ON THE SOLUTIONS OF THE HOMOGENEOUS

COMPLEX MONGE-AMPERE EQUATION.

by

Giorgio Patrizio

Max-Planck-Institut fir Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3

and
Dipartimento di Matematica

II Universitd di Roma
00173 Roma - Italy

MPI 86-38






1. Introduction

In (5] Stoll showed that if M iéma non compact, connected complex
manifold of dimension m and T :_H-+[0,+mf is a Cm exhaustion func-

0 on M - 1 1(0),

tion such that ddt > 0 on M and (dd®logt)™
then theie exists a biholomorphic map ¢ : ¢™ - M such that for all

2 € ™ we have Ted(Z) = HZ|F. Stoll's proof was simplified in various
ways (see [2],{7]) and Stoll himself was able to give a version of

this theorem on complex spaces ([6]). The next étep has been to study

the case when the exhaustion verifies the same assumtions on M - 1—1(0)
and some weaker ones on 1_1(0). This was carried out in several direc=
tions by Burns [2], Wong (8] and by the author in [4].

Stoll's theorem and the successive results can be viewed from
different angles. On one hand they allow one to characterize complex
maﬂifolds which carry a strictly plurisubharmonic exhaustion with
some additicnal properties - most notheworthy its logarithm satisfies
the complex homogeneous Monge-Ampére eguation. On the other hand theese
results give a classification, up to biholomorphic maps, for certain
kind of solution of the complex homogeneous Monge~Ampére equation.

This is of particular interest sincé, at the moment, there is no
satisfactory understanding of this equation from the PDE point of view.

It is easy to give examples of solutions which'are not classified
by the known theory. If H : " ~ R is a positive homogeneous poly-
nomial of bidegree (p,p) (i.e. such that H(AZ) = |A|2PH(Z) for all
A €T and 2z €g™ with the property that da@a“s > 0 on «™ - {0},

then rank ddclogH = m-1 and therefore (ddclogH)m 0 on a™ - {0}

(

Clearly up to linear isomdrphisms (and in fact biholomorphisms) the

only positive homogeneous polynomial of bidegree (1,1) is |||2. For

P > 1 it is known that there are many non equivalent such polynomials.



In light of Stoll's theorem it is natural to ask whether it is
possible to characterize the solutions of the complex homogeneous
Monge-Ampére equation which pull back via.a bihclomorphic map

to logH where H is a homogeneous polynomial of bidegree (p,p),
p > 1. Related to this problem there is also a question of Burns
(f2]) who -asks whether a positive homogeneous polynomial H on
¢® (i.e. such that for some positive integer n one has H(tZ) =
tPH(Z) for all t € IR and 2z € T such that d&d®d > 0 and
(dd1ogH)™ = 0" 'on € -{0} has to be necessarily of bidegfee (p.pP)
for some p.

In this paper we address theese problems. Firstly, we gi&e
a positive answer to Burns' question (Theorem 3.4). Then we take
over the general case and we are ablé to give a characterization
(Theorem 453Y“Whidh"§0incides with Stoll's result when p = 1.

The main difference with Stell's theorem is that, when p > 1,
one has that the exhaustion is not anylonger strictly plurisub-
harmonic on its zero set since its order of vanishing is too high.
This difficulty is ovefcéme by taking suitable roots and using
the classification of non smooth exhaustions of Monge~-Ampére type
given in [ 4] where we characterized the strictly plurisubharmonic
Finsler metrics over T, Some of the results have alternative‘proofs.
We chose those which we felt were more elementary and made the .
paper as selfcontained as possible.

A word about notations. Upper indices will denote components
and lower ones derivatives. Summation conventions are also used
unless they may cause confusion. Finally we denote d = 3 + 2 and

c _ _i = _ c _ i
d” = 15;(3 3) so that dd~ = 75;33.
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2. Preliminaries

a) The Monge-Ampére foliation.

Let M be a connected complex manifold of dimension m and

T : M+ (0O,R) beacC proper function such that

(2.1) aa®t > 0

(2.2) (dd®10g7)™ = 0.

Since

(2.3) 4t = (ddlogt * dlogt A aSlogr),

by taking exterior powers, we get using (2.1) and (2.2)
(2.4) 0 < (da°n)™® = ‘rm(ddclog'r)m-1 A dlogt A dclogT.

