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Introduction

Let h : T → S be a finite separable morphism of complete non-singular surfaces
over an algebraically closed field k of any characteristic. We establish a formula
that expresses the Euler characteristic χT of T (understood as the degree of the
second Chern class

∫
c2,T ) of T via the Euler characteristic of S and some local

terms associated with components of the branch divisor Bh of h and certain
points on Bh.

Let Bh =
∑

i biBi (here Bi are prime divisors on S). Then

χT − nχS =
∑

i

biχBi
+

∑

Q

λf (ÔT,Q/ÔS,h(Q)).

Here Q runs over closed points of T , λf (A′/A) is a certain invariant defined
explicitly for an extension of complete 2-dimensional regular local rings A′/A
and a (sufficiently general) element f of the maximal ideal of A which is a local
equation of the curve at h(Q) in any fixed sufficiently good pencil of curves on
S. This invariant is defined in terms of the differents of all A′/q over A′/(q∩A),
the invariants of singularity of arcs corresponding to A′/q and A/(q ∩ A), and
the invariants of intersection of the latter arc with the branch divisor, where q

runs over prime divisors of f in A′. (For an exact statment, see definitions in
Sections 1, 3, 4 and Theorem 7.4.)

The term λf (ÔT,Q/ÔS,h(Q)) is non-vanishing only for a finite number of
points Q, all of them lying on the ramification divisor of f .

What is also important, this term depends on infinitesimal (rather than
merely local) behavior of h, i. e., on the properties of extensions of completed
local rings, and this reduces the further analysis to some questions related only
to complete regular local rings.

This formula is a 2-dimensional analog of Riemann-Hurwitz formula. In
characteristic 0 it was established by Iversen in [Iv].

0.0.1 Remark. We could not avoid the dependence on f in the definition
of the term λ that describes the ramification in codimension 2. However, we
expect that λf is independent of f (and, therefore, the formula is in its final
form) in case there is no ferocious ramification. (This condition means that
all morphisms of curves induced by the given finite morphism of surfaces are
separable.)
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In the good (non-ferocious) case we can show directly that in all ”non-
exceptional” points λf does not depend on the choice of a pencil of curves if
pencils are ”sufficiently general”. (At the moment this is completed under some
mild restrictions.) Then the exceptional points can be managed presumably by
a local-global argument like that in [L].

This research was accomplished during the autor’s stay at Humboldt Uni-
verität zu Berlin under support of Alexander von Humboldt Foundation and at
Max-Planck-Institut für Mathematik. I am very much grateful to these orga-
nizations. I would like also to thank A. N. Parshin and H. Kurke for fruitful
discussions.

1 Definitions, notation and preliminary facts

For arbitrary domain A, denote by Ã the integral closure of A; δ(A) = lA(Ã/A);
ν(A) is the number of maximal prime ideals in Ã; qA is the conductor of A, i. e.,
{c ∈ Ã|cÃ ⊂ A}; Q(A) is the field of fractions.

If C is a reduced irreducible curve, and P is a closed point on it, we denote
νP (C) = ν(OC,P ).

If A is a 1-dimensional domain, a ∈ A, and a 6= 0, we denote ordA a =
lA(A/aA).

If A is a 1-dimensional local domain, ω ∈ ΩA, and v is the valuation in Ã,
we denote v(ω) = v(g), where ω = g dt, t is any prime element of Ã.

If A is a local ring, we denote by mA the maximal ideal of A, and by Â the
completion of A.

Si denotes the set of i-dimensional points of a scheme S.
k(S) denotes the field of rational functions on an integral scheme S.
Let C be a divisor on a complete regular surface S over a perfect field k. Its

arithmetic genus is defined as

pa(C) = 1 +
1

2
(C + KS .C).

1.1 Lemma. Let A be a 1-dimensional local domain such that Ã is finite over
A. Let m1, . . . , mn be all maximal ideals of Ã. Then for any a ∈ A, a 6= 0 we
have

ordA a =

n∑

i=1

ordÃmi
a · [Ãmi

/miÃmi
: A/mA].

Proof. See [F, Example A.3.1].

1.1.1 Corollary. In the setting of Lemma assume that A is a k-algebra, where
k is a field. Then

dimk(A/a) =

n∑

i=1

dimk(Ãmi
/a).

Wild different. Let B/A be a finite extension of complete discrete valuation
rings. The order of the different DB/A can be written in the form

vB(DB/A) = eB/A − 1 + d(B|A);
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this d(B|A) is said to be the wild different of B/A; we assume d(B|A) = ∞, if
B/A is inseparable.

