REPRESENTATIONS OF FINITE GROUPS GENERATE TOPOLOGICAL FIELD THEORIES

SERGEY A. LOKTEV AND SERGEY M. NATANZON

ABSTRACT. We prove that any complex (respectively real) representation of finite group naturally generates a Open-Closed (respectively Klein) Topological Field Theory over complex numbers. We relate the 1-point correlator for the projective plane with the Frobenius-Schur indicator.

INTRODUCTION

Topological Field Theories were introduced by Segal [15], Atiyah [5] and Witten [16]. In this paper we concentrate on Open-Closed and Klein Topological Field Theories. These are same generalization of two-dimensional Topological Field Theories inspired by the String Theory, where particles as one-dimensional objects [8]. Open-Closed and Klein Topological Field Theories appear also and in purely geometrical problems, for example, in theory of Hurwitz numbers [7, 1, 2, 3, 4].

In section 1 we reproduce definitions of Closed, Open-Closed, and Klein Topological Field Theories in useful for us form [1]. We recall also theorems [1] that categories of these theories are equivalent to categories of Frobenius pairs, Cardy-Frobenius algebras and Equipped Cardy-Frobenius algebras respectively (similar theorems for more complicated Topological Field Theories are proved in [13, 14]). Therefore constructions of a topological field theories are reduced to constructions of (Equipped) Cardy-Frobenius algebras.

In section 2 we prove that the group algebra and the center of group algebra of any finite group G form a semi-simple Equipped Cardy-Frobenius algebra over any number field. We call it Regular. Later we present full description of Regular complex algebras of a groups.

In section 3 we prove that the center of group algebra and the intertwining algebra of any representation of G generate a Cardy-Frobenius algebra that is Equipped if the representation is real. For representations, that appear from group actions, we relate this construction with proposed in [4].

Part of this work was done during the stays of one of author (S.N.) at Max-Planck-Institute in Bonn. He is grateful to MPIM for their hospitality and support. The work of S.N. was partly supported by grants: RFBR-08-01-00110, N.Sh-709.2008.1. The work of S.L. was partly supported by grants: N.Sh-3035.2008.2, RFBR-09-01-00242, SU-HSE award No.09-09-0009, RFBR-CNRS-07-01-92214, RFBR-IND-08-01-91300, RFBR-CNRS-09-01-93106 and P.Deligne 2004 Balzan prize in mathematics.

1. TOPOLOGICAL FIELD THEORIES AND RELATED ALGEBRAS

1.1. Closed Topological Field Theories. The simplest variant of Topological Field Theory is Closed Topological Field Theory [5], [6]. In this case we consider oriented closed surfaces without boundary. Also we fix a finite-dimensional vector space A over a field K with basis $\alpha_1, \ldots, \alpha_N$ and correspond a number $\langle a_1, a_2, \ldots, a_n \rangle_{\Omega}$ to each system of vectors $a_1, a_2, ..., a_n \in A$ situated at a set of points $p_1, p_2, ..., p_n$ on a surface Ω (Figure 1.).

FIGURE 1

We assume that the numbers $\langle a_1, a_2, ..., a_n \rangle_{\Omega}$ are invariant with respect to any homeomorphisms of surfaces with marked points. Moreover, we postulate that the system $\{\langle a_1, a_2, ..., a_n \rangle_{\Omega}\}$ consist of multilinear forms and satisfies a non-degenerate and a cut axioms.

The non-degenerate axiom says that the matrix $(\langle \alpha_i, \alpha_j \rangle_{S^2})_{1 \le i,j \le N}$ is non-degenerate.

By $F_A^{\alpha_i,\alpha_j}$ denote the inverse matrix. The *cut axioms* describes evolution of $\langle a_1, a_2, ..., a_n \rangle_{\Omega}$ by cutting and collapsing along contours $\gamma \subset \Omega$. Indeed, there are two cut axioms related to different topological types of contours. If γ decompose Ω on Ω' and Ω'' (Figure 2.)

FIGURE 2

then

$$\langle a_1, a_2, ..., a_n \rangle_{\Omega} = \sum_{i,j} \langle a_1, a_2, ..., a_k, \alpha_i \rangle_{\Omega'} F_A^{\alpha_i, \alpha_j} \langle \alpha_j, a_{k+1}, a_{k+2}, ..., a_n \rangle_{\Omega''}.$$

If γ does not decompose Ω (Figure 3.)

FIGURE 3

then

$$\langle a_1, a_2, ..., a_n \rangle_{\Omega} = \sum_{i,j} \langle a_1, a_2, ..., a_n, \alpha_i, \alpha_j \rangle_{\Omega'} F_A^{\alpha_i, \alpha_j}.$$

The first consequence of the Topological Field Theory axioms is a *structure of algebra* on A. Namely, the multiplication is defined by $\langle a_1 a_2, a_3 \rangle_{S^2} = \langle a_1, a_2, a_3 \rangle_{S^2}$, so the numbers $c_{ij}^k = \sum_s \langle \alpha_i, \alpha_j, \alpha_s \rangle_{S^2} F_A^{\alpha_s, \alpha_k}$ are structure constants for this algebra. The cut axiom gives (Figure 4.)

