
CURVATURE DEFORMATION 

by 

Maung Min-Oo and Ernst A. Ruh 

Max-Planck-Institut 

fUr Mathematik 

Gottfried-Claren-Str. 26 

D-5300 Bonn 3 

SFB/MPI 85-42 

Sonderforschungsbereich 40 

Theoretische Mathematik 

Beringstra8e 4 
D-5300 Bonn 1 



- 1 -

CURVATURE DEFORMATIONS * 

Maung Min-Oo, Universitat Bonn and 

Mc Master University, Hamilton, 

and 

Ernst A. Ruh, Universitat Dusseldorf and 

Ohio State University, Columbus. 

1. Introduction. 

~n [H], Hamilton introduced an important evolution equation for 

Riemannian metrics in his study of three dimensional manifolds with 
positive Ricci curvature. In the present note we study this equation 

with emphasis not so much on the metric but more on the connections 

involved. The evolution equation for the connection is the gradient 

flow w = - oWn, where n =dw + [w,wJ is the curvature form and w indicates 

the infinitesimal change in the connection. The Lagrangean of this 

flow is the well known Yang-Mills integral J IQI2. The connection to be 

used is a Cartan connection of hyperbolic type. The deformation is 

closely related to our previous work [MR] on non-compact almost symmetric 

spaces. Even for the study of metrics with positive curvature the hyper­

bolic model seems to be the appropriate one. 

In the next section we give a derivation of Hamilton's equations 

without explicitly using the notion of Cartan connections. This section 

also motivates the computations for the deformation equations for Cartan 

connections which we derive in the last section. While the effect on the 

deformation of metrics is the same in both approaches the definition of 

the control function of the process is not. This provides additional 

flexibility in choosing the quantities to be estimated. 

2. Deformation of the Levi-Civita connection. 

In this section we reformulate Hamilton's deformation in a different 

set-up so that the corresponding evolution equations for the Levi-Civita 

*) Thi~ work was done under the program "Sonderforschungsbereich Theore­
tische Mathematik" (SFB 40) at the University of Bonn. 
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connection and the Riemannian curvature can be derived in a natural and 
easy fashion. 

Let (Mn,g) be a compact Riemannian manifold. First of all, we deform 

metrics not through tensors of type (0;2) directly but by using gauge 

transformations, i. e., tensors of type (1, 1): a: T.t-l ~ TM. A metric 

deformation is therefore a curve gt of metrics defined by: 

(2. 1 ) gt(X,Y) = g(etx,ety), 

where at is a 1-parameter family of invertible maps 

6 t : TM ~ TM with 6 = id o . 

In order to be able to calculate the infinitesimal changes in the 

Levi-Civita connection and the curvature tensor caused by such a metric 

deformation in an efficient manner, we introduce the bundle 

Aff(M) := TM ~ TM* ® TM. 

• d I An infinitesimal gauge transformation a = dt at can now be 
t=o 

considered as a 1-form with values in TM or sometimes as a o-form with 

values in TM* 0 TM. An infinitesimal change in the connection is a 1-form 

with values in TM* ® TM and we interpret curvature as a 2-form with 

values in TM* 0 TM. 

The Levi-Civita connection V of the metric 9 induces a natural direct 

sum connection in Aff(M) and we denote the corresponding exterior 

covariant derivative on p-forms with values in Aff(M) by dV• 

(2.2) 
p. '" 

= .r (-1)~Vx. (ex( ••• xi .··)) 
~=o ~ 

i+j A '" r (-1) o.([x.,x.], ••• xi ••• x
J 
.••• ). 

i<j ~ J 
+ 

We also introduce an algebraic operator d 2 acting on a p-form 0. by the 

formula: 

(2.3) i (-1) i[x. ,0.( ••• X .••• )], 
i=o ~ ~ 

where the bracket [,] is defined to be: 

oc,Al := - AX € TM for X € TM, A € TM* ® TM 

[X,Y] = X 1\ Y € TM* ® TM for X,y € TM, 

where X 1\ Y is the map Z ~ g(Z,Y)X - g(Z,X)Y. 

For A,B € TM* ® TM, we have of course the usual definition for [A,BJ. 
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If R is the Riemannian curvature tensor of g, interpreted as an 

Aff(M)-valued 2-form, then the Bianchi identities can be stated as 

follows. 

