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SPECTRAL HIRZEBRUCH-MILNOR CLASSES OF SINGULAR
HYPERSURFACES

LAURENTIU MAXIM, MORIHIKO SAITO, AND JÖRG SCHÜRMANN

Abstract. We prove formulas for the localized Hirzebruch-Milnor class of a projective
hypersurface in the case where the multiplicity of a generic hyperplane section is not 1.
These formulas are necessary for the calculation of the localized Hirzebruch-Milnor class in
the hyperplane arrangement case. To formulate them, we introduce the spectral Hirzebruch
class transformation which may be viewed as a homology class version of (the dual of)
Steenbrink spectrum for a mixed Hodge structure with a finite order automorphism. Here we
need the Thom-Sebastiani theorem for the underlying filtered D-modules of vanishing cycles,
and its rather simple proof is explained. From this we can deduce the Thom-Sebastiani
theorem for the localized spectral Hirzebruch-Milnor classes in the case of hypersurfaces
defined by global functions on smooth varieties. We also explain some applications to
multiplier ideals, log canonical thresholds, and Du Bois singularities, etc.

Introduction

Let Y be a smooth complex projective variety with L a very ample line bundle on Y . Let
X be a hypersurface section of Y defined by s ∈ Γ(Y, L⊗m) \ {0} for some m ∈ Z>0. When
m = 1, a formula for the Hirzebruch-Milnor class (which expresses the difference between
the Hirzebruch class and the virtual one) was given in [MaSaSc1] by using a sufficiently
general section of L. By specializing to y = −1 and using [Sch2, Proposition 5.21], this
implies a formula for the Chern-Milnor class conjectured by S. Yokura [Yo2], and proved by
A. Parusiński and P. Pragacz [PaPr] (where m = 1). In the case of hyperplane arrangements
as in [MaSaSc2], however, it is desirable to generalize this to the case m > 1 (since a
hypersurface section of a hyperplane arrangement is not a hyperplane arrangement). In
order to realize this, we need an inductive argument as follows.

Let s′1, . . . , s
′
n+1 be sufficiently general sections of L with n := dimX. Let a1, . . . , an+1 be

sufficiently general non-zero complex numbers with |aj| sufficiently small. For j ∈ [1, n+ 1],
set

sa,j := s− a1s
′m
1 − · · · − aj−1s

′m
j−1, Xa,j := s−1

a,j(0), X ′j := s′ −1
j (0),

fa,j :=
(
sa,j/s

′m
j )|Uj , Uj := Y \X ′j, Σj := SingXa,j (=

⋂
k<jX

′
k ∩ Σ1).

Put Σ := SingX = Σ1, and r := max
{
j | Σj 6= ∅

}
6 n + 1. We denote the Hirzebruch

class and the virtual one by Ty∗(X), T vir
y∗ (X) ∈ H•(X)[y] as in [MaSaSc1], where Hk(X) =

HBM
2k (X,Q) or CHk(X)Q, see (1.1) below. In this paper, we denote by ϕfa,jQh,Uj the mixed

Hodge module on Σj \X ′j up to a shift of complex such that its underlying Q-complex is the
vanishing cycle complex ϕfa,jQUj in the sense of [De2], see [Sa3], [Sa5]. For the definition
of Ty∗(M•) with M• a bounded complex of mixed Hodge modules, see (1.1) below. In this
paper we show the following.

Theorem 1. We have the localized Hirzebruch-Milnor class My(X) ∈ H•(Σ)[y], satisfying

T vir
y∗ (X)− Ty∗(X) = (iΣ,X)∗My(X) with

(0.1) My(X) =
∑r

j=1 Ty∗
(
(iΣj\X′j ,Σ)!ϕfa,jQh,Uj

)
,

where iA,B : A ↪→ B denotes the inclusion for A ⊂ B in general.
1



2 L. MAXIM, M. SAITO, AND J. SCHÜRMANN

The assertion (0.1) can be viewed as an inductive formula, since we have the following.

Proposition 1. For j ∈ [1, r], there are equalities in H•(Xa,j)[y] :

(0.2) lim
aj→0

Ty∗(Xa,j+1)− Ty∗(Xa,j) = Ty∗
(
(iΣj\X′j ,Xa,j)!ϕfa,jQh,Uj

)
.

The limit in (0.2) is defined by using the nearby cycle functor ψ for mixed Hodge modules,
see (2.3.1) below. Note that Xa,1 = X, and Xa,r+1 is smooth. (If r = n + 1, then sa,n+2

and Xa,n+2 can be defined in the same way as above, and is smooth.) We assumed m = 1
in [MaSaSc1], where the formula was rather simple in the hypersurface case (since Xa,2 is
smooth and r = 1).

In order to express more explicitly the right-hand side of (0.1–2) for the summand with
j ∈ [2, r], we use the variable ỹ = −y together with the spectral Hirzebruch class

T sp
ỹ∗ (M, Ts) ∈ H•(X)

[
ỹ 1/e, ỹ−1/e

]
,

for mixed Hodge modules M on X endowed with an action of Ts of finite order e > 0, see
also [CaMaScSh, Remark 1.3(4)]. This is defined by extending the definition of the “dual”
Sp′(f, x) of the Steenbrink spectrum Sp(f, x) in [Sa8, Section 2.1]. Note that the former is
called the Hodge spectrum in the definition before [DeLo, Corollary 6.24], see also [GeLoMe,
Section 6.1]. (In the case X is a point, the spectral Hirzebruch class is identified with the
Hodge spectrum as is explained in [CaMaScSh, Remark 3.7].)

We need this refinement of Hirzebruch classes, since there is a shift of the Hodge filtration
F in the Thom-Sebastiani theorem for filtered D-modules depending on the eigenvalues of
the semisimple part of the monodromy Ts (see Theorem (3.2) below). We can prove the
following.

Proposition 2. For j ∈ [1, r], we have

(0.3) T sp
ỹ∗
(
(iΣj\X′j ,Σj)!ϕfa,jQh,Uj , Ts

)
∈ H•(Σj)

[
ỹ 1/e

]
,

with Ts the semisimple part of the monodromy T , and moreover

(0.4) T sp
ỹ∗
(
(iΣj\X′j ,Σj)!ϕfa,jQh,Uj , Ts

)int
= Ty∗

(
(iΣj\X′j ,Σj)!ϕfa,jQh,Uj

)
in H•(Σj)[y].

Here (∗)int is defined by the tensor product of the Q-linear morphism

Q
[
ỹ 1/e

]
3
∑

i∈N ai ỹ
i/e 7→

∑
i∈N ai(−y)[i/e] ∈ Q[y],

with ai ∈ Q (i ∈ N) and [i/e] the integer part of i/e. This corresponds to forgetting the
action of Ts. For j ∈ [2, r], set

Zj :=
⋂
k<jX

′
k ∩ Uj, f ′j := (s/s′mj )|Zj .

Note that Zj ∩ Σ = Σj \X ′j. We have the following.

Theorem 2. For j ∈ [2, r], there are equalities in H•(Σj)
[
ỹ 1/e

]
:

(0.5) T sp
ỹ∗
(
(iΣj\X′j ,Σj)!ϕfa,jQh,Uj , Ts

)
= T sp

ỹ∗
(
(iΣj\X′j ,Σj)!ϕf ′jQh,Zj , Ts

)
·
(
−
∑m−1

i=1 ỹ i/m
)j−1

,

where e is replaced by an appropriate multiple of it if necessary.

This follows from Thom-Sebastiani theorem for filtered D-modules (see Theorem (3.2)
below), to which we give a rather simple proof using the algebraic microlocalization as is
mentioned in [Sa7, Remark 4.5]. Note that, in the proof of Theorem 2, we can apply the
Thom-Sebastiani theorem only by restricting to Uj = Y \X ′j and moreover only after passing
to the normal bundle of Zj ⊂ Uj by using the deformation to the normal bundle, see Section 3
below.
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The above Thom-Sebastiani theorem also implies the following Thom-Sebastiani theorem
for the localized spectral Hirzebruch-Milnor classes

M sp
ỹ (X) := T sp

ỹ (ϕfQh,Y , Ts) ∈ H•(Σ)
[
ỹ 1/e

]
,

in the case where X = f−1(0) with f a non-constant function on a smooth complex variety
or a connected complex manifold Y (that is, f ∈ Γ(Y,OY ) \C), and Σ := SingX.

Theorem 3. Let Xa := f−1
a (0) with fa a non-constant function on a smooth complex

variety or a connected complex manifold Ya (a = 1, 2). Set X := f−1(0) ⊂ Y := Y1×Y2 with
f := f1 + f2. Put Σa := SingXa (a = 1, 2). Then we have the equality

(0.6) M sp
ỹ (X) = −M sp

ỹ (X1)�M sp
ỹ (X2) in H•(Σ)

[
ỹ 1/e

]
,

by replacing Ya with an open neighborhood of Xa (a = 1, 2) so that Σ = Σ1×Σ2 if necessary,
where � is defined by using cross products or Künneth maps.

This assertion holds at the level of Grothendieck groups (more precisely, in K0(Σ)
[
ỹ 1/e

]
,

see (3.5.1) below). Here Σ 6= Σ1 × Σ2 if and only if there are non-zero critical values ca
of fa (a = 1, 2) with c1 + c2 = 0. Note that X is always non-compact even if X1, X2 are
compact, see Remarks (3.5)(iii) below. In the case of isolated hypersurface singularities,
Theorem 3 is equivalent to the Thom-Sebastiani theorem for the spectrum as in [ScSt], [Va].
We can calculate the localized spectral Hirzebruch-Milnor class M sp

ỹ (X) by improving the

arguments in [MaSaSc1, Section 5] (keeping track of the action of Ts), see also [CaMaScSh,
Remark 1.3]

It is known (see [CaMaScSh, Theorem 3.2], [Sch4, Corollary 3.12]) that we have

(0.7) (iΣ,X)∗
(
M sp

ỹ (X)
)int

= (iΣ,X)∗My(X) = T vir
y∗ (X)− Ty∗(X).

Here the first equality follows from the definition, and the last one from the short exact
sequence associated with the nearby and vanishing cycles together with [Sch3] (or [MaSaSc1,
Proposition 3.3]) and [Ve, Theorem 7.1]. (We may also need [MaSaSc1, Proposition 1.3.1] to
show some compatibility of definitions, see the remark about T vir

y∗ (X) after (1.1.9) below.)

Specializing to y = −1 (that is, ỹ = 1), Theorems 1 and 2 imply the corresponding
assertions for the Chern classes. In fact, Ty∗(X) and T vir

y∗ (X) respectively specialize at

y = −1 to the MacPherson-Chern class c(X) (see [Mac]) and the virtual Chern class cvir(X)
(called the Fulton or Fulton-Johnson class, see [Fu], [FJ]) with rational coefficients, see [Sch2,
Proposition 5.21]. The specialization of Theorem 3 to ỹ = 1 is already known, see [OhYo,
Section 4] (where a different sign convention is used).