FIGURE 4

$$\sum_{i,j} \langle a_1, a_2, \alpha_i \rangle_{S^2} F_A^{\alpha_i, \alpha_j} \langle \alpha_j, a_3, a_4 \rangle_{S^2} =$$
$$= \langle a_1, a_2, a_3, a_4 \rangle_{S^2} =$$
$$\sum_{i,j} \langle a_2, a_3, \alpha_i \rangle_{S^2} F_A^{\alpha_i, \alpha_j} \langle \alpha_j, a_4, a_1 \rangle_{S^2}.$$

Therefore $\sum_{s,t} c_{ij}^s c_{sk}^t = \sum_{s,t} c_{jk}^s c_{si}^t$ and thus A is an associative algebra. The vector $\sum_i \langle \alpha_i \rangle_{S^2} F_A^{\alpha_i,\alpha_j} \alpha_j$ is the unit of the algebra A. The linear form $l(a) = \langle a \rangle_{S^2}$ is a co-unit, also it defines the non-degenerate invariant bilinear form $(a_1, a_2)_A = l(a_1a_2) = \langle a_1, a_2 \rangle_{S^2}$ on A. The topological invariance makes all marked points p_i equivalent and, therefore, A is a commutative algebra.

Thus, A is a Frobenius algebra [9], that is an algebra with a unit and an invariant nondegenerate scalar multiplication. Moreover, the construction gives a functor \mathcal{F} from the category of Closed Topological Field Theories to the category of **Frobenius pairs** (A, l_A) , that is a Frobenius algebra A and a linear form $l_A : A \to \mathbb{K}$ providing a non-degenerated invariant bilinear form.

Theorem 1.1. [6] The functor \mathcal{F} is equivalence between categories Closed Topological Field Theories and commutative Frobenius pairs.

The Frobenius structure gives an explicit formula for correlators:

$$\langle a_1, a_2, ..., a_n \rangle_{\Omega} = l_A (a_1 a_2 ... a_n (K_A)^g),$$

where $K_A = \sum_{ij} F_A^{\alpha_i,\alpha_j} \alpha_i \alpha_j$ and g is genus of Ω .

1.2. **Open-Closed Topological Field Theories.** More complicated variant of Topological Field Theory is Open-Closed Topological Field Theory [11],[12],[1]. In this case we admit oriented compact surfaces Ω with boundary $\partial\Omega$ and some marked points on $\partial\Omega$. Let us note the interior marked points and vectors as before by $p_1, p_2, ..., p_n$ and $a_1, a_2, ..., a_n \in A$. But we endow a special numeration q_i^j for the boundary marked points, where i = 1, ..., s corresponds to a connected component of $\partial\Omega$ (that is a boundary contour of Ω). The numeration j is individual for any boundary contour, it counts the points consequently on the circle, following the direction determined by the orientation of Ω . The vectors b_i^j attached to q_i^j belong to a different vector space B over \mathbb{K} with basis β_1, \ldots, β_M (Figure 5.).

FIGURE 5

To keep in mind this picture, let us denote the corresponding correlation function by $\langle a_1, \ldots, a_n, (b_1^1, \ldots, b_{n_1}^1), \ldots, (b_1^s, \ldots, b_{n_s}^s) \rangle_{\Omega}$. Note that diffeomorphisms of Ω can induce any permutation of a_i , but only cyclic permutations in each group $b_1^i, \ldots, b_{n_s}^i$.

We suppose that topological invariance axiom and all axioms of Closed Topological Field Theory are fulfilled for interior marked points and cut-contours. Thus Open-Closed Topological Field Theory also generates a commutative Frobenius pair (A, l_A) . Also we impose an additional non-degenerate axiom and cut axioms related to the boundary.

The additional non-degenerate axiom says that for any disk D with two marked boundary points the matrix $(\langle \beta_i, \beta_j \rangle_D)$, where $\beta_1, \beta_2, ...$ is a basis of B, is non-degenerate. By $F_B^{\beta_i,\beta_j}$ denote the inverse matrix. It play for "segment-cuts" the same "gluing role" that $F_A^{\alpha_i,\alpha_j}$ for "contour-cuts".

In Open-Closed Topological Field Theory we consider cuts by simple segments $[0, 1] \rightarrow \Omega$ such that the image of 0 and 1 belongs to the boundary. Then there are three topological types of such cuts (Figure 6.).

FIGURE 6

Using such cuts one can reduce any market oriented surface to elementary marked surfaces from next list (Figure 7.).

FIGURE 7

Three topological types of segments provide three new cut axioms. For example, the axiom for the cut of type 2 (Figure 8.) is

FIGURE 8

 $\langle a_1, a_2, \dots, a_n, (b_1^1, \dots, b_{n_1}^1), \dots, (b_1^s, \dots, b_{n_s}^s) \rangle_{\Omega} =$

$$\sum_{i,j} \left\langle a_1, a_2, \dots, a_k, (b_1^1, \dots, b_{n_1}^1), \dots, (b_1^t, \dots, b_{n_t'}^t, \beta_i) \right\rangle_{\Omega'} F_B^{\beta_i, \beta_j} \left\langle a_{k+1}, \dots, a_n, (\beta_j, b_{n_t'+1}^t, \dots, b_{n_t}^t), \dots, (b_1^s, \dots, b_{n_s}^s) \right\rangle_{\Omega''}.$$

The correlators for the disk D with up to three boundary points $\langle (b_1) \rangle_D$, $\langle (b_1, b_2) \rangle_D$ and $\langle (b_1, b_2, b_3) \rangle_D$ give us a *Frobenius pair* (B, l_B) with structure constants defined in a usual way: $d_{ij}^k = \sum_s \langle (\beta_i, \beta_j, \beta_s) \rangle_D F_B^{\beta_s, \beta_k}$. The associativity of B follows from the picture below (Figure 9.)

