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FOURIER-MUKAI TRANSFORM IN THE QUANTIZED
SETTING

FRANÇOIS PETIT

Abstract. We prove that a coherent DQ-kernel induces an equiv-
alence between the derived categories of DQ-modules with coherent
cohomology if and only if the graded commutative kernel associ-
ated to it induces an equivalence between the derived categories of
coherent sheaves.

1. Introduction

Fourier-Mukai transform has been extensively studied in algebraic
geometry and is still an active area of research (see [1] and [4]). In
the past years, several works have extended to the framework of de-
formation quantization of complex varieties some important aspects
of the theory of integral transforms. In [6], Kashiwara and Schapira
have developed the necessary formalism to study integral transforms
in the framework of DQ-modules and some classical results have been
extended to the quantized setting. In particular, in [9], Ben-Bassat,
Block and Pantev have quantized the Poincaré bundle and shown it
induces an equivalence between certain derived categories of coherent
DQ-modules.

Our paper grew out of an attempt to understand which properties
the integral transforms associated to the quantization of a coherent
kernel would enjoy.

The main result of this paper is Theorem 3.16 which states that a
coherent DQ-kernel induces an equivalence between the derived cat-
egories of DQ-modules with coherent cohomology if and only if the
graded commutative kernel associated to it induces an equivalence be-
tween the derived categories of coherent sheaves. Whereas the second
part of the proof relies on technique of cohomological completion, the
first part builds upon the results of [10]. Indeed, as explained in sec-
tion 2 there is a pair of adjoint functors between the categories of qcc
objects and the derived category of quasi-coherent sheaves. Both of
these functors preserve compact generators. Then, roughly speaking,
to show that a certain property of the quantized integral transform
implies a similar properties at the commutative level it is sufficient to
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2 FRANÇOIS PETIT

check that the category of objects satisfying this properties is thick and
that this property hold at the quantized level for a compact generator
of the triangulated category of qcc objects.

This paper is organized as follow. In the second section we review
some material about DQ-modules, cohomological completeness, com-
pactly generated categories, thick subcategories and qcc modules. In
the third section, we study integral transforms in the quantized set-
ting. We start by extending the framework of convolutions of kernels
of [6] to the case of qcc objects and prove that an integral transform
of qcc objects preserving compact objects has a coherent kernel (Thm.
3.12). Then, we concentrate our attention to the case of integral trans-
forms with coherent kernel. We start by extending to DQ-modules
some classical adjunction results and then establish the main theorem
of this paper. Finally, in an appendix we show that the cohomological
dimension of a certain functor is finite.
Aknowledgement: I would like to thank Oren Ben-Bassat, Andrei
Cǎldǎraru, Carlo Rossi, Pierre Schapira, Nicolò Sibilla, Geordie
Williamson for many useful discussions and Damien Calaque and
Michel Vaquié for their careful reading of early version of the
manuscript and numerous suggestions which have allowed substantial
improvements.

2. Some recollections on DQ-modules

2.1. DQ-modules. We refer the reader to [6] for an in-depth study
of DQ-modules. Let us briefly fix some notations. Let (X,OX) be
a smooth complex algebraic variety endowed with DQ-algebroid AX .
It is possible to define a quotient algebroid stack AX/~AX . It comes
with a canonical morphism of algebroid stack AX → AX/~AX . On a
smooth complex algebraic variety the stack AX/~AX is equivalent to
the algebroid stack associated to OX . Thus, there is a natural mor-
phism AX → OX of C-algebroid stacks which induces a functor

ιg : Mod(OX)→ Mod(AX).
The functor ιg is exact and fully faithful and induces a functor

ιg : D(OX)→ D(AX).

Definition 2.1. We denote by gr~ : D(AX)→ D(OX) the left derived
functor of the right exact functor Mod(AX) → Mod(OX) given by
M 7→ M/~M ' OX ⊗AX

M. For M ∈ D(AX) we call gr~(M) the
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graded module associated toM. We have

gr~M' OX
L
⊗
AX

M.

Finally, we have the following proposition.

