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1. INTRODUCTION

Imagine a box filled with ball bearings. How does one
arrange the position of these "spheres" to obtain the greatest
possible density? What properties do the positions of the
centers have? If the density is at least locally maximal (i.e.
a small change in the positions does not allow us to shrink
the box), are the ball bearings rigidly held in place?

We address problems such as the above. The goal first
is to clarify what the problems are and then to provide some
tools for handling them. For example in Tarnai and Gaspar [25]
they consider the problem of finding the most dense circle
packing of the 2-sphere for ncircles for a few (mostly small)
values of n. They found that the most dense positions had to
be "Danzer rigid" (to be explained later), for if not, they
could be improved. Here we clarify what the relevant notions are
and put the problem in the context of what has already been

done in the rigidity of frameworks.

Our results are of two types. First the local analysis of
the problem.and the linearization of it leads to the notion of
infinitessimal rigidity. Roughly speaking when the ambient space
is of constant non-positive curvature and the container is
*concave", then we provide a guarantee that infintessimal
rigidity must occur for a locally maximally dense packing.
Ironically this does not include the case of circles in a sphere.
However, one would "expect" infinitessimal rigidity in all but
a few pathological cases. We have shown that no such case exists

for some situations.



Second a global analyis.of the rigid configurations shows
that the graph of the packing has at most one rigid realization
under the same conditions as above. The graph of a packing is
obtained by regarding thecenters of the spheres as the vertices
and putting an edge between two vertices when the corresponding
spheres intersect. In principle this global information should

be useful for determining maximal densities.

Danzer [11] observed that if a circle packing in the
sphere was maximally dense, then the graph of the packing was
usually rigid. However, it was zpparant that something a bit
more than the rigidity of such "rod" framework was needed. Thus
Tarnai and Gaspir [25 Jcalled such graphs "Danzer . rigid". It
seems clear that what is needed 1is the notion of a "strut "
framework, roughly graphs that are not allowed fo move as to
decrease their edge lengths. (Rods must stay the same length).

Also related to these ideas is
L. Fejes Toth's definition of stability and solidity of a packing.
He defined a packing as stable if each sphere is fixed by its neighbors.
The problem here is that not enough of the packing is allowed to
move. We provide several alternate notions of stability. Roughly,
they say that a packing is stable if the whole packing, or at most
a finite part of it, cannot move away from the rest, fixing some
boundary or isina.container. Naturally this is clearly related to
the rigidity of the graph (with struts).A packing is solid if no finite
subset of the disks can be rearranged with the rest of the disks so as
to form a packing not congruent to the original. Our notion for a

packing being finitely stable may be regarded as being "locally" solid.



We prefer to use the word disk for the set that is all the

points that are within a certain distance from some point, its
center; we call a sphere, of one dimension lower, the boundary
of the disk. It is more precise to use packings of disks rather

than spheres.

In section 2 we provide most of the basic defintions and

background.

In section 3 we use the definitons by themselves to show

that a general packing is "made up" of stable packings.

In section 4 we discuss the basic rigidity theorems in

the context of general frameworks.

In section 5 we apply these results to packings and show

several examples and calculations.

In section 6 we discuss conjectures and related questions.
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2. DEFINITIONS

2.1 Rackings

In order to define a packing we start with an ambient space
X , a Riemaniann manifold, of constant (sectional) curvature,
complete as a metric space. In X a disk of radius r about

a point p , the center, is

D (p) = {q|dlp,q) 51},

where Dr(p) is topologically romeomorphic to the standard

D1(0) for the case when X 1s euclidean space. d(p,q) is

the Riemannian distance from p to gq . The interior of Dr(p)

is the topological interior, where the inequality above is strict.
A packing P 1is a collection of disks with pairwise disjoint.
interiors. Unless otherwise stated, all of our packings will

have disks of the same radius r(P).

Let K be some compact subset of X . Of course if X
is compact we can take K to be all of X. For any packing P

of X we consider the disks that are contained in X. Let

. volume of the disks of P in K

Dy = volume of K

be the density of P in K. Then the density of P in X,

if it exists, is the limit



where K,cK,c... and [i] K, = X. See Rogers 201 .
n=1

Note that when X = hyperbolic space, then D may very well

depend on the choice of the sequence of K, 's. See BSrdczky (51

for instance.