Let O be a complete 2-dimensional regular local ring with a coefficient sub-
field k. Let b ∈ O, a ∈ m \ {0}, where m is the maximal ideal of O. In this
situation we introduce d(a, b) ∈ N ∪ {+∞}.

If b is an irredusible element, denote by a the image of a in B = Õ/b. Then

d(a, b) = d(B|k[[a]]),

if a 6= 0, and d(a, b) = +∞ otherwise. In the general case, if b = ε
∏

i pri

i is a
canonical factorization, we put

d(a, b) =
∑

i

rid(a, pi).

Let A be a complete discrete valuation ring with a coefficient subfield k and
valuation v. For ω ∈ ΩA/k define v(ω) = v(g) ≤ ∞, where ω = g dt, t is any
local parameter in A.

1.2 Lemma. For any f ∈ A we have v(df) = v(f) + 1 + d(A|k[[f ]]).

2 Analytic adjunction formula

Let A be a 1-dimensional complete local domain with a perefect coefficient
subfield k. Assume that the embedding dimension of A does not exceed 2. In
other words, A is isomorphic to k[[X, Y ]]/(f), where f is an irreducible element
of the maximal ideal of k[[X, Y ]].

2.1 Proposition. There exists an irreducible polynomial f ∈ Xk[X, Y ] +
Y k[X, Y ] such that A is isomorphic to k[[X, Y ]]/(f).

2.2 Proposition. We have

dimk(Ã/qA) = 2δ(A).

Proof. Let A0 = (k[X, Y ]/(f))(X,Y ), where f is as in Prop. 2.1. Then A is the

completion of A0; dimk(Ã/qA) = dimk(Ã0/qA0); δ(A) = δ(A0). It remains to

show that dimk(Ã0/qA0) = 2δ(A0), but this is [Sa, Th. 5].

Let s, t be generatots of the maximal ideal of A such that f - ∂f
∂t ; Let v be

the valuation in Ã.

2.3 Proposition. Assume that f - ∂f
∂t . Then

vi(qA) + v(ds) = v
(

∂f
∂t

)
.

Proof. Indeed, dimk(Ã/qA) = dimk(Ã0/qA0) as in the previous proof; we may
assume that s, t ∈ A0. It remains to apply [Sa, Th. 3bis].

2.4 Theorem. Let s, t be as above. Then

2δ(A) + v(ds) = v
(

∂f
∂t

)
.

Proof. From Propositions 2.2 and 2.3.
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3 Tame and wild singularity

In this section k is an infinite perfect field, O is a 2-dimensional complete regular
local ring with the coefficient field k, K is the fraction field of O. For f, g ∈ O
such that (f, g) is an ideal of definition, we denote (f.g) = dimk O/(f, g).

Let π1, . . . , πr be pairwise non-associated prime elements of O, and f =
π1 . . . πr. Introduce the tame singularity of f

singt
O f = 2

∑

i

δ(O/πi) − r +
∑

i6=j

(πi.πj) + 1.

Next, introduce the wild singularity singw
O f of f . Assume that there exist

regular local parameters s, t of O such that
(i) d(f, s), d(f, s), d(f, ∂f

∂t ), d(s, ∂f
∂t ) are all finite.

(ii) πi - ∂πi

∂t for any i; s - ∂f
∂t .

Then
singw

O f = −d(f, s) + d(s, f) + d
(
f, ∂f

∂t

)
− d

(
s, ∂f

∂t

)
.

(We shall see in Cor. 3.3.1 that this value is independent of the choice of s, t.)
If no required s, t exist, we assume singw

O f = ∞.
Our plan is to express

(
∂f
∂s . ∂f

∂t

)
as the sum of tame and wild singularity. It

is easy to see that this value is independent of the choice of s and t.

3.1 Lemma (Generalization of Weierstraß preparation lemma). Let
f ∈ k[[X, Y ]] be irreducible. Then, after a possible exchange of X and Y , we
have f = uf0, where u ∈ k[[X, Y ]]∗, and

f0 = Y n + a1Y
n−1 + · · · + an−1Y + an

is a separable polynomial in Y , ai ∈ Xk[[X ]].

Proof. This is exactly [Iv, Lemma 2.4].

3.1.1 Corollary. Let π be an irreducible element of O. Then dπ /∈ πΩO/k.

Proof. Since ΩO/k is a free O with a basis ds, dt, an equivalent statement is

that either π - ∂π
∂s , or π - ∂π

∂t . But this follows from Lemma 3.1.

3.2 Lemma. One can choose local parameters s, t in O so that
1) πi - ∂πi

∂t for every i;

2) s - ∂f
∂t .