FIGURE 9

Thus $\langle (b_1, b_2, b_3, b_4) \rangle_D$ is equal both to $\sum_i \langle (b_1, b_2, \beta_i) \rangle_D F_B^{\beta_i, \beta_j} \langle (\beta_j, b_3, b_4) \rangle_D$ as well as to $\sum_i \langle (b_2, b_3, \beta_i) \rangle_D F_B^{\beta_i, \beta_j} \langle (\beta_j, b_4, b_1) \rangle_D$. However the algebra *B* is not commutative in general, because there is no homeomorphisms of disk that interchanging q_1 with q_2 and preserving q_3 .

The correlator $\langle a, (b) \rangle_D : A \times B \to \mathbb{C}$ together with non-degenerate bilinear forms $\langle a_1, a_2 \rangle_{S^2} : A \times A \to \mathbb{C}, \langle b_1, b_2 \rangle \rangle_D : B \times B \to \mathbb{C}$ generates two homomorphisms of vector spaces $\phi : A \to B$ and $\phi^* : B \to A$.

Let us deduce some consequences from additional topological axioms.

Proposition 1.1. We have

1) ϕ and ϕ^* are homomorphisms,

2) $\phi(A)$ belong to center of B,

3) $(\phi^*(b'), \phi^*(b''))_A = \operatorname{Tr} W_{b'b''}, \text{ where the operator } W_{b'b''} : B \to B \text{ is } W_{b'b''}(b) = b'bb''.$

Last condition has name *Cardy condition* because appear 20 years ago in work of J. Cardy about strings.

Thus, we construct a functor \mathcal{F} from the category of Open-Closed Topological Field Theory to a category of **Cardy-Frobenius algebras** $((A, l_A), (B, l_B), \phi)$, that is:

1) commutative Frobenius pair (A, l_A) ;

2) arbitrary Frobenius pair (B, l_B) ;

3) a homomorphism $\varphi : A \to B$ such that $\phi(A)$ belong to center of B and $(\phi_*(b'), \phi_*(b''))_A = \operatorname{Tr} W_{b'b''}$.

Theorem 1.2. [1] The functor \mathcal{F} is equivalence between categories Open-Closed Topological Field Theories and Cardy-Frobenius algebras. The structure of Cardy-Frobenius algebra provides an explicit formula for correlators:

$$\langle a_1, a_2, \dots, a_n, (b_1^1, \dots, b_{n_1}^1), \dots, (b_1^s, \dots, b_{n_s}^s) \rangle_{\Omega} =$$

 $l_B\left(\phi(a_1a_2\dots a_nK_A^g) \ b_1^1\dots b_{n_1}^1 \ V_{K_B}(b_1^2\dots b_{n_2}^2)\dots V_{K_B}(b_1^s\dots b_{n_s}^s)\right),$

where the operator $V_{K_B}: B \to B$ is given by $V_{K_B}(b) = F_B^{\beta_i,\beta_j}\beta_i b\beta_j$, and g is genus of Ω .

1.3. Klein Topological Field Theories. The orientability restriction is indeed avoidable, the corresponding settings were introduced in [1] as Klein Topological Field Theory. It is an extension of Open-Closed Topological Field Theory to arbitrary compact surfaces (possible non-orientable and with boundary) equipped by a finite set of marked points with local orientation of their vicinities.

FIGURE 10

In the same way as in Open-Closed Topological Field Theory in order to calculate a correlator we attach vectors from a space A (respectively B) to interior (resp. boundary) marked points on the surface.

We assume that topological invariance axiom and all axioms of Open-Closed Topological Field Theory are fulfilled for cuts that belong to any orientable part of the surface. Thus Klein Topological Field Theory also generates a Cardy-Frobenius algebra $((A, l_A), (B, l_B), \phi)$.

Non-orientable surfaces gives 4 new types of cuts (2 types of cuts by segments and 2 types of cuts by contours)(Figure 11.).

Full system of cuts give possible to reduce any marked non-orientable surface to marked surfaces from list on Figure 7 and the projective plane with one marked point P. Let $l_U(a) = \langle a \rangle_P : A \to \mathbb{K}$ be the corresponding linear functional, by $U \in A$ denote the dual vector defined by $l_A(Ua) = l_U(a)$.

Four new topological type of cuts give 4 new topological axioms. The axiom for the cut of type 2 is, for example,

$$\langle a_1, a_2, \dots, a_n, (b_1^1, \dots, b_{n_1}^1), \dots, (b_1^s, \dots, b_{n_s}^s) \rangle_{\Omega} = = \langle a_1, a_2, \dots, a_n, U, (b_1^1, \dots, b_{n_1}^1), \dots, (b_1^s, \dots, b_{n_s}^s) \rangle_{\Omega'}$$

Now suppose that there are linear involutions $\star : A \to A$ and $\star : B \to B$, such that applying \star inside the correlator gives the same answer as changing the local orientation

FIGURE 11

around corresponding points. Sometimes we will write $c^* = \star(c)$. Let us describe the algebraic consequences of these assumptions.

Proposition 1.2. We have

1) the involution $\star : A \to A$ is automorphism, the involution $\star : B \to B$ is antiautomorphism (that is $(b_1b_2)^* = b_2^*b_1^*$),

2) $l_A(x^*) = l_A(x), \ l_B(x^*) = l_B(x), \ \phi(x^*) = \phi(x)^*,$ 3) $U^2 = K_A^* = F_A^{\alpha_i, \alpha_j} \alpha_i \alpha_j^*,$

4)
$$\phi(U) = K_B^{\star} = F_B^{\beta_i,\beta_j} \beta_i \beta_i^{\star}$$
.