From (2.4) one has immediately dt = tdlogt # 0 and (ddclog*r)m-1# 0.
Thus, because of (2.2), rankmddclogr = m-1. Using the equality
(2.5) t2aa®logr = 1ddr - dr a aSt,

taking exterior powers and recalling (2.2), one has

(2.6) 1(aa®n)™ = (aa®n)™ ! A ar A @1

so that, if (2.1) is satisfied, it follows that (2.2) is equivalent

to the local equation



(2.7) T= TN

where (Tvp)

AS ddclogT has rank m-1 and it is closed, a rank 1,

integrable distribution is defined on M by

1,0

(2.8) £ = Ann ddlogt = {v € T'*" (M) | ad%1logt(V,¥) = 0}.

The maximal integral manifold of I are Riemann surfaces and

define the so called Monge-Ampére foliation associated to 1. By

construction the leaves of the Monge-Ampére foliation are exactly
the one dimensional complex submanifold of M along which logrt
is harmonic (for more details see [1] or [7] for example).

If X 1s the complex gradient of 1, i.e. the vector field

dual with respect to the Kdhler metric 'ad®t > 0 to the form 3T,

then in local coordinates

(2.9) x = x" = VM
azH 3z
From (2,7) and (2.9) it follows that X(t) = 1t and thus, as

dt # 0, we have X # 0 on M, Again from (2.7) and (2.9), a
simple calculation shows that ddclogr(x,f) = 0 and therefore

£ 1is a trivial subbundle of T1'0

(M) generated by X. The leaves
of the Monge-Ampére foliation are then just the integral: (complex)
curves of X. In particular one should note that the Monge-Ampere
foliation is holomorphic (i.e. I 1is a holomorphic subbundle of
T1!0(M)) if and only if X 1s holomorphic.. This is gquite an
exceptional occurrence although X 1is always holomorphic whén
restricted to one leaf (see [51, Proposition 3.5 for example).

It should be noted that when (2.1) and (2.2) are satisfied,

then .we have also



(2.10) aa®rogt 2 0,

For a proof see for instance [8], Remark 2 in Section 5. We shall
also need two simple lemmata. The first one is a trivial consequence
of the definition of complex gradient and therefore we state it

without proof.

Lémﬁa~2.1._For j = 1,2, let Mj be a connected complex manifold

of dimension m and Tj : Mj + (0,R) be a c” proper function"
satisying (2.1) and (2.2). If ¢ : M1 -+ M2 is a biholomorphic

map such that Ty F Tzo¢ and.’ Xj is the complex gradient of Tj,
then X, = 0,X, and X, is holomorphic if and only if X, is so.

Lemma 2.2, Let M be a connected complex manifold of dimension

m and T : M » (0,R}) be a c” proper function satisfying (2.1)
and (2.2). If p is a positive integer and o = r1/P,'then also

g satisfies (2.1) and (2.2).

Proof. Since 1t satisfies (2.1) and (2.2), we have dt # 0 and

rankmddclogr =m-1 on M., Thus
(2.11)  do = 1t (=P1/P 3¢ # 0 dlogo = ¢ 'do # 0
(2.12) rankmddclogc = rankmddclogT =m -1,

In particular (ddclogt)m = 0 on M. Moreover we have ddclogo =

%ddclogT 2 0. From the formula
(2.13) dd®c = 0(dd®logo + d logo A d%logo),

one obtains dds 2 ddclogo 2 0 on M., Taking exterior powers

of the right and left bandside of (2.13) and using (2.11) and

Py



(2.12), we have
0 s (da%0)™ = o™(da1ogo)™ ! A dlogo A alogs # 0.

Hence (ddcc)m > 0 and therefore ddcc > 0.

o

qg.e.d.

b) Manifolds of circular type.

In [4] we introduced the following notion. Let- M be a non
compact, connected complex manifold of dimension m and +t:M - [0,R)
be an exhaustion function. Define M, = {x € M | T(x) > 0}. We

say that the pair (M,t}) 1is a manifold of circular type if 1

has the following properties:

(2.14) tecon nc®my;
(2.15) dad®t > 0 on M,;
(2.16) (dé%1log1)™ = 0 on M,

Moreover there exists p € t (0) and a coordinate neighborhood

U of p such that:

(2.17) if || || denotes the euclidean norm, then there exist
constants C, K > 0 such that C|B|F S 1(2) S K|B|F

for all Z € U.