Proof. Let s0 and t0 be arbitrary regular local parameters in O. Put

s = s0 + αt0 + βtp0,

t = t0,

where p = max(char k, 2), α, β are some elements of k. It is easy to see that

∂
∂s = ∂

∂s0
,

∂
∂t = ∂

∂t0
− α ∂

∂s0
− βptp−1 ∂

∂s0
.

4



In view of Corollary 3.1.1, we have πi - dπi for any i, i. e., πi - ∂πi

∂s0
or πi - ∂πi

∂t0
. It

follows that the set M of all pairs (α, β) satisfying the condition 1) is non-empty
(since k is infinite) and open on the plane.

After a possible intermediate change of variables, we may assume that
(0, 0) ∈ M . Suppose that the assertion to prove is false; this means in par-
ticular that

s0 + αt0
∣∣ ∂f

∂s0
− α ∂f

∂t0

for all α such that (α, 0) ∈ M , i. e., for infinitely many values of α. From here
it can be easily deduced using the completion that

s0
∂f
∂s0

= −t0d
∂f
∂t0

.

It follows from this and Lemma 3.1.1 that ∂f
∂s0

6= 0. Next, for arbitrary β such
that (0, β) ∈ M we have

s0 + βtp0
∣∣ ∂f

∂t0
− βptp−1

0
∂f
∂s0

,

whence
s0 + βtp0

∣∣ −t0
∂f
∂t0

+ βptp0
∂f
∂s0

and
s0 + βtp0

∣∣ ∂f
∂s0

(s0 + βptp0).

Since ∂f
∂s0

6= 0, we conclude that

s0 + βtp0
∣∣ s0 + βptp0

for infinitely many values of β, and this is impossible.

3.3 Proposition. Let s, t be any regular local parameters of O satisfying the
conditions in Lemma 3.2. Assume that

(
∂f
∂s . ∂f

∂t

)
< ∞. Then d(f, s), d(s, f),

d
(
f, ∂f

∂t

)
, d

(
s, ∂f

∂t

)
are all finite, and

(
∂f
∂s . ∂f

∂t

)
= singt

O f − d(f, s) + d(s, f) + d
(
f, ∂f

∂t

)
− d

(
s, ∂f

∂t

)
.

Proof. First, we show that d
(
f, ∂f

∂t

)
< ∞, d

(
s, ∂f

∂t

)
< ∞, and

(
∂f
∂s . ∂f

∂t

)
=

(
f . ∂f

∂t

)
+ d

(
f, ∂f

∂t

)
−

(
s . ∂f

∂t

)
− d

(
s, ∂f

∂t

)
. (1)

It is sufficient to check that d(f, q) < ∞, d(s, q) < ∞, and

(f.q) =
(

∂f
∂s . q

)
− d(f, q) + (s.q) + d(s, q),

where q is any irreducible divisor of ∂f
∂t . Note that all other terms in both sides

of the relation are known to be finite.
According to Corollary 1.1.1, for any a ∈ O such that q - a we have (a.q) =

v(a), where a is the class of a in O/q, and v is the valuation in Õ/q. It remains

to note that the equation df = ∂f
∂s ds+ ∂f

∂t dt yields df̄ = ∂f
∂s ds̄ in ΩO/q, whence

v(ds) < ∞. Applying Lemma 1.2 twice, we obtain finiteness of d(f, q) and
d(s, q), and

v(f̄) = v(df̄) + 1 − d(f, q)

= v
(

∂f
∂s

)
+ v(ds̄) + 1 − d(f, q)

= v
(

∂f
∂s

)
+ v(s̄) − d(f, q) + d(s, q).
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Similarly, considering ΩO/s instead of ΩO/q, we obtain

(f.s) − 1 =
(

∂f
∂t . s

)
− d(f, s). (2)

(Note that (f.s) < ∞ since πi - ∂πi

∂t for any i.)
Combine (1) and (2):

(
∂f
∂s . ∂f

∂t

)
=

(
f . ∂f

∂t

)
− ((f.s) − 1) + d

(
f, ∂f

∂t

)
− d

(
s, ∂f

∂t

)
− d(f, s).

It remains to show that d(s, f) < ∞, and

(
f . ∂f

∂t

)
− ((f.s) − 1) = d(s, f) + singt

O f.

It is sufficient to show that for every i:

(
πi . ∂πi

∂t

)
− (πi.s) = 2δ(O/πi) − 1 + d(s, πi).

In view of Corollary 1.1.1, this is equivalent to

v
(

∂πi

∂t

)
− v(s̄) + 1− d(s, πi) = 2δ(O/πi), (3)

where v is the valuation in Õ/πi. By Lemma 1.2, ds̄ 6= 0 implies d(s, πi) < ∞,
and (3) can be rewritten as

v
(

∂πi

∂t

)
− v(ds̄) = 2δ(O/πi)

However, the last equality is nothing else but the analytic adjunction formula
2.4 for the ring O/πi.