2.2. Locally maximally dense packings.

One thinks of K as a container where one puts in a
finite number of disks. Of one "shrinks"the container
keeping each disk with its same radius, then allowing the
disks to move and bump into each other ,as well as the
boundary of K , one would expect DK to increase untill

finally it is "maximal"”.

We, however, will adopt a dual point of view. We regard

the container as fixed and consider what happens as the radius

2 , the 2-dimensional sphere,

r(P) 4s increased. For X = K = §
this is the idea of the "heating” algorithms of Tarnai and

Gaspar [ 25]. See also Bernal [3].

We say P is locally maximally dense in K 4if there is an

€>0 such that for every corresponding packinlg Q , where each
(center of a) disk of @ is within € of the (center of the)
corresponding disk of P, then r(Q) sr(P). In other words,

for packings close enough to P, the packing density cannot be

improved.



2J3. Stability of Packings
L. Fejes Téth in H2lp 47 calls a packing stable if each

disk is fixed by its neighbours.We wish to change this definition
slightly and generalize it. We say P is 1-unstable if there is
a disk Dr(p) of P such that for every €> 0 there is a new
position Dr(q). d(p,q)< € , where Dr(q) is completely disjoint
from the rest of P. If p is not 1-unstable, it is called
1-gtable. In other words, even if some disk can move fixing its
neighbours, it is still 1-stable (but not stable in Feges-Toth's

sense) if it must intersect them. In a sense, however, the con-
.tainer is the complement of all but one of the given disks of P.
Thig is not to be confused with other notions called n-stability
‘defined by ' L. Fejes Té6th in [15] .

Consider the following example where X = Sz, the unit

2-dimensional sphere. Here 1-stability and Fejes T6th stability
will not be the same. P consists of 5 equal disks of radius

n/4, where the centers are placed at 5 of the 6 vertices

of the inscribed regular octahedron . Here anyoneof 4 of 5
disks can slide between two others loosing contact with a third.

This packing is also the densest packing of 5 disks in Sz.

In general for Sn, the unit n-dimensional sphere, we can
find a similar packing with n + 3 disks of radius wn/4 . It
is easy to see that for s™ the disks must have radius n/4

for this type of behavior.

For our first extension of the idea of stability, we say

P 1is finitely unstable if for some non-zero finite subset




Q  of the disks of P for every €>0 there is a new
position for Q€ near to the origonal position in P,

such that Q 1is completely disjoint from the rest of P .

If P 4is not finitely unstable it is called finitely stable.

Thus if P finitely stable, it is 1-stable.But the
converse is not always true. Consider the following packing

in the plane Rz .
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Figure 2.1

A group of 3 disks can rotateand then expand slightly. This
shows that the packing is not finitely stable. But it is clearly

Fejes Toth stable and in the plane that is equivalent to being
1-stable.



A packing being finitely stable is closely related to what
L. Fejes T6th in [68] calls being "solid". A packing P is
solid if no finite subset can be rearranged to give, with the
rest of P, another packing not congruent to P, If P 1is solid,
it is certainly finitely stable, but not conversely. In [14]
and [16] L. Fejes T6th and and G. Fejes T6th found many examples
of solid packings. In the following we shall see many examples of
‘1-stable packings that are not solid. See Figure 5.5 or any of the
finitely stable packings of Figure 5.2 except the first maximally
dense triangular lattice example, In the plane if P is not
maximally dense but still has a density, P can be rearangend into
a more dense trianqular packing and put back into the same space

more densely. See L. Fejes Téth's comments in [13]

As an even further extension, we consider the case when

we have a container K. Suppose P 1is a packing of K. If P
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has a single element we say P is unstable in K if it can

be moved away from the boundary of K by a small motion. If P

has more than one element we say P 1is unstable in K 1if ‘
there is some non-empty subpacking Q of P Q+P and a small motio

of P in K such that Q is disjoint from the rest of P after
the motion. If P is not unstable in K, we say P is stable in K. Note

that if P is finitely unstable it is unstable in K for an appropriate
chosen K , a large bounded subset of the complement of the interior

of all but finite number disks of P .