We have an application of the Thom-Sebastiani type theorem to multiplier ideals J (αX)
and their graded quotients G(αX) (see (5.2) below) as follows:

Theorem 4. With the notation and the assumption of Theorem 3, we have the equalities
for α ∈ (0, 1) :

(0.8) J (αX) =
∑

α1+α2=α J (α1X1)� J (α2X2) in OY = OY1 �OY2 ,
together with the canonical isomorphisms of OX-modules for α ∈ (0, 1) :

(0.9) G(αX) =
∑

α1+α2=α G(α1X1)� G(α2X2),

by replacing Ya with an open neighborhood of Xa = f−1
a (0) in Ya (a = 1, 2) so that Σ = Σ1×Σ2

if necessary. Here we may assume α1, α2 ∈ (0, α).

The formula (0.8) determines J (αX) for any α ∈ Q, since J ((α + 1)X) = fJ (αX) for
α > 0 and J (αX) = OY for α 6 0, see (5.1.2) below. The formula (0.9) for α = 1 is more
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complicated (see Corollary (5.4) below), since it is closely related to the “irrationality” of
the singularities of X (see (4.2.5) below). Related to this, we have the following.

Theorem 5. Let X, Y be as in Theorem 1 with X reduced, or X be a reduced hypersurface
in a smooth complex algebraic variety or a complex manifold Y defined by f ∈ Γ(Y,OY ). If
X has only Du Bois singularities, then

(0.10) M0(X) := My(X)|y=0 = 0 in H•(Σ).

The converse holds if Σ = SingX is a projective variety. More precisely, the converse holds
if (0.10) holds for (iΣ,PN )∗M0(X) in H•(PN), where PN is a projective space containing Σ.

The first assertion of Theorem 5 is already known if H•(Σ) in (0.10) is replaced with
H•(X), and M0 with (iΣ,X)∗M0 at least in the second case where X is defined by a global
function f , since we have T vir

y∗ (X)|y=0 = td∗(OX), see [BrScYo, p. 6], [CaMaScSh, p. 2619],
[Sch4, Corollary 2.3]. Its converse also holds if X is projective. In the isolated singularity
case, Theorem 5 is related to [St3, Theorem 3.12], [Is, Theorem 6.3] in the case where the
smoothing is a base change of a smoothing with total space nonsingular, see (4.8) below.

Let JC(f) be the set of jumping coefficients of f , consisting of numbers α with G(αX) 6= 0
(see (5.1) below), and lct(f) be the log canonical threshold of f , which is by definition the
minimal jumping coefficient. We have the following (which is an immediate consequence of
the duality for nearby cycle functors [Sa4] together with [BuSa, Theorem 0.1]).

Proposition 3. Let X be a hypersurface in a smooth complex variety Y (or a complex
manifold Y ) defined by f ∈ Γ(Y,OY ). Let α ∈ (0, 1). Then α ∈ JC(f) if

(0.11) M sp
ỹ (X)|ỹα 6= 0 in H•(Σ),

where M sp
ỹ (X)|ỹα is the coefficient of ỹα in M sp

ỹ (X) ∈ H•(Σ)
[
ỹ1/e

]
. The converse holds if

Σ = SingX is a projective variety. More precisely, if α ∈ JC(f) ∩ (0, 1), then (0.11) holds
for the image of M sp

ỹ (X)|ỹα in H•(PN), where PN is a projective space containing Σ.

In the isolated singularity case, this is closely related to [Bu, Corollary in p. 258].

From Theorem 4 we can deduce, for instance, the following.

Corollary 1. With the notation and the assumption of Theorem 4, we have

(0.12) JC(f) ∩ (0, 1) =
(
JC(f1) + JC(f2)

)
∩(0, 1),

(0.13) lct(f) = min
{

1, lct(f1) + lct(f2)
}
,

by replacing Ya with an open neighborhood of Xa (a = 1, 2) so that Σ = Σ1×Σ2 if necessary.

Note that JC(f) is determined by (0.12) together with (5.1.5) below (since 1 ∈ JC(f) by
looking at the smooth points of X). By the second equality of (4.5.2) below, we get

(0.14) M0(X) =
⊕

α∈(0,1)M
sp
ỹ (X)|ỹα in H•(Σ).

So Proposition 3 may be viewed as a refinement of Theorem 5 modulo the assertion that we
have lct(f) = 1 if and only if X = f−1(0) is reduced, and has only Du Bois singularities, see
[Sa9, Theorem 0.5], [KoSc, Corollary 6.6], and (4.3.9) below.

The first named author is partially supported by grants from NSF, NSA, by a fellowship
from the Max-Planck-Institut für Mathematik, Bonn, and by the Romanian Ministry of Na-
tional Education, CNCS-UEFISCDI, grant PN-II-ID-PCE-2012-4-0156. The second named
author is partially supported by Kakenhi 15K04816. The third named author is supported
by the SFB 878 “groups, geometry and actions”.
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In Section 1 we review some basics of Hirzebruch classes, and prove Proposition 2. In
Section 2 we prove Theorem 1 and Proposition 1 by using the short exact sequences associated
with nearby and vanishing cycle functors of mixed Hodge modules. In Section 3 we prove
Theorems 2 and 3 after giving a rather simple proof of the Thom-Sebastiani theorem for
filtered D-modules. In Section 4 some relations with rational and Du Bois singularities are
explained. In Section 5 we give some applications to multiplier ideals in the hypersurface
case.

1. Hirzebruch characteristic classes

In this section we review some basics of Hirzebruch classes, and prove Proposition 2.

1.1. Hirzebruch classes. For a complex algebraic variety X, we set in this paper

Hk(X) := HBM
2k (X,Q) or CHk(X)Q.

Let MHM(X) be the abelian category of mixed Hodge modules on X (see [Sa3], [Sa5]). For
M• ∈ DbMHM(X), we have the homology Hirzebruch characteristic class defined by

(1.1.1) Ty∗(M•) := td(1+y)∗
(
DRy[M•]

)
∈ H•(X)[y, y−1].

Here, setting F p = F−p so that GrpF = GrF−p, we have

(1.1.2) DRy[M•] :=
∑

i,p (−1)i
[
HiGrpFDR(M•)

]
(−y)p ∈ K0(X)[y, y−1],

with

(1.1.3) td(1+y)∗ : K0(X)[y, y−1]→ H•(X)
[
y, 1

y(y+1)

]
defined by the composition of the scalar extension of the Todd class transformation

td∗ : K0(X)→ H•(X),

(see [BaFuMa], where td∗ is denoted by τ) with the multiplication by (1 + y)−k on Hk(X)
(see [BrScYo]). Note that HiGrpFDR(M•) = 0 for |p| � 0 (see for instance [Sa3, 2.2.10.5]).
We have the last inclusion in (1.1.1), that is, Ty∗(M•) ∈ H•(X)[y, y−1], by [Sch2, Proposition
5.21].

In this paper, we denote a∗XQh ∈ DbMHM(X) by Qh,X as in [MaSaSc1], where Qh denotes
the trivial Q-Hodge structure of rank 1 and type (0, 0) (see [De1]), and aX : X → pt is the
structure morphism, see [Sa5]. The homology Hirzebruch characteristic class of X is defined
by

(1.1.4) Ty∗(X) := Ty∗(Qh,X) ∈ H•(X)[y]
(
⊂ H•(X)[y, y−1]

)
.

This inclusion is reduced to the X smooth case by using a stratification of X together with
smooth partial compactifications of strata over X. Then it follows from the relation with
the cohomology Hirzebruch class, see [BrScYo].

In the X smooth case, we have

(1.1.5) DRy[X] = Λy[T
∗X],

with

(1.1.6) Λy[V ] :=
∑

p>0 [ΛpV ] yp for a vector bundle V.
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In the case X is a complete intersection in a smooth complex algebraic variety Y , the
virtual Hirzebruch characteristic class T vir

y∗ (X) can be defined like the virtual genus in [Hi]
(see [MaSaSc2, Section 1.4]) by

(1.1.7) T vir
y∗ (X) := td(1+y)∗DRvir

y [X] ∈ H•(X)[y],

where DRvir
y [X] is the image in K0(X)[[y]] of

(1.1.8) Λy(T
∗
virX) = Λy[T

∗Y |X ]/Λy[N
∗
X/Y ] ∈ K0(X)[[y]],

and belongs to K0(X)[y] (see for instance [MaSaSc1, Proposition 3.4]). Here K0(X), K0(X)
are the Grothendieck group of locally free sheaves of finite length and that of coherent sheaves
respectively. We denote by T ∗Y and N∗X/Y the cotangent and conormal bundles respectively.
The virtual cotangent bundle is defined by

(1.1.9) T ∗virX := [T ∗Y |X ]− [N∗X/Y ] ∈ K0(X).

Here N∗X/Y in the non-reduced case is defined by the locally free sheaf IX/I2
X on X with

IX ⊂ OY the ideal of X ⊂ Y .

Note that the above definition of T vir
y∗ (X) is compatible with the one in [CaMaScSh] by

[MaSaSc1, Proposition 1.3.1].

Remarks 1.2. (i) Let (M,F ) be a filtered left D-module on a smooth variety X of dimension
dX . The filtration F of the de Rham complex DRX(M,F ) is defined by

(1.2.1) DRX(M,F )i = Ωi+dX
X ⊗OX (M,F [−i− dX ])

(
i ∈ [−dX , 0]

)
,

where DRX(M,F )i denotes the i th component of DRX(M,F ). Recall that Fp = F−p and
F [m]p = Fp−m for p,m ∈ Z.

This is compatible with the definition of DRX for filtered right DX-modules as in [Sa3];
that is, we have the canonical isomorphism

(1.2.2) DRX(M,F ) = DRX

(
(ΩdX

X , F )⊗OX (M,F )
)
,

where (ΩdX
X , F )⊗OX (M,F ) is the filtered right DX-module corresponding to a filtered DX-

module (M,F ), and the filtration F on ΩdX
X is shifted by −dX so that

(1.2.3) GrFp ΩdX
X = 0 ( p 6= −dX),

Under the direct image functor iD∗ for filtered D-modules with i : X ↪→ Y a closed
embedding of smooth varieties, the filtration F of a filtered left D-module (M,F ) is shifted
by the codimension r := dimY − dimX; more precisely

(1.2.4) iD∗M = i∗M [∂1, . . . , ∂r] with Fp(i
D
∗M) =

∑
ν∈Nr i∗

(
Fp−|ν|−rM ⊗ ∂ν

)
,

where ∂ν :=
∏r

j=1 ∂
νj
j with ∂j := ∂/∂yj for local coordinates yi of Y with X =

⋃
i6r{yi = 0}.

This shift comes from (1.2.3) since there is no shift of filtration for filtered right D-modules.
(Globally we have to twist the right-hand side of (1.2.4) by ωX/Y .) Because of this shift of
the filtration F , we have the canonical isomorphisms of OY -modules

(1.2.5) i∗HjGrFp DRX(M) = HjGrFp DRY (iD∗M).

If (M,F ) is the underlying filtered left DX-module of a mixed Hodge module M, then
there is an equality in K0(X)[y, y−1]:

(1.2.6)
∑

i,p (−1)i
[
HiGrFp DR(M)

]
(−y)p =

∑
i,p (−1)i

[
Ωi+dX
X ⊗OXGrFpM

]
(−y)p−i−dX .

This is related to the right-hand side of (1.1.2), and follows directly from (1.2.1).
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(ii) Let Z be a locally closed smooth subvariety of a smooth variety X with iZ : Z ↪→ X
the canonical inclusion. For M• ∈ DbMHM(X), set

Mj
Z := Hji∗ZM

• ∈ MHM(Z) (j ∈ Z).