3.3.1 Corollary. singw
O f is independent of the choice of s, t.

In what follows, we shall write singO f = singt
O f + singw

O f .

Examples. Let x, y be any system of regular local parameters in O.
1. Let f = xl − ym, p - l, p - m. Then singw

O f = 0.
2. Let f = yp + yM − x2, p - M . Taking s = x, t = y, we compute

d(f, s) = d(s, f) = d(s, ∂f
∂t ) = 0,

and
d(f, ∂f

∂t ) = M − p,

whence singw
O f = M − p.

3. Let f = yp − x2. Then d(f, x) = ∞, whence for any choice of regular
local parameters s, t we have d(f, ∂f

∂t ) = ∞, and singw
O f = ∞.

4 Extensions of 2-dimensional complete regular

local rings

In this section O′/O is a finite separable extension of complete 2-dimensional
regular local rings of some degree n, both having an infinite prefect coefficient
subfield k.
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4.1 Proposition. Let π be a prime element of O which does not divide a local
equation β of the branch divisor of O′/O; let π = π1 . . . πr, where π1, . . . , πr are
irreducible elements of O′. Then we have

singt
O′ π − n singt

O π = (β.π) − (n − 1) −
r∑

i=1

d((O′/πi)|(O/π)).

Proof. Choose such regular local parameters s, t in O that π - ∂π
∂t . This can be

done by Lemma 3.2. Fix j and choose such regular local parameters u, v in O′

that πj - ∂πj

∂v . Denote Aj = Õ′/πj .
Now we make some computations in ΩQ(Aj)/k; the elements of O′ (resp.,

of ΩO′/k) will be denoted by the same letters as their images in Aj (resp., in
ΩQ(Aj)/k). First of all,

∂πj

∂u du +
∂πj

∂v dv = dπj = 0.

Therefore,

(
∂π
∂t

)−1
ds =

(
∂π
∂t

)−1( ∂s
∂udu + ∂s

∂v dv
)

=
(

∂π
∂t

)−1( ∂s
∂u · ∂πj

∂v − ∂s
∂v

∂πj

∂u

)(∂πj

∂v

)−1
du

The derivations ∂
∂s and ∂

∂t of Q(O) can be uniquely prolonged to continuous

derivations of Q(O′) also denoted by ∂
∂s and ∂

∂t . We have

∂
∂u = ∂s

∂u · ∂
∂s + ∂t

∂u · ∂
∂t ,

since these derivations coincide on the elements s and t, and Q(O′) is separable
over Q(O) = Q(k[[s, t]]). In view of this the equality in ΩQ(Aj)/k

ds =
(

∂s
∂u

∂πj

∂v du + ∂s
∂v

∂πj

∂v dv
)(∂πj

∂v

)−1

=
(

∂s
∂u

∂πj

∂v du − ∂s
∂v

∂πj

∂u du
)(∂πj

∂v

)−1

=

∣∣∣∣
∂s
∂u

∂s
∂v

∂πj

∂u
∂πj

∂v

∣∣∣∣
(∂πj

∂v

)−1
du

implies
(

∂π
∂t

)−1
ds =

(
∂π
∂t

)−1
∣∣∣∣

∂s
∂s

∂s
∂t

∂πj

∂s
∂πj

∂t

∣∣∣∣
∣∣∣∣

∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣
(∂πj

∂v

)−1
du

=
(

∂π
∂t

)−1 ∂πj

∂t

∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣
(∂πj

∂v

)−1
du

=
∏

i6=j

π−1
i

∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣
(∂πj

∂v

)−1
du.

(4)

We shall apply the analytic adjunction formula 2.4. Let wj and w be the

valuations in Aj and A = Õ/π respectively, ej = e(Aj/A), dj = d(Aj |A).
Denote by ρj and ρ any local parameters in Aj and A respectively. We write
the left hand side and right hand side of (4) in the form Ldρj = L0dρ and Rdρj

respectively and compute the valuations of L and R.
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It is clear from the exact sequence

ΩA/k ⊗A Aj → ΩAj/k → ΩAj/A → 0

that dρ = adρj , where a is a generator of the different of Aj/A, i. e. wj(a) =
ej − 1 + dj . Next, w(L0) = −w

(
∂π
∂t

)
+ w(ds). It follows wj(L) =

(
−w

(
∂π
∂t

)
+

w(ds)
)
ej + ej − 1 + dj . Next,

wj(R) = −
∑

i6=j

wj(πi) + wj

(∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣
)
− wj

(∂πj

∂v

)
+ wj(du).

