ®

B1 > Zl——;—)]il1

oo

where the top row is given by diagram D in A. The homomorphism fg determines the
map fg in (1). Next we choose for by:Hg— T in D  homomorphisms
Z

fg tHy — G(HO) and f3 t