(Here Hj : DbMHM(Z) → MHM(Z) is the canonical cohomology functor.) Assume this
mixed Hodge module is a variation of mixed Hodge structure Hj

Z on Z for any j ∈ Z; more
precisely, its underlying F -filtered left DZ-module is a locally free F -filtered OZ-module
which underlies Hj

Z . (Note that there is a shift of the weight filtration W by dZ .) For z ∈ Z,
we denote by iz,Z : {z} ↪→ Z and iz : {z} ↪→ X the canonical inclusions. We haveMj

z, Hj
z by

applying the above argument to the inclusion iz : {z} ↪→ X. HereMj
z is naturally identified

with Hj
z (including the weight filtration W ) since z is a point. The relations between these

are given by

(1.2.7) H−dZ i∗z,ZM
j
Z = i∗z,ZHj

Z =Mj−dZ
z = Hj−dZ

z .

Here Hki∗z,ZM
j
Z = 0 (k 6= −dZ), and i∗z,ZHj

Z is the restriction to z as a variation of mixed
Hodge structure. Note that there is no shift of the filtration F in (1.2.7). (Consider, for
instance, the caseM• is the constant mixed Hodge module Qh,X [dX ], whereM−r

Z = Qh,Z [dZ ]
with r = codimXZ and M−dX

z = Qh.) This follows from the definition of the nearby cycle
functors ψzi in [Sa3], [Sa5], where the zi are local coordinates of Z. The functor i∗z,Z can be
given in this case by the iteration of the mapping cones of the canonical morphisms

can : ψzi,1 → ϕzi,1,

and the vanishing cycle functors ϕzi,1 vanish for smooth mixed Hodge modules on Z. Here
smooth means that their underlying Q-complexes are local systems on Z shifted by dZ .
(Note that the last property implies the shift of indices in (1.2.7).)

1.3. Spectral Hirzebruch classes. We denote by MHM(X,Ts) the abelian category of
mixed Hodge modulesM on a smooth variety X (or more generally, on a variety embeddable
into a smooth variety X) such that M is endowed with an action of Ts of finite order. (For
instance, M = ϕfa,jQh,Uj with Ts the semisimple part of the monodromy in the notation
of the introduction.) For (M, Ts) ∈ MHM(X,Ts), let (M,F ) be the underlying filtered left
DX-module. Since Ts has a finite oder e, we have the canonical decomposition

(1.3.1) (M,F ) =
∑

λ∈µe (Mλ, F ),

such that Ts = λ on Mλ ⊂ M , where µe := {λ ∈ C | λe = 1}. We define the spectral
Hirzebruch class by

(1.3.2) T sp
ỹ∗ (M, Ts) := td(1−ỹ)∗

(
DRỹ[M, Ts]

)
∈ H•(X)

[
ỹ 1/e, 1

ỹ(ỹ−1)

]
,

with

(1.3.3) DRỹ[M, Ts] :=
∑

i,p,λ (−1)i
[
HiGrpFDR(Mλ)

]
ỹ p+`(λ) in K0(X)[ỹ 1/e, ỹ−1/e].

Here

(1.3.4) `(λ) ∈ [0, 1) with exp(2πi`(λ)) = λ,

and

(1.3.5) td(1−ỹ)∗ : K0(X)[ỹ 1/e, ỹ−1/e]→ H•(X)
[
ỹ 1/e, 1

ỹ(ỹ−1)

]
is the scalar extension of the Todd class transformation td∗ : K0(X) → H•(X) followed by
the multiplication by (1 − ỹ)−k on Hk(X) as in (1.1) (where ỹ = −y). Actually the class
belongs to H•(X)[ỹ 1/e, ỹ−1/e] by generalizing [Sch2, Proposition 5.21], see Proposition (1.4)
below.
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The above definition can be generalized to the X singular case by using locally defined
closed embeddings into smooth varieties, where the independence of locally defined closed
embeddings follows from the isomorphism (1.2.5) (at the level of O-modules). We can further
generalize this definition to the case of M• ∈ DbMHM(X) endowed with an action of Ts of
finite order by applying the above arguments to each cohomology module H iM• (i ∈ Z).

The above arguments imply the transformation

(1.3.6) T sp
ỹ∗ : Kmon

0 (MHM(X))→
⋃
e>1 H•(X)

[
ỹ 1/e, ỹ−1/e

]
,

which is functorial for proper morphisms by using the compatibility of DR (or rather DR−1)
with the direct images by proper morphisms (see [Sa3, Section 2.3.7]) together with the
compatibility of td∗ with the pushforward by proper morphisms (see [BaFuMa]). Here the
left-hand side is the Grothendieck group of mixed Hodge modules on X endowed with a
finite order automorphism, see also [CaMaScSh, Remark 1.3(4)].

Proposition 1.4. In the notation of (1.3.2), we have

(1.4.1) T sp
ỹ∗ (M, Ts) ∈ H•(X)[ỹ 1/e, ỹ−1/e].

Proof. Let S be a stratification of X such that H ij∗SM are variations of mixed Hodge
structures on any strata S ∈ S for any i ∈ Z, where jS : S ↪→ X is the canonical inclusion.
By the same argument as in the proof of [MaSaSc1, Proposition 5.1.2], we have the equality

(1.4.2) T sp
ỹ∗ (M) =

∑
S,i (−1)iT sp

ỹ∗
(
(jS)!H

i(jS)∗M
)
.

So the assertion is reduced to the case where M = j!M′ with M′ ∈ MHM(X ′) a variation
of mixed Hodge structure on an open subvariety X ′ with j : X ′ ↪→ X the natural inclusion.
We may further assume that D := X \X ′ is a divisor with simple normal crossings since the
Todd class transformation td∗ and the de Rham functor DR commute with the pushforward
or the direct image under a proper morphism (see [BaFuMa] for td∗).

Let M>0 be the Deligne extension of the underlying OX′-module of M′ such that the
eigenvalues of the residues of the logarithmic connections are contained in (0, 1]. The action
of Ts is naturally extended to M>0, and we have the canonical decomposition

M>0 =
⊕

λM
>0
λ .

It follows from [Sa5, Proposition 3.11] that each M>0
λ is identified with an OX-submodule of

Mλ, and there is a canonical filtered quasi-isomorphism

(1.4.3) DRX〈D〉(M
>0
λ , F )

∼−→ DRX(Mλ, F ),

where the left-hand side is the filtered logarithmic de Rham complex such that its i th
component is given by

(1.4.4) DRX〈D〉(M
>0
λ , F )i = Ωi+dX

X (logD)⊗OX (M>0
λ , F [−i− dX ]).

As in (1.2.6), we get by (1.4.3) the equality in K0(X)[ỹ 1/e, ỹ−1/e]:

(1.4.5)

∑
p,i,λ (−1)i

[
HiGrFp DRX(Mλ)

]
ỹ p+`(λ)

=
∑

p,i,λ (−1)i
[
Ωi+dX
X (logD)⊗OXGrFpM

>0
λ

]
ỹ p−i−dX+`(λ).

By [BaFuMa], the Todd class transformation td∗ satisfies the following property:

(1.4.6) td∗(V⊗ ξ) = ch(V ) ∩ td∗(ξ)
(
V ∈ K0(X), ξ ∈ K0(X)

)
.

By using the twisted Chern character

(1.4.7) ch(1−ỹ) : K0(X) 3 V 7→
∑

k>0 ch
k(V )(1− ỹ)k ∈ H•(X)[ỹ],
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with chk the k th component of the Chern character ch (see [Sch2], [Yo1]), (1.4.6) is extended
to

(1.4.8) td(1−ỹ)∗(V⊗ ξ̃) = ch(1−ỹ)(V ) ∩ td(1−ỹ)∗(ξ̃)
(
V ∈ K0(X), ξ̃ ∈ K0(X)[ỹ 1/e, ỹ−1/e]

)
.

By applying this to the case V = GrFpM
>0
λ in the right-hand side of (1.4.5), the assertion is

now reduced to the case GrFpM
>0
λ = OX , and to the case M = j∗Qh,X′ [dX ], as in the proof

of [Sch2, Proposition 5.21].

The assertion is further reduced to the case X ′ = X by using the weight filtration W
on the mixed Hodge module j∗Qh,X′ [dX ]. In fact, if Di (i = 1, . . . ,m) are the irreducible
components of D, then

(1.4.9) GrWk (j∗Qh,X′ [dX ]) =
⊕
|I|=k−dXQh,DI (−|I|)[dDI ] (I ⊂ {1, . . . ,m}),

where DI :=
⋂
i∈I Di, and |I| = codimXDI so that k = dDI + 2|I| = dX + |I|.

In the case M = Qh,X [dX ], the assertion follows from the inclusion (1.1.4). This finishes
the proof of Proposition (1.4).

1.5. Proof of Proposition 2. The assertion (0.4) follows from the construction in (1.3).
By the argument in (1.4) together with (1.2.7) (where we have no shift of the filtration F ),
the remaining assertion (0.3) is reduced to the following:

(1.5.1) GrpFH
j(Ff,0,C) = 0 for p < 0,

where f is any holomorphic function f on a complex manifold X, and 0 ∈ f−1(0) ⊂ X. We
denote by Ff,0 the Milnor fiber of f around 0 so that

(1.5.2) Hj(Ff,0,Q) = Hji∗0ψfQh,X (j ∈ Z),

with i0 : {0} ↪→ X the natural inclusion. In fact, (0.3) is reduced to the inclusion (1.1.4) by
using (1.4.8) together with the non-negativity of the codimension |I| in (1.4.9).

For the proof of (1.5.1), we use an embedded resolution π : X̃ → X of f−1(0), where we

may assume that D := π−1(0) ⊂ X̃ is a divisor (by taking a point-center blow-up first). The
latter is a union of irreducible components of π−1f−1(0), and is also a divisor with normal

crossings. Set π0 := π|D : D → {0}, and f̃ := f ◦ π. We have the canonical isomorphisms

(1.5.3) Hji∗0ψfQh,X = Hj(π0)∗i
∗
Dψf̃Qh,X̃ (j ∈ Z),

since

π∗ψf̃Qh,X̃ = ψfπ∗Qh,X̃ = ψfQh,X and (π0)∗ ◦ i
∗
D = i∗0 ◦ π∗.

It is well-known that the variation of mixed Hodge structures Hj
Z in Remark (1.2)(ii) (applied

to M• = i∗Dψf̃Qh,X̃ or ψf̃Qh,X̃) are direct sums of locally constant variations of Hodge

structures of type (k, k) with k ∈ N, where Z is a stratum of the canonical stratification
associated with the divisor with normal crossings π−1f−1(0), see [St1], [St2] (and also [Sa5,
Proposition 3.5]). So the assertion (1.5.1) follows. This finishes the proof of Proposition 2.

We recall here the notion of topological filtration on the Grothendieck group (see [SGA6],
[Fu]) which will be used in Section 4.