Thus, we have

(
−w

(
∂π
∂t

)
+ w(ds)

)
ej + ej − 1 + dj =

= −
∑

i6=j

wj(πi) + wj

(∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣
)
− wj

(∂πj

∂v

)
+ wj(du).

Apply the analytic adjunction formula in the both sides, and apply Corollary
1.1.1 in the right hand side:

(−2δ(O/π) + 1)ej + dj = 1 −
∑

i6=j

(πi.πj) + (β′.πj) − 2δ(O′/πj),

where β′ is an equation of the ramification divisor in O′/O. Finally, take the
sum over j:

−n(singt
O π − 1) +

∑

j

dj = −(singt
O′ π − 1) + (β.π).

Definition of λf . For the branch divisor of O′/O (as a closed subscheme in
SpecO′), denote by βi the equations of its prime components, and by bi their
multiplicities. Take an element f ∈ O which is a product of pairwise non-
associated prime elements in O, such that singw

O f < ∞ and none of βi divides
f . Let f = π′

1 . . . π′
r be a factorization of f in O′. Every π′

i divides exactly one
prime divisor πi of f in O, and we denote by A′

i and Ai the integral closures of
O′/π′

i and O/πi respectively. We define

λf (O′/O) =
∑

i

bi(1− d(f, βi))− (n− 1)−
r∑

i=1

d(A′
i|Ai) + singw

O′ f − n singw
O f.

4.2 Conjecture. Assume that there is no ferocious ramification in O′/O. Let
f, f ′ ∈ O be elements such that λf (O′/O) and λf ′(O′/O) are defined. Then
λf (O′/O) = λf ′(O′/O).

Example. One can construct an ample series of examples, taking for O′ the
integral closure of O in the extension of the fraction field of O given by equation
xp − x = t−pm+1u−pn, where t, u are fixed regular local parameters in O, m, n
are non-negative integers. In is not difficulty to see that such O′ is always
regular.
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In this version of the text we consider only an example of a non-exceptional
point on a component of the branch divisor without ferocious ramification. For
this, take m > 0, n = 0.

The notion of an exceptional point is due to Deligne [D], see also Brylinski
[Br]. Roughly speaking, these are the points on the ramification divisor where
the codimension 2 ramification invariants take their non-generic values.

Let y = tmx. Then yp − t(p−1)my = t, whence O′ ⊃ O[y] = k[[y, u]]. Since
O[y] is regular, we have O[y] = O′, and

t = yp − yp+(p−1)(pm−1) + O(yp+2(p−1)(pm−1)).

The branch divisor B consists of one component t = 0, and b1 = (p − 1)pm.
Let f = t − ui, i > 0, (i, p) = 1. Then the expansion of f in k[[y, u]] is

f = F (y, u) = yp − yp+(p−1)(pm−1) − ui + O(yp+2(p−1)(pm−1)).

We have

singw
O′ f = d(f, y) − d(y, f) − d

(
f, ∂f

∂u

)
+ d

(
y, ∂f

∂u

)

= 0 − 0 − (i − 1)d
(
k[[y]]|k[[F (y, 0)]]

)
+ 0

= (i − 1)(p − 1)(pm − 1).

It follows

λf (O′/O) = (p − 1)pm − (p − 1) − d
(
k[[y, u]]/f |k[[u]]

)
+ (i − 1)(p − 1)(pm − 1)

= (p − 1)(pm − 1) − i(p − 1)(pm − 1) + (i − 1)(p − 1)(pm − 1) = 0.

5 Severi’s formula

In this section S is a regular geometrically irreducible complete surface over a
perfect field k; K is the field of functions on S.

5.1 Lemma. Let s, t be regular local parameters in P ∈ S. Then for any P ′

in some neighborhood of P the functions s − s(P ′), t − t(P ′) are regular local
parameters at P ′.

Proof. Let U be a neighborhood of P such that s and t are regular functions
on U . Consider morphism f : U → A2

k determined by a pair of functions s, t.
Obviously, f is unramified at P , whence f is also unramified in all points of
some neighborhood of P .

Let ω be a non-zero rational 1-differential on S, i. e. ω ∈ ΩK/k, and ω 6= 0.
We define a divisor (ω) and a 0-cycle 〈ω〉 on S.

Let P ∈ S, and let s, t be regular local parameters at P . Then ω = fP ·
(aP ds + bP dt), where aP and bP are coprime in OS,P , fP ∈ K. Then (ω) is
defined as the divisor on S such that in a neighborhood of any closed point P it
coincides with the divisor of the function fP ; this can be done in view of Lemma
5.1. Finally, by definition,

〈ω〉 =
∑

P∈S0

dimk OS,P /(aP , bP ) · P.