(2.18)  there exists € > 0 so that t2 €U if |[t| < ¢ and
lz2]| < 2 and such that the function h : (-¢,e)x(B(2) -{0}) +R_

defined by h(t,Z2) = t(t2Z) 1is of class c”.

It turns out that, if the other assumtions are satisfied, (2.18)



is equivalent to

~

(2.18') 1if m : M+ M is the blow up of M at p, then

Tom € CT(M).

Clearly this assumption is nicer to state, but for the porpouse
of this paper it is important that the main results of [4] can
be obtained assuming only (2.18). It should be noted that in [4]
we assumed for simplicity also dd%logt 2 0 on M,. This, as we
noted before, follows from (2.15) and (2.17) .

The main result of [4], which we shall need later, can be

stated as follows:

Theorem 2.3. Let (M,T) be a manifold of circular type. If supt=+e,

then there exists a biholomorphic map ¢ : ¢™ + M such that

0 = Tod is a strictly plurisubharmonic exhaustion of ¢™ with the
property that o(AZ) = |A|%0(Z) for all 2z € C° and X €C. If
supt < +» and the Monge-Ampere foliation associated to T is
holomérphic,~theﬁ there exists a..strictly pseudoconvex, complete
circular domain G == €® and a biholomorphic map ¥: G - M such

To¥ 1is the Minkowski functional squared of G.



3. Homogeneous polynomials on "

A polynomial H : ¢™ +~ ¢ is said to be homogeneous of degree

n if for all t € IR and 2 € €™
(3.1) H(tz) = tTH(Z).

In fact any c” function H : €'+ € which satisfies (3.1) is a

homogeneous polynomial of degree n. We also say that a polynomial

H: C"+~C is homogeneous of bidegree (p,q) if for all X €C

and 2z € ¢

(3.2) H(A2) = ATxPu(2).

Again any ¢” function satisfying (3.2) is a homogeneous poly-
nomial of bidegree (p,q).
Given a homogeneous polynomial H : e > ¢ of degree n,

there exists a unique decomposition

(3.3) =} wd
p+q=

where HP’?  is a homogeneous polynomiai of bidegree (p,q).

If H:C'>C is a homogeneous polynomial of bidegree
(p,q), then one checks immediately that Hu (resp. HU) is a
homogeneocus polynomial of bidegree (p-1,q) if p 2 1 (fesp.,(p,q—1)

if g 2 1). Moreover, for every 2 € Em one has the formulas

Hu(Z)zp pH(2Z) if p =2 1,

(3.4)

Hﬁ(Z)Ev qH(2Z) if q 2 1.

Finally, we shall say that a. homogeneous polynomial H 1is positive

if it is real valued and H(Z) > 0 for all Z € T™.



We need a number of properties of homogenecus polynomials.

We group them together in the following

Lemma 3.17. (i)'If H 1is a homogenecus polynomial on c™ of bi-

degree (p,p) with dd°H > 0 on €™ - {0}, then 'H is positive.
(ii) If H 1is a positi&e homogeneocus polynomial on ™ of degree
n, then n = 2p 1is even and gP'P s positive.

(iii) If H is é homogeneous polynomial on ™ of degree n and
with the property that dd°E > 0 on ¢™ - {0}, then n = 2p is

even and dchp"p >0 on " - {0}.
Proof. (i): By hypothesis and using (3.4), we have for Z € c™ - {0}
' UsSV_ u _ 2
< H -(Z)2 = pH (Z)z" = H(Z).
0 1»_W()zz pp()z p H(Z)
(ii): Let 2 € € - {0} and t € IR. Then

0 < H(eM®z) = 7 wES(eltz) = 7 eIE(ETSIgT.S(g)
r+s=n r+s=n

If r were odd, then

y 27 .. 2m
0 < [ Heltzyat = 7 HE%(z) [TeltFSar = o,
0 - r+s=n 0

Thus n must be even: n = 2p. Moreover

27 2r '
0 < [ Heltmyat = § wE'S(z) [ & F(FTS)ar < 27gPrP (g,
0 r+s=n ’ 0

(iii) : Under the hypothesis, given any 2, W € € - {0}, we have
0 < H -(z)yw'w’ = 7 ES.@ww = 5, (2).
uv r+s=n Hv HW
For any W € €™ - {0}, H, 1is a positive homogeneous polynomial

of degree .n-2" whose campanent- of bidegree fr-178-+F=fs. given by



10
H‘ﬁ%wpaﬁfgﬁﬁEESTiiﬁiE&ﬂg%g;hat n = 2p for some p and that for
every 2 € @ - {0} we have Hpﬁ%IZ)WPGV > 0. Since W € €™ -{0}
was arbitrary, we are done.

g.e.d.

