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ON REGULAR GROUPS OF AUTOMORPHISMS
OF TRIVALENT POLYGONAL COMPLEXES

WITH NON-POSITIVE CURVATURE

Jacek Swi~tkowski

Polygonal complex is a 2-dimensional polyhedral cell complex which is homogeneous,
Le. each its cell is contained in a 2-ce11. We shall refer to 0-, 1- and 2-cells as vertices,
edges and cells respectively. Polygonal complex X is trivalent if each its edge is contained
in exactly three cells.

A group r of automorphisms of a polygonal complex X is regular if it acts transitively
on flags in X, Le. on incident tripIes (vertex, edge, cell). Polygonal complex X which
admits a regular group r of automorhisms is called itself regular. Of course, if X is
regular, then the group Aut X of a11 its autoIllorphisms is regular, sinee it eontains f.

Simply connected regular polygonal eomplexes with nonpositive curvature (see (1.2)
below) are the 2-dimensional geometrie analogs of regular trees; we will call them shortly
regular 2-trees. The dass of regular 2-trees is very rich, and the dassifieation of thc
trivalent case has been obtained in [Poly]. The classifieation of regular 2-trees with higher
valency is, according to our knowledge, an open problem.

The present paper is motivated by the result of D. Djokovic and G. Miller (see [DM])
- dassifieation of a dass of regular (i.e aeting transitivelyon the set of a11 oriented edges)
groups of automorphisms of the trivalent tree. We study regular groups of automorphisms
of trivalent 2-trees, and give a method to eonstruct examples of such groups which are
proper subgroups in full automorphism groups. In many cases the full automorphism group
of a regular polygonal complex is uneountable, but a subgroup obtained by our method is
diserete.

Here is a short deseription of our method.
Giyen a vertex v in a polygonal eomplex X, the link of X at v, denoted L (v, X), is a

graph whose vertices and edges represent respectively the edges and cens adjaeent to v in
X, and a relation of being a face is induced from that in X.

If X is a regular polygonal eomplex, then there exist a natural number k 2:: 3, and a
trivalent regular graph L , such that

(i) each cell of X is a k-gon, Le. its boundary consists of k vertices and k edgesj
(ii) links of X at an vertices are isomorphie to L.

We will call any simply connected polygonal cOInplex satisfying (i) and (ii) a (k, L)
complex.

Given a regular subgrup G c Aut L we define an additional structure on a (k, L)
complex, which we call G-structure. We define also a notion of G-isomorphism, Le. com
binatorial isomorphisqJ. re~pecting G-structures.

Each regular group of automorphisms of a (k, L)-complex X induees canonically a
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G-structure on X, with some regular G C Aut L. In our approach we take the opposite
direction: we construct and classify regular groups of automorphisms of non-positively
curved (k, L)-eomplexes, whieh arise as groups of G-automorphisms of G-structures.

The idea bchind our formalism is to view a regular graph L equipped with a reg
ular subgroup G c Aut L as a "less symmetrie" regular graph. It turns out that the
methods developed in [Poly] apply to the study of regular polygonal complexes with such
"reduced" graphs as links, and these are nothing else than (k, L)-eomplexes with regular
G-structures. On the other hand, thc results of [Poly] are contained in those of this paper
as a case when G = Aut L.

I would like to thank Max Planck Institut für Mathematik in Bonn, where I found
both inspiration and good conditions for work, and during my stay in which this paper
was written.

o. Trivalent graphs with regular groups of automorphisms.

0.1. Definitions and general results.
A graph L is 3-valent, if its caeh vertex is contained in exactly three edges. A group

G of automorphisms of L is regular, if it acts transitivelyon thc set of all incident pairs
(vertex, edge) in L. If L admits a regular group of automorphisms, we say that L itself
is regular. Of course, if L is regular, then thc group Aut L of all its automorphisms is
regular.

Given a natural number s, an s-arc in a graph L is a sequence (va, VI,' .• , Va) of its
vertices, such that

(i) (Vi, Vi+l) is an cdge of L, for i = 0, ... , s - 1;
(ii) Vi =1= Vi+2 for i = 0, ... ,s - 2.
Any group G of automorphisms of L clearly acts on the set of all s-arcs in L, for any s.

Definition. A group G of automorphisms of L is called s-arc-transitive, if it acts transi
tively on the set of all s-arcs in L. It is s-regular, if it acts simply transitivelyon s-arcs.
Graph L is s-regular, if so is the group Aut L of all its automorphisms.

In the paper [T] W. Tutte initiated the study of regular groups of automorphisms of
trivalent graphs by proving the following.

Theorem [Tutte, 1947]. Let L be a finite, connected, trivalent and regular graph. Then
L is s-regular for some s E {I, 2, 3,4, 5}.

The study culminated in the work of D. Djokovic and G. Miller [D-M], wherc they
indicated seven classes of s-regularity, according as s E {I, 2' , 2" , 3, 4' , 4" , 5}. In both cases
of s = 2 or s = 4 the s'- and s"-regularity are the subcases of s-regularity, distinguished
by means of edge stabilizers. The main rcsult of [D-M] is the following.

Theorem [Djokovic-Miller, 1980].
Let L be a finite, connected(land trivalent graph, and G a regular group of its automor
phisIllS. Then G is s-regular for some s E {I, 2', 2",3,4',4",5}.
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Moreover, Theorem 3 on page 211 of [D-M] shows the possible regularity types of
pairs (C, C') of a regular group C and its regular subgroup C'.

0.2. Some examples.
The main source of examples for us is II The Foster Cenzus" [F] of trivalent regular

graphs. For the reader's convenience we mention here several examples.

Many regular trivalent graphs correspond to I-skeletons of regular tesseations of Slir

faces by polygons. A tesselation is called regular if the group of its eombinatorial symme
tries' aets transitively on the set of aH Hags, Le. incident tripies (vertex , edge, polygon) ,
of this tesselation. The most obvious examples are the tesselations of the sphere eorre
sponding to the boundaries of platonie solids: tetrahcdron, cube and dodeeahedron. The
eorresponding I-skeletons are 2-regular graphs.

We mention several non-spherical examples.
1. The Petersen graph of girth 5 and 10 vertices, which is 3-regular, corresponds to a

tesselation of the projeetive plane by 6 pentagons. This tesselation ean be obtained from
dodeeahedron by the antipodal identifieation.

2. The incidence graph of the Desargues configuration, which is 3-regular, eonsists
of 20 vertiees and has girth 6, corresponds to a tesselation with six 10-gons of the non
orientable surfaee with X = -4. This tesselation ean be obtained from the previous
tesselation of the projeetive plane by the 2-fold cover branched over barycenters of aH six
pentagonal eeHs.

3. The full bipartite graph K(3, 3), which is 3-rcgular, corresponds to a tcsselation of
thc torus by three hexagons.

4. The Möbius-Kantor graph of girth 6 and 16 vertices, which is 2-regular, corre
sponds to a tesselation of the genus 2 oriented surface by six oetagons. This tesselation is
obtained from the cube by the 2-fold cover branched over the baryeenters of aU six square
faces.

5. There is also a tesselation of the torus by 7 hexagons, the I-skeleton of whieh is
isomorphie to the 4-regular Heawood graph having 14 vertiees and girth 6. (This graph
ean be also deseribed as the incidenee graph of the projective plane over the field F2 of
order 2; it is also a spherical building of type A2 .) However, the symmetry group of
this tesselation is transitive only on flags with given orientation, Le. it docs not contain
orientation reversing mappings of the torus.