1.6. Topological filtration. Let X be a complex algebraic variety, and K0(X) be the
Grothendieck group of coherent sheaves on X. It has the topological filtration which is
denoted in this paper by G (in order to distinguish it from the Hodge filtration F ), and such
that GkK0(X) is generated by the classes of coherent sheaves F with dim suppF 6 k, see
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[Fu, Examples 1.6.5 and 15.1.5], [SGA6]. It is known (see [Fu, Corollary 18.3.2]) that td∗
induces the isomorphisms

(1.6.1)
(td∗)Q : K0(X)Q

∼−→
⊕

k CHk(X)Q,

GrGk (td∗)Q : GrGkK0(X)Q
∼−→ CHk(X)Q.

Moreover the inverse of the last isomorphism is given by Z 7→ [OZ ] for irreducible reduced
closed subvarieties Z ⊂ X with dimension k. Here we set

H•(X) :=
⊕

k CHk(X)Q,

and use the filtration G defined by

(1.6.2) GkH•(X) :=
⊕

j6k Hj(X).

This definition is valid also in the case Hk(X) := HBM
2k (X,Q). Here

(1.6.3) GrGk (td∗)Q : GrGkK0(X)Q = CHk(X)Q → HBM
2k (X,Q)

is identified with the cycle class map.

If X = PN , then Hk(X) = Q for k ∈ [1, N ]. These are canonically generated by the
classes of linear subspaces, and the GrGk (td∗)Q are identified with the identity maps. For any
irreducible reduced closed subvariety Z ⊂ PN with dimZ = k, we have the positivity :

(1.6.4) GrGk (td∗)Q[Z] = degZ > 0 in Hk(P
N) = Q.

Here degZ is defined to be the intersection number of Z with a sufficiently general linear
subspace of the complementary dimension if k > 0 (and degZ = 1 if k = 0). Moreover, for
any coherent sheaf F on PN with dim suppF = k, we have also the positivity :

(1.6.5) GrGk [F ] =
∑r

i=1 mi GrGk [Zi] > 0 in GrGkK0(PN)Q = CHk(P
N)Q = Q,

where the Zi are k-dimensional irreducible components of suppF , and mi ∈ Z>0 are the
multiplicity of F at the generic point of Zi (i ∈ [1, r]).

2. Proofs of Theorem 1 and Proposition 1

In this section we prove Theorem 1 and Proposition 1 by using the short exact sequences
associated with nearby and vanishing cycle functors of mixed Hodge modules.

2.1. Construction. In the notation of the introduction, set S := Cr with coordinates
t1, . . . , tr. Let X ⊂ Y × S be the hypersurface such that

(2.1.1) X ∩ (Y × {a}) = Xa,r+1

(
= s−1

a,r+1(0) ⊂ Y
)

for any a = (a1, . . . , ar) ∈ S,

where sa,r+1 is as in the introduction. For j ∈ [0, r], set

(2.1.2) Sj := {tk = 0 (k > j)} ⊂ S, Xj := X ×S Sj ⊂ X .

Note that dimSj = j, and the fiber of Xj → Sj over (a1, . . . , aj) ∈ Sj (j ∈ [0, r]) coincides
with Xa,j+1 in the introduction. (Here j is shifted by 1.) For j ∈ [1, r], set

(2.1.3) Sa,j := {tk = ak (k < j), tk = 0 (k > j)} ⊂ Sj, Ya,j := X ×S Sa,j ⊂ Xj.

Then Ya,j is a one-parameter family containing Xa,j over tj = 0 and Xa,j+1 over tj = aj. By
the definitions of Uj, fa,j in the introduction, there are natural isomorphisms

(2.1.4) Uj = Ya,j \ (X ′j × Sa,j) (⊂ Y × Sa,j) (j ∈ [1, r]),
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such that fa,j on the left-hand side is identified with tj on the right-hand side. In fact, we
have on Xa,j+1 \X ′j

(sa,j/s
′m
j )|Uj =

(
(s− a1s

′m
1 − · · · − aj−1s

′m
j−1)/s′mj

)
|Uj = aj,

and the complex number aj is identified with the variable tj so that the disjoint union of
Xa,j+1 with aj varying appropriately (including aj = 0) is identified with Ya,j. (Here Xa,j+1

for aj = 0 is identified with Xa,j.)

By (2.1.4) we get the isomorphism

(2.1.5) ϕtjQh,Ya,j = (iΣj\X′j ,Σj)!ϕfa,jQh,Uj (j ∈ [1, r]),

since the following is shown in [MaSaSc2, Section 2.4]:

(2.1.6) ϕtjQh,Ya,j |Σj∩X′j = 0.

For j ∈ [1, r], we have the short exact sequences of mixed Hodge modules on Xa,j :

(2.1.7) 0→ Qh,Xa,j [n]→ ψtjQh,Ya,j [n]→ ϕtjQh,Ya,j [n]→ 0,

since the aj are sufficiently general.

2.2. Proof of Theorems 1. There are non-empty Zariski-open subsets S◦j ⊂ Sj (j ∈ [1, r])
such that the Dj := Sj \ S◦j are divisors on Sj containing Sj−1 and satisfying

(2.2.1) Dj−1 ⊃ (Dj \ Sj−1) ∩ Sj−1 (j ∈ [2, r]),

and moreover, by setting

X ◦j := X ×S S◦j ⊂ Xj, Y◦j := X ×S
(
Sj \ (Dj \ Sj−1)

)
⊂ Xj,

there are short exact sequences of mixed Hodge modules on X ◦j−1 (j ∈ [1, r]) :

(2.2.2) 0→ Qh,X ◦j−1
[dj−1]→ ψtjQh,Y◦j [dj−1]|X ◦j−1

→ ϕtjQh,Y◦j [dj−1]|X ◦j−1
→ 0,

where dj−1 := dimXj−1 (= n+ j − 1). We may furthermore assume

(2.2.3) Supp
(
ϕtjQh,Y◦j |X ◦j−1

)
= Σj × S◦j−1 ⊂ X ◦j−1,

(2.2.4) ϕtjQh,Y◦j |Σj×S◦j−1
is locally constant over S◦j−1,

by shrinking S◦j−1 if necessary, where Σj = SingXa,j =
⋂
k<jX

′
k ∩ Σ as in the introduction.

For the proof of (2.2.4) we use the deformation to the normal bundle in (2.4) below together
with a Thom-Sebastiani theorem in Theorem (3.2) as well as Remarks (2.5) below.

These imply by decreasing induction on k ∈ [2, j − 1] :

(2.2.5) ψtk · · ·ψtj−1
(ϕtjQh,Y◦j |Σj×S◦j−1

)|Σj×S◦k−1
is locally constant over S◦k−1.

In the notation of (2.1) we have the isomorphisms

(2.2.6) ψtjQh,Ya,j = ψtjQh,Y◦j |Xa,j , ϕtjQh,Ya,j = ϕtjQh,Y◦j |Xa,j ,

such that the restriction of the short exact sequence (2.2.2) to Xa,j is identified with (2.1.7),
since the aj are sufficiently general. (In fact, the V -filtration induces the V -filtration on the
restriction to the transversal slice Ya,j ⊂ Y◦j passing through Xa,j ⊂ X ◦j , see [DiMaSaTo,
Theorem 1.1]. Moreover this restriction morphism induces a bistrict surjection for (F, V ),
see [DiMaSaTo, Lemma 4.2]. So the assertion follows, since the weight filtration W is given
by the relative monodromy filtration.)

We then get (0.1) by applying the iterations of nearby cycle functors ψtk (k < j) to (2.2.2)
and using (2.1.5), (2.2.6). Here we also need [Sch3] (or [MaSaSc1, Proposition 3.3]) together
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with [Ve, Theorem 7.1] in order to show that the virtual Hirzebruch class T vir
y∗ (X) can be

obtained by applying the iteration of the nearby cycle functors ψtj (j 6 r) to Qh,Y◦r . This
finishes the proof of Theorem 1.

2.3. Proof of Proposition 1. The limit in (0.2) is defined by

(2.3.1) lim
aj→0

Ty∗(Xa,j+1) := Ty∗(ψtjQh,Ya,j),

in the notation of (2.1). The assertion (0.2) then follows from (2.1.5), (2.1.7) and (2.2.4–6).
This finishes the proof of Proposition 1.

We review here some basics of deformations to normal bundles which will be needed in
the proofs of Theorems 2 and 3.

2.4 Deformations to normal bundles. In the notation of the introduction, set

x′i := (s′i/s
′
j)|Uj (i < j).

Since Zj = ∩i<j{x′i = 0} ⊂ Uj = Y \X ′j, we have the decomposition

(2.4.1) Vj := NZj/Uj = Zj ×Cj−1,

where the left-hand side is the normal bundle of Zj in Uj. The total deformation space Uj
of Uj to the normal bundle Vj can be defined by

Uj := SpecUj
(⊕

i∈Z I
i
Zj
⊗ t−i

)
,

where IZj ⊂ OUj is the ideal of Zj, and I iZj = OUj for i 6 0. We can identify Uj with a

relative affine open subset of the blow-up of Uj ×C along Zj × {0}, on which the functions

xi := x′i/t (i < j)

are well-defined, where t is the coordinate of the second factor of Uj × C, that is, the
parameter of deformation. Note that the normal bundle Vj is contained in Uj as the fiber
over t = 0 (which is a relative affine open subset of the exceptional divisor of the blow-up),
since

Vj = SpecUj
(⊕

i>0 I
i
Zj
/I i+1

Zj
⊗ t−i

)
.

Set
zi := xi|Vj (i < j).

These give the decomposition (2.4.1) by inducing coordinates of the second factor of (2.4.1).

Consider now the following function on Uj :

(2.4.2) f̃a,j := π∗j (s/s
′m
j )|Uj −

∑
i<j ai x

m
i ,

where πj : Uj → Uj is the canonical morphism. Restricting over t = 1, we have

(2.4.3) f̃a,j|t=1 = fa,j,

On the other hand, restricting over t = 0, we get

(2.4.4) f̃a,j|Vj = pr∗1
(
fa,j|Zj

)
−
∑

i<j ai z
m
i = pr∗1f

′
j −

∑
i<j ai z

m
i ,

where pr1 : Vj → Zj is the canonical projection, and f ′j is as in Theorem 2. To (2.4.4) we
can apply a Thom-Sebastiani theorem (see Theorem (3.2) below).

Remarks 2.5. (i) The restriction of f̃a,j to a sufficiently small neighborhood U ′j of Zj×C in
Uj is a topologically locally trivial family parametrized by t ∈ C, since the s′j are sufficiently

general. The vanishing cycle functor along f̃a,j for Qh,U ′j commutes with the restriction to
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t = c for any c ∈ C. This follows from [DiMaSaTo] as in the proof of (2.2.6). (Here analytic
mixed Hodge modules are used.)

(ii) Let M be a mixed Hodge module on X × C. Assume its underlying Q-complex is
isomorphic to the pull-back of a Q-complex on X by the first projection p : X × C → X.
Then M is isomorphic to the pull-back of a mixed Hodge module on X by p up to a shift
of a complex. In fact, we have the isomorphism p∗p∗M→M in this case. (We apply this
to X = Zj and M = ϕf̃a,jQh,Uj [dUj − 1]|Zj .)

3. Application of Thom-Sebastiani theorem

In this section we prove Theorems 2 and 3 after giving a rather simple proof of the Thom-
Sebastiani theorem for filtered D-modules.