It is known that homogeneous polynomials of bidegree (p,p)
give rise to solutions of the homogeneous Monge-Ampere equation
of the kind described in Section 2. For the reader's convenience

we give here a precise statement.

Proposition 3.2. Let H : C° > IR be a homogeneous polynomial

of bidegree (p,p) such that dd°H > 0 on ¢€® - {0}. Then H is
an exhaustion of € such that on C" - {0} we have H > 0 and
(ddclogH)m = 0. Moreover the complex gradient X of H 1is given

by X(z) = p-1z“—éi so that the Monge-Ampére foliation associated
9z

to H 1is holomophic and its leaves are complex lines through

the origin.

Proof. From Lemma 3.1 it follows that H 1is positive and there-
fore that it is an exhaustion of €. Let u = logH. Then given

A €EC and 2z € €™ - {0}, one has
2-
(3.5) u(iAzZ) = plog|Al® + u(z).

Differentiating both sides of (3.5) with respect to A and X

and taking A = 1, one obtains
HZV _
{3.6) uuﬁ(z)z.z 0.

Equation (3.6) implies that rankmddcu-< m and therefore that

(d@u)™ = 0 on @™ - (0}. In order to compute the complex gradient
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of H it is enough to observe_that, using (3.4), we have HU(Z) =

p-1liu$(z)zu. The rest of the statement then follows immediately-..

g.e.d.

The aim of this section is to show that among the homogeneous

polynomials only those of. bidegree (p,p) have the propeties listed

in Proposition 3.2. We need the following preliminary observation

Lemma.3.3. Let H be a positive homogeneous polynomial on c™

of degree n with dd“H > 0 and (dd°logH)™ = 0 on €™ - {0}.

Then n = 2p and, if " H1/p, the pair (Eﬁfﬁ) is a manifold

of circular type.

Proof. Because of Lemma 3.1, we have n = 2p for some positive
integer p. As H 1is positive, the function -ﬁ = H1/P is a well
defined exhaustion of Em, of class c” on " - {0}. Since for
any t € R and 2 € " one has H(tZ) = t2§{Z), it is easy

to verify that H fulfill the conditions (2.17) and (2.18).
Lemma 2.2 shows that H ~satisfies also (2,15) and (2.16) and
therefore the claim is proved.

g.e.d.

Theorem 3.4. Let H be a bositive hcmogeneous polynomial on c™

of degree n such that dd°H > 0 and (ddlog)™ = 0 on €™ - {0}

Then n = 2p is even and - H 1is homogeneous of bidegree (p,p).

Proof. Because of Lemma 3.3 and Theorem 2.3, we know that n =

2p and that,. if H = Hl/p, there exists an automorphism ¢ of

m

c such that for every Z € ™ and A € @ we have ﬁo@(kz) =

e

|A|“Hed (2) . Thus if we denote H = Ho¢; we have that # € c”(¢™)
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and satisfies A(32) = |A|?PR(z) for all A€¢C and 2 € C".
Hence H is a homogenecus polynomial of bidegree (p,p) such that
ada®s > o. In. particular, as we saw in Proposition 3.2, its. complex
gradient X is holomorphic. Then Lemma 2.1. implies that X = 0,X
and that X is holomorphic,.

Since H is homogeneous of degree 2p, we have for all t € IR

and 2z € "

H (£2) = t29‘1Hu(Z) | Ho (t2) = £°P7TH:(2)
H o (£2) = tZP'zaﬁG(Z) BV (£2) = tz‘ZPﬁG“(zj.
Recalling the-definition (2.5) éf' X, we have
X(tz) = tz‘ZPﬁ?“(Z)tzp‘1Hv(Z) = tX(Z).