For any graph represented as a l-skeleton of a tesselation, eaeh sylnmetry of this
tesselation induees an automorphism of the graph. If a tesselated surface is orientable,
and its tesselation regular, then the group C of aH symmetries of this tesselation, and the
group G+ of aU orientation-preserving symmetries, induce the groups of automorphisms
of the graph, which are 2'- and I-regular respcetively. The I-regular subgroup appears
also in case of the Heawood graph (example 5 above), as indueed from the fuH symmetry
group of the tessclation corresponding to this graph.

If a regularly tesselated surface is non-orientable, we get by the same procedure a
2'-rcgular group of autolllorphisms of the corresponding graphs.

In many cases .the groups described above are thc proper subgroups in fuH automor
phism groups of corresponding graphs.
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1. G-structures, G-isomorphisms, and the Main Theorem.

Consider a trivalent graph L, an s-regular group G C Aut L of its automorprusms
and a (k, L)-complcx X (see definitions in thc introduction and in section 0). Given a
vertex v of X, a collection A v of isomorphisms , : L(v, X) -t L will be called aG-atlas
at v, if for any two nlaps ",' E A v , we have " 0,-1 E G, and Av is a maximal collection
with this property. Note that aG-atlas Av is in fact determined by any its element, by
A v = {g ° 'Y : 9 E C}. Note also, that the nlunber of distinct G-atlasses at v corresponds
to the index of G inAut L. The maps of any G-:-atlas will be called charts.

A G-structure on X, is a set 9 = {A v : v E X(O)} of G-atlasses, oue for each vertex
v of X. A (k, L)-complex X equipped with a G-structure 9 will be called a (k, L, G)
complex.

Let T : X -t Y be a combinatorial isomorphism of (k, L )-complexes. Denote by
Tv : L(v, X) -t L(T(v), Y) the induced isomorphism of links. If the conlplexes are equipped
with G-structures Q = {Av : v E X(O)} and (}' = {A~ : w E y(O)}, then T is said to respect
G-structures 9 and Q' (01', it is a G-isomorphism) , iffor any vertex v of X, and any charts
, E A v and " E A~(v)' we have

(1.1) 'Y'OTvo,-lEG.

Note that if (1.1) holds for. some 'Y E A v and ....,' E A~(v)' then it holds for any such 'Yand

,'.
We denote the group of all G-automorphisms of a complex X with a G-structure

9 by Aut(X, Q). A (k, L, G)-eomplex (X, Q) is said to be !lag-symmetrie, if the group
Aut(X, Q) is Hag-transitive on X. Note, that if X is a flag-symmetric (k, L)-eomplex,
and G is a proper sllbgroup of Aut L, then Aut(X, (}) is a proper subgroup of Aut X,
beeouse its elements induce less isomorphisms on links. On the other hand, in the trivial
case of G = Aut L, there is only one G-structure Q on X, wmch in fact gives uo additional
structure, and we have Aut(X, Q) = Aut X.

We say that a group r of automorphisms of a (k, L)-complex X is rigid, if its elements
are determined by restrietion to the star of any vertex (calIed also a I-ball in X); it is
weakly rigid, if it is not rigid, but its elements are deterrnined by restriction the star of star
of any vertex (we will caU such a piece a 2-ball in X). If a group r is vcrtex-transitive, then
it foUows from its rigidity (01' weak rigidity) that the stabilisers of vertices (which are aB
isomorphie) are finite, the group is finitely generated, and it acts properly discontinuously
and cocompactly on X.

A grOllp r is !lexible, if for any finite subcomplex P C X there exists an automorphism
F in r such that Flp = idp and F =f:. idx . In such a case stabilisers of vertices are
uncountable, and the compact-open topology on r is nondiscrete.

1.1. Main Theorem.
Let L be a finite connected,regular and trivalent graph, k ~ 3 a natural number, and

assurne that the following non-positive curvature condition is satisfied (compare Rernark
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0.5 in [Poly]):

(1.2) (L) 2k
9 2: k-1'

where geL) is the length of shortest nontrivial cireuit in L. Moreover, let G C Aut L be
an .s-are-reglllar-subgroup -of automorphisms ofgraph L.

In the following statements (k, L, G)-eomplexes are considered to bc equal, if they are
G-isomorphie.

(1) If G is s-regular with s E {3,4 /,4",5}, and if k 2: 4, then there exists a unique
(k, L, G)-eomplex (X, Q), it is fiag-symmetrie, and the group Aut(X, Q) is fiexible.

(2) If G is I-regular, then there are two distinet Hag-symmetrie (k, L, G)-eomplexes, and
in eaeh ease the group Aut(X, 9) is rigid.

(3) If one of the following eonditions is satisfied:

(i) G is 2'-regularj

(ii) G is 2"-regular, and k is even;

then there are two distinet fiag-symmetrie (k, L, G)-eomplexes, and in eaeh case the
group Aut(X, Q) is rigid.

(4) If G is 2"-regular, and k is odd, then no (k, L, G)-complex is flag-symrlletric.

(5) If G is 3-regular, and k = 3, then there are as many distinet (k, L, G)-eomplexes as
G-invariant elements in the eohomology group H1(L, Z2)' The group Aut(X, Q) is in
eaeh such ease weakly rigid.

(6) If G is s-regular with s E {4',4",5}, and k = 3, then there are two distinet flag
symmetrie (k, L, G)-eomplexes, and in each case the group Aut(X, Q) is flexible.

1.2. Remark on chart changes in L.

Let 9 : L --+ L be an element of G. For any rnaps I : Y --+ L, h : L --+ Y and
. tp : L --+ L, consider the maps I' = goi, h' = ho g-1 and <p' = 9 0 tp 0 g-1. Then we say

that I', h' and tp' are the resllits of achart change in L, or that they are equal to f, hand
tp respectively, up to achart change in L. It is important that an isomorphism 9 used to
define achart change in L belongs to the subgroup G; the similar operations with use of
isomorphisms which are not in G are not chart changes.

Note the following facts, the proofs of which come straightforward frorn the definition
of achart change.

1. The subgroup G itself does not depend on achart change in L.

2. Since any G-atlas consists of isomorphisms obtained froln a fixed one by all chart
changes in L, it clearly does not depend on achart change in L. Similarly, the notions of
G-strllctllre and G-isomorphism are independent on chart changes in L.

5



I

I~

2. Inductive construction of a (k, L, G)-eomplex.

In this seetion we rccall briefly the general eonstrllction of a (k, L )-complex of nou
positive curvature, as presented in section 3 of [Poly]. We indicate the additional feature
of this construetion, so that it produces not only a eomplex, but also a G-structure on it.

2.1. Definition of a (k, L)-complex with convex boundary.
Let K be a 2-dimensional cell complex, with all 2-cells k-gonal. A vertex w of K is

ealled I-free, if the link L(w, K) is a single edge; it is 2-free, if L(w, K) is isomorphie to a
star of vertex in a 3-valent tree, Lc. it eonsists of three edgcs adjaeent with one endpoint
to a eommon vertex; it is 3-free, if L(w, K) is isomorphie to a star of cdge in a 3-valent
tree. An edge of K is ealled free, if it is eontained in exactly one eell of K, and it is
interior, if it is eontained in three cells of K. A vertex w is interior, if the link L(w, K) is
isomorphie to L.