Thus, we constructed a functor \mathcal{F} from the category of Klein Topological Field Theory to a categories of **Equipped Cardy-Frobenius algebras** $((A, l_A), (B, l_B), \phi, U, \star)$, that is:

1) a Cardy-Frobenius algebra $((A, l_A), (B, l_B), \phi)$;

2) anti-automorphisms $\star : A \to A$ and $\star : B \to B$ such that $l_A(x^*) = l_A(x), \ l_B(x^*) = l_B(x), \ \phi(x^*) = \phi(x)^*;$

3) an element $U \in A$ such that $U^2 = K_A^*$ and $\phi(U) = K_B^*$.

Theorem 1.3. [1] The functor \mathcal{F} is equivalence between categories of Klein Topological Field Theories and Equipped Cardy-Frobenius algebras.

The Equipped Cardy-Frobenius algebra provides an explicit formula for correlators on non-orientable surfaces:

$$\left\langle a_1, a_2, \dots, a_n, (b_1^1, \dots, b_{n_1}^1), \dots, (b_1^s, \dots, b_{n_s}^s) \right\rangle_{\Omega} = l_B \left(\phi(a_1 a_2 \dots a_n U^{2g}) \ b_1^1 \dots b_{n_1}^1 \ V_{K_B}(b_1^2 \dots b_{n_2}^2) \dots V_{K_B}(b_1^s \dots b_{n_s}^s) \right),$$

where g is geometrical genus of Ω , that is, g = a + 1, if Ω is a Klein bottle with a handles and $g = a + \frac{1}{2}$, if Ω is a projective plane a handles.

2. Regular Cardy-Frobenius Algebra of finite group

2.1. Construction of Regular algebra. In this section we present a construction that corresponds an Equipped Cardy-Frobenius algebra and, therefore, a Klein Topological Field Theory to any finite group G.

By |M| denote cardinality of a finite set M. Let K be any field such that char K is not a divisor of |G|. By $B = \mathbb{K}[G]$ denote the group algebra. It can be defined as the algebra, formed by linear combinations of elements of G with the natural multiplication as well as the algebra of \mathbb{K} -valued functions on G with multiplication defined by convolution. It has a natural structure of a Frobenius pair with $l_B(f) = f(1)$. Note that $l_B(f) = \text{Tr}_{\mathbb{K}[G]}f/|G|$.

The center A = Z(B) with the functional $l_A(f) = f(1)/|G|$ forms a Frobenius pair as well. Take $U = \sum_{g \in G} g^2 \in A$.

Let ϕ be the natural inclusion from A to B. Let $\star : B \to B$ be the antipode map, sending q to q^{-1} . This map preserves the center, so we have a map $\star : A \to A$, compatible with the inclusion ϕ .

Theorem 2.1. The data above form a semi-simple Equipped Cardy-Frobenius algebra over K.

Proof. The arguments here are the same as in [4]. First let us show that $U^2 = K_A^{\star}$. For a conjugation class $\alpha \subset G$ let $E_{\alpha} = \sum_{g \in \alpha} g$. Then E_{α} form a basis of A. Note that $E_{\alpha}^{\star} = E_{\alpha}$ and $(E_{\alpha}, E_{\alpha})_A = |\alpha|$, so we have

$$K_A^{\star} = \frac{1}{|G|} \sum_{\alpha} \frac{E_{\alpha}^2}{|\alpha|} = \frac{1}{|G|} \sum_{\alpha} \sum_{g,g' \in \alpha} \frac{gg'}{|\alpha|} =$$
$$= \frac{1}{|G|} \sum_{\alpha} \sum_{g \in \alpha, h \in G} \frac{gh^{-1}gh}{|\alpha|} \frac{|\alpha|}{|G|} = \sum_{g,h \in G} gh^{-1}gh = \sum_{a,b \in G} a^2b^2 = U^2$$

where $a = qh^{-1}$, b = h.

Also we have $K_B^{\star} = \sum_{x,y \in G} l_B(xy^{-1})xy = \sum_{g \in G} g^2 = U$. It remains to prove the Cardy condition $l_A(\phi^*(x)\phi^*(y)) = \operatorname{Tr} W_{x,y}$.

We have Tr $W_{x,y} = |\{g|xgy = g\}| = |\{g|y = g^{-1}x^{-1}g\}|$. This number is zero if x^{-1} and y are in different conjugation classes, and it is $\frac{|G|}{\gamma}$ if x^{-1} belongs to the conjugation class γ of y. On the other hand, $\phi^*(y) = \sum_{g \in G} g^{-1} y g = \frac{|G|}{|\gamma|} \sum_{h \in \gamma} h = \frac{|G|}{|\gamma|} E_{\gamma}$. Thus the number $l_A(\phi^*(x)\phi^*(y))$ is exactly the same.

We denote the constructed algebra by $H^G_{\mathbb{K}}$ and call it the regular algebra of G. This algebra is semi-simple due to semi-simplicity of the group algebra. Our next aim is full description of $H^G_{\mathbb{R}}$ and $H^G_{\mathbb{C}}$.

2.2. Classification of complex semi-simple Equipped Cardy-Frobenius algebras. We call a complex Cardy-Frobenius algebra $((A, l_A), (B, l_B), \phi)$ pseudoreal if $A = A_R \otimes \mathbb{C}$, $B = B_R \otimes \mathbb{C}$ and $\phi = \phi_R \otimes \mathbb{C}$ where A_R , B_R are real algebras and $\phi_R : A_R \to B_R$ is an homomorphism. It appears that any equipped complex Cardy-Frobenius algebra is pseudoreal.