9



5.2 Theorem. In the group A0(S) we have

c2,S = 〈ω〉 + (ω) · KS − (ω) · (ω).

Proof. See [Y] (Corollary to Theorem 2’) or [K].

6 Computation of the second Chern class by

means of a pencil of curves

Let S be as in the previous section. Here a pencil of curves on S is treated as a
dominant rational map of S in P1

k. In other words, this is a surjective morphism

C : S \ B → P1
k,

which cannot be extended onto any point of B; B is a closed subfield of S, the
so-called set of base points of a given pencil of curves. [Sh, Ch. II, §3, Th.3]
implies that dim B = 0.

We shall consider only pencils of curves C satisfying the following condition:
(*) the fiber of C over any point s ∈ P1

k is a reduced subscheme.
The closure of C−1(s) ⊂ S \ B in S will be denoted by Cs. The theorem on

dimension of fibers of a morphism (see, e. g., [H, Ch. II, Ex. 3.22]) implies that
Cs is of pure dimension 1. The schemes Cs are said to be curves in C.

It is easy to see that all curves in C belong to the same divisor class, on S.
Therefore, for arbitrary divisor D on S the intersection multiplicity (Cs.D) is
independent of s and will be denoted merely by (C.D).

We require also the following condition to be satisfied:
(**) for any base point b there exist two curves in C that meet in b transver-

sally.

6.1 Lemma. Let C be a pencil of curves on S, b a base point. Then the following
two conditions are equivalent:

1. There exist two curves in C that meet in b transversally.
2. All curves in C contain b and meet in b transversally.

If s = C(P ), the curve Cs will be denoted also by CP .
For a reduced curve C on S and a point P ∈ C we put singw

P C = singw

ÔS,P
f

and singt
P C = singt

ÔS,P

f , where f is a local equation of C at P . Obviously,

singt
P C and singw

P C are well defined.
In this situation we say that C has an inseparable singularity at P , if

(∂f
∂s , ∂f

∂t ) = ∞. Our trird requirement is as follows.
(***) None of the curves in C has inseparable singularities.
We say that a pencil C on S is separable if it satisfies the conditions (*), (**)

and (***).

6.2 Proposition. Let S be a regular projective surface; C1, . . . , Cn prime divi-
sors. Then there exists a pencil of curves C on S with the set of base points B
such that

– for any i, B ∩ Ci = ∅;
– for any i, C induces a separable morphism Ci → P1

k;
– C is separable.

10



Proof. From the following two lemmas.

6.3 Lemma. In the setting of Prop. 6.2 S admits a finite separable morphism
g onto P2

k such that C1, . . . , Cn are not components of its ramification divisor
Rg.

6.4 Lemma. Let h : T → S be a finite separable morphism of surfaces, and
let C be a separable pencil on S such that the curves in C have no common
components with the branch divisor Bh. Then the pencil D = C ◦ h on T is also
separable.

Proof. Let b be any base point of D. Since h is unramified at b, regular local
parameters at h(b) generate the maximal ideal of OT,b. In other words, if two
curves are regular at h(b) and meet transversally at this point, the same is true
for their preimages with respect to the point b. This proves that D satisfies
(**). The condition (*) can be verified by means of a similar argument applied
to any regular point on a given curve from D such that h is unramified at that
point.

To verify the condition (***), it is sufficient to note that the Jacobi matrix
of h is of rank 2 at any point of T .

For a separable pencil C on S introduce a 0-cycle

sing C =
∑

P∈S\B

(singt
P CP + singw

P CP )P.

Since all curves in C belong to the same divisor class, their arithmetic genera
are the same; this common value will be denoted by pa(C).

6.5 Proposition. Let C be a separable pencil of curves on S with the set of
base points B. Then

∫
c2,S =

∫
sing C − #B − 4(pa(C) − 1).

Proof. Pick any rational function on the projective line such that its divisor of
zeroes as well as its divisor of poles has degree 1. (If we choose the infinite point
suitably, any such function is of the form λX−α

X−β for some α, β, λ ∈ k.) Denote

by f the inverse image of this function f ◦ C ∈ k(S). The idea of proof is to
apply Theorem 5.2 to df .

The above explicit description of the original function implies that any other
choice of such a function would change f into af+b

cf+d , where a, b, c, d ∈ k, ad−bc 6=

0. It follows that 〈df〉 =
∑

P∈S0
nP P is independent of this choice.