K is a (k, L)-complex with convex boundary, if eaeh its vertex is either interior or
m-free, for some m E {I, 2} if k ~ 4, and for some m E {I, 2, 3} if k = 3. Note that then
eaeh edge of K is either interior or free, and denote by BK the sllbcomplex of K eonsisting
of all free edges, and call it the boundary of K.

A G-strueture on a (k, L )-complex K with convex buondary, is a collcetion QK of
G-atlasses at interior vertiees of K. A combinatorial isomorphism between two such com
plexes is a G-isomorphism, if it satisfies (1.1) for all interior vertiees of the first eomplcx.

2.2. Initial step of the construction.
Arrange a disjoint collection of k-gonal cell, labelled by cdges of thc graph L, around

an initial vertex v, by gllleing them along edges aceording to the pattern provided by L,
so that the link of reslliting eOlnplex at v is isomorphie to L, and only the edges which are
adjaeent to v have been glued. We will denote the complex obtained in this way by Bl,
sincc it corresponds to a I-ball in a (k, L)-complex. Note that thc labelling of eells of BI
provides the isomorphism, : L(v, Bt} -t L. We take thc C-atlas A = {g 0, :9 E C} at
v, getting a G-strllctllre on BI.

2.3. General inductive step.
Note that the complex BI construeted above is a (k, L)-eomplex with eonvex bound

ary, and therefore we can apply everything that follows below in this subsection to it, thus
initiating a proeess of an inductive construetion.

~et K be a finite (k, L)~eomplex with convex boundary, and assume BK =j:. 0. Denote
by K thc eomplex obtained from K by glueing two ncw k-gonal cells to cach its frce
edge, withollt performing any other glueings. For each free (Le. not interior) vertex w

of K eonsider a label map Aw : L(w, K) -t L, which is by definition locally injeetive, i.c.
injeetive on star of eaeh vertex in L(w, K). Denoting by VaK the set of the boundary
vertices of K ,call a colleetion A = {Aw . : w E VaK} of sueh label maps a label system for
K.
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Remark. Note that under non-positive curvature condition (1.2), the only cases when a
label map Aw is not injective (globally) are:
(i) w is 2-free and g(L) ~ 4;
(ii) w is 1-free and g(L) = 3;
sinee 3~free vertiees w, by eonvexity, appear only when k = 3, but then g(L) 2:: 6 by (1.2),
whieh implies injeetivity of Aw '

In any ease, we have

(2.1) AwIL(w,K) is injective.

For each free vertex W of K consider a copy Bi of a complex isomorphie to BI, together
with achart '"Yw : L(vW1 BiV

) -+ L defining a G-structure on it (wherc V w is the interior, Le.
central vertex of Bi). Consider the composition map (')'w)-I OAw : L(w ,K) -+ L(vW1 Bi),
and denote by 'l/Jw : st(w, K) -+ Br the naturally indueed map on stars of the corresponding
vertices. Define a complex K = K(A) by

(2.2)

where Wb . .. , W r are all the vertiees of 8K.
Note that, due to (2.1), K is naturally embedded in K. Moreover, as it is proved in

3.6 of [Poly]' K is again a finite (k, L)-complex with nonempty convex boundary.
Assurne we have a G-structure YK on K , Le. a collection of G-atlasses at interior

vertices of K. We shall extend QK to a G-strueture in K, in a canonical way. Note that
the complexes Br i are naturally embedded in K, since a target space of a glueing map
always embeds into a composition space obtained by a glueing. Thus, we can think of
charts '"YWi of those balls as of charts ')'Wi : L(Wi, K) -+ L. These determine G-atlasses
AWi = {g 0 rWi : 9 E G} at vertices Wi, and we define

(2.3)

Since the only new interior vertiees of Kare those contained in the boundary of K, 9K is
aG-atlas for K. .

2.4. Remark. Note that, denoting by /'i,w : L(w, K) -+ L(w ,K) the lnap indueed on links
by thc canonical map K -+ K, we have T'w 0 /'i,w = Aw ' This means that our distin~ished
charts '"Yw coincide with the label maps Aw on the parts of links corresponding to K. We
shall use this fact later.

To summarize, we construct a (k , L, G)-complex by an infinite sequence of succesive
steps from K to K, starting with K = BI' The initial chart for BI, together with the
sequence of label systems used at all steps, determine uniquely the G-structure Q= UK QK

on the resulting (k, L)-complex X.

2.5. Lemma. A (k, L, G),complex constructed.as above does not depend, up to G
isomorphism, on chart changes in L , for the label maps used at all steps of the construetion.
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More precisely, if A' is a label system obtained by chart changes in L from a system A,
then the complexes K(A) and K(A') are G-isomorphic by an isomorpmsm extending the
identity on K.

The proof of above Lemma consists of straightforward manipulations with chart
changes, and we omit it.

2.6. Remark. Note that any (k, L, G)-colnplex (X, Q) can be obtain by means of the
general construction above, if the label maps at tbe corresponding steps of the construction
are chosen appropriately.

To see this, consider a subcomplex K in X, with convex boundary, and a G-structure
QK on it, restricted from the oue on X. We shall interpret the star st (K, X) of K in X,
as a complex K(A) obtained from K by procedure described in 3.3, with use of some label
system A.

Recall that the star st(K, X) is the subcomplex of X consisting of all cells of K, and
cells adjacent to the boundary vertices of K. We then have the obvious map J.L : K -+
st(K, X), extending idK , weil defined up to transpositions at pairs of cells not contained in
K, and adjacent to its boundary edges. For W E YaK, let /-Lw : L(w, K) -t L(w, st(K, X))
be the induced map on links. Consider any chart 'Yw from the G-atlas at w for the G
structure Q on X, and put

(2.4) Aw = fW °/.Lw,

thus getting the label system A = {Aw : w E YaK}. Astandart checking shows that the
complexes st(K, X) and K(A) are then canonically G-isomorphic by the G-isomorphism
extending idK .

Remark 2.6 follows by applying above interpretation to n-balls in X, Le. to the
subcomplexes of X obtained by the succesive iteration of the operation of taking star, first
applying it to a vertex in X.

3. Order systems and characteristic functions.

As it is explained in Remark 2.6 of the previous section, each (k, L, G)-complex can be
obtained by a variant of the indllctive construction there described. The choices of label
systems provide freedom in the construction, allowing non-G-isomorphic complexes to
appear. In this section we introduce characteristic functions of label systems - the notion
usefull in the study of the G-isomorphism question for resulting (k, L, G)-complexes.

3.1. Definitions of order systems in L.
Let p be a vertex, and e an edge of L.

3.1.1. Let x, y be the vertices of edge e. Denote by Ox and Oy the pairs of edges
in L, distinct from e, adjacent to x and y respectively, with distinguished order for each
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pair. We will call them ordered pairs oE peripheral edges at edge c, and the whole system
(e, Ox, Oy) an order-system at e.

3.1.2. Let x, y, z be all the vertices of st(p, L) distinct from p. Denote by Ox, Gy alld
0:; the pairs of edges in L, not contained in st(p, L), adjacent to x, y and z respectively,
with distinguished order for each pair. We will call theIn ordered pairs oE peripheral edges
at star of vertex p, and the whole system (p, Ox, Oy, 0:;) an order-system at star oE p.