Since X 1is.holomorphic, it must be of the form

(3.7) X(Z) = xu(Z)-———a—— = apzv_.a_...
az.“ v azu

where A = (at) € GL(m,C).
Let H = E-_ H°’'® be the decomposition of 'H in

r+s=2p
homogenecus polynomials of bidegree (r,s). Because of Lemma 3.1 (iii)

and Proposition 3.2, we know that
(3.8) (1P P) " (2)ul P z) = %z“.

on the other hand

- XPHr’sv'= x".‘H'G =By = | A
r+s=2p H H r+s=2p v
r,sel : s21

Since by;Iﬁlb)“each x" is homogeneous of bidegree (1,0), comparing

the degrees of the two ends of this equality, we can conclude
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(3.9) g’%P - o,
v
(3.10) x“Hr °5 = HLS if zr,s2z 1 and r+s = 2p.
Thus, using (3.8), we compute
x%(z) = (HP'P)““(Z)HP'ﬁﬁ(Z)x“(Z)
(3.11) C
(P 7P) 9% (z)gP P (z) = L% |
v P
Now, using (3.4) and (3.9), we have
62P/0(z) = %' %P(z) = Lr0: P22V = o0.
P v
From (3.10), using (3.4) and (3.11), we compute
r,s . M r,s - 1.o,s _.I.X,8,
7(2) = X" (2)H ug(Z) pH (Z)z APH S {2}

and
er’S(Z) =HrLS(Z)EU= r. r S(Z) V_ IS r S(Z)
v P P

Hence, if y,s 2 1 and r+s = 2p, then either r = s = p or
B ’% = 0. In conclusion H = H°'P and the proof is complete.

g.e.d.

Remark 1. Let H be a homogeneous polynomial on c"  of bidegree
(p,p) such that dd°u > 0 on €™ - {0}. If ¢ € Aut(C™ and

¥ = Hed 1is a homogeneous polynomial of bidegree (q,q), then it

follows that & 1is linear and p = g. This is easy to see since,

1l

if. D= {z e €™ | 8(2) <1} and D = {2 € € | H(2Z) < 1}, then
both D and D are complete circular domaiﬁs and ¢ restricted
to D 4is a biholomorphic map onto D which fixes the origin.

By a classical theorem of Cartan, then ¢ is necessarily linear.

Theorem 3.4 shows that if f = Hed¢ is just a homogeneous polynomial
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of degree n, then the same conclusion holds i.e. ¢ is linear
and n = 2p. This is immediate  from the theorem since if H

satisfies (2.1) and (2.2) on € - {0} then so does #.

Remark 2. Up to linear isomorphisms (and therefore up to biholo-
morphisms) there exists only one strictly plurisubharmonic i
homogeneous. polynomial of bidegree (1/,1): |l|f. This is not the

case for higher bidegree. This is fairly obvious but it may be

convenient to give an explicit example. Let ® . m2 -+ IR be

defined by H%*(z,w) = |z|4 +~|w|4 +'a|z|2|w]2 with a > 0.

]

H(z,wH[4.'We

cannot be equivalent to .H2 up

Clearly dde® > 0 for all o« > 0 and Hz(z,w)

claim that if o # 2 then H®

to complex linear isbmbrphisms. Assume that there exists A € GL(2,CT)
such that p = HZoA = H® for some o # 2. If A = (2 2), then

we must have

1= B%(1,0) = p(1,0) = |a]? + |c]?.
Also one computes
HgE(z,w) = 4|z|2 + a|w|2 Hga(z,w) = a]z|2 + 4]w|2
: 2 2
P,z (z,w) = 4laz + bw|” + 2fcz + dw|
- 2 2
oo (z,w) = 2|az + bw|® + 4]cz + dw|”.
Thus
2, 2 ,2
4 = H)-(1,0) = p,=(1,0) = 4]a|® + 2|c|® = 2]|a|® + 2
a = 8% (1,0) = 0 =(1,0) = 2]al? + 4|c|? = 2]c|? + 2

and therefore



15

24 a=2al®+2/c|? =2

which is impossible.