3.1. Algebraic microlocalization. Let Y be a smooth complex algebraic variety (or a
connected complex manifold) with f a non-constant function on Y , that is f ∈ Γ(Y,OY )\C.
Let if : Y ↪→ Y × C be the graph embedding by f , and t be the coordinate of the second
factor of Y ×C. Set

(Bf , F ) := (if )
D
∗ (OY , F ) = (OY [∂t], F ),

where (if )
D
∗ is the direct image of filtered D-modules, see (1.2.4). The last isomorphism is

as filtered OY [∂t]-modules, and the sheaf-theoretic direct image (if )∗ is omitted to simplify
the notation. The actions of t and ∂yi with yi local coordinates of Y are given by

(3.1.1)
t(g ∂jt ) = fg ∂jt − jg ∂

j−1
t ,

∂yi(g ∂
j
t ) = (∂yig) ∂jt − (∂yif)g ∂j+1

t (g ∈ OY ),

In this section, the Hodge filtration F is indexed as in the case of right D-modules (since
there is a shift of filtration under the direct images by closed embeddings for left D-modules,
see (1.2.4)). So we have

(3.1.2) GrFp Bf =

{
OY ∂ p+dYt if p > −dY ,
0 otherwise.

By (1.2.2) this does not cause a problem when we use the de Rham functor DR.

Let B̃f be the algebraic microlocalization of Bf (see [Sa7]), that is,

(3.1.3) (B̃f , F ) = (OY [∂t, ∂
−1
t ], F ) with GrFp B̃f = OY ∂ p+dYt (p ∈ Z).

Let V be the microlocal V -filtration on B̃f along t = 0, see [Sa7]. This is obtained by
modifying the V -filtration of Kashiwara [Ka2] and Malgrange [Mal] on Bf . It is an exhaustive
decreasing filtration indexed discretely by Q and satisfying the properties as below, and
moreover it is uniquely determined by them.

(a) The V αB̃f are finitely generated over DY [∂−1
t ] (α ∈ Q).

(b) t(V αB̃f ) ⊂ V α+1B̃f , ∂t(V αB̃f ) = V α−1B̃f (α ∈ Q).

(c) The action of ∂tt− α on GrαV B̃f is nilpotent (α ∈ Q).

The property (a) follows from the assertion that DY [s]f s is locally finitely generated over
DY (more precisely, it is subholonomic, see [Ka1]). In fact, the latter property implies
that the V αBf are also locally finitely generated over DY . (Here it is also possible to use
[Sa3, 3.2.1.2] together with Nakayama’s lemma, since any element of Bf is annihilated by a
sufficiently high power of t− f .)
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By the construction in [Sa7] there are canonical isomorphisms

(3.1.4) can : GrαV (Bf , F )
∼−→ GrαV (B̃f , F ) (α < 1),

(3.1.5) ∂ kt : (B̃f ;F, V )
∼−→ (B̃f ;F [−k], V [−k]) (k ∈ Z).

Note that the morphism can in (3.1.4) for α = 1 is strictly surjective by [Sa3, Lemma 5.1.4
and Proposition 5.1.14]. In fact, by setting

X := f−1(0) ⊂ Y,

the morphism can in (3.1.4) for α = 1 is identified with the underlying morphism of filtered
DY -modules of the morphism can in the short exact sequence of mixed Hodge modules

(3.1.6) 0→ Qh,X [dX ]→ ψf,1Qh,Y [dX ]
can−→ ϕf,1Qh,Y [dX ]→ 0.

By (3.1.4–5) we have the canonical isomorphisms for any α ∈ Q

(3.1.7) DRY (GrαV B̃f ) = ϕf,e(−α)CY [dX ],

where e(−α) := exp(−2πiα). In fact, (3.1.7) is well-known for Bf , instead of B̃f , if α ∈ [0, 1)

(but not (0, 1]). Then it holds for B̃f and for any α ∈ Q by (3.1.4–5).

Consider the vanishing cycle mixed Hodge module

ϕfQh,Y [dX ].

Its underlying filtered D-module can be given by

(3.1.8)
⊕

α∈(−1,0] GrαV (B̃f , F ),

Here the filtration F is not shifted, although it is shifted by 1 if we use GrαV B̃f for α ∈ (0, 1]

instead of α ∈ (−1, 0]. If fact, if we use Bf instead of B̃f in (3.1.8), then we get the nearby
cycle functor ψf instead of the vanishing cycle functor ϕf , and the filtration F is shifted
by 1, where α ∈ (0, 1] (which corresponds to the so-called “lower extension”), see [Sa3,

5.1.3.3]. This implies a similar assertion for B̃f , since the morphism can in (3.1.4) induces
an isomorphism or a surjection for α ∈ (0, 1]. Thus there is no shift of the filtration F
in (3.1.8) by using (3.1.5) for j = 1. (In this section, we index the filtration F like right
D-modules as is explained before (3.1.2), and V is indexed increasingly so that Vα = V −α

and GrVα = Gr−αV . In the case α = 0, the above definition of the filtration F on the vanishing
cycle mixed Hodge module is compatible with the original definition of ϕ in [Sa3, 5.1.3.3].)

In particular, we get for α ∈ (−1, 0]

(3.1.9) GrFp GrαV B̃f = 0 (p < −dX).

For α = 0, this uses the strict surjectivity of (3.1.4) for α = 1. (This is closely related to the
strict negativity of the roots of b-functions, see [Ka1].)

We have a Thom-Sebastiani theorem as below. This is a special case of the assertion
mentioned in [Sa7, Remark 4.5], and also follows from [Sa10] (see also [DeLo], [GeLoMe] for
the motivic version, and [ScSt], [Va] for the isolated hypersurface singularity case). We give
here a short proof for the convenience of the reader.

Theorem 3.2. Let Ya be a smooth complex algebraic variety (or a connected complex
manifold) with fa a non-constant function, that is, fa ∈ Γ(Ya,OYa) \ C, for a = 1, 2. Set
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Y = Y1×Y2 with f = f1 +f2. Then there are canonical isomorphisms of filtered DY -modules
for α ∈ (−1, 0] :

(3.2.1)
GrαV (B̃f , F ) =

⊕
α1∈I(α) Grα1

V (B̃f1 , F )�Grα−α1
V (B̃f2 , F )

⊕
⊕

α1∈J(α) Grα1
V (B̃f1 , F )�Grα−1−α1

V (B̃f2 , F [−1]),

by replacing Ya with an open neighborhood of Xa := f−1
a (0) in Ya (a = 1, 2) if necessary,

where
I(α) := (−1, 0] ∩ [α, α + 1) J(α) := (−1, 0] ∩ [α− 1, α).

Note. Setting α2 = α− α1, α′2 = α− 1− α1, we have

(3.2.2) α1 ∈ I(α) ⇐⇒ α1, α2 ∈ (−1, 0], α1 ∈ J(α) ⇐⇒ α1, α
′
2 ∈ (−1, 0].

Proof. Set Σa = Sing f−1
a (0) (a = 1, 2). By replacing Ya with an open neighborhood of Xa

(a = 1, 2) if necessary, we may assume

Sing f−1(0) = Σ1 × Σ2.

In fact, f−1(0) is the inverse image of the anti-diagonal of C×C by f1 × f2.

By [Sa7, Section 4.1] we have the short exact sequence

(3.2.3) 0→ (B̃f1 � B̃f2 ;F [1], V [1])
ι→ (B̃f1 � B̃f2 ;F, V )

η→ (B̃f ;F, V )→ 0,

where ι is defined by
∂t1 � id− id� ∂t2 ,

and η by
η
(
g1∂

i1
t1 � g2∂

i1
t2

)
:= g1g2∂

i1+i2
t for ga ∈ OYa (a = 1, 2).

Note that

(3.2.4) (B̃f1 � B̃f2 ;F, V ) := (B̃f1 ;F, V )� (B̃f2 ;F, V ),

where the external product � is taken as that of OYa-modules (a = 1, 2).

By (3.2.4) we have the following filtered isomorphisms (see Remark (3.3)(i) below):

(3.2.5) GrαV (B̃f1 � B̃f2 , F )
∼←−
⊕

α1∈Q Grα1
V (B̃f1 , F )�Grα−α1

V (B̃f2 , F ) (α ∈ Q).

By the definition of ι and by using (3.1.5) for j = 1, the filtered isomorphism (3.2.5) implies
the filtered isomorphism

(3.2.6) (Coker GrαV ι, F ) ∼=
⊕

α1∈(−1,0] Grα1
V (B̃f1 , F )�Grα−α1

V (B̃f2 , F ) (α ∈ Q),

where the left-hand side is defined to be a quotient of GrαV (B̃f1 � B̃f2 , F ).

We can verify that (3.2.3) induces an isomorphism of bi-filtered DY -modules

(3.2.7) (Coker ι;F, V )
∼−→ (B̃f ;F, V ),

which is also compatible with the action of t, ∂t. Here the action of t and ∂t on Coker ι is
defined respectively by t1 + t2 and either ∂t1 or ∂t2 (by the definition of ι).

In fact, the compatibility of the isomorphism (3.2.7) with F follows from the definition
(3.1.3). The compatibility with the filtration V is equivalent to that η is strictly compatible
with the filtration V . By the uniqueness of the microlocal filtration V explained in (3.1),
this is also equivalent to that the quotient filtration V on Coker ι satisfies the conditions

of the microlocal V -filtration in (3.1). Here the finiteness condition (a) for B̃f follows from

that for B̃fa . Condition (b) follows from the definition of the action of t, ∂t explained above.
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Condition (c) is verified also by using the definition of the action of t, ∂t on the left-hand
side (especially t = t1 + t2). Thus (3.2.7) follows.

Using (3.2.5), we can prove that ι is bistrictly injective. This implies that the short exact
sequence (3.2.3) is bistrictly exact by using the theory of compatible filtrations in [Sa3,
Section 1]. So the cokernel commutes with GrαV in a compatible way with the filtration F .
(This does not necessarily hold if ι is not bistrictly compatible with F, V .)

The assertion (3.2.1) now follows from (3.2.6–7). In fact, (3.2.6) says that Coker GrαV ι for
α ∈ (−1, 0] is given by the direct sum over the index set defined by the conditions:

α1 ∈ (−1, 0], α1 + α2 = α ∈ (−1, 0] with α2 := α− α1,

where α2 ∈ (−1, 1), and does not necessarily belong to (−1, 0]. However, the difference with
the union of the index sets of the direct sums in (3.2.1) (see also (3.2.2)) can be recovered by
using (3.1.5) for a = 2, j = 1, where we get the shift of F by −1 in the last term of (3.2.1).
Thus Theorem (3.2) follows.

Remarks 3.3. (i) The proof of (3.2.5) is not completely trivial, since we have to use

the assertion that the filtrations F , F (1), F (2), V , V(1), V(2) on B̃f1 � B̃f2 form compatible

filtrations in the sense of [Sa3, Section 1], where F (a) is induced by F on B̃fa , and similarly
for V(a) (a = 1, 2). Note that F is the convolution of F (1), F (2), and similarly for V , see
Remark (ii) below for convolution. We can prove the compatibility of the above six filtrations
by using [Sa3, Theorem 1.2.12]. In fact, the compatibility of the four filtrations F (1), F (2),
V(1), V(2) follows from the definition, since the external product is an exact functor for both

factors. Then we can apply Remark (ii) below, and (3.2.5) follows by taking GrV(2) . In fact,
we have the canonical isomorphisms

Grα1
V(1)

Grα2
V(2)

(B̃f1 � B̃f2) = Grα1
V B̃f1 �Grα2

V B̃f2 ,

which is compatible with the filtrations F (1), F (2).