The following is an example of an unstable packing of the

triangle.

Figure 2.2

Later our results will deal with only packings in a
container K , since this case "includes" the previous types

of stability.



2.4. The graph of a packing
Tokeach pgcking P we associate a graph G, as
follows. The disks of P correspond to vertices of GP
and we have an edge between two vertices if the conresponding
disks intersect. Let PyreeesPy be the centers of the

corresponding disks. Then we regard Gp(p) as a realization

of GP . Where p=(p1,...,pk) is as in the case of the rigidity
of graphs, see Asimow and Roth [1], [2], or (21 },or Connelly[10] .

GP(p) is called a framework.

Suppose P is in a container K . We say K is concave if
K 1is the complement in X of a finite number of disks and,
in the case X 1is flat, the compliment of a finite number of half

spaces. We shall almost always assume K 1is concave.

I

K

Figure 2.3.

We regard each portion of the boundary of X as

corresponding to another fixed vertex of GP . The vertices

corresponding to the disks of P we call the variable vertices

of GP . If some portion of the boundary of K corresponds to
the boundary of Dr(pj), we regard P4 as the realization of
the fixed vertex of Gp - If that part of the boundary is a



hyperplane, then we say the realization of this vertex is

at infinity. Again intersections determine the edges of G, .

The example in the picture below we denote a variable
vertex by o, fixed vertices by ©, edges connected to

vertices at infinity by ====> , and the other edges by

Figure 2.4
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2.5. Rigidity of Packings
We can now discuss the rigidity of Gp(p) in K, as
with the case of a more general framework G(p). In this more
general case each edge or member of G 1s one of three types,

a cable, a rod (or a bar), or strut. For GP each member is a strut.

Let pl(t) = (p,(t). pz(t).....pk(t))  where p(t) is
continuous for 0sts1 , p(0) =p and pi(t) =Py for the

fixed vertices i1 in G . We say p(t) is a flex of G(p) if

cables increased
{ rods } are not {changed } in length. If each p(t)
- gtruts decreased

is obtained by restricting a rigid motion of K to 'Gp(p), then

we say p(t) 1is a trivial flex. If G(p) admits only trivial

flexes, then we say G(p) is rigid.The members defined above for a
flex of G(p) are regarded as geodesics in X , and the notions

of increasing on decreasing lengths are regarded in terms of these
geodesics. In the case of Gp » the geodesic 1is the one between
the centers of the disks through their point of common inter-
section. In the case of fixed vertices at infinity, if a variable
vertex. j is adjacent to a fixed vertex 1 at infinity, we

assume pj(t) is not any closer to any point on the geodesic

ray from pj perpendicular to the hyperplane defining Py -

This is the case of a strut.

For example Gp(p) is rigid in Figure 24 .With all of the

above in mind we say P 1is rigid in K 1if Gp(p) 1is rigid.



It is clear that if P 1is rigid in K , then. it is

stable in K. Unfortunately, the converse is not always true

as we have seen with the example of the maximally dense

packings of 5 disks in sz. This example should be an anomoly,

but we only provide a converse when X has non-positive

curvature ,and K 1is concave.
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.6. Examples

We shall be mostly interested in the following cases.
n

(a) X R" , n-dimensional euclidean space, K = [--1,1]n .

(b) X n

R and finitely stable packings.

(c) X =K = Sn, the unit sphere of dimension n,

1

s = (xe ™! | ax1 =1} .

n n

 and finitely stable packings, where H is

{(d) X =H
n-dimensional hyperbolic space.

(e) X =K = Tn, an n-dimensional torus obtained as the quotient
of R" by a lattice.

(f) X =K = n“/r, where T 1is a discrete group of hyperbolic
rigid motions. Here we need only that K have finite volume.

K need not be compact.

It is interesting to compare cases (e) and (f) to cases

(b) and (d) respectively. For every packing of the quotient

space T or H®/I (called the quotient packing)we can find

the inverse image, a periodic packing in " cr Bn. Of course

if a packing in the total space, " or " , is finitely stable,

the quotient: packing in the quotient space may be unstable, since
the motion of unstability may have to lift to an infinite motion

in the total space.