Proposition 2.2. The functor gr~ and ιg define pairs of adjoint func-
tors (gr~, ιg) and (ιg, gr~[−1]).

2.2. Cohomologically complete modules. We briefly present the
notion of cohomologically complete module and state the few results
that we need. Again, we refer the reader to [6, §1.5] for a detailed
study of this notion. We denote by C~ the ring of formal power series
with coefficient in C. Let R be a C~-algebroid stack without ~-torsion.
We set R0 = R/~R and Rloc = C~,loc ⊗C~ R where C~,loc is the field of
formal Laurent’s series.

Definition 2.3. An objectM ∈ D(R) is cohomologically complete if
RHomR(Rloc,M) ' 0. We write Dcc(R) for the full subcategory of
D(R) whose objects are the cohomologically complete modules.

The category Dcc(R) is a triangulated subcategory of D(R).

Proposition 2.4 ([6, Cor. 1.5.9]). Let M ∈ Dcc(R). If gr~M ' 0,
thenM' 0.

Proposition 2.5. Let f :M→N be a morphism of Dcc(R). If gr~(f)
is an isomorphism then f is an isomorphism.

By Proposition 1.5.6 of [6], for any object M of D(R), the object
RHomR((Rloc/R)[−1],M) belongs to Dcc(R).

Definition 2.6. We denote by (·)cc the functor
RHomR((Rloc/R)[−1], ·) : D(R)→ D(R).

We call this functor the functor of cohomological completion.

The name of functor of cohomological completion is also justified by
the fact that (·)cc ◦ (·)cc ' (·)cc.

There is a natural transformation
(2.1) cc : id→ (·)cc.
It enjoys the following property.

Proposition 2.7 ([10, Prop. 3.8]). The morphism of functors
gr~(cc) : gr~ ◦ id→ gr~ ◦(·)cc

is an isomorphism in D(R0).
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2.3. Compactly generated categories and thick subcategories.
In this subsection, we review a few facts about compactly generated
categories and thick subcategories. These facts play an essential role
in the proof of Theorems 3.12 and 3.16. A classical reference is [8]. We
also refer to [2, § 2].

Definition 2.8. Let T be a triangulated category. Let G = {Gi}i∈I
be a set of objects of T . One says that G generates T if the following
condition is satisfied.

If F ∈ T is such that for every Gi ∈ G and n ∈ Z
HomT (Gi[n], F ) = 0 then F ' 0.

Definition 2.9. Assume that T is a cocomplete triangulated category.
(i) An object L in T is compact if the functor HomT (L, ·) commutes

with coproducts. We write T c for the full subcategory of T whose
objects are the compact objects.

(ii) The category T is compactly generated if it is generated by a set
of compact objects.

Definition 2.10. (i) A full subcategory of a triangulated category
is thick if it is closed under isomorphisms and contains all direct
summands of its objects.

(ii) The thick envelop 〈S〉 of a set of objects S of a triangulated
category T is the smallest thick triangulated subcategory of T
containing S.

(iii) One says that S classicaly generates T if its thick envelop is equal
to T .

Theorem 2.11 ([7] and [11]). Let T be compactly generated trian-
gulated category. Then a set of compact objects S of T classically
generates T c if and only if it generates T .

The next result is probably well known. We include a proof for the
sake of completeness.

Proposition 2.12. Let F, G : T → S be two functors of triangulated
categories and α : F ⇒ G a natural transformation between them.
Then the full subcategory Tα of T whose objects are the X such that
αX : F (X)→ G(X) is an isomorphism is a thick subcategory of T .

Proof. The category Tα is triangulated and is closed under isomor-
phism. Let X be an object of Tα and Y and Z two objects of T such
that X ' Y ⊕ Z. By definition of the direct sum there is a map
iY : Y → Y ⊕ Z and a map pY : Y ⊕ Z → Y such that pY ◦ iY = idY .
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Since α is a natural transformation we have the following commutative
diagram.

F (Y ) αY //

F (iY )
��

G(Y )
G(iY )
��

F (Y ⊕ Z) ∼
αY⊕Z

//

F (pY )
��

G(Y ⊕ Z)
G(pY )
��

F (Y ) αY // G(Y ).