Lemma 1. d
2

R = 0 (1 st Bianchi identity) 

dVR = 0 (2nd Bianchi identity) 

We will make use of the adjoint operator of d V: 

V n 
(0 a) (X

2 
••• x

p
) = - L (Va) (e

k
,x

2 
••• x ), 

k=l e k p 
(2.4) 

where {ek } is an orthonormal basis for the metric g. 

We also define an algebraic operator O2 by the formula: 

n 
(2.5) (02a ) (X

2 
••• xp ) = L [ek,a (ek ,x2 ••• x ») 

k=l p 

The Ricci tensor, interpreted as a TM-valued l-form can now be 

defined as 02R. Using this notation, we derive a consequence of the 

Bianchi identities which is fundamental for our deformation equations. 

Lemma 2. 

Proof. 

= (V R)(Y,X,e
k
), 

e k 
where we sum over k from 1 to n and used the 2nd Bianchi identity. On 

the other hand, 

- (V R)(ek,X,Y) + (V R)(ek,y,X) e k ek 

= - (\7 R) (Y ,x,e
k

) , e k 

Where the 1st Bianchi identity is used. The sum of the two terms is zero • 

• Let y be the infinitesimal change in the Levi-Civita connection caused 

by an infinitesimal gauge transformation 8: TM ~TM, which we assume 

from now on, without loss of generality, to be symmetric with respect to . 
9. y is a l-form with values in TM* 0 TM and can be decomposed as: 

(2.6) • • • 
y = n + 0 

Where n has values in the skew-symmetric, and a in the symmetric 
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component of TM* ® TM. 

Differentiating the condition 'Vg = 0, we get y • g + 'Vg = O. It is 
easy to see that y • g = - 20 and that Vg = 2V6, where 6 is considered 

as a o-form with values in the symmetric part of TM* ® TM. Hence 
is given by 

(2.7) ° = 'Va • 

. 
a 

Differentiating the condition that the Levi-Civita connection is 
torsion-free, we obtain: 

y(X)Y - y(Y)X = 0, which we write as 

d2y = d2n + d20 = d2n + d2'VS = O. 

d a• = 'V. • NOW, 2'V d 6, where e on the left is viewed as a section in 
TM* ® TM and on the right as a 1-form with values in TM. Moreover, 
d2 resticted to 1-forms with values in the skew symmetric endomorphisms 
is well know to be an isomorphism onto the 2-forms with values in TM. 
Incidentally, this fact is responsible for the uniqueness of the Levi­

Civita connection among metric connections. Hence n is determined 

uniquely by the equation: 

• V, 
(2.8) d2n + d e = 0, and the change in the Levi-Civita connection is 

given by 

(2.9) 

By Lemma 2, the relation (2.8) is satisfied if we set 

(2.10) • 'V n = - 0 R, and we have proved the following result. 

Lemma 3. The infinitesimal change in the Levi-Civita connection caused 

by the infinitesimal gauge transformation e = - 62R is given by 

(2.11) • IJ y. = - IS R - Vo 2R • 

The corresponding metric deformation is computed to be 

g(X,Y) = g(6X,y) + g(X,8Y) = - 2 Ric(X,y) I which is exactly Hamilton's 

deformation without the normalizing term. Hamilton [H] proved that the 

deformation exists at least for a short time and the above infinitesimal 

computations are not just formal. Introduction of a normalization 

(2.12) e =.- 02R + C id, c any constan~does not alter the formula 
• 'V Y :: - 6 R - 'Vo')R. 
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The infinitesimal change of the curvature tensor, considered as a 
2-form with values in TM* ® TM is then given by (compare also [M]); 

Lerruna 4. 

(2.13) R = - dVoVR - Roo
2

R = - ~VR - R.o 2R, where AV = dVo V + oVdV 

is the Laplacian and (R.0 2R) (X,Y) = [R(X,Y), 02R) E TM* ® TM. 