In case (b) or (d) when P is the lift (the inverse image

n

in 'R or Hn)-of some packing in a space of finite volume, we

say P is periodicly stable if the quotient of P 4is stable for

all possible periods.
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For example the square lattice packing in 12 is not

periodicly stable. However, it is finitely stable in lz.

AYIYTY .
g by
] PRIt
PRI,
RARATPRPIPIOTY
RARRAKACTOK
RAHAPRIRTY
MRACKIRY
TTAIAN
Figure 2.5

Oon the other hand, if the quotient packing is stable for
all possible finite volume quotients, (given that the packing is
periodic in ln), then the packing in the total space must be
finitely stable.

In the spirit of L. Fejes Tb6bth's idea of solid packings,
we say that a periodic packing P (of‘ " or Hn) is periodicly
solid if for every finite volume quotient, the quotient of P
cannot be rearranged to give another packing (with the same radius)
that is not congruent to the origonal. It is also clear that if
P 1is a periodic packing and is periodicly solid, then P is solid.
Any finite rearrangement can be performed inside some large bounded
fundamental domain. Nevertheless, A. Bezdek [4] and L. Fejes
Tbth(14]have many examples of circle packings that are not periodic,
but are still solid.
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One should be aware that due to some examples of BBrdczky
[ 5] 4t is not reasonable to define the density of a packing
in ®H® . Thus perhaps the density is more appropriately de-
fined using quotient packings as above when possible. In fact
it seems that £he density is the same for all possible quotients.
Any of the regular or trihedral Archimedean packings have compact

quotients. The regular case follows from a result of Brown and

Connelly [ z]
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3. GENERAL PRINCIPLES
Suppose a packing P 1is locally maximally dense in K.
If P is unstable, then there is another packing @ , Qlose
to P , where some subpacking of (Q does not intersect the
others and r, = r(Q2) = r(P). (A subpacking of a packing is
just a subset of the packing.) Let P1 be a subpacking of (@
where there is still some contact among the member disks or

the walls of K. P has at least one fewer disk than P .

1

If P1 is stable we stop. If P1

before to find a subpacking, etc. If this process eventually

is unstable, we continue as

uses all of the disks of P , then clearly P was not locally
maximally dense in K . Thus we can always be assured of

finding a P as above, that is stable in K, and is close

1
to a subpacking of P .

Next in the complement (in K) of the open disks of P1
we can find another maximally dense packing with the same number
of disks as P - P1 but with a radius r2>"r1. The above
argument shows that when r, is maximal ,then there is a corres-
poﬁding packing that is stable (in the complement). We can continue
to find a sequence of "nested" packings each stable in the
complement of the (open disks of the) previous packings and each

having larger radius than the previous packings. We call this

a (sequence of) nested stable packing (g).

Proposition 3.1: Any locally maximally dense packing has a sub-

packing approximated by the first element of a sequence of nested
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stable packings.

On the other hand if we have a nested stable packing,
the first packing in this sequence will insure that the

whole packing is maximally locally dense.

The following is a picture of a (maximal) packing of a
square by 7 circles. See M. Goldberg [18] Schaer [22]. The

second element of the sequence is indicated by a dotted circle.

Figure 3.1

It is remotely conceiveable that we could have a locally
maximally dense packing where there is no subpacking that is stable
as it sits. However, if we have a situation where the only stable
packings are rigid (which we shall see later happens often), then
there must be such a rigid stable subpacking, given that the
whole packing is locally maximally dense. It is concievable that

a stable packing could continuously move to an unstable position
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or even one that is not locally maximally dense.

As an aside, the above ideas suggest that one might
extend the notion of density for a packing. Namely for a given
riested sequence of packings (not necessarity stable) in K with
increasing radii,we assoclate a sequence (D1,...,Dm). of
densities, where D1 is the usual density of the union of all the
packings but with all disks taken to be the radius of the first
packing ry- Next shrink all the packings in the sequence,
except the first, to the radius r, of the second packing and

D2 is the density of that unior., etc. We then consider the

lexographic ordering on such sequences. Namely,

(D1,...,Dm1) < (D.‘,...,sz)

if for some s , D1 = D1""'Ds = Ds’ Ds+1 < Ds+1' where the

shorter sequence is extended by the same last element Dm
1

or Dm2. Then locally maximally dense nassted packings in this

sense will have each packing stable in the complement of the

previous ones.