It follows that F (pY ) ◦ α−1
Y⊕Z ◦ G(iY ) is the inverse of αY . Thus, Y

belongs to Tα. It follows that Tα is a thick subcategory of T . �

2.4. Qcc modules. We review some facts about qcc modules. They
may be considered as a substitute to quasi-coherent sheaves in the
quantized setting. For a more detailed study one refers to [10]. In this
subsection, (X,OX) is a smooth complex algebraic variety endowed
with a DQ-algebroid AX . We denote by Dqcoh(OX) the derived cate-
gory of sheaves with quasi-coherent cohomology and by Db

coh(OX) (resp.
Db

coh(AX)) the derived category of bounded complexes of OX-modules
(resp. AX-modules) with coherent cohomology.

Definition 2.13. An objectM∈ D(AX) is qcc if it is cohomologically
complete and gr~M ∈ Dqcoh(OX). The full subcategory of D(AX)
formed by qcc modules is denoted by Dqcc(AX).

One easily shows that the category Dqcc(AX) is a triangulated sub-
category of D(AX).

Proposition 2.14 ([10, Cor. 3.14]). If N ∈ Dqcoh(OX), then ιg(N ) ∈
Dqcc(AX).

The functors gr~ and ιg induce the following functors.

(2.2) Dqcc(AX)
gr~ // Dqcoh(OX).
ιg
oo

We have the following proposition.

Proposition 2.15. Let X be a smooth complex algebraic variety en-
dowed with a DQ-algebroid AX . The functors ιg : Dqcoh(OX)→ Dqcc(AX)
and gr~ : Dqcc(AX)→ Dqcoh(OX) preserve compact generators.

Proof. (i) We refer to [10, Cor. 3.15] for the case of the functor ιg.
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(ii) Let us prove the claim for the functor gr~. Let M ∈ Dqcoh(OX)
such that RHomOX

(gr~ G,M) ' 0. Then, we have
RHomOX

(gr~ G,M) ' RHomAX
(G, ιgM)

' 0.

It follows that ιg(M) ' 0. Hence, for every i ∈ Z, Hi(ιgM) ' 0.
Since ιg : Mod(OX) → Mod(AX) is fully faithful and exact, we
have Hi(M) ' 0. It follows that M ' 0. Moreover, gr~ G is
coherent and on a smooth algebraic variety coherent sheaves are
compact.

�

Remark 2.16. We know by [2] that for a complex algebraic variety the
category Dqcoh(OX) is compactly generated by a single compact object
i.e by a perfect complex. As shown in [10], this implies in particular
that Dqcc(AX) is compactly generated by a single compact object.

Corollary 2.17. Let X be a smooth complex algebraic variety endowed
with a DQ-algebroid.
(i) If G is a compact generator of Dqcoh(OX) then gr~ ιgG is still a

compact generator of Dqcoh(OX).
(ii) One has Db

coh(OX) = 〈gr~ ιg(G)〉.

Proof. (i) Follows immediatly from Proposition 2.15.
(ii) On a complex smooth algebraic variety the category of compact

objects is equivalent to Db
coh(OX). Hence the results follows from

Theorem 2.11.
�

Finally, let us recall the following result from [10].

Theorem 2.18. An object M of Dqcc(AX) is compact if and only if
M∈ Db

coh(AX) and AlocX ⊗AX
M = 0.

3. Fourier-Mukai functors in the quantized setting

The aim of this section is to study integral transforms in the frame-
work of DQ-modules. In the first subsection, we review some results,
from [6], concerning the convolution of DQ-kernels. In the second one,
we adapt to qcc modules the framework for integral transforms devel-
loped in [6]. We prove that an integral transform preserving the com-
pact objects of the qcc has a coherent kernel. In the last subsection, we
focus our attention on integral transforms of coherent DQ-modules on
projective smooth varieties. We first extend some classical adjunction
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results and finally prove that a coherent DQ-kernel induced an equiv-
alence between the derived categories of DQ-modules with coherent
cohomology if and only if the graded commutative kernel associated
to it induces an equivalence between the derived categories of coherent
sheaves.