Let \mathbb{D} be a division algebra over \mathbb{R} , that is, \mathbb{R} , \mathbb{C} or \mathbb{H} . For each \mathbb{D} introduce a family of real semi-simple Equipped Cardy-Frobenius algebras.

Namely, let n be an integer, $\mu \in \mathbb{C}$, put $d = \dim_{\mathbb{R}} \mathbb{D}$. Introduce

$$B_R = \operatorname{Mat}_n(\mathbb{D}), \qquad l_{B_R}(x) = \mu \operatorname{\Re eTr}(x) \text{ for } x \in \operatorname{Mat}_n(\mathbb{D}),$$

 $A_R = Z(\mathbb{D}), \qquad l_{A_R}(a) = \mu^2 \Re e(a)/d \text{ for } a \in Z(\mathbb{D}), \qquad \phi_R(a) = a \mathrm{Id} \in Z(B_R).$

For $z \in \mathbb{D}$ by \overline{z} denote the conjugated element. The involution \star_R is defined by $a^{\star_R} = \overline{a}$ for $a \in A_R$, $x^{\star_R} = \overline{x}^t$ for $x \in B_R$, where t means transposition of a matrix. Now take

(1)
$$U_R = \frac{2-d}{\mu} \in A_R.$$

Denote this set $((A_R, l_{A_R}), (B_R, l_{B_R}), \phi_R, U_R, \star_R)$ by $H_{n,\mu}^{\mathbb{D}}$.

Proposition 2.1. The $H_{n,\mu}^{\mathbb{D}}$ is a semi-simple real Equipped Cardy-Frobenius algebra.

Proof. Introduce a natural projection $Z: \mathbb{D} \to Z(\mathbb{D})$ sending $x \in \mathbb{D}$ to x for $\mathbb{D} = \mathbb{R}, \mathbb{C}$ and to $\Re e(x)$ for $\mathbb{D} = \mathbb{H}$. We have $\phi_R^*(x) = Z(\operatorname{Tr}(x))d/\mu$. On the other hand, a direct calculation in the standard basis shows that

$$\operatorname{Tr} W_{x,y} = \operatorname{Tr} W^{\mathbb{D}}_{\operatorname{Tr}(x),\operatorname{Tr}(y)} = d\Re e\left(Z(\operatorname{Tr}(x))Z(\operatorname{Tr}(y))\right)$$

so $(\phi^*(x), \phi^*(y)) = \operatorname{Tr} W_{x,y}$. Another observation is that $K_{B_R}^* = K_{\mathbb{D}} \operatorname{Id}/\mu$, where $K_{\mathbb{D}}$ is the Casimir element of \mathbb{D} with respect to the form $(a, b) = a\overline{b}$. We have $K_{\mathbb{D}} = (2 - d)$, so $\phi(U_R) = K_{\mathbb{D}}$. At last, $K_{A_R} = d/\mu^2$ for $A_R = \mathbb{R}$ and $K_{A_R} = 0$ for $A_R = \mathbb{C}$, so $U_R^2 = K_{A_R}$.

Theorem 2.2. [1] Any semi-simple Equipped Cardy-Frobenius algebra $((A, l_A), (B, l_B), \phi, U, \star)$ over \mathbb{C} is a direct sum of $H_{n_i,\mu_i}^{\mathbb{D}_i} \otimes \mathbb{C}$ and $\operatorname{Ker}(\phi)$.

To identify $H_{n_i,\mu_i}^{\mathbb{D}_i} \otimes \mathbb{C}$ with the algebras introduced in [1] let us describe $H_{n_i,\mu_i}^{\mathbb{D}_i} \otimes \mathbb{C}$ in detail.

- If $\mathbb{D} = \mathbb{R}$, then $A \cong \mathbb{C}$ equipped with identical involution \star and linear form $l_A(z) =$ $\mu^2 z, U = \frac{1}{\mu} \in A; B \cong \operatorname{Mat}_n(n, \mathbb{C})$ equipped with involutive anti-automorphism $\star : X \mapsto X^t$, and linear form $l_B(X) = \mu \operatorname{Tr} X$. The homomorphism $\phi : A \to B$ sends the unit to the identity matrix;
- If $\mathbb{D} = \mathbb{C}$, then $A \cong \mathbb{C} \oplus \mathbb{C}$ with the involution $(x, y)^* = (y, x)$ for $(x, y) \in \mathbb{C} \oplus \mathbb{C}$ and the linear form by formula $l_A(x,y) = \mu^2(x+y)/4, U = 0; B \cong \operatorname{Mat}_n(n,\mathbb{C}) \oplus$ $\operatorname{Mat}_n(n,\mathbb{C})$ with a linear form $l_B(X,Y) = \mu(\operatorname{Tr} X + \operatorname{Tr} Y)/2$ and involutive antiautomorphism $\star : (X, Y) \mapsto (Y^t, X^t)$. The homomorphism $\phi : A \to B$ is given by the equality $\phi(x, y) = (xE, yE)$.
- If $\mathbb{D} = \mathbb{H}$, then (A, l_A, \star) is the same as for $\mathbb{D} = \mathbb{R}$, but $U = -\frac{2}{\mu} \in A$; $B \cong Mat_{2m}(\mathbb{C})$ with a linear form $l_B(X) = \mu \operatorname{Tr} X/2$. A matrix $X \in B$ we may present in block form as $X = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$. Then the involute anti-automorphism $\star : X \mapsto X^{\tau} \text{ is given by the formula } X^{\tau} = \begin{pmatrix} m_{22}^t & -m_{12}^t \\ -m_{21}^t & m_{11}^t \end{pmatrix}, \text{ in other words,}$ X^{τ} is the matrix adjoint to X with respect to a natural symplectic form. The homomorphism $\phi: A \to B$ sends the unit to the identity matrix.