In this case, however, there is an additional difficulty, since the filtration V does not satisfy
the condition V α = 0 for α� 0 (and similarly for V α

(1), V
α

(2)). In order to avoid this problem,

we restrict to V β
(1), and take the inductive limit for β → −∞. Note that the induced filtration

V(2) on GrαV V
β

(1) satisfies the above property (since V γ
(2)GrαV V

β
(1) = 0 for γ > α− β).

(ii) In general, if there are compatible m filtrations F(1), . . . , F(m) of an object M of an
abelian category A where the inductive limit over a directed set is always an exact functor
(for instance, the category of C-vector spaces), then we can show by using [Sa3, Theorem
1.2.12] that the m + 1 filtrations F(1,2), F(1), . . . , F(m) also form compatible filtrations of M ,
where F(1,2) is the convolution of F(1) and F(2), that is,

F p
(1,2)M =

∑
q∈Z F

q
(1)M ∩ F

p−q
(2) M.

This assertion can be reduced to the finite sum case by using an inductive limit argument
as above, and then to the finite filtration case (by replacing F p

(1), F
q
(2) with 0 for p, q � 0).

Here we have the canonical isomorphisms

GrpF(1,2)
M

∼←−
⊕

q∈Z GrqF(1)
Grp−qF(2)

M,

which is compatible with the filtrations F(i) (i > 2). This can be shown by using

Grp−qF(2)
GrpF(1,2)

M = GrpF(1,2)
Grp−qF(2)

M = GrqF(1)
Grp−qF(2)

M,

where we need the abelian category containing the exact category of (m− 2)-filtered objects
of A as in [Sa3, Sections 1.3.2–3].
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(iii) Since the de Rham functor DR is compatible with the exterior product �, we can
deduce from Theorem (3.2) the following isomorphisms of complexes of OY -modules for
α ∈ (−1, 0], p ∈ Z:

(3.3.1)

GrpFDRY (GrαV B̃f )

=
⊕

α1+α2=α, p1+p2=p Grp1F DRY1(Grα1
V B̃f1)�Grp2F DRY2(Grα2

V B̃f2)

⊕
⊕

α1+α2=α−1, p1+p2+1=p Grp1F DRY1(Grα1
V B̃f1)�Grp2F DRY2(Grα2

V B̃f2),

where α1, α2 ∈ (−1, 0], and F p = F−p. (Note that Grp2F = Gr
p′2
F [−1] with p′2 := p2 + 1.)

Setting λa = exp(−2πiαa), we have αa = −`(λa) (a = 1, 2), and

(3.3.2) α1 + α2 6 −1 ⇐⇒ `(λ1) + `(λ2) > 1.

If these equivalent conditions are satisfied, then (3.3.1) says that the index p of the Hodge
filtration F increases by 1. This is very important for the proofs of Theorems 2 and 3.

(iv) In the notation of (3.1), assume Y2 = C with coordinate x2, and f2 = a xm2 with
a ∈ C∗. Then the Milnor fiber Ff2,0 consists of m points, and

(3.3.3) H̃0(Ff2,0,C)λ =

{
C if λm = 1 and λ 6= 1,

0 otherwise,

where H̃ denotes the reduced cohomology. This implies

(3.3.4) Grp2F DRY2(Grα2
V B̃f2) ∼=

{
C if p2 = 0, α2 ∈

{
1
m
, . . . , m−1

m

}
,

0 otherwise.

Note that we have in this case

(3.3.5) ϕfCY = ϕf1CYa ⊗C H̃
0(Ff2,0,C)[−1].

In general the mixed Hodge modules are stable by ψ[−1], ϕ[−1], and Theorem (3.2) implies
as is well-known (see [Mas], [Sch1, Corollary 1.3.4 in p. 72]):

(3.3.6) ϕfCY = ϕf1CY1 � ϕf2CY2 [−1].

3.4. Proofs of Theorems 2 and 3. Theorem 2 follows from (2.4.3–4), (3.3.1–2), (3.3.4–6)
and Remarks (2.5). Theorem 3 also follows by using (3.3.1–2) and (3.3.6) together with the
compatibility of the Todd class transformation td∗ : K0(X) → H•(X) with cross products
(or Künneth maps), see [BaFuMa, Section III.3]. This finishes the proofs of Theorems 2 and
3.

Remarks 3.5. (i) By the proof of Theorem 3, the assertion holds at the level of Grothendieck
groups, and we have the following equality in K0(Σ)

[
ỹ1/e

]
:

(3.5.1) DRỹ[ϕfQh,Y , Ts] = −DRỹ[ϕf1Qh,Y1 , Ts] � DRỹ[ϕf2Qh,Y2 , Ts].

(ii) Theorem 3 does not necessarily hold if there are non-zero critical values ca of fa
(a = 1, 2) with c1+c2 = 0, since the last condition is equivalent to the condition Σ 6= Σ1×Σ2.
However, we can apply Theorem 3 with fa replaced by fa − ca (a = 1, 2) in the above case.

(iii) In Theorem 3, X is never compact even if X1, X2 are compact, since X is the inverse
image of the anti-diagonal of C×C by f1 × f2. Extending the situation in Theorem 3, we
may consider the case where f1, f2 are proper morphisms from smooth varieties to P1 and X
is defined by the inverse image of the anti-diagonal of P1×P1. In this case X is compact. We
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can apply Theorem 3 by choosing an appropriate local coordinate of P1 on a neighborhood
of each critical value ca of fa (a = 1, 2) with (c1, c2) belonging to the anti-diagonal of P1×P1.

4. Relation with rational and Du Bois singularities

In this section some relations with rational and Du Bois singularities are explained.

4.1. Primitive decomposition of nearby cycles. Let Y be a smooth complex algebraic
variety (or a connected complex manifold), and f be a non-constant function on Y , that is,
f ∈ Γ(Y,OY ) \C. Assume X := f−1(0) ⊂ Y is reduced in this section.

With the notation of (3.1), we first show the short exact sequence

(4.1.1) 0→ ω̃X⊗OXω∨X → F−dXGr1
V Bf

can−→ F−dXGr1
V B̃f → 0.

Here
ω̃X := (ρ)∗ωX̃ ⊂ ωX , ω∨X := HomOX (ωX ,OX),

with ρ : X̃ → X a resolution of singularities, and

ωX = ωY ⊗OY OX ,
since X is globally defined by f , see [Sa6, Lemma 2.9].

For the proof of (4.1.1), we use the monodromy filtration W on Gr1
V Bf shifted by dX ,

which is uniquely characterized by the following conditions:

(4.1.2)
N(Wi Gr1

V Bf ) ⊂ Wi−2 Gr1
V Bf (i ∈ Z),

N i : GrWdX+i Gr1
V Bf

∼−→ GrWdX−i Gr1
V Bf (i > 0).

The primitive part is defined by

(4.1.3) PGrWdX+i Gr1
V Bf := KerN i+1 ⊂ GrWdX+i Gr1

V Bf (i > 0),

with PGrWdX+i Gr1
V Bf = 0 (i < 0). This implies the primitive decomposition

(4.1.4) GrWj Gr1
V Bf =

⊕
k>0N

k
(
PGrWj+2k Gr1

V Bf
)

(j ∈ Z),

and the co-primitive part can be expressed by

(4.1.5)
N i
(
PGrWdX+i Gr1

V Bf
)

= Ker
(
GrWdX−i Gr1

V Bf
N−→ GrWdX−i−2 Gr1

V Bf
)

= Ker
(
GrWdX−i Gr1

V Bf
can−→ GrWdX−i Gr1

V B̃f
)

(i > 0).

Indeed, the first isomorphism follows from the primitive decomposition (4.1.4). As for the
last isomorphism, note that the canonical morphism

can : Gr1
V Bf → Gr1

V B̃f
is identified with the morphism

can : Gr1
V Bf → Gr0

V Bf ,
which is defined by −GrV ∂t. Moreover, for the latter, we have

N = Var ◦ can,

where Var is defined by GrV t, and is injective, see [Sa3, 5.1.3.4]. So the last isomorphism
of (4.1.5) also follows.

Returning to the proof of (4.1.1), we get by (3.1.9)

(4.1.6) F−dX
(
N i
(
PGrWdX+i Gr1

V Bf
))

= F−dX−i
(
PGrWdX+i Gr1

V Bf
)
= 0 (i > 0),
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and it follows from [Sa6, Proposition 2.7] that

(4.1.7) F−dX
(
PGrWdX Gr1

V Bf
)
= ω̃X⊗OXω∨X ,

since Bf is a left D-module. So (4.1.1) follows.

We denote by ICXQh the mixed Hodge module of weight dX such that its underlying
Q-complex is the intersection complex ICXQ. We have

(4.1.8) ICXQh = GrWdX (Qh,X [dX ]) = PGrWdXψf,1Qh,Y [dX ],

where the two isomorphisms follow from [Sa5, 4.5.9] and (3.1.6) together with the primitive
decomposition as in (4.1.4).

Comparing (4.1.1) with (3.1.6), we see that the exactness of (4.1.1) is essentially equivalent
to

(4.1.9) F−dX (Qh,X [dX ]) = F−dX (ICXQh) = ω̃X .

Here we set in general

(4.1.10) Fp0M := Fp0M,

if (M,F ) is the underlying filtered right D-module of a mixed Hodge module M, where

p0 := min
{
p ∈ Z | GrFpM 6= 0

}
.

These are independent of embeddings of algebraic varieties into smooth varieties as long as
right D-modules are used.

4.2. Rational singularities. With the notation and the assumption of (4.1), we have the
following canonical isomorphism by (4.1.1):

(4.2.1) (ωX/ω̃X)⊗OXω∨X = F−dX (B̃f/V >1B̃f ),
(see also [Sa6, Theorem 0.6]), since

(4.2.2) F−dX (Bf/V >1Bf ) = OX ,
where V >α := V α+ε (0 < ε� 1) for α ∈ Q in general.

In fact, by (3.1.9), (3.1.4–5), and [Sa3, 3.2.1.2], we have

(4.2.3) F−dXV
>0Bf = F−dXBf = OY , F−dXV

>1Bf = t(F−dXV
>0Bf ).

Thus (4.2.2) and (4.2.1) follow.

As a corollary of (4.2.1), we see that X has only rational singularities if and only if

(4.2.4) F−dX (B̃f/V >1B̃f ) = 0, or equivalently F−dX (ϕfQh,Y [dX ]) = 0,

under the notation (4.1.10), see also [Sa6, Theorem 0.6] (and [Sa1] in the isolated singularity
case). Consider the classes

(4.2.5)

[
(ωX/ω̃X)⊗OXω∨X

]
=
[
F−dX (B̃f/V >1B̃f )

]
,[

ωX/ω̃X
]

=
[
F−dX (ϕfQh,Y [dX ])

]
in K0(Σ).

These may be called the irrationality of the singularities of X at least in the Σ projective
case by the argument after (4.2.7) below. In the isolated singularity case, its dimension is
called the geometric genus, see [Sa1].