All along this section we use the following notations.

Notation 3.1. (i) If X is a smooth complex variety endowed with
a DQ-algebroid AX , we denote by Xa the same variety endowed
with the opposite DQ-algebroid AopX and we write AXa for this
algebroid.

(ii) Consider a product of smooth complex varieties X1×X2×X3, we
write it X123. We denote by pi the i-th projection and by pij the
(i, j)-th projection (e.g., p13 is the projection from X1×Xa

1 ×X2
to X1 ×X2).

(iii) We write Ai and Aija instead of AXi
and AXi×Xa

j
and similarly

with other products.
(iv) We set D′AX

= RHomAX
(·,AX) : D(AX)op → D(AXa).

3.1. Convolution of DQ-kernel. We review some results, from [6],
concerning the convolution of DQ-kernels.

3.1.1. Tensor product and convolution of DQ-kernels. The tensor prod-
uct of DQ-modules is given by

Definition 3.2 ([6, Def. 3.1.3]). Let Ki ∈ D(Ai(i+1)a) (i = 1, 2). We
set

K1
L
⊗
A2

K2 = p−1
12 K1

L
⊗

p−1
12 A12a

A123
L
⊗

p−1
23aA23

p−1
23 K2 ∈ D(p−1

13A13a).

The composition of kernels is given by

Definition 3.3. Let Ki ∈ D(Ai(i+1)a) (i = 1, 2). We set

K1 ∗2 K2 = R p13∗(K1
L
⊗
A2

K2) ∈ D(A13a)

K1 ◦2 K2 = R p13!(K1
L
⊗
A2

K2) ∈ D(A13a).

3.1.2. Finiteness and duality for DQ-modules. The following result is
a special case of Theorem 3.2.1 of [6].

Theorem 3.4. Let Xi (i = 1, 2, 3) be a smooth complex variety. For
i = 1 , 2, consider the product Xi ×Xi+1 and Ki ∈ Db

coh(Ai(i+1)a). As-
sume that X2 is proper. Then the object K1 ◦2 K2 belongs to Db

coh(A13a).
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Let Xi (i = 1, 2, 3) be a smooth projective complex variety endowed
with the Zariski topology and let Ai be a DQ-algebroid on Xi. We
recall some duality results for DQ-modules from [6, Chap. 3]. First,
we need the following result.

Proposition 3.5 ([6, p. 93]). Let Ki ∈ Db(Ai(i+1)a) (i = 1 , 2) and
let L be a bi-invertible A2 ⊗ A2a-module. Then, there is a natural
isomorphism

(K1 ◦2 L) ◦
2
K2 ' K1 ◦2 (L ◦

2
K2).

We denote by ωi the dualizing complexe for Ai. It is a bi-invertible
(Ai ⊗ Aia)-module. Since the category of bi-invertible (Ai ⊗ Aia)-
modules is equivalent to the category of coherent Aiia-modules simple
along the diagonal, we will regard ωi as an Aiia-module supported by
the diagonal and we will still denote it by ωi.

Theorem 3.6 ([6, Theorem 3.3.3]). Let Ki ∈ Db
coh(Ai(i+1)a) (i = 1, 2).

There is a natural isomorphism in Db
coh(A1a3)

(D′A12aK1) ◦
2a
ω2a ◦

2a
(D′A23aK2) ∼→ D′A13a (K1 ◦2 K2).

3.2. Integral transforms for qcc modules. In this section, we adapt
to qcc objects the framework of convolutions of kernels of [6]. In view
of Definitions 3.2 and 3.3, it is easy, using the functor of cohomolog-
ical completion (see Definition 2.6), to define a tensor product and a
composition for cohomologically complete modules.

Definition 3.7. Let Ki ∈ Dcc(Ai(i+1)a) (i = 1, 2). We set

K1
L
⊗
A2
K2 =(K1

L
⊗
A2

K2)cc ∈ Dcc(p−1
13A13a),

K1∗2K2 = R p13∗(K1
L
⊗
A2
K2) ∈ Dcc(A13a),

K1◦2K2 = R p13!(K1
L
⊗
A2
K2) ∈ Dcc(A13a).