10

Remark 2.1. There are real equipped Cardy-Frobenius algebras not isomorphic to $H_{n,\mu}^{\mathbb{D}}$. A simplest example is a generalization of $H_{n,\mu}^{\mathbb{R}}$ with the same Cardy-Frobenius structure, but the involution \star defined as the transposition with respect to a bi-linear form with non-trivial signature.

Now we think that equipped Cardy-Frobenius algebras over an arbitrary field \mathbb{K} with char $\mathbb{K} \neq 2$ can be classified in terms of Brauer group of \mathbb{K} .

2.3. Description of complex Regular algebra. Let us denote complex representations of G by capital Latin letters (such as V) and real representation by Greek letters (such as π). Any irreducible real representations π is one of next [10]:

- Real type: $\operatorname{End}(\pi) = \mathbb{R}$ and $\pi \otimes_{\mathbb{R}} \mathbb{C}$ is irreducible;
- Complex type: End(π) = \mathbb{C} , $\pi \otimes_{\mathbb{R}} \mathbb{C} \cong V^+ \oplus V^-$, V^+ is not isomorphic to V^- (but $V^+ \cong (V^-)^*$);
- Quaternionic type: $\operatorname{End}(\pi) = \mathbb{H}, \ \pi \otimes_{\mathbb{R}} \mathbb{C} \cong V^0 \oplus V^0.$

Denote by let $Ir_{\mathbb{D}}(G)$ be the set of isomorphism classes of corresponding irreducible real representations.

Theorem 2.3. We have

(2)
$$H_G^{\mathbb{R}} \cong \bigoplus_{\mathbb{D}=\mathbb{R},\mathbb{C},\mathbb{H}} \bigoplus_{\pi \in Ir_{\mathbb{D}}(G)} H_{\dim \pi}^{\mathbb{D}}, \lim_{|G|} \pi,$$

(3)
$$H_G^{\mathbb{C}} \cong \bigoplus_{\mathbb{D}=\mathbb{R},\mathbb{C},\mathbb{H}} \bigoplus_{\pi \in Ir_{\mathbb{D}}(G)} H_{\frac{\dim \pi}{\dim \mathbb{D}},\frac{\dim \pi}{|G|}}^{\mathbb{D}} \otimes \mathbb{C}$$

Proof. Let us show (2), then (3) follows because $\mathbb{C}[G] \cong \mathbb{R}[G] \otimes \mathbb{C}$. By the Wedderburn theorem

(4)
$$\mathbb{R}[G] \cong \bigoplus_{\mathbb{D}} \bigoplus_{\pi \in Ir_{\mathbb{D}}(G)} \operatorname{Mat}_{\dim \mathbb{D}}(\mathbb{D}),$$

where the map $\mathbb{R}[G] \to \operatorname{Mat}_{\dim \mathbb{Z}}(\mathbb{D})$ is the action of $\mathbb{R}[G]$ on $\pi \cong \mathbb{D}^{\dim \pi}_{\dim \mathbb{D}}$. Due to the classification theorem it is enough to identify the map \star and the constant μ on each summand with the same in $H_{n,\mu}^{\mathbb{D}}$.

Concerning \star , choose an invariant scalar product on π . As π is irreducible, this invariant bilinear form is unique up to a scalar. Then \star is just the conjugation with respect to this form. By the orthogonalization process we can suppose that $\pi \cong \mathbb{D}e_1 \oplus \cdots \oplus \mathbb{D}e_m$, where $\{e_l\}$ is the set of orthogonal vectors.

Note that $\operatorname{Mat}_{\dim \mathbb{D}}(\mathbb{D})$ is the tensor product of its subalgebras $\operatorname{Mat}_{\dim \mathbb{D}}(\mathbb{R})$ and \mathbb{D} . In the basis $\{e_l\}$ we identify the action of \star on $\operatorname{Mat}_{\dim \mathbb{D}}(\mathbb{R})$ with the matrix transposition. For \mathbb{D} note that it also acts by right multiplication, an this action commutes with the action of $\mathbb{R}[G]$, hence this right action preserves the bilinear form up to a scalar. Then it follows that the set e_l , ie_l (for $\mathbb{D} \supset \mathbb{C}$), je_l and ke_l (for $\mathbb{D} = \mathbb{H}$) form an orthogonal basis. In this basis imaginary elements of \mathbb{D} act by skew-symmetric matrices, so \star acts on \mathbb{D} as the standard conjugation.

It remains to find μ for a summand corresponding to each irreducible real representation π . Let $e_{\pi} \in A$ be the idempotent corresponding to π . It acts on $\mathbb{R}[G]$ by projection

onto the corresponding summand in (4). Then from the definition of the regular algebra we have $l_B(\phi(e_{\pi})) = \operatorname{Tr}_{\mathbb{R}[G]} e_{\pi}/|G| = \frac{(\dim \pi)^2}{|G|\dim \mathbb{D}}$. But from the definition of $H_{n,\mu}^{\mathbb{D}}$ we have $l_B(\phi(e_{\pi})) = \mu n = \mu \dim \pi / \dim \mathbb{D}$. So $\mu = \frac{\dim \pi}{|G|}$.

