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1., Introduction.

Recently the problem of dye laser statistics in presence of
pump fluctuations is intensively considered [1,2] because of some
striking discrepancies between the traditional Taser thecory (wi-
thout pump fluctuations) and the experimental observations.
Usually lasers used in dye laser pumping are thought to cenerate
fields with Gaussian statistics {chaotic licht). However the
model with chaotic noise pump fluctuations can not be solved ana-
lytically and several authors have developed approximate theories
to analyze it. As it has been emphasized in [?] , use of such
theories in comparing with experiments could lead to incorrect
values of the parameters as it is not known a priori whether the
experimental conditions are such that the narameters are in the
domain of applicability of these theories. To avoid this the so-
lution of dve laser equation has been simulated numerically in [2]1.

In this paper we consider the dye-Tlaser model with pre-gaussian
(PG) pump fluctuations. The concept of a PG stochastic process
has been introduced recently in order to model noises in strona
laser-atom interactions [3-%5]. It has been emphasized in [2-f]
that the power of the PG process formalism comes from the exact
solvability of the stochastic equations of mgtieh involved in the
problem. In the other hand PG fluctuations approximate very well
the Ornstein-Uhlenbeck process (chaotic fluctuation) with just a
few telegraphs involved in the calculations. Thus the commonly
accepted gaussian character of pumping does not diminish the ad-
vantaqge of the PH model.

The problem with one telegraph has heen analyzed by Kitahara

et al in [7]. They have calculated analytically the stationary



probability of the system and determined the "nhase diacram®

for the various noise-induced transitions. ‘low we solve the pro-
blem with PG fluctuations composed of two telecranhs usine the
results qgiven in [8] . The stationary probability is calculated
and its local behaviour near sinqular noints is investirated,

what provides some quantitative information a%nuiAphase dianrams.

2. PG fluctuations in dye laser model,

e start from a general nonlinear differential stochastic
equation

o= f(x) + z(t)alx) (°.1)

where f(x) and g(x) are two arbitrary functions of the investica-
ted dynamical variable x. The random process z(t) is the two
telegraph PC noise:

z{t) = xl(t) + Xo(t) (2.

ra
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The nonlinear equation (2.1) leads to a linear preblem for

the following quantity

p(g>t) = &(g -x(t)) (2.4).
Then from equation (2.1) and the definition (2.2) we obtain the
Liouville equation (cf.[3])

dp

T ° ﬂep + iz{(t)Vp (?.5)
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where hn— 5% f{x) and ¥ = i axg(x) . The distribution
function

P{t) = <p(t)>

is a solution of the following integro-differential equation:

P,y _ . y: | o -
Felt) = M P(t) - [ dsK{t-s)P(s) {2.F)
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with the laplace transformed kernel (t 2 0)

it

R(z) = f e 2l(t)dt =
0 r (2.7)
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The steady state distribution function is then a solution of the

following equation:

(M- K(0))Py = O (2.8)

The equation (2.8) leads to the following ordinary differential

equation of second order

1

2 .2 :
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(29- 53) 5+ GF - G - w0 ) wx
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where a=I"L/Tc and y(x) = QSt .

It is worth noting that the integro-differential eocyation in
the stationary regime leads to a ordinary differential equation
of second order for which various powerful methods of solving
have been develgped. In many interesting problems of auantum
optics f and-g are just rational functions, hence equation (2.9)
reduces to the Fux type equation [10,11].

How as an example we consider the dye-laser equation

Lo (-xx + xz(t) (2.10)

In this case g{x) = x, f(x) = Ax-x2 . After simple calculations

we obtain the following equation

F{x)y"+ G{x)y'+ H{x)y =0 (2.11)
where
F(x) = Tgxg(Za-(A-x)z)(A~x),
6(x) = xT (2a-3(A-x)%+T_(A-x)(2a-A%+42x-3x7)



H(x) = (A~x)(xTC-2).

This equation is a subject of our analysis in the next sections.
It is worth to note that the method introduced in [8] is auite
general and easyly gives us the results of Klvatskin [9] and

Kitahara [7], namely for one telegraph we have the kernel

- T
K(z) = - Lq —HTc 24 (2.12)
‘ X" g4z + g OX
Te 3%

Then from (2.8) we obtain the following equation for the sta-

tionary distribution function

PPy (x) = a0 (3¢ 4rF () e ()P (1) (2.13)

But this is exactly the equation obtained in [9] , which has a

general solution [7,9)

P

x) = QU e 1o dxflx) (2.18)

st g% (x)-F%(x) ¢ e(x)-f4(x)

3. The stationary probability density.

At first we have to solve the following equation
F(x)y" + G(x)y' + H(x)y = 0 (3.1)
We see that (3.1) is a second order nonlinear differential equa-
tion, so we cén use the standard methods of reduction {cf.[10])
and write down its general solution. After some calculations we

obtain

3

Peglx) = "%7§il =

f

(3.2)

Hi
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3§:§cosee"A(x)exp{ f(e'A(S)—a?eA{S))sine cos b ds],

o
G{x H{x X : .
where a,(x)= ?%2%’ ay(x)= ?%?%’ A(x) = fa; and 0 1is a solution

to the first order equation

-A
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@' = e "cos" 8 + a?eA

¥
sin” @ (3.3)



Now by substitution the new function u(x) = tg6 we reduce (3.3)
to 2 Riccati equation

A 2

u’= age’u” + oA

{(3.4)
This equation can be solved by the well known approximate methods
{recurrential approximate series) or by numerical analysis.