Remark 3.8. If K1 ∈ Db
coh(A12a) and K2 ∈ Db

coh(A23a), then

K1
L
⊗
A2
K2 ' K1

L
⊗
A2

K2,

K1∗2K2 ' K1 ∗2 K2,

K1◦2K2 ' K1 ◦2 K2.
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Lemma 3.9. Let Ki ∈ Dcc(Ai(i+1)a) (i = 1, 2).
K1∗2K2 '(K1 ∗2 K2)cc,

K1◦2K2 '(K1 ◦2 K2)cc.

Proof. Using morphism (2.1), we get a map

K1
L
⊗
A2

K2 → K1
L
⊗
A2
K2.

It induces a morphism

(R p13∗(K1
L
⊗
A2

K2))cc → (R p13∗(K1
L
⊗
A2
K2))cc.

By Proposition 1.5.12 of [6] the direct image of a cohomologically com-
plete module is cohomologically complete. Then,

(R p13∗(K1
L
⊗
A2
K2))cc ' R p13∗(K1

L
⊗
A2
K2).

This gives us a map
(3.1) (K1 ∗2 K2)cc → K1∗2K2.

Using the fact that the functor gr~ commutes with direct image and
Proposition 2.7, we get the following commutative diagram.

gr~((K1 ∗2 K2)cc) // gr~(K1∗2K2)

gr~(K1 ∗2 K2)

gr~(cc) o

OO

// gr~(K1∗2K2)

R p13∗ gr~(K1
L
⊗
A2

K2)

o

OO

∼
gr~(cc)

// (R p13∗ gr~(K1
L
⊗
A2
K2)).

o
OO

It follows that the morphism gr~((K1 ∗2 K2)cc) → gr~(K1∗2K2) is an
isomorphism. Applying Proposition 2.5, we obtain that the morphism
(3.1) is an isomorphism.

The second formula is proved similarly. �

From now on all the varieties considered are smooth complex alge-
braic varieties endowed with the Zariski topology

Corollary 3.10. Let Ki ∈ Dqcc(Ai(i+1)a) (i = 1, 2). The kernel K1∗2K2

is an object of Dqcc(A13a).
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Proof. This follows from Lemma 3.9 and [6, Prop 3.1.4] which says
that the functor gr~ commutes with the compostion of DQ-kernel (see
Definition 3.3). �

Let K ∈ Dqcc(A12a). The above corollary implies that the functor
(3.2) is well-defined.

(3.2) ΦK : Dqcc(A2)→ Dqcc(A1), M 7→ K∗
2
M = Rp1∗(K

L
⊗

p−1
2 A2

p−1
2 M).

Before proving Theorem 3.12, we need to establish the following
result.

Proposition 3.11. LetM∈ Dcc(AX). If gr~M∈ Db(OX) thenM∈
Db
cc(AX).

Proof. Let M ∈ Dcc(AX) such that gr~M ∈ Db(OX). It follows im-
mediately from [6, Prop. 1.5.8], thatM∈ D+(AX). Then to establish
thatM∈ Db(AX), it is sufficient to prove that there exists a number q
such that τ≥qM∈ Db(AX). For that purpose, we essentially follow the
proof of Proposition 1.5.8 of [6]. Since gr~M∈ Db

coh(OX), there exists
p ∈ Z such that for every i ≥ p, Hi(gr~M) = 0. We deduce from the
exact sequence Hi(gr~M) → Hi+1(M) ~→ Hi+1(M) → Hi+1(gr~M)
that Hi(M) ~→ Hi(M) is an isomorphism for i > p. Thus, τ≥p+1M ∈
D(AlocX ) which means that RHomAX

(AlocX , τ≥p+1M) ' τ≥p+1M. Ap-
plying RHomAX

(AlocX , ·) to the distinguished triangle

τ≤pM→M→ τ≥p+1M +1→,

we get the distinguished triangle

RHomAX
(AlocX , τ≤pM)→ RHomAX

(AlocX ,M)→ RHomAX
(AlocX , τ≥p+1M) +1→ .