Proof. R = dll~ ; 

= (2 nd Bianchi id.) 

and dllll applied to a zero-form is by definition of curvature, the 

curvature applied to this zero-form. In our notation, (dIl V0 2R) (X,Y) = 
= [R(X,Y),,02 R1 • 

In order to compare (2.11) to Hamilton's formula [H, Theorem 7.1] 

for the evolution of the curvature, we need to recall first the 

following Weitzenbock formula for the Laplacian fiVR. (compare ego [Bl) 

(2.14) (AVR) <X,Y) = (bR) (X,Y) + R(RicX,Y) + R(X,RicY} 
n 

- R(R(X,Y» + 2I: (R(e ,X) ,R(e ,Y)], 
p=1 p P 

where b is the rough Laplacian and {ep } is an orthonormal basis. 

Using index notation, we can write the last two terms of the 

algebraic expression on the right hand side of (2.14) as: 

( 2 1 5 ) R , . pq R 1 2 1 q 2 R 1 q h R = 
• ~J pqk + Rpiq Rpjk - pjq RPik ' were ijkl 

= g(R(ei,ej)ek,e l ) and Ri j denotes the Ricci tensor. 

is 

By 

As in [H) we define Bijkl = Rpiqj Rpkql ' where an orthonormal frame 

used. Now, 

Bijkl - Bijlk = Rpiqj(Rpkql 

= Rpiqj Rpqkl 

= Rijpq Rpqkl 

Bijkl - Bijlk 
::: R , . 

p~qJ 
R pqkl 

definition, we have 

- Rplqk ) 

= (- Rpqji - Rpjiq)Rpqkl 

- R . . R kl' and hence 
p~qJ pq 

1 = 2 Rijpq Rpqkl • 

Bijkl - Bi1jk = Rpiqk Rpjql - Rpiql Rpjqk 

=-Rpjql Rpikq + Rpiql Rpjkq , 
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in Hamilton's formula and in our expression (2.15). 

The four terms containing the Ricci curvature in Hamilton's formula 

can be written as follows: 

R(RicX,Y)Z + R(X,RicY)Z + R(X,Y)Ric Z + Ric (R{X,Y)Z) • 

The first two terms coincide with the corresponding terms in (2.14), 

but instead of the last two terms our formula (2.13) -gives us 

R(X,y) Ric Z- Ric (R(X,Y)Z). The difference 2 Ric (R(X,Y)Z) is due to 

the fact that Hamilton's equation is for the curvature of type (0,4) 

and Lemma 4 treats the curvature as a tensor of type (1,3). We have 
• • m· m 
R~jkl ::;: 9 ml Rijk + gml Rijk and . 

g ::;: - 2 Ric. 

This proves Hamilton's Theorem 7.1: 

Rijkl + (hR)ijkl ::;: 2 (Bijkl - Bijlk + Bikjl - Biljk) 

- Rpi Rpjkl - Rpj Ripkl - Rpk Rijpl - Rpl Rijkp • 

3. Deformation of Cartan connections. 

Let (M,g) as before, denote a compact Riemannian manifold. In this 

section we identify X" Y E TM" TM with the skew-symmetric endomorphism 

Z ~g(Z,Y)X-g{Z,X)Y, and define E ::;: TM $ TM"TM, a vector bundle 

over M with fibre metric <,> defined by g. For skew-symmetric maps 

A,B: TM ---+ TM we have <A,X" Y> = - <AX, Y> and <A,B> ::;: - ~ tr AB. 

Let V be a metric connection for TM, not necessarily torsion-free. 

A gauge transformation a is simply an invertible map a: TM ~TM. 

The image, im a, should be viewed as the subspace TMcE. We define a 

Cartan connection on E by: 

DXY ::;: VxY + ex 1\ Y 

DXA ::;: - Aex + VXY, X , Y E TM, A E '1'M 1\ TM • 

D defines a Cartan connection of hyperbolic type for M. Note that the 

metric is not invariant under D. To simplify the above formula we define 

the structure of a Lie algebra, isomorphic to the Lie algebra of the 

isometry group of hyperbolic space o(n,1) I on the fibres by 

[ (X,A) I (Y ,B)] ::;: (AY - BX, [A,B) + X" Y} • 

D leaves this bracket invariant and is expressed as follows: 
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(3.1) Dis = 'iJxs + [sx,s], s a section in E. 

Let RD denote the curvature tensor of the connection D, i.e., 
D 

R {X,Y)s = (DXDy-DyDX-D[X,y])s.we define the Cartan curvature form n 
by the formula 

(3. 2) D [n(X,Y},s] = R (X,Y}s. 