Let us now concentrate on the local behaviour of pst near
its singular points. One can easily check that if 0, A, A #yZa
are different numbers then (3.1) is a Fudstype equation [107] with
the regular singular points (in a complex domain {111). It can

be written in the form:

sz"+ PQy'+ Ry = 0 {3.5)
where
P = x(2a-(A-x)2) (A=x)T_ = T (x-2;)(x-2p) .. (x-2,),
Q = 2a-3(A-x) 24T _(A-x) (22~ Bedax-3x?),
R = (xT -2)(A-x)2(2a-(A-x)?)
and

deg = 3 g m-1,
degR = 5 5 2{m~1) for m = 4,

Hence we can apply the well known methods for such equations
in complex domain and obtain some local expansions of a solution
of (3.1) near singular points. On the basis of elementary analysis
of potential functions (see Figs. 1 and 2) for dye laser equation
(2.10) (x = -gradV) at three values of the two-telegraph stochas-
tic process (~2a,0,2a) we can conclude that the support of ?st
is following

U =[ max{0,x-Y23) , A+2a] .
In the stationary 1imit the distribution function is vanishing

out of the attraction interval U. It is implied by elementary



statistical considerations. The support of Pst(x) is indicated
on the x-axis by the bold face line. In contrary of the one-tele-
graph problem in our case the point X € U is a singular point
for Pst'
In the neighbourhood of the singular point, say £ , the equa-

tion (3.1) can be rewritten in the form

f

(x-&)°y" + (x-g)p(x)y'+ q{x)y = 0 (3.6)

here g£=0, A-1228 » A» A+V2a8 . From the general theory of Fuchs
type equations we conclude that for the real equation (3.6), i.e.
p, q real analytic and £ real, we have the following fundamental

systems of real sclutions:

¢ k
a) ¥e(x) = x-gl kEo Wy (x-£)
o (3.7)
yo(x) =1x-g12 I wi(x-g)k
k=0
*
wU’ WO = ;:
if Pys P, are real and =Py is noninteger,
p [c+]
b) yi(x) =lx-gl lkzuwku-a)",
(3.8)

¢] o
Yo(x) =ay (x)Inix-g| +x-¢g] zkzﬁwi(xﬁi)k
if Py-P, is integer 2 0.

Coefficients mk(w;—respectiveiy} satisfy the following reccurent
system of equations:
wof(p) = 0,
(3.9)

DL B S B I AR R R B IR 2 IR N 2 BN R A

weflotk) + wy_file+k-1)+. .4 wyf (p) = 0

where
f(o) =p(p-1)+ pge + 95, f (0) = pp,+ q, , p, and q  are
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coefficients of series power expansion for p(x), q(x):

o

p() = g0 Lt = 1 oq (-0 (3.10)

-

01,02 are solutions of the characteristic equation

f(p) =0 (3.11).
Using the above results we have respectivly for the singular
points: *
et 1
o= 14 X P,= 0,
£= A+Y74,

0, = 1 , P.= 0,
1 !c!}\*'??ai ) 2

E;“ 0;(if )k"‘{'é—a: 50)0

o _ 1 [ 2a-3%2  _ , sa’-z28)%as17Mf )1/2X
1 M (2a-22) W12 (2a-2%)2
o . 1{ 2a-32% _, ( 4a%-282%a4172" 1/2}
4 ATC(Za-AZ) 14 (22-2%)"

€= A-12a,(if r-{22 >0),

1
p:-—-—-——-——-——-—-——, p=0.
Vot -1z 2

Differentiating the solutions (3.7), (3.8) with the calculated

above exponents 91, 92, and using the definition

PSt(x) = 1:(_"_)_.

A=X

we obtain the local expansions for Pst near sfngu]ar points,

4. Final remarks.

In this paper we have proposed an approach to abitrary
nontinear systems subjected to a PG fluctuation Qith two tele-
graphs. As an example the exact formula for Pst and its local
expansins have been determined in the case of dye laser model.

The behaviour of mean value of dye laser intensity and high
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correlations will be considered and compared with the results
obtained by other approaches, in a forthcoming paper. Our paper
is an extension of results obtained by Kitahara et al [7] for the
case of one telegraph. We hope that our equation {2.1} 15 use-
ful for several problems in quantum optics where f, g are simply
specified and two-telegraph PG process approximates very well the
chaotic gausstan process.

We would Tike to thank to J. Kijowski and K. Wodkiewicz for
valuable discussins., We are grateful also to J. Mostowski for
his comments 2about final form of the paper. One of us (5J) wishes
to thank the Max-Planck-Institut fiir Mathematik for a visiting
fellowship and the hospitality of this Institute.
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Fig. 1.
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2.

Fig.
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