-Remark 3., Let T : ™ + [0,+=) be an exhaustion such that

T € Co(mm) nc @™ - {0}) and satisfying (2.1) and (2.2). More-
over let us assume that 1 1is hdmogeneousvof degree n: T(tZ) =
t?t(z) for all t € R and 2 € €. If T vwere of ciass c” also
at the origin then it would be a homogeneous polynomial and Theorem

3.4 would apply. In general if g = Tz/n

» then using the homo-
geneity of 1 and Lemma 2.2, one shows.as in Lemma 3.3;that (mqp)
is a manifold of circular type. Thus there ekists ¢ € Auf(mm)

so that if p = 0o®, then p 1is homogeneous of bidegree.(Tjﬂ)pIn
particular p can be written as (Z) = HZHzg(Zl where g 1is
a.bounded positive function, which is constant on .L n ¢® - {0}
for each complex line 'L through the origin (of course in general
g is not continuous at the ofigin)."6EEE§*EEE?E§§§£ENof:Sec#ion.4
of-[4]," it Can be shown that o(z) = p(z) + 0(|&|F). Therefore
1(2) = |giPhz) + o(Jg|P*") for all z € €™ and where h = ¢g™/2,
But then, since .t 1is homogeneocus of degree n, we can conclude
that T must be expressed by T(2) - |z|"h(2). In other words

-any such exhaustion 1t 1is.the product of a power of the norm

times the pull back from IP _, of a suitable smooth function.
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4, The general characterization.

We shall now turn to the problem of cmmébﬂmﬂg;qg in general
the solutions of the homogeneous complex Monge;Ampére equation
which, up to. biholomorphic maps, are the logarithm of a homogeneous
polynomial of bidegree (p,p). We start by fixing some terminology.

Let M be a complex manifold of dimension m and f : M - IR

be a function of class C". We say that f vanishes of order n

at a €M 1if f£ and all its derivatives of order s < n wvanish
at a .and some derivative of order s of f is nonzero at a.

- If £ wvanishes of order n at a € M, then the leading Hessian

Hf : Ta(M) + IR of £ at a 1is defined by
, o n u Ho vV _V
(4.1) He(X) = 1. — 2 f(ﬁ) — x1...x Px '...x ¢
P*a=n 5, 1 .3z Paz '..5z @
where X = X'-2— EYJ%G € T (M). The form H. decomposes into
9z oz

the sum of its components of bidegree (p,q): He ="y nEr 9
p+q=n

where each " HE’Y?  is defined by

n . H H. vV Y
(4.2) HA(x) = —2 t@) —x .xPxl..x

U H \
sz V. .0z Paz 1..0z @

If n =.2p 1is even, we say that H?’Q is the leading Levi form

of f.
If we identify Ta(M) with Em, then He is a homogeneous
polinomial of degree n on ¢™ and the decomposition of Hf

given by the Hg’q is exactly the decomposition of H_ into the

f
sum of homogeneous polynomials of bidegree (p,q).
We shall say that He is positive if Hf(X) > 0 for all

X €T (M) - {0} i.e. if He 1is positive as a homogeneous polynomial.

2 e
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We .shall consider the following situation. Let M be a

connected, non compact-complex manifold of dimension m and

T ¢

M+ [0,+x) Dbe an'exhaustion function of class C which satisfies

the following assumptions:

(4.3)

(4.4)

(4.5)

aat > o on M, = {x €M | T(x) > 0};

c m _
(dd"logTt) = O M,;

T vanishes of order n at a point a € t°(0) and if

H 1is the leading Hessian of T at a, then H is

positive and dd°H > .0 on T (M) - {0},

"iﬁ“éﬁfirst consequgﬂaé}wWQfhaéétﬁheffollowing:

Propésition 4.1. The zero set of 1. consists of exactly one

point 0M which we call the center of M.

Proof. It is known that the hypothesis (4.3) and (4.4) imply that

-1
T

example) . Thus the the conclusion follows from.: {(4.5) since a = 0

(0) is non empty and connected (see [4], Theorem 2.5 for

M

is a strict minimum for Tt and therefore an isolated point of

I-1

give a more precise description of T near the center 0

Proposition 4.2, The order of*vanishing of T at the center 0

(0).

g.e.d.

Before going into our classification, it is of interest to

M*

is even: n = 2p. Moreover the leading Hessian of T at 0

M

M

coincides with the leading Levi form.



Proof. Let H Dbe the leading Hessian of 1 at O Here we

M.
0 M since H is positive, Lemma

3.1 (ii) shows that the degree of H and therefore the order of

shall freely identify T M(M) =

vanishing of Tt at 0M is even n = 2p. Since by hypothesis
(4.5) we have dd°H > 0 on €™ - {0}, the claim will follow from
Theorem 3.4 if we can show (ddlogt)™ = 0 on €™ - {0}.