3.1.3. Let x, y, z and 'U be all the vertices of st(e, L) not contained in e. The system
(e, Ox, Oy, 0:;, Du) consisting of ordered pairs of edges in L, adjacent to x, y, z and u
respectively, and not contained in st(e, L), will be called an order-system at star oE e, and
its elements ordered pairs oE peripheral edges at star oE e.

3.1.4. Denote by Op thc cyclically ordered tripie of edges in L adjacent to p. We will
call (P,Op) a cyc1ic order at p.

All orders at pairs of peripheral edges, or at a tripie in the last case, will be called
peripheral orders.

3.2. Definition of good label systems.

Assume we have fixed order-systems in L of all four types 3.1.1-3.1.4, and let K be a
finite (k, L)-coIuplex with convex boundary, as defined in 2.1. Denote by VaK the set of
vertices of K contained in thc boundary aK .

We will say that a label system A = {A w : W E VaK} is good, if its label maps satisfy
thc following conditions:

(i) if w is 1-free in K, then Aw(L(w, K)) = c, where e is the edge appearing in the
corresponding order-system in L;

(ii) if w is 2-free in K, then Aw(L(w, K)) = st(p, L), where p is the vertex appearing in
the corresponding order-system in L;

(iii) ifw is 3~free in K, then Aw(L(w,K)) = st(e,L), where eis the edge appearing in the
corresponding order-system in L.

3.3. Remark. Note that, duc to transitivity of G on vertices and edges of L, each label
system can be made good by the appropriate chart changes in L, for its label maps.

3.4. Characteristic functions of good label systems.

Let EaK denotes the set of boundary edges of K. Given a good label system A =
{Aw : w E VaK}, for each edge d E EaK and its endpoint w, consider the order on the
pair of cells in K \ K adjacent to d, induced by the label map Aw from the order system of

. appropriate type in L. Since d has two endpoints, we have two such induced orders. We
define a characteristic function XA : EoK -t {Q, 1} by

(3.1) XA (d) = {Q if the t:vo corresponding induced orders agree;
1 otherwlse.
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3.5. K-equivalences of label maps and label systems.
Given w E VaK, wc say that label maps A, A' : L(w, K --+ L) are K -equivalent,

if AIL(w,K) = A'IL(w,K), Le. their restrietions to the link of K coincide. Label systems
A = {Aw : w E YaK} and A' = {A~ : w E YaK} are K -equivalent, if for each w E VaK
thc label maps Aw and A~ are K -equivalent.

The significance of the notions of K -equivalence and and characteristic function of a
good label system becomes apparent due to the following lemma, which will be used later
in the classifications up to G-isomorphism. We shall also use characteristic functions to
define local invariants of G-isomorphism in the next section.

3.6. Lemma. If two good label systems A = {Aw : W E YaK} and A' = {A~ : W E
YaK} are K -equivalent, and have cqual characteristic functions, then thcre exists a unique
combinatorial automorphism T : K(A) --+ K(A') satisfying the following conditions:
(i) TIK = idK ;

(ii) Tw = (-)'~)-1 0 "Yw for each w E YaK.
Moreover, T is a G-isomorphism with respect to G-structures 9K(A) and QK(AI)"

(Recall that Tw is thc isomorphism induced on thc links at w by isomorphislll T, and
that "Yw and T~ are the charts at vertex w naturally appearing during constructions of
K(A) and K(A') respectively.)

Proof: By K -equivalence of label systems A and A', in view of Remark 2.4, we have

(3.2)

for each w E YaK. This means that condition (i) is compatible with conditions of form
(ii), for all vertices w E YaK. It remains to check, wheather conditions of form (ii), for
any two adjacent vertices, are compatible.

By the equality of characteristic functions XA anel XA' at a boundary edge d = (v, w),
we get that either both (,~)-1O'v and ("Y~)-1 0"Yw induce a tranposition at cells of K\K
adjacent to d, or they both induce the identity on them. In any of the cases, this gives the
compatibility of conditions (ii) for v and w, since the stars st(v, K) and st(w, K) intersect
only at three cells adjacent to d.

Since thc conditions (i) and (ii) together determine T at stars of all intcrior vertices
of K, by their compatibility we get both the existence and uniqueness of T.

To prove that T is a G-isomorphism, we check (1.1) at each vertex w E VaK by
putting T == "Yw and " = T~' thus getting

(3.3) 'rp -1 , ((') -1 ) -1 'd G, O.Lw 0, == Tw ° Tw ° ,w 0 TW == 1. L E .

This finishes the proof of Lemma.
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4. Local invariants of G-isomorphism.

4.1. Action of G on order systems.
It is clear that G acts on the sets of: vertices, edges, oriented edges, stars of vertices and

stars of edges in L, and consequently on the corresponding order systems in L. We extract
the following results concerning these actions from Propositions 1-5 of [DM] (compare
Properties 2.2.1, 2.3.1, 2.4.1 and 2.5.1 in [Poly)).

4.2. Proposition.
(1) Any element of thc stabiliser Stab(p, G) c G

(a) preserves a cyclic order at p, if G is I-regular;
(b) either preserves all three peripheral orders at star of p, or reverses them all, if G

is 3-regular, and orders are properly chosen (it is not true for each choice).
(c) either preserves all three peripheral orders at star of p, or reverses exactly two of

them, if G is s-regular for some s E {4', 4", 5}.
(2) Any element of thc subgroup Stab(e, G) c G of automorpmsms fixing e, but not

necessarily its endpoints either preserves both peripheral orders at e, or reverses them
both, if G is 2'-regular;

(3) Any element of thc subgroup Stab+(e, G) c G of automorphisms fixing edge e as
oriented edge, Le. together with its endpoints, either preserves both pcripheral orders
at e, or reverses them both, if G is 2"-regular.

(4) any element of G fixing edge e, but reversing its orientation, reverses exactly one of
the peripheral orders, if G is 2"-regular.

(5) The converse of any of above statements is true, Le. for any change of peripheral
orders mentioned in any of the cases (1)-(4) above, there exists a corresponding au
tomorphism frOln G, which results with exactly this change.

4.3. Local invariants of G-isomorphism.
Invariants described in this subsection are c10sely related to those described in section

2 of [Poly]. To describe them by means of characteristic functions, we shall view local pieces
in (k, L)~complexes, such as stars of edges, of cells, or of I-balls, as been constructed out
of those edges, cells or I-balls respectively, by means of procedure of section 2.3, as it is
explained in Remark 2.6. Note that, by Remark 3.3, the label system of form (2.4) can be
always chosen to be good, and Proposition 4.2 clearly applies in this situation.

C, as always, denotes an s-arc-regular subgroup of Aut L.

, 4.3.1. Case s = l.
One easily extends all thc notions, constructions and results introduced so far in this

paper, to a little bit degenerate case of K equal to a single edge d = (Wl' W2)' Define K,
to consist of three k-gonal cells glued to d along same of their edges, and fix a cyclic order
(P,Op) in L, as defined in 3.1.4. Define a label system A for K, to consist of two label
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maps Ai : L(Wi, K) -+ L. A is said to bc good, if Ai(L(Wi, K)) = p, for i = 1,2. Given
s.Ech a good label system, induce twice the cyc1ic order from L to thc set of three cells of
K, by pulling back with respect to the label maps Ai, and define characteristic function
XA : {d} -+ {O,l} by

(4.1) if the two induced cyclic orders agree;
otherwise.