Now we compute nP for P /∈ B. Denote by D any curve in C which is
distinct from CP . Choose the function f such that its divisor is CP − D. Then
f is a local equation of CP at P . If s and t are local parameters at P , then
df = ∂f

∂s ds + ∂f
∂t dt. Since Cp has no inseparable singularities, by Proposition 3.3

we have
(

∂f
∂s .∂f

∂t

)
= sing

ÔS,P
f < ∞; thence

nP =
(

∂f
∂s .∂f

∂t

)
= sing

ÔS,P
f,

i. e., the 0-cycles 〈df〉 and sing C have equal coefficients at P .

11



Let now P ∈ B. Choose f so that its divisor is T − D, where C and D are
curves in C which meet transversally at P . Then f can be written as g/q, where
g and q are local equations of C and D at P . We have

df =
g dq − q dg

g2
,

whence nP = 1.
Thus, we obtained

〈df〉 = sing C +
∑

P∈B

P. (5)

Next, we compute (df). The divisor of f is C −D, where C and D are some
curves in C; we shall prove that

(df) = −2D. (6)

Take any P /∈ B; let s and t be regular local parameters. If P ∈ C, we saw
in the calculation of 〈df〉, that here ∂f

∂s and ∂f
∂t are coprime, i. e. P /∈ Supp(df).

If P ∈ D, note that df = f2 · d(f−1) and, similarly to the previous case,
P /∈ Supp(d(f−1)). Finally, if P /∈ C ∪ D, then P belongs to the divisors of
zeroes of f −f(P ), and this case can be reduced to the case P ∈ C by replacing
f with f − f(P ).

Substituting (5) and (6) into the formula from Theorem 5.2, we obtain the
following equality in A0(S):

c2,S = sing C +
∑

P∈B

B − 2(C.KS) − 4(C.C),

where C is an arbitrary curve from C. It is clear from Lemma 6.1 that (C.C) =∑
P∈B B. Therefore,

c2,S = sing C −
∑

P∈B

B − 2(C.KS) − 2(C.C),

Now it is sufficient to calculate the degrees and to apply the definition of arith-
metic genus.

We prove another property of pencils.

6.6 Proposition (generalized Plücker equation). Let C be a pencil of
curves on S with the set of base points B, D a reduced irreducible curve on
S which is not a component of any curve in C, and D ∩ B = ∅. Assume that
the restriction ϕ of the morphism C on D is a separable morphism of D onto a
projective line. Then

∑

P∈D

(
(CP .D)P − νP (D) +

∑

π

dP

)
= 2(C.D) + 2pg(D) − 2,

where dP is the sum of wild differents of ϕ at all points of the normalization of
D over P .
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Proof. Denote by λ : D̃ → D the normalization morphism. Let P ∈ D. For
P ′ ∈ λ−1(D) denote by eP ′ the ramification index of ϕ◦λ at P ′. Corollary 1.1.1
implies ∑

P ′∈λ−1(P )

eP ′ = (CP .D)P .

It is easy to see that deg(ϕ ◦ λ) = (C.D), and it remains to apply Riemann-
Hurwitz formula to the morphism ϕ ◦ λ.

7 Morphisms of surfaces

In this section we consider a finite separable morphism of surfaces h : T → S of
degree n. We consider the corresponding ramification divisor

Rh =
∑

η∈T1

lOT,η
(ΩT/S,η) · Dη ,

where Dη is a prime divisor divisor with the generic point η, and the branch
divisor

Bh = f∗Rh.

It is known (see, e. g., [Ii]) that in A1(T ) we have

KT = h∗KS + Rf . (7)

A local equation of the ramification divisor can be determined as follows.

7.1 Lemma. Let u, v be regular local parameters at Q ∈ T ; s, t regular local

parameters at h(Q). Then

∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣ is a local equation of Rf at Q.

Proof. In the exact sequence

ΩOS,h(Q)/k ⊗OS,h(Q)
OT,Q → ΩOT,Q/k → ΩOT,Q/OS,h(Q)

→ 0

the first arrow is a homomorphism of two free OT,Q-modules with bases ds, dt
and du, dv respectively; ds and dt are mapped respectively to ∂s

∂udu + ∂s
∂v dv and

∂t
∂udu + ∂t

∂v dv. Localizing with respect to all prime ideals of OT,Q of height 1,
we obtain that for any prime divisor containing Q with generic point η we have

lOT,η
(ΩT/S,η) = vη

(∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣
)
,

where vη is the valuation of k(T ) associated with η.

Fix a pencil C as in Prop. 6.2. Denote by D the pencil of curves C ◦ h on T ,
and by B and B′ the sets of base points of C and D respectively.