Let U be a small enough coordinate neighborhood centered
at 0, and let 2 € " --{0}. For t € IR such that tZ € U we
have

t(tz) = tPH(Z) + 0(t™T)

n

- -1 n . - =1 . n

T, (£2) = €7H (2) + 0(eD) To(tZ) = £ THS(Z) o+ 0(t])
_ .n=2__ n-1
T E8) = €T G v 0T
¥ (ez) = £2 g% g) + 0 (&3

Also recall that, as we noted in Section 2, whenever (2.1) is
satisfied, locally the Monge-Ampére equation (2.2) is equivalent

to the equation (2.7). Thus for small t # 0 we compute

n+1)

tPu(z) + o(t = t(tZ) = fg(tZ)Tvp(tZ)Tu(tZ)

n+1

1]

n i .
t HG(Z)H (Z)HH(Z) + 0(t ).

Dividing the first and the last term of the equality by t® and

takig limit as t + 0, we obtain
- Ju
H(Z) = H5(Z)H (2)E (2)

which, as observed above, is equivalent to (ddclogH(Z)Mm = 0.

g.e.d.
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Remark 1. According to Stoll'fS], a strictly parabolic manifold

of infinite radius is a pair (M,T) -such that M is a.connected,

non compact complex manifold of dimension m and T : M~ [0,+w)

is an exaustion of class C satisfying (4.3), (4.4) and such that
da®r > 0 also on 1“1(0). Then it can be shown (see [5], Proposition
2.2) that T vanishes of order 2 at every point of 1 '(0)

and that (4.5) is verified. Conversely if 1 satisfies (4.3),

(4.4) and (4.5) with order of vanishing n = 2, then (M,T}) is
strictly parabolic of infinite radius. This is immediate from
‘Proposition 4.1 and 4.2. In fact ZT-l(O) = {OM} and near 0M

we have T(2) = H(Z) + 0(|E|F) where H 1is a homogeneous poly-

nomial of bidegree (1,1) which is strictly plurisubharmonic out-
side the origin. Thus H(2Z) = HA(Z)H2 for some A € GL(m,I) and
therefore ddcT(OM) > 0. In conclusion when the order of vanishing
is 2 our class of manifolds coincides with Stoll's strictly
parabolic manifolds. Therefore, as we shall see in a moment, our
classification theorem extends Stoll's result ({5]) to exhaustions

with higher order of vanishing.

We can now state and prove our main result.

Theorem 4.3. Let M Dbe a connected, non compact complex manifold
of dimension m and T : M+[0,+») a C” exhaustion satisfying
(4.3), (4.4) and (4.5). Then the order of vanishing n of 1

at its zero set is even and there exists a biholomorphin map

® : € + M such that Te¢ 1is a homogeneous polynomial of bi-

degree (p,p) where p = %n.

Proof. We know already that n = 2p for some positive integer p
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and that (" 1(g) = {0,}. We want to use Theorem 2.3. To this
end we shall show that if o = 11/p, then the pair (M,o0) is a

o) n c®(M,) and from

manifold of circular type. Clearly o¢ € C
Lemma 2.2 it follows that o satisfies also (2.15) and (2.16}).
We need to show only that (2.17) and (2.17) hold for .

If U is a smallﬂenough.coordinaté neighborhood cgnteted

at OM' then T has the following expansion on U:
T{Z) = H(Z) + R(2)

where H 1is a positive homogeneous polynomial of bidegree (p,p)
and R is a C” function such that |[R(2) | <‘A]|Z|[2p+1 for some
A > 0. There exist m, M > 0 so that 2mJBLFP S H(Z) s M|B|FP;
Since for |E|| small enough we have Aa|Z|FP*! < n|z|PP, we can

conclude for 2 in a neighborhood of OM:

0 PlziR s ) - [Re2)P)VP s o(z)
s ) + R DVP s 4+ PP

so that o satisfies (2.17). Let € > 0 so that if |[t]| < ¢
and |{Z[| <2 we have tZ € U and define W = (-e,e) x (IB(2) -{0}).
Define h : W -+ H{P by h(t,2) = ¢g{(tZ). We need to show that h

is of class C”. For (t,Z) € W, t # 0, we have
- +2P
(4.6) 0 < 1(t2) = £ H(Z) + R(t2)

with %ig t-sz(tZ) = 0, There exists a function T : W+ R of
-

class C® such that R(tZ) = tZ*TE#,2k. From (4.6) and since H(Z) > 0

if 2 # 0, we get

H(Z) + tT{,z)> 0
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for any . (t,Z) € W. But then

h(t,2) = o(t2) = t2(H(2) i+ tT(t,2))?

and therefore h is of class C .