The value of XA does not depend on the chart changes in L for which the label maps
Ai remain good, since thc stabilizer of vertex p in G preserves the cyclic order Op (see
Proposition 4.2(1)(a)).

Then, viewing the star st(e, X) of any edge e as been constructed in the way as abovc,
put

(4.2)

for some good label systeln A of form (2.4).

4.3.2. Case s = 2'.
Given a cell c in a (k, L)-complex X, put K = c, and consider a good label system

A of form (2.4) for K. Since by Proposition 4.2, an elelnent [XA] E Hl(8K, Z2) does not
. depend on the choice of A, put

(4.3)

4.3.3. Case s = 2".
Consider a variant of the order system of form 3.1.3 at an edge e in L, to consist of

an oriented edgc e, and two orders at peripheral pairs at e. Thcn givcn an oriented cell c+
in a (k, L)-complex X, put K = c, and note that cinduces the orientations on edges dc
corresponding to c, in links L(w, X) at vcrticcs W of c. We wiil say that a label map Aw

for K is good, if it maps dc outo e preserving orientations.
Consider a good label system A of form (2.4) for K (which clearly exists due to the

transitivity of Gon the set of oriented edges in L), and note that due to Proposition 4.2(3),
the cohomology element

(4.4)

does not depend on the chart changes in L, for which A remains good in the above explained
sense.

Note also that due to Proposition 4.2(4), if c± denote the opositely oriented cells
related to a nonorientcd cell c, then

v ,

(4.5) ~~,g(c+) -# ~~,g(c-) if k is odd, and €~,Q(c+) = ~~,Q(C-) if k is even.
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4.3.4. Case s = 3.
For a vertex v in X, let K be al-ball centered at v, and A a gooel label system of form

(2.4) for K. Since by Proposition 4.2, an element {XA] E H 1(8K, Z2) does not elepend on
the choice of A, put

(4.6)

4.3.5. Case s E {4', 4/1, 5} and k = 3.
Let v, K and A be as in 4.3.4. Then by Propostion 4.2, the number

(4.7) O"X,Q(V) = L XA(d) (mod 2)
dEE{jK

does not depcnd on the choice of A.

4.3.6. Lemma. In all four cases above, the quantities c, ~, TJ anel 0" are the invariants of
G-isomorhism of the corresponding complexes st(K, X).

In case of s = 3 this requires thc following more carefull statement. If T : B 2 (v) -+
B 2 (w) is a G-isomorphism of 2-balls in (k, L)-complexcs, and Tl = TI8Bt{v) is thc re
striction of T to the boundary of thc I-ball BI (v), then Tl pulls back TJ (w) to 17 (v), i. e.
Ti(TJ(w)) = TJ(v).

The proof of Lemma 4.3.6 consists of the straightforward manipulations with G
, structures, and we omit it.

5. Conditions für label systems, related to loeal invariants.

The general construction of (k, L, G)-complexes, as presented in scction 2, does not
provide any control on local invariants of resulting complexes. In this section we describe
how to provicle such a control, in terms of restrictive conditions for label systems used at
corresponding steps of construction. We shall use letter C as a variable, speaking about
condition C, whenever refering to conditions of this genaral form. We shall prove that
conditions of this type are consistent, i.e. that there exist label systems which satisfy
them. We shall also prove that these conditions determine resulting cOlnplexes uniquely,
up to G-isomorphism.

5.1. Description of conditions.
Given k and L satisfying nonpositive curvature condition (1.2), we shall call an n-ball

a (k, L)-complex with convex boundary, equipped with a G-structure, obtained from a
I-ball as described in 2.2, by succesive application of n - 1 steps of construction described
in 2.3.
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In the following descriptions of conditions C, K will denote an n-ball with its G
structure QK. We shall denote by [,7< the setof good label systems for K, satisfying given
eondition C.

5.1.1. The ease when G is I-regular.
Denote by EoutK the set of all outer edges in K, Le. those whieh have at least one

vertex on the boundary BK. Consider any funetion ce : EoutK -t {O, 1}, and define
eondition C by .

(5.1) A E [,7< Hf CK(A)(e) = ce(e) for eaeh e E EoutK.

Remark. Note that a G-structure QK, together with a eondition C, determine values of
invariant c at all edges of K, so that no stronger eondition ean be expressed in terms of
this loeal invariant.

5.1.2. The ease when G is 2'-regular, or w hen G is 2"-regular and k is even.
Denote by CoutK the set of all Guter cells of K, Le. those whieh contain at least one

boundary vertex. Consider any funetion e:CoutK -t Z2, and define condition C by

(5.2) A E [,7< Hf EK(A)(c) = Ec(c) for eaeh c E CoutK.

In the above equation we use the canonical identification of Hl(Bc, Z2) with Z2.
Note that duc to (4.5), when G is 2"-regular and k is even, we eau view eil as an

invariant of nonoriented cells. Then define eondition C in this case in exactly the same
way, replacing eby xi" in (5.2).

Remark. Note that YK together with C, dctermine values of invariant e (or (' respec
tively) at each cell of K, so that no stronger condition ean be expressed in tenns of this
invariant.

5.1.3. The ease when G is 2"-regular and k is odd.
For eaeh cell c E CoutK ehoose an orientation, and denote the set of so oriented cells

by Cg~tK (note that only one of the two orieuted cells corresponding to a given eell of
CoutK is eontaincd in Cg~tK). Considcr a function E:!: :Cg~tK -t Z2, and definc condition
C by

(5.3)

Remark. Note that, clue to (4.5), if the value of Eil is determined at an oriented ceIl,
then it is also determined at this cell with opposite orientation. Thus, a G-structure QK,

together with a condition C, determine values of Eil at all orientcd cells of K, so that no
stronger condition eau be expressed in terms of this invariant.

5.1.4. The ease when G is 3-regular.
Denote by K- the (n - 1)-ball contained in K, corresponding to the one step shorter

eonstruetion, Le. centered at the same point, anel such that K - = K. For each v E

14



VaK-, consider the boundary 8B1(v) of the I-ball centered at v, and an element 1Jc(v) E
H 1 (8B1(v), Z2), thus getting a sheafryc of cohomology elements. Define condition C by

(5.4) A E 127< iff 77K(A) (v) = 1Jc(v) for each v E VaK-.

5.1.5. The case when G is s-regular far some s E {4',4",5}.
Under notation of 5.1.4, consider a function (JC : VaK- -t Z2, and define condition

C by

(5.5) A E 127< iff (JK(A) (v) = (Jc(v) for each v E VaK-.

Remark. Note that a G-structure QK and a condition C, determine valeues of invariants
77 or (J (in the corresponding cases of s-regularity of G) at all vertices of K-, so that no
strouger conditions cau be expressed in terms of these invariants.

The rest of this section is devoted to proving the following two results concerning
conditions C described above. For the second result, recall the notion of K -equivalence of
label systems, introduced in 3.5.

5.2. Proposition. Let C be any of the conditions described in 5.1. Then the set L~ of
good label systeIlls satisfying this condition is nonempty.