It is clear that #B′ = n#B. Therefore, Proposition 6.5 implies

χT − nχS =

∫
singD − n

∫
sing C − 2((2pa(D) − 2) − n(2pa(C) − 2)). (8)

7.2 Lemma (Zeuthen). Let C be a divisor on S, D = h∗C. Then

(2pa(D) − 2) − n(2pa(C) − 2) = (C.Bh).
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Proof. Using (7) and the projection formula, we obtain

2pa(D) − 2 = (D.D) + (KT .D)

= n(C.C) + (h∗KS .D) + (Rh.D)

= n(C.C) + n(KS .C) + (Bh.C)

= n(2pa(C) − 2) + (Bh.C)

By the definition, we have

∫
singD − n

∫
sing C =

∑

P∈S\B

( ∑

Q∈h−1(P )

singt
Q DQ − n singt

P CP +

∑

Q∈h−1(P )

singw
Q DQ − n singw

P CP

)
.

For an effective divisor C on S without multiple components and without
common components with Bh and a point Q on T , introduce the notation

dQ(C) =
∑

π,π′

d
((
ÔT,Q/π′

)∣∣(ÔS,h(Q)/π
))

,

where π runs over non-associated prime divisors in ÔS,h(Q) of a local equation

of C at h(Q), and π′ runs over non-associated prime divisors of π in ÔT,Q.

7.3 Proposition. Let C be an effective divisor on S without multiple compo-
nents and without common components with Bh; P any point of Supp C. Then
we have

∑

Q7→P

singt
Q h∗C − n singt

P C = (C.Bh)P − (n − #h−1(P )) −
∑

Q7→P

dQ(C).

Proof. We can immediately reduce Proposition to a similar statement, where
S is the spectrum of a complete 2-dimensional regular local ring. Next, it can
be reduced to the case, when T is connected, i. e., is also the spectrum of a
complete 2-dimensional regular local ring.

Let C =
∑

Ci, where Ci are prime divisors. For i 6= j we have

n(Ci.Cj)P =
∑

Q∈h−1(P )

(h∗Ci.h
∗Cj)Q.

In view of this formula, Proposition can be immediately reduced to the case
when C is a prime divisor and this case is nothing else but Prop. 4.1.

7.4 Theorem. Let Bh =
∑

biBi be the branch divisor of h. Let C be any
separable pencil on S such that none of Bi is a component of any curve in C.
Then

χT − nχS =
∑

i

bi(2pg(Bi) − 2) +
∑

Q

λf (ÔT,Q/ÔS,h(Q)), (9)

where f is a local equation of Ch(Q) at h(Q).
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Proof. Proposition 7.3 implies

∫
singD − n

∫
sing C =

∑

P∈S\B

(
(CP .Bh)P − (n − #h−1(P )) −

∑

Q7→P

dQ(CP )

+
∑

Q7→P

singw
Q DQ − n singw

P CP

)
P.

Together with (8) and Lemma 7.2, this implies:

χT − nχS = −2(C.Bh) +
∑

P∈S\B

(
(CP .Bh)P − (n − #h−1(P )) −

∑

Q7→P

dQ(CP )

+
∑

Q7→P

singw
Q DQ − n singw

P CP

)
.

Writing Bh as
∑

biBi, where Bi are prime divisors, we obtain

χT − nχS = − 2
∑

i

bi(C.Bi) +
∑

i

∑

P∈S

bi((CP .Bi)P − νP (Bi))

+
∑

P

(∑

i

biνP (Bi) − (n − #h−1(P )) −
∑

Q7→P

dQ(CP )

+
∑

Q7→P

singw
Q DQ − n singw

P CP

)
.

Note that for any i the morphism ϕi : Bi → P1
k determined by C is separable.

Indeed, if P ∈ Bi is any point of Bi, regular on Bh and such that CP meets Bh

at P transversally, then a local parameter at ϕi(P ) on P1
k is mapped to a local

parameter at P on Bi. Thus, we can apply Proposition 6.6, and this gives

χT − nχS =
∑

i

bi(2pg(Bi) − 2)+

+
∑

P

(∑

i

(
−bi

∑

P ′

d
(
ÔfBi,P ′

∣∣ ̂OP1
k
,ϕi(P )

)
+ biνP (Bi)

)

− (n − #h−1(P )) −
∑

Q7→P

dQ(CP )

+
∑

Q7→P

singw
Q DQ − n singw

P CP

)
,

where P ′ runs over the points over P of the normalization B̃i of Bi. Obviously,

n − #h−1(P ) =
∑

Q7→P

(nQ − 1),

where nQ is the degree of ÔT,Q over ÔS,P . It remains to rewrite bi as a sum
over Q 7→ P of similar infinitesimal terms. This completes the proof of Theorem
7.4.
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