The moduleM is cohomologically complete. Hence, we have the iso-
morphism RHomAX

(AlocX ,M) ' 0. It follows that

τ≥p+1M' RHomAX
(AlocX , τ≤pM)[1].

Corollary 4.4 implies that RHomAX
(AlocX , τ≤pM)[1] ∈ D−(AX). Then

τ≥p+1M∈ D+(AX) ∩ D−(AX) = Db(AX). Thus,M∈ Db(AX). �

We now restrict our attention to the case of smooth proper algebraic
varieties. The next result is inspired by [12, Thm. 8.15]. Recall that
the objects of Db

coh(AX) are not necessarily compact in Dqcc(AX) (see
Theorem 2.18).
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Theorem 3.12. Let X1 (resp. X2) be a smooth complex algebraic va-
riety endowed with a DQ-algebroid A1 (resp. A2). Let K ∈ Dqcc(A12a).
Assume that the functor ΦK : Dqcc(A2) → Dqcc(A1) preserves compact
objects. Then, K belongs to Db

coh(A12a).

Proof. The kernel gr~K induces an integral transform
Φgr~K : Dqcoh(O2)→ Dqcoh(O1).

Let G be a compact generator of Dqcoh(O2). Then, by Proposi-
tion 2.15 ιg(G) is a compact generator of Dqcc(A2). By hypothesis,
ΦK(ιg(G)) is a compact object of Dqcc(A1). It follows that the object
Φgr~K(gr~ ιg(G)) belongs to Db

coh(O1) and thus is a compact object of
Dqcoh(O1).

Let T be the full subcategory of Db
coh(O2) such that Ob(T ) = {M ∈

Db
coh(O2)|Φgr~K(M) ∈ Db

coh(O1)}. The category T is a thick subcate-
gory of Db

coh(O2) containing gr~ ιg(G). By Corollary 2.17, Db
coh(O2) is

the thick envelop of gr~ ιg(G). Thus, T = Db
coh(O2). It follows that the

image of an object of Db
coh(O2) by Φgr~K is an object of Db

coh(O1). Ap-
plying Theorem 8.15 of [12], we get that gr~K is an object of Db

coh(O12).
Applying Proposition 3.11, we get that K ∈ Db(A12a). Now, Theorem
1.6.4 of [6] implies that K ∈ Db

coh(A12a). �

3.3. Integral transforms of coherent DQ-modules. In this sec-
tion we study integral transforms of coherent DQ-modules. Recall that
all the varieties considered are smooth complex projective varieties en-
dowed with the Zariski topology.

Let K ∈ Db
coh(A12a). Theorem 3.4 implies that the functor (3.3) is

well-defined.

(3.3) ΦK : Db
coh(A2)→ Db

coh(A1), M 7→ K ◦
2
M = Rp1∗(K

L
⊗

p−1
2 A2

p−1
2 M).

Proposition 3.13. Let K1 ∈ Db
coh(A12a) and K2 ∈ Db

coh(A23a). The
composition

Db
coh(A3)

ΦK2→ Db
coh(A2)

ΦK1→ Db
coh(A1)

is isomorphic to ΦK1◦
2
K2 : Db

coh(A3)→ Db
coh(A1).

Proof. It is a direct consequence of Proposition 3.2.4 of [6]. �

We extend to DQ-modules some classical adjunctions results. They
are usually established using Grothendieck duality which does not seem
possible to do here. Our proof relies on Theorem 3.6.
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Definition 3.14. For any object K ∈ Db
coh(A12a), we set

KR = D′A12a (K) ◦
2a
ω2a KL = ω1a ◦

1a
D′A12a (K)

objects of Db
coh(A1a2).

Proposition 3.15. Let ΦK : Db
coh(A2) → Db

coh(A1) be the Fourier-
Mukai functor associated to K and ΦKR

: Db
coh(A1) → Db

coh(A2) (resp.
ΦKL

: Db
coh(A1) → Db

coh(A2)) the Fourier-Mukai functor associated to
KR (resp. KL). Then ΦKR

(resp. ΦKL
) is right (resp. left) adjoint to

ΦK.