5.3. Proposition. Any two label systems Al, A2 E 121< are K -cquivalent, after appropri
ate chart changes in L for label maps of one of them.

Proposition 5.2 means that any condition C of 5.1 is consistent, while Proposition
5.3, in view of Lemmas 2.5 and 3.6, is the first step towards the proof that such condition
determines the resulting complex K uniquely up to G-isomorphism. The proof of this last
fact will be complctcd in scction 6.

Before strarting to prove Propositions 5.2 and 5.3, we need to establish SOIne facts
concerning the notion of an order structure in a trivalent graph.

5.4. Order structures in trivalent graphs.
Bya trivalent graph we shall mean a connected graph Q, each vertex of each is adjacent

either to one or to three edges of Q. Q is a trcc, if it is simply connected, Le. contains uo
nontrivial cycle of edges. We shall denote by 8Q thc set of all boundary vertices of Q, Le.
those which are adjacent to only one edge of Q.

5.4.1. Three types of order structures.

Type 1. If v is an interior (Le. not boundary) vertex of Q, an order atlas at v consists
of a choice of a cyclic order at v (Le. a cyclic order for the edges of Q adjacent to v).
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An order strllcture of this type in Q consists of a collection of fixed order atlasses at all
interior edges of Q.

Type 2. Let e be an. interior edge of Q, Le. oue with both endpoints interior. An
order atlas at e consists of two order systems at e (as described in 3.1.1), that differ by
the simultaneous change of both peripheral orders. An order strllcture in Q of this type
consists of a collection of fixed order atlesses at all interior edges of Q.

Type 3. We shall need also a variant of order structure consisting of order atlasses at
oriented interior edges of Q. Order atlasses of this structure consist of two order systems
that differ by the simultaneous change of both peripheral orders. Moreover, order atlasses
of this structure, at any two edges with opposite orientation, differ from each other by a
change of any one of their peripheral orders (peripheral pairs of edges are the same at such
two edges).

5.4.2. Examples: G-invariant order structures in L.
We define such an order structure by simply taking an orbit of the action of G in the

space of order systems at vertices, edges or oriented edges in L (compare 4.1), arranging
elements of this orbit ioto a collection of order atlasses in the obvious way. More precisely

(i) if G is I-regular, wc deflne an order structure of type 1;
(ii) if G is 2'-regular, we definc an order structure of type 2;

(iii) and finaIly, if G is 2"-regular, we define an order structure of type 3.

. Remark. All above order structures are weIl defined due to Proposition 4.2.

5.4.3. Proposition. Consider aG-invariant order structure in L, as in Example 5.4.2,
and a trivalent tree Q equipped with an order structure of thc same type. Thcn there
exists a eombinatorial imlnersion i : Q -)- L preserving order structures. Moreover, this
immersion is unique up to chart change in L.

Proof: Consider an s-are in Q, where s = 1 for type 1, and s = 2 for types 2 and
3. (If there is no such are in Q, then there is no order structure in Q, and you cao
immerse it whatever you Eke, getting uniqueness by thc regularity of G.) Immerse this
s~arc arbitrarily in L, and notice that the requirement of order structures to be preserved,
determines an extension of immersion to the whole of Q uniquely, in all three eases of
types.

The uniqueness of immersion up to chart change in L follows from above uniqueness
of extension.

We omit further details.

5.5. Proof of Proposition 5.2.
We will provide the proof separately for thc corresponding eases of s-regularity of G

and the kind of invariant used to define condition C.

5.5.1. Remark. Note that using order structure in L, it is possible to induce order
systems, 01' rather classes of order systems corresponding to order atlasses, by means of
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any label maps, not necessarily good ones. If an order structure in L is G-invariant, as in
examples.5.4.2, then ..theclass of induced order systemsdoes·not depend on chart changes
for a label map.

The case w hen G is I-regular.
In this case condition C is defined in terms of invariant c, as in 5.1.1.
Consider a vertex w E VaK, and an edge e = (w, u) adjacent to wand not contained

in BK. Tbe vertex Pe E L(w, K), which represents edge e, is then interior in the link
L(w, K) viewed as a trivalent tree.

Since vertex u of e is interior in K, we have the G-atlas of G-structure QK at it, and
an induced (by some chart of this G-atlas), weIl defined (by Remark 5.5.1 and Proposition
4.2(1)(a)) cyclic order on the tripIe of cells in K adjacent to e. By condition C, we want to
have ~K (e) = ~c (e), and thus the value of cc (e) determines the cyclic order at vertex Pe in
L(w, K), nanlely thc oue which has to be induced by a label map at w used in construction
ofK.

By repeating above procedure for all outer but not buondary edges of K, we get the
order structures determincd by condition C in all links L(w, K) at boundary vertices w,
and we know that restrictions Aw IL(w,K) of label maps used in construction of K, have
to preserve these order structures, with respect to the G-invariant order structure in L,
detcrmined by the order system chosen in L (the one used in definition of invariant E).

Immerse links L(w, K) into L, in a way prescrving order structures, which is possible
by Proposition 5.4.3, and extend arbitrarily these immersions (after chart change if nec
essary) to good label maps Aw at all w E VaK, getting a good label system A. Construct
the complex K(A), and note that CK(A)(e) = EcCe) for all outer not boundary edges of
K. Now, for each boundary edge d of K, compare the values of CK(A) (d) and ccCd), and
if they are different, change the label map at one endpoint w of d, only at tbe peripheral
pair of edges in L(w, K) corresponding to the peripheral pair of cells in K adjacent to d.

Note that after the changes as above, thc new label system A' belongs to .cf.r, and
thus tbe proof for this case follows.

The case w hen G is 2'- or 2"-regular.
In these two cases conditions C are defined in terms of invariants eand eil rcspectively,

as in 5.1.2 and 5.1.3.
Consider a cell c in K, wbicb is outer, but has no edge contained in the boundary 8K,

and denote by w its unique vertex contained in 8K. Note that the edge ec representing e
is inner in thc link L(w, K) viewed as a trivalent tree.

Since all the vertices of e other than ware inner in K, we have G-atlasses of the
G-structure QK at them, and we have order systems (or rather classes of them) in the
corresponding links at those vertices, induced by charts of these G-atlasses. Of particuliar
interest to us are order systems induced at edges representing cell e in these links, since
they take part in determining invariant e(or e") at cell e.

It is easy to realise that the requirement eK(e) = ec(e) (or e~(c±) = ~c(e±), where
e± are the two orien.ted t;;ells corr~spondir:-g to a nonoriented cell c) implies that label maps
Aw : L(w, K) --+ L which fulfill it, induce order systems at the cdge ec (at oriented edges
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e;respectively) which form a eertain order atlas at this edge.
Having equipped L(w, K) with the order strueture determined by condition C in

above way, we ehoose any its immersion into L preserving order struetures, and extend
it arbitrarily (after achart change if necessary) to a good label map Aw : L(w, K ---t L),
thus getting a label system A by repeating above procedure at all vertices w E YaK.
By construction of A, we have ~K(A)(c) = ~c(c) for all outer cells C of K with no edge
contained in BK (and the same holds for such oriented cells, and for invariant ~", in the
corresponding second case considered parallelly).