Since supo = +«, by Theorem 2.3, there ekists a biholomorphic
map ¢ : C" + M such that we have o(®(A2)) = [A|20(0(2)) for
: ail_“ A €€ and. 7 € c¢™. But “then we"lfl_alvé also’ Te®(Az) = 1A 2P_'r.a¢a'(2)

and}ﬁsiﬂaéuif§¢ffié;offEiééSng}’ﬁhe claim follows.

. . qeedd.

Remark 2. We always assumed 1 to be of class c”. It should be
underlined that less is needed. In fact Theorem 2.3 c¢an be proved
assuming that the exhaustion is of class C5 on M, since this much
is needed in [2] to prove Theorem 3.1. Thus our Theorem 4.3 holds
even assuming that 7t 1is of class Ck where- k = max {5, n}. At
any rate Theorem. 4.3 can be viewed also as a regularity result
for degenerate: Monge~Ampére equations: In fact it implies that

T 1is real analytic on M,

Remark 3. If M 1is as above and t1.: M +~ [0,+») 1is an exhaustion
satisfying (4.3) and (4.4) but only continuous on 1 '(0), we can

still classify M and 1t if we assume instead of (4.5) the

following:

(4.5") There exists a € T 1(0) sush that
.(i) with respect to coordinate centered at a we have

clg|* s t1(2) s x|jz|' for some €, K > 0 and positive

integer n;

(ii) the function h definite for |t| <e and 0 < |g| < ',

. .



for some ¢, €' > 0,'by h(t,z) = (t(t2)) /" is

\
of class C.

Theese assumptions, which for 1 smooth on 1-1(0) are equivalent

to those of Theorem 4.3, allow one to apply Theorem 2.3 to the

.TZ/n

exhaustion o = . Then, in the same way as in Remark 3 of

Section 3, it can be shown that there exists a biholomorphic map. T

$ mm

+ M such that te0®(2) = |Z|Pg(Z) where g is a bounded
function on " constant on each punctured complex line through

the origin.

5. Final remarks

A number of questions arise naturally in this context and
yet cannot be answered.

Firstly, our characterization of homogeneous polynomials
(Theorem 4.3) applies only to unbounded exhaustions while Stoll's
theorem ([5]) classifies also bounded ones. In fact if M is a
non compact, connected complex manifold of dimension m which
carries aACm,,fF%ﬁ#§§§plurisubharmonic exhaustion T such that
supt = 1 and (ddclogr)m =0 on {t > 0}, then M is biholo-
2

morphic to the ball in €™ and <t pulls back to || | We

conjecture that the some kind of theorem should hold for homo-
geneous polynomials of bidegree (p,p). More explicitly if M

and 71 are as in Theorem 4.3 but supt = 1, there should be a

u

a homogeneous polynomial H of bidegree (p,p) so that, if G

P

{2z € ¢m| H(Z) < 1}, then there exists a biholomorphic map ¢

with 7109 = H.
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The difficulty in.provingiaﬁkfresult, at. least with our method,
is that, in order to apply Theorem 2.3, one needs to. show that
the Monge-Ampere foliation associated to T 1is holomorphic. In
the case of unbounded exhausticon, this follows from a theorem of
Burns [2]. When the exhaustion is bounded instead, the Monge-
ampére foliation is generically not holomorphic (cfr.[3]). However
we feel that under the above assumptions the foliation is indeed
holomorphic and that therefore our conjecture holds true.

A second kﬁgyof problems concernes ways to improve our
characterization. Namely we need a relatively strong assumption
about the behavior of T at its zZero set. It is guite interesting
to investigate whether they can be relaxed. A step in this
direction would be to prove Theorem 3.4 assuming that the homo-
geneous polynomial H 1is just nonnegative. It should be observed
that the nature of the theorem changes considerably. In fact, if
H is only nonnegative, then H-1(0) is a priori a noncompdét‘éet
and thus H is not anylonger a proper function. In this case the
associated Monge-Anip€re exhaustion could be very wild. An entirely
different approach may be needed to solve this problem and even

a counterexample may be almost as interesting as a positive result.
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