Proof. We have
RHomA1(K ◦

2
M,N ) ' RΓ(X1,RHomA1(K ◦

2
M,N )).

Applying Theorem 3.6 and the projection formula, we get

RHomA1(K ◦
2
M,N ) ' RHomA1(K ◦

2
M,A1)

L
⊗
A1
N

' (D′A12a (K) ◦
2a
ω2a ◦

2a
D′A2(M))

L
⊗
A1
N

' (KR ◦2a
D′A2(M))

L
⊗
A1
N

' R p1∗(KR
L
⊗

p−1
2 A2a

p−1
2 D′A2(M))

L
⊗
A1
N

' R p1∗(KR
L
⊗

p−1
2 A2a

p−1
2 D′A2(M)

L
⊗

p−1
1 A1

p−1
1 N ).

Taking the global section and applying again the projection formula,
we get
RΓ(X1,RHomA1(K ◦

2
M,N )) '

RΓ(X1,R p1∗(KR
L
⊗

p−1
2 A2a

p−1
2 D′A2(M))

L
⊗

p−1
1 A1

p−1
1 N )

' RΓ(X1 ×X2, (KR
L
⊗

p−1
2 A2a

p−1
2 D′A2(M))

L
⊗

p−1
1 A1

p−1
1 N )

' RΓ(X2,R p2∗((KR
L
⊗

p−1
2 A2a

p−1
2 D′A2(M))

L
⊗

p−1
1 A1

p−1
1 N ))

' RΓ(X2,D′A2(M)
L
⊗
A2

(KR ◦1 N ))

' RHomA2(M,KR ◦1 N ).
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Thus, RHomA1(K ◦
2
M,N ) ' RHomA2(M,KR ◦1 N ) which proves the

claim. The proof is similar for KL. �

Finally, we have the following theorem.

Theorem 3.16. Let X1 (resp. X2) be a smooth complex projective va-
riety endowed with a DQ-algebroid A1 (resp. A2). Let K ∈ Db

coh(A12a).
The following conditions are equivalent
(i) The functor ΦK : Db

coh(A2) → Db
coh(A1) is fully faithful (resp. an

equivalence of triangulated categories).
(ii) The functor Φgr~K : Db

coh(O2) → Db
coh(O1) is fully faithful (resp.

an equivalence of triangulated categories).

Proof. We recall the following fact. Let F and G be two functors and
assume that F is right adjoint to G. Then, there are two natural
morphisms

G ◦ F → id(3.4)
id→ F ◦G.(3.5)

The morphism (3.4) (resp. (3.5)) is an isomorphism if and only if
F (resp. G) is fully faithfull. The morphisms (3.4) and (3.5) are
isomorphisms if and only if F and G are equivalences.

(1) (i) ⇒ (ii). Proposition 3.15 is also true for O-modules since
the proof works in the commutative case without any changes.
Moreover, the functor gr~ commutes with the composition of
kernels. Hence, we have gr~(KR) ' (gr~K)R. Therefore, the
functor Φgr~KR

is a right adjoint of the functor Φgr~K. Thus,
there are morphisms of functors

Φgr~K ◦ Φgr~KR
→ id,(3.6)

id→ Φgr~KR
◦ Φgr~K.(3.7)

Set ΦL = Φgr~KR
◦ Φgr~K. Let T2 be the full subcategory of

Db
coh(O2) whose objects are theM∈ Db

coh(O2) such that

M→ ΦL(M)

is an isomorphism. It follows from Proposition 2.12 that T2 is
a thick subcategory of Db

coh(O2).
Let G be a compact generator of Dqcoh(O2). By Corollary

2.17, Db
coh(O2) = 〈G〉. Since ΦK is a fully faithful we have the

isomorphism

ιg(G) ∼→ ΦKR
◦ ΦK(ιg(G)).
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Applying the functor gr~, we get that gr~ ιg(G) belongs to T2 and
by Corollary 2.17, gr~ ιg(G) is a classical generator of Db

coh(O2).
Hence, T2 = Db

coh(O2). Thus, the morphism (3.7) is an isomor-
phism of functors. A similar argument shows that if Φgr~K is an
equivalence the morphism (3.6) is also an isomorphism which
proves the claim.