We now consider an outer cell b, with at least one edge contained in 8K. If ~K (A) (b) i=
~c(b), choose one endpoint w of one boundary edge e of c, and modify Aw only at the
peripheral pair of edges in L(w, K) representing the peripheral pair of cells in K adjaeent
to e. Repeating this for all eells b as above, we get a new label system A', which now
belongs to .cf<.

The case when G is 4'-, 4"- or 5-regular, and k = 3.
Note that eondition C in this ease is expressed in terms of invariant (J", as in 5.1.5.
Choose an arbitrary good label system A = {Aw : w E VaK}, and for each v E VaK-,

compare the TIumbers (J"K (A) (v) and 0"C (v). If they are different, then eonsider a boundary
edge e of K, which belongs to 8B1 (v) (such edge always exists by convexity ofthe boundary
of K, becouse the nonpositive curvature condition (1.2) implies 9 (L) 2:: 6 in this case).
Choose one endpoint of e, say w, and modify the label map Aw at the peripheral pair of
edges in L(w, K) corresponding to the peripheral pair of cells in K adjacent to e. The so
obtained new label system A' clearly belongs to .cf<.

The ease when G is 3-regular.
Note that condition C in this case is expressed in terms of invariant 1], as in 5.1.4.
Choose an arbitrary good label system A = {A w : w E VaK}, and for each vertex

v E VaK-, compare the eohomology elements 1JK(A) (v) and 1]c (v). If they are different,
denote by A(v) the subgraph in 8B1(v) consisting of all edges not contained in BK.

5.5.2. Claim. A(v) is a connected contractible subgraph in 8B1 (v).

Proof of Claim: Denote by L' the graph obtained from L(v, K) by subdivision of each its
edge into k - 2 smaller edges ( where k is the number characterising our (k, L)-complex) ,
and by L', its part corresponding to L(v,K-). Then A(v) is isomorphie to st(i/,L').
Since A(v) has then a form of subdivided L(v, K-) with pairs of peripheral edges attached
disjointly to all former boundary vertices, the Claim follows in any of the following eascs,
which exhast all the possibilities:

(i) k 2:: 5, since then all the boundary vertices of K- are rn-free with rn ::; 2;
(ii) k 2:: 4, since then g(L) ;::: 4 by (1.2), and all the boundary vertices of K- are m-free

with m ~ 2;
(iii) k = 3, since then g(L);::: 6 by (1.2), and diamA(v)::; 5 by convexity.

This finishes the proof of Claim.

Note that, by, contractibility of A(v), it follows from the exact cohomology sequence
for the pair (8BI (v) ,A (v)), that any l-cocbain in A(v) ean be extendcd to a l-cocbain
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in 8B1(v), representing any cohomology element from H 1(8B1(v), Z2) (see the proof of
Proposition 7.4.6, and the Property 7.4.7 in [Poly], for more details). Thus, we cau modify
label maps of A at peripheral 'pairs of edges in L(w, K), so that a new label system A'
satisfies eqllalities 1JK(N) (v) = "lc(v) for each v E Va K -, and thus belongs to [,1<:.

This finishes the proof of Proposition 5.2.

5.6. Proof of Proposition 5.3.
In the cases when G is 1-, 2'- or 2"-regular, Proposition follows from Proposition

5.4.3 applied to links L(w, K) : w E VaK, equipped with order structures determined by
condition C in the way described in the proof of Proposition 5.2 (and more precisely, frorn
the uniqueness part of Proposition 5.4.3).

In the cases when G is 3-, 4'-, 4"- or 5-regular, Proposition 5.3 follows even more
easily frorn the following observation.

5.6.1. Claim. If a buondary vertex w is rn-free; and G is rn-are-transitive, then any two
good label maps at ware K -equivalcnt up to achart change.

Proof of Claim: This follows from transitivity of G on rn-ares, and thus on restrietions
of good label maps to L(w, K) (sinee m ::; 3 by eonvexity).

This finishes the proof of Proposition 5.3.

6. Local conditions determine (k, L, G)-complexes uniquely.

This section is devoted to the proof of the following.

6.1. Proposition. Let K be an n-ball, as defined at the beginning of 5.1, with a
tripie (k, L, G) as local data, where G C Aut L is an s-rcgular subgroup, for some s E

{1, 2' , 2", 3,4', 4", 5}. Moreover, let C be a eondition of one of the fonns deseribed in 5.1
(or just thc empty conditiou, if S E {3,4', 4", 5} and k ~ 4). Then for auy two label
systems A, A' E [,1<:, the eomplexes K(A) and K(A') constructed by meaus of these label
systelns, are G-isomorphie, by a G-isomorphism extending the identity automorphism of
K. Moreover, if s E {1, 2', 2"}, or if s = 3, k = 3 and n ~ 2, then this G-isomorphism is
urnque, while there is more than oue such G-isolnorphism in the other cases.

6.1.1. Remark. In the case wheu s E {3, 4',4", 5} and k ~ 4, we eonsider the empty
condition C (no restrictions for label systems), in which case thc spaee [,<'k eonsists of all
good label systems for K. The Proposition says then, that any two (n + l)-balls of form
K(A) are G-isomorphic by an isomorphism extending idK.

To prove Proposition 6.1, we introduee the notion of modifications of eharaeteristic
functions, and give two preparatory lemmas.

6.2. Modifications of characteristic functions.

Consider the following elementary modiflcations of a function X : EaK -+ {D, 1}:
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(i) change the values of of X at both edges of BK adjacent to a I-free vertex of K;
(ii) change thc value of X at any edge of BK adjacent to a I-free vertex of K;

(iii) change the values of X at an three edges of BK adjacent to a 2-free vertex of K;
(iv) change the values of X at any two of the thrce edges of BK adjacent to a 2-free vertex

of K;
(v) change the values of X at a11 four edges of BK adjacent to a 3-free vertex of K;

(vi) change the valeus of X at any two of the four edges of BK adjacent to a 3-free vertex
w of K, such that the vertices in L(w, K) corresponding to those two edges are at
distance two in L(w, K).

A modification is a finite sequence of clemcntary modifications of the forms as below:
(1) when s = 1, no modificationsj
(2) when s = 2' or s = 2", form (i) onlyj
(3) when s = 3, forms (ii) and (iii);
(4) when s = 4' or s = 4", forms (ii), (iv) and (v)j
(5) when s = 5, forms (ii), (iv) and (vi).

6.3. Lemma. Let X :EaK --+ {O, I} be a function obtaincd from a characteristic function
X = XA of a label system A by a modification (suitable for the corresponding regularity
type of G). Then there exists a K -equivalent to A label system A', obtained from A by a
chart change in L, such that X' = XA'.

Proof: The Lemlna follows from Propositions 1-5 of [DM], whcre thc subgroups of G fixing
poitwise an edge, a star of vertex, and a star of edge in L (the pieces which correspond
to the links of K at the boundary vertices) are described, together with thcir actions on
edges of peripheral pairs.

6.4. Lemma. Under the notation of Proposition 6.1, characteristic functions of any two
K -equivalent label systems from 'cf< differ at most by a modification (suitablc for the
corresponding case of regularity of G).