Corollary 2.1. (cf. [10]) Let $\pi \in Ir_{\mathbb{D}}(G)$ be an irreducible real representation of G. Then Tr(U) on π is equal to $(2 - \dim \mathbb{D})|G|$

Proof. The element U acts on $\pi \in Ir_{\mathbb{D}}(G)$ by the same scalar as on $H^{\mathbb{D}}_{\frac{\dim \pi}{\dim \mathbb{D}}, \frac{\dim \pi}{|G|}}$. Substituting the definition (1) for U and multiplying by $\dim \pi$, we obtain the proposed formula. \Box

Such an element U is known as Frobenius-Schur indicator (see [10]). It provides an easy way to determine type of π .

Remark 2.2. Note that Corollary 2.1 is applicable to a complex representation in the same way. Indeed any irreducible complex representation V can be obtained as a summand in $\pi \otimes \mathbb{C}$ for a real irreducible representation π . Then the action of U on V also determines type of π .

3. CARDY-FROBENIUS ALGEBRAS OF REPRESENTATIONS

3.1. Cardy-Frobenius algebra of a complex representation. Let V be a complex representation (possibly reducible) of a finite group G. Put $A = Z(\mathbb{C}[G])$ with l_A as above, and let $B = \operatorname{End}_G(V)$ be the algebra of intertwining operators on V with $l_B(x) = \operatorname{Tr}_V x/|G|$. As the center of $\mathbb{C}[G]$ acts on V by intertwining operators, we have a natural map $\phi : A \to B$.

Theorem 3.1. The data above form a semi-simple complex Cardy-Frobenius algebra.

Proof. The algebra A is generated by orthogonal idempotents $\{e_i\}$, corresponding to irreducible complex representations V_i . Note that e_i as a function on G coincides with character of V_i^* multiplied by dim $V_i/|G|$ (see [10]), so $l_A(e_i) = (\frac{\dim V_i}{|G|})^2$. Therefore we have $(e_i, e_j)_A = \delta_{ij} (\frac{\dim V_i}{|G|})^2$.

If $V = \sum V_i^{\oplus m_i}$ then $B = \bigoplus_{i=1}^s \operatorname{Mat}_{n_i}(\mathbb{C})$. Note that for $x_i \in \operatorname{Mat}_{n_i}(\mathbb{C}) \subset B$ we have $\operatorname{Tr}_V x_i = (\dim V_i) \operatorname{Tr} x_i$, thus we obtain $\phi^*(x) = |G| \sum_{i=1}^s e_i \frac{\operatorname{Tr} x_i}{\dim V_i}$, and $(\phi^*(x), \phi^*(y))_A = \sum_i \operatorname{Tr} x_i \operatorname{Tr} y_i$ for $x = (x_1, \ldots, x_s)$, $y = (y_1, \ldots, y_s) \in B$. On the other hand, for such elements we have $\operatorname{Tr} W_{x,y} = \sum_i \operatorname{Tr} x_i \operatorname{Tr} y_i$. So $(\phi^*(x), \phi^*(y))_A = \operatorname{Tr} W_{x,y}$.

3.2. Equipped Cardy-Frobenius algebra of a real representation. Now suppose $V = \rho \otimes_{\mathbb{R}} \mathbb{C}$ is a complexification of a real representation ρ .

So there is a non-degenerate symmetric invariant bilinear form on V obtained from the scalar product on ρ . Therefore for any operator $x \in \operatorname{End}(V)$ there exists a unique adjoint operator $x^{\tau} \in \operatorname{End}(V)$. The map sending x to x^{τ} is an anti-involution of $\operatorname{End}(V)$, preserving the subalgebra $\operatorname{End}_G(V)$. Thus we obtain a map $\star : \operatorname{End}_G(V) \to \operatorname{End}_G(V)$.

As before, the involution on $A = \mathbb{C}[G]$ is defined by sending $g \to g^{-1}$, and $U = \sum_{g \in G} g^2 \in A$.

Theorem 3.2. The data above form a semi-simple complex Equipped Cardy-Frobenius algebra H^{ρ} . Moreover, we have $\rho \cong \bigoplus_{\pi \in Ir(G)} n_{\pi}\pi$ and

$$H^{\rho} \cong \bigoplus_{\mathbb{D}=\mathbb{R}, \mathbb{C}, \mathbb{H}} \bigoplus_{\pi \in Ir_{\mathbb{D}}(G)} H^{\mathbb{D}}_{n_{\pi}, \frac{\dim \pi}{|G|}} \otimes \mathbb{C}.$$

Proof. The decomposition of ρ is given by Maschke theorem. The involution \star on A is compatible with the involution \star on B because sending $g \to g^{-1}$ corresponds to the action on the dual representation, and this action can be expressed by adjoint operators with respect to an invariant bilinear form.

We already know that $U^2 = K_A^*$, and it follows from Corollary 2.1 that $\phi(U) = K_B^*$.

The summands in this decompositions can be identified similarly to Theorem 2.3. Here $l_B(\phi(e_{\pi})) = \text{Tr}_V e_{\pi}/|G| = \frac{n_{\pi} \dim \pi}{|G| \dim \mathbb{D}}$.

3.3. Group action case. A particular case of this construction was already discovered in [3]. Suppose that the group G acts on a finite set X. Let $\pi_X = \mathbb{R}X$ be the real representation of G in the vector space formed by formal linear combinations of the elements of X.