(2) (ii)⇒ (i).
Since ΦK and ΦKR

are adjoint functors we have natural mor-
phisms of functors

ΦK ◦ ΦKR
→ id,

id→ ΦKR
◦ ΦK.

IfM∈ Db
coh(A2), then we have

(3.8) M→ ΦKR
◦ ΦK(M).

Applying the functor gr~, we get

(3.9) gr~M→ Φgr~KR
◦ Φgr~K(gr~M).

If Φgr~K is fully faithful, then the morphism (3.9) is an isomor-
phism. The objects ΦKR

◦ ΦK(M) andM are cohomologically
complete since they belongs to Db

coh(A2). Thus the morphism
(3.8) is an isomorphism that is to say

id ∼→ ΦKR
◦ ΦK.

It follows that ΦK is fully faithful.
Similarly, one shows that if Φgr~K is an equivalence then in

addition
ΦK ◦ ΦKR

∼→ id .

It follows that ΦK is an equivalence.
�

Remark 3.17. The implication (ii)⇒ (i) of Theorem 3.16 and Propo-
sition 3.15 still hold if one replaces smooth projective varieties by com-
plex compact manifolds. This result implies immediatly that the quan-
tization of the Poincaré bundle constructed in [9] induces an equiva-
lence.
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4. Appendix

In this appendix we show that the cohomological dimension of the
functor RHomC~

X
(C~,loc

X ,M) is finite. We refer to [5] for a detailed ac-
count of pro-objects. Recall that to an abelian category C one associates
the abelian category Pro(C) of its pro-objects. Then, there is a natural
fully faithful functor iC : C → Pro(C). The functor iC is exact. For any
small filtrant category I the functor “ lim←− ” : Fct(Iop, C) → Pro(C) is
exact. If C admits small projective limits the functor iC admits a right
adjoint denoted π.

π : Pro(C)→ C, ” lim←−
i

”Xi 7→ lim←−
i

Xi.

If C is a Grothendieck category, then π has a right derived functor
R π : D(Pro(C))→ D(C).

Let us recall Lemma 1.5.11 of [6].

Lemma 4.1. LetM∈ D(C~). Then , we have

(4.1) R π((“ lim←−
n

”C~
X~n)

L
⊗
C~

X

M) ' RHomC~
X

(C~,loc
X ,M).

Proposition 4.2. The functor RHomC~
X

(C~,loc
X , ·) has finite cohomo-

logical dimension.

Proof. LetM∈ Mod(C~
X). By Lemma 4.1 we have

(4.2) RHomC~
X

(C~,loc
X ,M) ' R π((“ lim←−

n

”C~
X~n)

L
⊗
C~

X

M).

Then by Proposition 6.1.9 of [5] adapted to the case of pro-objects,
we have

R π((“ lim←−
n

”C~
X~n)

L
⊗
C~

X

M) ' R π(“ lim←−
n

”(C~
X~n

L
⊗
C~

X

M)).

It follows from Corollary 13.3.16 from [5] that

∀i > 1, Ri π(“ lim←−
n

”(C~
X~n

L
⊗
C~

X

M)) ' 0

which proves the claim. �

Proposition 4.3. The functor RHomC~
X

(C~,loc
X , ·) : D(C~

X) → D(C~
X)

is such that RHomC~
X

(C~,loc
X ,D−(C~

X)) ⊂ D−(C~
X).

Proof. This follows immediately from Example 1 of [3, Ch. I §7.]. �
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Corollary 4.4. Let X be a smooth complex (algebraic or analytic) va-
riety endowed with a DQ-algebroid AX . The functor RHomAX

(AlocX , ·)
is such that RHomAX

(AlocX ,D−(AX)) ⊂ D−(AX).
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