Thc proof of Lemma 6.4 splits in fact into five separate cases. Each of the cases brings
another type of difficulty into play. We do not present here these five proofs, since they are
implicit in thc proofs of the corresponding results in [Poly]. For thc reader's convenience,
we give the following detailed references:
(1) for the ease of s = 1, sec Lemma 7.1.3;
(2) for the ease of s = 2' or s = 2", see Lemma 7.2.4, together with preceding Lemlna

7.2.3;
(3) for the ease of s = 3 anel k = 3, see Lemma 7.4.10 together with Lenllna 7.4.6(ii);
(4) for the case of s E {4', 4", 5} and k = 3, see Lemma 7.3.6 together with 7.3.3-7.3.5;
(5) for the case of s E {3, 4', 4", 5} and k 2:: 4, see 6.1-6.5.

6.5. Proof of Proposition 6.1.
Given label systems A, A' E 'c1<, we know by Lemma 3.5 that the complexes K(A)

anel K(A') do not depend, up to G-isomorphislns extending idK , on ehart ehanges in L.
Thus, duc to Proposition 5.3, we ean assume that A and A' are K -equivalent. Then,
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Lemma 6.4 teIls us that characteristic functions XA and XA' differ by a modification, and
using Lemma 6.3 we again modify, say A, by achart change in L, so that now A and A'
are K -equivalent and havc cqual characteristic functions. Hut this allows to apply Lemma
3.6, which finishes the proof of the existence part of Proposition 6.I.

To see the uniqueness in the cases when s E {I, 2', 2"}, consider G-isomorphisms
Tl, T2 : K(A) -t K(A'), both extending the identity automorphism of K. Note that in
these cases there is uo nontrivial isomorphism of G, fixing pointwise a star of vertex or a star
of edge in L. This implies that, if w is a 2-free or a 3-free vertex of K, then T1Ist(w,K(A)) =
T2 I st (w,K(A))' and hence the isomorphisms Tl and T2 coincide on the subcomplex

M = KU U{st(w, K(A» : w is 2-free or 3-free in K}.

Hut then, the links L(v,M) at those I-free vertices v of K, which have a 2-free or a 3-free
neighbour, are big enongh to imply the coincidence of Tl and T2 on the stars st(v, K(J\».
Repeating this argument, wc get Tl = T 2 by the fact that the boundary BK is connected.

The similar argument as above applies to thc casc when s = 3 and k = 3, with the
following changes. There is no nontrivial isomorphism of G, fixing pointwise a star of
edge in L. Thus, G-isomorphisms Tl and T2 coincide on stars of 3-free vertices of K.
The following Claim allows then to extend this coincidence to the whole of K(A), by the
arguments of thc previous cases.

Claim. If k = 3 and K is an n-ball with n 2: 2, then at least one vertex in K is 3-free,
and DO Olle is I-free.

Proof of Claim: Constructing an n-ball from an (n - 1)-baIl, we glue I-balls to it,
according to the pattern provided by a label system. The boundary of this n-ball consists
then of parts of boundaries of the glued I-balls. If k = 3, no boundary vertex of the I-ball
is l-=-free, and so this is also true for K. On the other hand, if k = 3 then all the vertices
of B n - l \ B n - l become 3-free in Bn , and thc Claim follows.

Now, we proceed to prove that therc is more than one G-isomorphism bctwcen K(A)
. and K(A'), extending idk , in the following three remaining cases:

(1) s = 3, k = 3 and K is al-ball;
(2) s = 3 and k 2: 4;
(3) s E {4', 4" , 5}.

We start with the observation that in the case (1) only 2-free vertices appear at
BK, and in thc case (2) only 2-free and 1-free ones. In any of the cases, there exists
an isolnorphism of G fixing pointwise an edge (a star of vertex respectively) in L, and
transposing all pairs of its peripheral edgesj if the case (3) happens, the same is true also
for a star of edge in L (see [DM] Propositions 1-5, and note that Proposition 6.3 is also
related to those properties).

Using these facts we can construct in any of the cases (1)-(3) a G-isomorphism be
tween K(A) and K(A') that differs from a given one at all pairs of peripheral cells in K.
We omit further details.
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7. Proof of the Main Theorem.

The neeessary eondition for a (k, L, G)-complex (X, Q) to be flag-symmetrie, is that
the value of the appropriate local invariant (viewed as a function on the set of vertices,
edges or cells of X, or as a sheaf of eohomology elenlcnts, respectively) is eonstant. It
is clear what this constantness means in all the eases when s i= 3 or k 2:: 4, sinee then
the invariants (ean be canonically viewed to) have values in the set Z2 = {O, I}. In the
ease when s = 3 and k = 3, it is neeessary that the value 1Jx,g(w) E H I (8B1(w), Z2),
at any vertex w EX, is aG-invariant cohomology element (with respect to the action
of G on BB1(w), indueed by any map of the G-atlas Aw of Q, from L). It is also elear
how to eompare such elements at distinct vertiees of X, sinee the I-spheres BBI (w) are
eanonically G-equivariant. The necessary eondition for the fiag-symmetry of the eomplex
(X, Q), is that the sheaf 17x,g is eonstant with respeet to the above G-equivariance.

The existence and uniqueness properties of flag-symmetrie (k, L, G)-complexes, as
stated in the Main Theorem, are immediately iInplied by tbe following.

7.1. Lemma. Given any loeal data satisfying (1.2) (with thc exception for 2"-regular G
and odd k), and a value for the loeal invariant (of the type suitable for the eorresponding
regularity type of G), there exists a (k, L, G)-eomplex (X, Q), with the local invariant
constant and equal to the given value. Moreover, this (k, L, G)-complex is unique up to
G-isomorphism, and Hag-symmetrie.

7.1.1. Remark. The above Lemma is obviously not valid in the ease when G is 2"
regular and k is odd, due to (4.5). This means that no flag-symmetrie (k, L, G)-complex
with these loeal data exists, which coincides with the statement of part (4) of the Main
Theorem.

Proof: Thc existenee of an appropriate (k, L, G)-complex follows from thc possibility to
construet it. The requirelnent for the loeal invariant, to be eonstant and equal to the given
value, ean be expressed in terms of the appropriate conditions C for label systems used
during the construetion. The existence part of the Lemma follows then from Proposition
5.2, by which the appropriate label systems at each stage of the construction cxist.

The uniqueness up to G-isolllorphism follows from Proposition 6.1, by which we ean
construct induetively a G-isomorphism between any two (k, L, G)-complexes with constant
and equal loeal invariants. The same construction proves the flag-symmetry of any such
(k, L, G)-complex. .

This finishes the proof of Lemma.

We now proeeed to prove thc properties of the automorphism groups Aut(X, Q). They
all follow easily from the uniquencss-nonuniqueness part of Proposition 6.1.

By the existenee part of this Proposition, we ean eonstruet induetively a G~automor

phislU of a Hag-symmetrie (k, L, G)-complex, starting from any G-isomorphism of some of
its I-balls. In thc cases when s E {I, 2', 2"}, this initial G-isonlorphism extends uniquely
at eaeh inductive step, giving the G-automorphism uniquely determined by its restriction
to the initial I-ball. In the next case when s = 3 and k = 3, this initial G-isomorphism
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extends in several ways to a G-isolllorphism of 2-balls, but sinee the further extensions
are unique, any resulting G-automorphism is determined by its restrietion to the initial
2-ba11. In the remaining cases, there are many possibilities of extensions at any stage of
the inductive construction of a G-automorphism.

From above remarks, the properties of automorphism groups Aut(X, Q) stated in the
Main Theorem follow, whieh finishes the proof.
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