If X has only rational singularities, then the last condition in (4.2.4) implies

(4.2.6) DRy

[
ϕfQh,Y [dX ]

]∣∣
ydX =

[
F−dX (ϕfQh,Y [dX ])

]
= 0 in K0(Σ),
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(see also (1.2.6)), where |ydX means taking the coefficient of ydX . (Recall that rightD-modules
are used in (4.1.10).) Moreover we have the following.

(4.2.7) The converse holds if Σ is a projective variety.

In fact, if the singularities of X are irrational, then we can show the non-vanishing of (4.2.6)
in K0(PN)Q with PN projective space containing Σ by using the topological filtration in
(1.6) together with the positivity (see (1.6.4–5)) of the image by the cycle class map (1.6.3)
of the coherent sheaf

F := F−dX (ϕfQh,Y [dX ]).

4.3. Du Bois singularities. With the notation and the assumption of (4.1), let Dh,X be
the dual of Qh,X . Since Qh,X [dX ] is a mixed Hodge module, so is Dh,X [−dX ]. Then we have
the short exact sequence of mixed Hodge modules

(4.3.1) 0→ ϕf,1Qh,Y (1)[dX ]
Var−→ ψf,1Qh,Y [dX ]→ Dh,X(−dX)[−dX ]→ 0,

which is the dual of (3.1.6) (up to a sign). In fact, Var is the dual of can in (3.1.6) up to a
sign, see [Sa3, Section 5.2]. The underlying exact sequence of filtered D-modules of (4.3.1)
is identified with

(4.3.2) 0→ (ImN,F )→ (Gr1
V Bf , F )→ (CokerN,F )→ 0,

and the primitive decomposition (4.1.4) implies

(4.3.3) GrWdX+i(CokerN,F ) = PGrWdX+i(Gr1
V Bf , F ) (i > 0),

since GrW commutes with taking the cokernel of N , see [Sa3, Proposition 5.1.14]. Setting

ω̃′X := F0

(
Dh,X [−dX ]

)
= Gr0

F

(
DR(Dh,X [−dX ])

)
,

we then get by (4.3.1–3) and (4.1.6)

(4.3.4) ω̃′X = F−dX
(
Dh,X(−dX)[−dX ]

)
= F−dX

(
ψf,1Qh,Y [dX ]

)
.

Combined with (4.2.2), these imply

(4.3.5) (ωX/ω̃
′
X)⊗OXω∨X = F−dX (Bf/V 1Bf ) = F−dX (B̃f/V 1B̃f ).

Since the dual functor D commute with DR (or rather DR−1, see [Sa3, Section 2.4.11]) and
also with Gr0

F by definition, we have by the definition of ω̃′X just before (4.3.4)

(4.3.6) D(ω̃′X) = Gr0
FDR(Qh,X [dX ]).

Here the left-hand side is the Grothendieck dual of the OX-module ω̃′X , and we have

D(F) := RHomOX (F , ωX [dX ]) for F ∈ Db
coh(OX).

It follows from (4.3.6) that X has only Du Bois singularities (see [St3]) if and only if

(4.3.7) ω̃′X = ωX ,

(since D(ωX) = OX [dX ]). This condition is equivalent to the vanishing of the OX-modules
in (4.3.5). Moreover the last condition is equivalent to

(4.3.8) F−dX (ψf, 6=1Qh,Y [dX ]) = F−dX (ϕf, 6=1Qh,Y [dX ]) = 0.

This implies by using (5.1.6) below

(4.3.9) X has only Du Bois singularities if and only if lct(f) = 1,

where the log canonical threshold lct(f) is defined to be the minimal jumping coefficients as
in (0.12) in the introduction.
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Remarks 4.4. (i) The assertion (4.3.9) is equivalent to [Sa9, Theorem 0.5] where the
statement is given in terms of the maximal root −αf of the Bernstein-Sato polynomial
bf (s). In fact, it is well-known that

(4.4.1) lct(f) = αf .

This follows, for instance, from [BuSa] combined with [Mal]. This well-known assertion
together with some relevant references does not seem to be quoted in [KoSc], although the
theorem in [Sa9] explained above is mentioned after [KoSc, Corollary 6.6], where it is shown
that a reduced hypersurface X ⊂ Y has only Du Bois singularities if and only if (Y,X) is a
log canonical pair, see also Remark (ii) below.

(ii) It is well-known (and is easy to show) that (Y,X) is a log canonical pair with X reduced

if and only if lct(f) = 1. In fact, let ρ : (Ỹ , X̃) → (Y,X) be an embedded resolution. We
have

(4.4.2) X̃ = ρ∗X = X̃ ′ +
∑

imiEi, ωỸ = (ρ∗ωY )
(∑

i νiEi
)

(mi, νi ∈ Z>0),

where the Ei are the exceptional divisors of ρ, and X̃ ′ is the proper transform of X. (The
last equality is equivalent to that div

(
Jac(ρ)

)
=
∑

i νiEi, where Jac(ρ) is the Jacobian of ρ

with respect to some local coordinates of Ỹ , Y .) By (4.4.2) we then get

(4.4.3) ωỸ (X̃ ′) =
(
ρ∗ωY (X)

)(∑
i (νi −mi)Ei

)
.

Since lct(f) = min JC(f) by definition, the equality (4.4.3) implies

(4.4.4)
(Y,X) is a log canonical pair ⇐⇒ νi −mi > −1 (∀ i)
⇐⇒ (νi + 1)/mi > 1 (∀ i) ⇐⇒ lct(f) = 1,

where the first equivalence is by the definition of canonical pairs together with (4.4.3), see
[KoSc]. The last equivalence follows from the well-known assertion:

(4.4.5) lct(f) = min{(νi + 1)/mi} if lct(f) < 1 or min{(νi + 1)/mi} < 1.

By the definition of JC(f) (see (5.1) below), the last assertion can be verified by calculating

the integration of ρ∗(|f |−2αω∧ω) on Ỹ , where ω is a nowhere vanishing holomorphic form of
degree dY locally defined on Y , and α ∈ (0, 1]. In fact, this can be reduced to a well-known
assertion saying that we have for β ∈ R, c ∈ R>0∫ c

0

rβdr <∞ ⇐⇒ β > −1.

4.5. Proof of Theorem 5. We first show the second case where X is globally defined by
a function f on Y . By the polarization on the nearby and vanishing cycle mixed Hodge
modules (see [Sa3, Section 5.2], [Sa4]), we have the self-dualities

(4.5.1)
D(ϕf, 6=1Qh,Y [dX ]) = (ϕf, 6=1Qh,Y [dX ])(dX),

D(ϕf,1Qh,Y [dX ]) = (ϕf,1Qh,Y [dX ])(dX + 1),

since ψf, 6=1 = ϕf, 6=1, and dY = dX + 1. (Note that the monodromy filtration is self-dual.)
These imply in the notation of (4.1.10)

(4.5.2)

D
(
Gr0

FDR(ϕf, 6=1Qh,Y [dX ])
)

= GrdXF DR(ϕf, 6=1Qh,Y [dX ])

= F−dX (ϕf, 6=1Qh,Y [dX ]),

D
(
Gr0

FDR(ϕf,1Qh,Y [dX ])
)

= GrdX+1
F DR(ϕf,1Qh,Y [dX ])

= 0.
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Recall that right D-modules are used in (4.1.10).

So the first assertion of Theorem 5 in the second case follows from the assertion concerning
(4.3.8), since D2 = id and

(4.5.3) M0(X) = td∗
[
Gr0

FDR(ϕfQh,Y )
]
.

To show the converse, assume that X is not Du Bois, that is,

(4.5.4) F := F−dX (ϕf, 6=1Qh,Y [dX ]) 6= 0.

By (4.5.2–3) we have to show

(4.5.5) td∗
[
D(F)

]
6= 0 in H•(PN),

where we can replace H•(Σ) with H•(PN) by the compatibility of td∗ with the pushforward by
proper morphisms. Then the assertion follows by using the topological filtration on K0(PN)Q
and H•(PN) in (1.6) together with the positivities in (1.6.4–5) (see also an argument after
(4.2.7)). This finishes the proof of Theorem 5 in the second case.

For the proof in the first case, note that the support of F in (4.5.4) is independent of the
choice of a local defining function of X (where the ambiguity comes from the multiplication
by a nowhere vanishing function). However, we have to take here the direct image (iΣ1\X′1,Σ′1)!

of a mixed Hodge module. This can be calculated as in the proof of Proposition (1.4), and
the latter shows that it is enough to take the closure of the support of the coherent sheaf
which gives the non-Du Bois locus. This closure is independent of the choice of s′1, and
taking the direct image does not cause a problem as long as s′1 is sufficiently general so that
X ′1 = s′ −1

1 (0) does not contain this support. So the assertion follows. Here it is enough to
consider the summand in (0.1) with j = 1 by using (0.13) together with Theorem 2. This
finishes the proof of Theorem 5.

Remark 4.6. We do not know a priori the support of the coherent sheaf in the above
argument, and there might be some problem about the genericity condition on s′1 (that is,
the condition that s′ −1

1 (0) does not contain the support). It may be better to argue as
follows:

On a dense Zariski-open subset U of the parameter space of s′1, X ′1 = s′ −1
1 (0) intersects the

strata of a Whitney stratification of X transversally so that M0(X) can be defined. Moreover
M0(X) in the graded pieces of the topological filtration in (1.6) is independent of the choice
of s′, since it is given by the cycle map, see (1.6). (Here [DiMaSaTo] is also used.) There is
another dense Zariski-open subset U ′ of the parameter space of s′1 such that X ′1 = s′ −1

1 (0)
does not contain the non-Du Bois locus. We have U ⊂ U ′, since the image of the cycle map
would vanish if s′1 /∈ U ′. So no problem occurs.

4.7. Proof of Proposition 3. The duality isomorphisms in (4.5.1) are compatible with the
action of the semisimple part of the monodromy Ts, where the e(α)-eigenspace is the dual
of the e(−α)-eigenspace, see also [Sa7, 2.4.3]. The argument is then essentially the same as
in the proof of Theorem 5 by using the topological filtration in (1.6) together with [BuSa,
Theorem 0.1] (see (5.1.6) below) which gives the relation with the jumping coefficients. This
finishes the proof of Proposition 3.

4.8. Isolated hypersurface singularity case. Let f : (Y, 0) → (∆, 0) be a germ of
a holomorphic function on a complex manifold Y such that X := f−1(0) has an isolated
singularity at 0, where ∆ ⊂ C is an open disk. Let µf be the Milnor number of f . As in
[St2], the spectrum

Sp(f) =
∑µf

i=1 t
αf,i ∈ Z

[
t1/e
]
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with αf,i 6 αf,i+1 (i ∈ [1, µf − 1]) is defined by

(4.8.1) #
{
i | αf,i = α

}
= dim GrpF H̃

dY −1(Ff,0,C)e(−α) (p := [dY − α], α ∈ Q),

where Ff,0 denotes the Milnor fiber of f , and H̃k(Ff,0,Q) is identified with HkϕfQh,Y .

Set Y ′ := Y ×∆ ∆′ with ρm : (∆′, 0)→ (∆, 0) a totally ramified m-fold covering. Let β be
the smallest positive rational number such that e(β) (:= e2πiβ) is an eigenvalue of the Milnor
monodromy of f . Assume

(4.8.2) 1
m
6 β.