It will be convenient to split the curvature tensor RD, and 

accordingly Q, into the components TM 1\ TM and TM of E. vle write 

RD (X, y ) = ~ (X, Y) + R2 (X, Y) , 

Q(X,Y) =Q,(X,Y) +Q2(X,Y), 

where R1 (X,Y) = RV(X,Y) + eXI\6Y with RV the curvature of the connection 
V, and R2 ;;;:; T(V,S), with T(V,e) (X,Y) = Vx(eY) - Vy(BX} - e[X,Y] the 

Cartan torsion. 

The connection 0 defines an exterior covariant derivative for 

E-valued p-forms on M. 

(3.3) o (d (l) (X ••• x ) = 
. 0 p i (_1)i Ox (cd ••• ~ .••• » 

i=o i ~ 

+ 
i+j A A 

L ( -1) a ([ X. , X . ] , ••• X. • •• X
J 
.••• ) I 

i<j 1 J 1 

which we also write as D d a = d1 a + d 2a, where 
PiA 

;;;:; L (-1) [ex.,a( ••• X .••• )]. 
i=o 1 1 

In this notation the Bianchi identities take the form dOQ = O. 

Corresponding to.Lemma 1 of the previous section we have 

Lemma 5. 

The purpose of this section is to study deformations of metrics on M 

via deformations of Cartan connections. We will start with VO equal to 

the Levi-Civita connection of the initial metric go = g. In the course 

of the deformation the metric g on M of course will change but we will 

keep the fixed metric <,> as well as the fixed Lie algebra bracket 

defined by 9 in the fibres. A 1-parameter family D = Dt of Cart an o 
connections determines a family (Vt,B t ) of connections and gauge 

transformations on TM. 0t and (Vt,B t ) are related by the formula 

D~s = v~s + retx,s] of (3.1). The changing metric gt on M is related to 

the fixed metric <,> on E by the formula gt = Bt,go' where 

(B t go) (X,Y) = go(BtX,BtY) as in (2.1). 
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interested in deformations of Cartan connections with 
t 

= 0, and T(V ,etl = 0 at all times t. The reason is 

Lemma 6. If vgo = 0, and T(V,e): 0, then a-gauge transform e- 1V8 is the 

Levi-Civita connection of the metric g = 6* go • 

So, a metric deformation is equivalent to a deformation of Cart an 

connections with vanishing Cartan torsion on the vector bundle 

E = TM e TMA TM with fiexed metric g and fixed Lie algebra structure o 
0(n,1) on the fibres. The curvature R of the Levi-Civita connection of 

Lemma 6, of course, is R(X,Y)Z = 6- 1 (RV(X,Ylaz). 

In order to define a suitable deformation of Cartan connections we 

introduce the adjoint 00 of the exterior derivative dO, defined by 

o = Ott with respect to the variable metric g = gt on the base, and 

the fixed metric <,> (defined by go) on the fibres of E, compare (2.4). 

n 
(3.4) = - k:1 (V e

k 
0.) (ek ,X2 •• .Xp) 

n 
+ r (ee

k
,0.(e

k
,x

2 
••• X )], 

k=1 p 

where {ek } is an orthonormal basis with respect to the variable metric 

° g = gt' We also write IS 0. = 010. + 0 20., where 

(3.5) 

This explains the definition (2.5). Note that the positive sign occurs 

because we are using the non-compact Lie algebra o(n,1) as typical fibre 

in E. For spherical Cartan connections the sign would be negative. 

We consider the evolution equation 

(3.6) · ° w=-oQ, 

where w is an E-valued 1-form on M and defines an infinitesimal 

deformation of the Cartan connection ° by DXS = [w(X),s]. 

The equation (3.6) is not just formal. The integrability condition 

OO(oOU) = 0 makes it parabolic and by [H, Theorem 5.1] the equation 

has a solution for 0 ~ t < e: and some e: > o. The equation (3.6) yields 

the following evolution equation for the Riemannian metric g = gt on M. 
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. 
(3.7) g = - 2 Ric(g) - 2(n-1)g, which coincides with (2.12) and is 

Hamilton's equation except for a normalization. The purpose of section 2 

was to study this evolution emphasizing the evolution of the Levi-Civita 

connection. In the present section we stay with Cartan connections. 