Let $H^{\pi_X} = ((A, l_A), (B, l_B), \phi, U, \star)$. Then an explicit construction of B is proposed in [3].

The group G acts on $X^n = X \times \cdots \times X$ by formula $g(x_1, \ldots, x_n) = (g(x_1), \ldots, g(x_n))$. Let $\mathcal{B}_n = X^n/G$. By Aut \bar{x} denote the stabilizer of element $\bar{x} \in X_n$. Indeed for $\bar{x} = (x_1, \ldots, x_n)$ we have Aut $\bar{x} = \bigcap_i \operatorname{Aut} x_i$. Cardinality of this subgroup $|\operatorname{Aut} \bar{x}|$ depends only on the orbit of \bar{x} , so we consider it as a function on \mathcal{B}_n .

By B_X denote the vector space generated by \mathcal{B}_2 . The involution $(x_1, x_2) \mapsto (x_2, x_1)$ generates the involution $\star_X : B_X \to B_X$. Introduce a bi-linear and a three-linear form on B_X as follows:

$$(b_1, b_2)_X = \frac{b_{b_1, b_2^{\star}}}{|\operatorname{Aut} b_1|} \qquad (b_1, b_2, b_3)_X = \sum_{(x_1, x_2) \in b_1, \ (x_2, x_3) \in b_2, \ (x_3, x_1) \in b_3} \frac{1}{|\operatorname{Aut}(x_1, x_2, x_3)|}.$$

Define a multiplication on B_X by $(b_1b_2, b_3)_X = (b_1, b_2, b_3)_X$. The element $e = \sum_{x \in X} (x, x)$ is a unit of B_X . At last, let $l_{B_X}(b) = (b, e)_X$.

Theorem 3.3. We have an isomorphism $B \cong B_X$ identifying l_B with l_{B_X} and \star with \star_X .

Proof. Essentially, it was done in [3]. Elements $(x_1, x_2) \in X \times X$ enumerates matrix units $E_{x_1,x_2} \in \operatorname{End}(\pi_X)$, so to any orbit $b \in \mathcal{B}_2$ we correspond the operator $\sum_{(x_1,x_2)\in b} E_{x_1,x_2} \in \operatorname{End}_G(\pi_X)$. One can check by a direct computation that this map is an algebra homomorphism and that the trace l_B can be written as l_{B_X} . The operator $\sum_{g\in G} g$ on $\operatorname{End}(\pi_X)$ is the projection to the subspace of invariants, so we have $B \cong B_X$. At last, the involution \star_X corresponds to transposition of a matrix in the natural orthonormal basis of π_X , hence it corresponds to \star .

Remark 3.1. This construction defines a structure of real equipped Cardy-Frobenius algebra on the Hecke algebra $H \setminus G/H$ for an arbitrary subgroup $H \subset G$. To this end one can take X to be the left coset G/H with the natural action of G.

References

- Alexeevski A., Natanzon S., Noncommutative two-dimensional topological field theories and Hurwitz numbers for real algebraic curves. Selecta Math., New ser. v.12,n.3, 2006, p. 307-377 (arXiv: math.GT/0202164).
- [2] Alexeevski A., Natanzon S., Algebra of Hurwitz numbers for seamed surfaces, Russian Math.Surveys, 61 (4) (2006), 767-769
- [3] Alexeevski A., Natanzon S., Algebra of bipartite graphs and Hurwitz numbers of seamed surfaces. Math.Russian Izvestiya 72 (2008) V.4, 3-24.
- [4] Alexeevski A., Natanzon S., Hurwitz numbers for regular coverings of surfaces by seamed surfaces and Cardy-Frobenius algebras of finite groups, Amer. Math. Sos. Transl. (2) Vol 224, 2008, 1-25 (arXiv: math/07093601)
- [5] Atiyah M., Topological Quantum Field Theories, Inst. Hautes Etudes Sci. Publ. Math., 68 (1988), 175-186.
- [6] Dijkgraaf R., Geometrical Approach to Two-Dimensional Conformal Field Theory, Ph.D.Thesis (Utrecht, 1989)
- [7] Dijkgraaf R., Mirror symmetry and elliptic curves, The moduli spaces of curves, Progress in Math., 129 (1995), 149-163, Brikhäuser.
- [8] B.Dubrovin, Geometry of 2D topological field theories In: LNM, 1620 (1996), 120-348.
- [9] Faith C., Algebra II Ring theory, Springer-Verlag, 1976
- [10] Fulton W., Harris J., Representation theory. A firt cours, Graduate Texts in Math., Readinngs in Math, 129 (1991), New Yorc: Springer-Verlag,
- [11] Lazaroiu C.I., On the structure of open-closed topological field theory in two-dimensions, Nucl. Phys. B 603 (2001), 497-530.
- [12] Moore G., Some comments on branes, G-flux, and K-theory, Int.J.Mod.Phys.A 16,936(2001), arXiv:hep-th/0012007
- [13] Natanzon S.M., Cyclic Foam Topological Field Theory, arXiv:0712.3557 (2007)
- [14] Natanzon S.M., Brane Topological Field Theory and Hurwitz numbers for CW-complexes, arXiv:0904.0239
- [15] Segal G.B., Two dimensional conformal field theory and modular functor. In: Swansea Proceedings, Mathematical Physics, 1988, 22-37.
- [16] Witten.E, Quantum Field theory. Commun.Math.Phys.117(1988),353-386