Then the following three conditions are equivalent to each other:

(a) (X, 0) is a Du Bois singularity.

(b) (Y ′, 0) is a rational singularity.

(c) f : Y → ∆ is a cohomologically insignificant smoothing.

Condition (c) means that Gr0
F H̃

k(Ff,0,C) = 0 (∀ k), see [St3]. (This condition is invariant
by the base change of ∆.)

Set h = f − zm on Y ×C with z the coordinate of C so that Y ′ = h−1(0). Then the above
three conditions are respectively equivalent to

(a)′ αf,1 > 1.

(b)′ αh,1 > 1.

(c)′ αf,µf 6 dY − 1.

In fact, the first two equivalences follow from the arguments related to conditions (4.2.4),
(4.3.8), and the last one from the above definition of spectrum, see (4.8.1). We have moreover
the symmetry (see [St2]):

(4.8.3) αf,i + αf,j = dY if i+ j = µf + 1,

together with the Thom-Sebastiani theorem as in [ScSt], [Va]:

(4.8.4) Sp(h) = Sp(f) Sp(g),

where g := zm. Since Sp(g) =
∑m−1

k=1 t
k/m (see Remark (3.3)(iv)), we then get

(4.8.5) αh,1 = αf,1 + 1
m
.

So the equivalences between (a), (b), (c) follow.

In the case ρm is associated with a semi-stable reduction, the above equivalences are a
special case of [St3, Theorem 3.12] combined with [Is, Theorem 6.3] where an arbitrary
smoothing of a normal (or Cohen-Macaulay) isolated singularity is treated. We take a
projective compactification of f as in [Br] to apply [Is].

5. Applications to multiplier ideals

In this section we give some applications to multiplier ideals in the hypersurface case.

5.1. Multiplier ideals. Let Y be a smooth complex algebraic variety (or a connected
complex manifold), and f be a non-constant function on Y , that is, f ∈ Γ(Y,OY ) \C. Let
J (αX) ⊂ OY be the multiplier ideal of X with coefficient α ∈ Q (or R more generally). It
can be defined by the local integrability of

(5.1.1) |g|2/|f |2α for g ∈ OY ,
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see [Na], [La]. By definition, the J (αX) form a decreasing sequence of ideal sheaves of OY
indexed by R and satisfying

(5.1.2) J (αX) = OY (α 6 0), J ((α + 1)X) = fJ (αX) (α > 0).

Multiplier ideals can be defined also by using an embedded resolution of X (loc. cit.), and
it implies

(5.1.3) J (αX) = J ((α + ε)X) (0 < ∀ ε� 1).

This means that J (αX) is right-continuous for α. More precisely, for any α′ ∈ R, the
argument using an embedded resolution shows{

α ∈ R | J (αX) = J (α′X)
}

= [β, β′) or (−∞, β′) for some β, β′ ∈ Q.

We define the graded quotients G(αX) by

G(αX) := J ((α− ε)X)/J (αX) (0 < ε� 1),

where the range of ε may depend on α (this is the same in (5.1.3)). We then have

JC(X) :=
{
α ∈ R | G(αX) 6= 0

}
⊂ Q.

The members of JC(X) are called the jumping coefficients of X. We will restrict to rational
numbers α when we consider J (αX), G(αX).

By (5.1.2) we get the isomorphisms

(5.1.4) f : G(αX)
∼−→ G((α + 1)X) (α > 0),

and

(5.1.5) JC(X) =
(
JC(X) ∩ (0, 1]

)
+ N.

Consider the filtration V on OY induced by the filtration V on Bf via the inclusion

OY = F−dY Bf ↪→ Bf .

By [BuSa, Theorem 0.1] we have

(5.1.6)
J (αX) = V αOY if α /∈ JC(X),

G(αX) = GrαVOY = V αOY /J (αX) if α ∈ JC(X).

This is related to the assertion that J (αX) is right-continuous for α as is explained above,
although V αOY is left-continuous for α.

We now consider the microlocal V -filtration on OY which is denoted by Ṽ , and is induced

by the filtration V on B̃f via the isomorphism

OY = GrF−dY B̃f .
Set

J̃C(X) :=
{
α ∈ Q | Grα

Ṽ
OY 6= 0

}
.

We have by (3.1.4)

(5.1.7) J̃C(X) ⊂ (0,+∞), J̃C(X) ∩ (0, 1) = JC(X) ∩ (0, 1).

However, the last equality does not necessarily hold if (0, 1) is replaced by (0, 1] (since J̃C(X)

does not necessarily contain 1), and (5.1.5) with JC(f) replaced by J̃C(f) does not necessarily
holds, see Example (5.6)(ii) below.
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We have the microlocal multiplier ideals J̃ (αX), and their graded quotients G̃(αX) such

that J̃ (αX) is right-continuous and

(5.1.8)
J̃ (αX) = Ṽ αOY if α /∈ J̃C(X),

G̃(αX) = Grα
Ṽ
OY = Ṽ αOY /J̃ (αX) if α ∈ J̃C(X).

As for the relation with the usual multiplier ideals, we have by (3.1.4), (4.1.1)

(5.1.9) J (αX) = J̃ (αX), G(αX) = G̃(αX) (α < 1),

(5.1.10) J̃ (X)/J (X) = ω̃X⊗OXω∨X ⊂ OX (α = 1),

(5.1.11) 0→ ω̃X⊗OXω∨X → G(X)→ G̃(X)→ 0 (α = 1).

Here we assume X reduced in (5.1.10–11). Note that we have by (5.1.2)

(5.1.12) J (X) = OY (−X) = IX (α = 1),

where the last term is the ideal sheaf of X.

We have the Thom-Sebastiani type theorem for microlocal multiplier ideals as follows.

Theorem 5.2. With the notation and the assumption of Theorem (3.2), there are equalities
for any α ∈ Q :

(5.2.1) J̃ (αX) =
∑

α1+α2=α J̃ (α1X1)� J̃ (α2X2) in OY = OY1 �OY2 .

by replacing Ya with an open neighborhood of Xa = f−1
a (0) in Ya (a = 1, 2) so that Σ = Σ1×Σ2

if necessary. Here we may assume α1, α2 ∈ (0, α) by the first equality in (5.1.2) together with
(5.1.9).

Proof. In (5.2.1) we may replace α1 + α2 = α by α1 + α2 > α, and assume for 0 < ε� 1/m

(5.2.2) αa ∈ J̃C(Xa)− ε (a = 1, 2),

(since J̃ (αX) is right-continuous), where m is a positive integer such that J̃C(Xa) ∈ Z/m.
We now show that (5.2.1) is equivalent to the following.

(5.2.3) Ṽ αOY =
∑

α1+α2=α Ṽ
α1OY1 � Ṽ α2OY2 in OY = OY1 �OY2 .

We may replace α1 + α2 = α by α1 + α2 > α in (5.2.3), and assume

(5.2.4) αa ∈ J̃C(Xa) (a = 1, 2),

since Ṽ α is left-continuous. However, we may also assume (5.2.2) with 0 < ε� 1/m instead
of (5.2.4) by replacing α with α−2ε if necessary. (Here ε may depend on α.) The equivalence
between (5.2.1) and (5.2.3) then follows from (5.1.8).

We can show (5.2.3) by taking GrF−dY of the isomorphism (3.2.7) and calculating GrF of

ι in (3.2.7), since GrFpa(B̃fa , V ) is essentially independent of pa by (3.1.5) (a = 1, 2). This
finishes the proof of Theorem (5.2).

Corollary 5.3. With the notation and the assumption of Theorem (3.2), there are canonical
isomorphisms for any α ∈ Q :

(5.3.1) G̃(αX) =
⊕

α1+α2=α G̃(α1X1)� G̃(α2X2),

by replacing Ya with an open neighborhood of Xa = f−1
a (0) in Ya (a = 1, 2) if necessary. Here

we may assume α1, α2 ∈ (0, α) as in Theorem (5.2).
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It is also possible to deduce this from Theorem (3.2). Combining Corollary (5.3) with
(5.1.9), (5.1.11), we get the following.

Corollary 5.4. With the notation and the assumption of Theorem (3.2), assume further X
reduced. We have the short exact sequence for α = 1 :

(5.4.1) 0→ ω̃X⊗OXω∨X → G(X)→
⊕

α1+α2=1 G(α1X1)� G(α2X2)→ 0.

by replacing Ya with an open neighborhood of Xa = f−1
a (0) in Ya (a = 1, 2) if necessary. Here

we may assume α1, α2 ∈ (0, 1) as in Theorem (5.2).

5.5. Proof of Theorem 4. The assertion follows from Theorem (5.2) and Corollary (5.3)
together with (5.1.9).

Examples 5.6. (i) Let Y = C with coordinate z. Set f = zm for m > 2. Then

(5.6.1) Ṽ i/mOY = OY zk if i = k + 1 +
[
k/(m− 1)

]
.

In fact, we have

(5.6.2) V i/mOY = OY zi−1 (i ∈ [1,m− 1]),

where V is the usual V -filtration on OY , see (5.1). This is compatible with [Sa2], and can
be proved by using the multiplier ideals together with (5.1.6).

We then get the inclusion ⊃ in (5.6.1) by using (5.6.2) together with the definition of the

action of ∂z in (3.1.1) and (3.1.5), since GrF∂z preserves the filtration Ṽ and ∂zf = mzm−1.
So it is enough to show

(5.6.3) dim Gr
i/m

Ṽ
OY =

{
1 if i > 1, i/m /∈ Z,

0 otherwise.

This follows from (3.3.3) by using (3.1.5) and recalling the definition of the direct image of
filtered D-modules by the inclusion {0} ↪→ C.

(ii) Let Y = Cd with coordinates z1, . . . , zd. Set f =
∑d

j=1 z
mj
j for mj > 2 (j ∈ [1, d]).

Then Example (i) together with (5.2.3) implies

(5.6.4) Ṽ αOY =
∑

νOY z
ν ,

where the summation is taken over ν = (ν1, . . . , νd) ∈ Nd satisfying

(5.6.5)
∑d

j=1
1
mj

(
νj + 1 +

[ νj
mj−1

])
> α.

In particular, we have

(5.6.6) Ṽ α̃fOY = OY 6= Ṽ >α̃fOY with α̃f :=
∑d

j=1
1
mj
, and lct(f) = min{1, α̃f}.

By (5.6.4–5) we see that the microlocal V -filtration on OY,0 has nothing to do with the
filtration V on the microlocal Gauss-Manin system as in [Sa2]. In fact, the latter coincides
with the usual Gauss-Manin system (since the Milnor fiber is contractible), and the filtration
V on it is induced by the usual V -filtration on Bf , see [Sa3, Proposition 3.4.8].
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[BrScYo] Brasselet, J.-P., Schürmann, J. and Yokura, S., Hirzebruch classes and motivic Chern classes
of singular spaces, Journal of Topology and Analysis 2, (2010), 1–55.

[Br] Brieskorn, E., Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta
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J. Schürmann : Mathematische Institut, Universität Münster, Einsteinstr. 62, 48149
Münster, Germany

E-mail address: jschuerm@uni-muenster.de


	25_Maxim_cover
	25_Maxim