The evolution equation for the Cartan curvature form n is 

(3.8) • D n = - II n. 
Next we prove that the evolution (3.6) is tangent to the space of 

Cartan connections with vanishing Cartan torsion, see definition (3.2). 

The following result corresponds to (2.8). 

Lemma 7. Let ~ = n + a denote the splitting of the infinitesimal 

connection form ~ of (3.6) into TMA TM and TM components respectively. 

If the Cartan torsion vanishes, then d2n + d 18 = o. 

Proof. Vanishing Cartan torsion means n2 = 0 and Lemma 5 applies. 

Lemma 6 applies also, i.e., the Levi-Civita connection is the gauge 

transform by e of the connection defined by D. Since we are working 

with the Levi-Civita connection on the base M we can choose vector 

fields X,Y,z,ek in TM which at a given point have vanishing covariant 

derivative and vanishing (vector fields) bracket. Since the connection ~ 

in the fibre is related by the gauge transformation e to the Levi-Civita 

connection on the base M, the sections ex, ey, ez, -ee
k 

in TM c E have 

vanishing covariant derivative with respect to ~ as well. This 

simplifies the following computation. Now, d 18 = - d102n, and 

d2n = - d 201n, and 

- (d102n) (X,y) = - ~X[eek,n(ek'Y)] + Vy (6ek ,n(ek ,x)] 

= - [6ek ,VXn(ek ,Y)] + [6ek ,Vyn(ek ,x)] 

= - [eek,V n(X,Y)], since d 1n = O. ek 

= [eX,V n(ek,y)]­ek 
= [eek,V n(X,Y)], ek 

The two terms add up to zero. 

[OY,Ve m (ek,X)] 
k 

since d 2n = o. 

The following Lemma states that the evolution defined by (3.6) is 

tangent to the space of Cartan connections with vanishing Cartan torsion. 
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Lemma 8. Let w evolve according to (3.6). If n2 = 0 for a given time t, 

then n2 = 0 at that time. 

Proof. n2 (X,y) = VX(6Y) - Vy (6X) - O[X,YJ. 

n2 (x,y) =n(X)6Y + Vx (8Y) - n(Y)6X - Vy (8X) - 8[X,y] 

=d2n(X,y) + d 18(X,y) = 0 by Lerruna 7. 

Since the original Cartan connection D = DO is constructed from the 
Levi-Civita connection of the original metric g , the Cart an torsion 

o 
remains zero at all times. For this reason, the Laplacian 

6D = dDo D + oDdD can be conveniently written as the sum of two non­

negative operators as the following Lerruna states. 

Lemma 9. If the Cartan torsion n2 vanishes, then 6D = 6 1 + 6 2 , where 

61 = d l o1 + 0ld 1 , and 112 = d 202 + 02d 2· 

Proof. To simplify the computation we choose vector fields as in the 

proof of Lemma 7. We prove it for a TMA TM-valued 2-form a only to keep 

things simple. This is the case we need anyway. We have to prove: 

(d 102 + d 201 + 0l d 2 + 02dl)a = o. 

(d1Q2a) (X,Y) = VX[eek,a(ek,y)] -Vy[Oek,a(ek,x)] 

(d 201a) (X,y) = -[6X,V a(ek,y)] + [OY,V a(ek ,x)l e k e k 

Ui 1 d 2tl) (X I Y) = -\Ie [6ek ,a{X,Y)] II [6X,a(Y,ekl) - V [ e Y I a (ek ,X) ] 
k e k ek 

(6 2d 1a) (X,Y) = (.6 ek ' V a (X , Y) ] + [eek,VXa(Y,ek )] + [eek,Vya(ek,x)] e k 

Each summand occurs twice with opposite signs if we take the choice of 

the vector fields into consideration. 

The main result of this section in the following simple form of the 

evolution ~quation for the Cartan curvature. 

Theorem. Assume that the family of Cartan connections 0 = ot evolves 

according to ~ = ~ oOg. Then, the Cartan curvature satisfies the 

parabolic equation 
• D 
g = - 6 g. 

If in addition the initial Cartan connection is torsion free, i.e., 

n2 = 0 initially, then the torsion remains zero at all times and 

we have n4 = - 6.~- - ~_r; . 
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