§ 4, Rigidity

We review and extend some of the basic results concerning
the rigidity of frameworks.
4.1 Infinitessimal rigidity

Let G(p) be a realization of a graph in X as in section 2.
For each Py (p1,...,pk) = p, suppose we have a pi in the
tangent space of X at Py - We assume yi = 0 for the fixed
vertices of G. Consider p; and let 55 be (the paraliel)
transport of pj back to Py along the (geodesic) arc of G(p)
from Py to pj  assuming i,j is a member of G. We say

p = (p;,...,pi) is an infinitessimal flex of G(p) if for

each variable Py

-e

cable
} G for 41,3 a { rod }
strut

W H

(4.1) (Ej' - P'i) 'Ej {

where Ej is a vector in the tangent space of Py in the direc-

tion of the arc from Py to pj .

We say p' 1is a trivial infinitessimal flex if p' is

the derivative (at t=0) of a rigid motion
Rt t K- K
T Re lemoP =0 -
This is an extension of the usual definition of infini-

tessimal rigidity for the case when Xx=R" . Then formula (4.1)

becomes
< cable
(4.2) () - By oy - by {=}o for t,5a{roa }.
J 2 strut

(4.2) can also be used for the case when X=K=Tn, where
it is understood that Py and pj are taken so that the given

arc in T 1ifts to the line segment from Py to pj in ®".
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A similar remark holds for X=H" . See Asimow and Roth [ 1]

or Connelly [9 ] .

(4.1) and (4.2) are to be interpreted in the natural way when
one of the vertices are at infinity. Namely, if Py is a va-
riable vertex of G(p), and pj is a fixed vertex at infinity,
we replace pj - Py by a unit vector in the direction of the
geodesic from Py determined by pj .

We say G(p) is infinitessimally rigid if G(p) has only

trivial infinitessimal flexs. An easy generalization of Connelly

[ 9], Asimow and Roth [ 1], or Roth and Whiteley [21] now fol~

lows.

Theorem 4.1: If G(p) 4is infinitessimally rigid then it is

rigid.

In general the converse of this theorem is false. See {9 ],

[1]1, or [21] again.

4.2 Recognizing Infinitessimal Rigidity

Since our graphs usually do not have all rods, the next
result due to Roth and Whiteley [21] is very helpful in distin-
guishing when G(p) is infinitessimally rigid.

Let w = (..., “ij"") be real numbers, one corresponding

to each member of G. We say w is proper if

oy ]
1]

There is no condition for a rod. We say w 1is a stress for

AWV

' . strut
} 0 for 1i,j a { cable } of G.

G(p) 1if for each Py the following holds in the tangent space
at p,

(4.3) zw.(pj-pi)=0 '



where the sum is taken over all j such that 1,3 4is a member
of G, and pj - Py has the meaning as with equation (4.2).
(4.3) is called the equilibrium equation at 1.

For a graph G, G denotes the graph obtained by making
all the members rods.

Theorem 4.2 (Roth and Whiteley): The following are egquivalent:

ta.) G(p) 1is infinitessimally rigid.

(b.) G(p) is infinitessimally rigid and there is a proper stress

w for G(p) such that mij #+ 0 for each cable and strut

of G.

(c.) G(p) 4is infinitessimally rigid and there is a proper

stress o for G(p) such that mij # 0 for each cable

and strut of G.

The point of this theorem is that we can easily apply arguments
counting the ranks of various matrices and generally work
with E(p) using ordinary linear algebra. w can be treated
separately:and often more easily by itself. We will apply this

theorem later.
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4.3 Infinitessimal Determinancy

It turns out that in some cases the converse of Theorem 4.1
is true. That is, a framework G(p) 1is rigid if and only if
it is infinitessimally rigid. Rigidity for G(p) is determined
by the infinitessimal case. This is essentially what happens
for the following.

Theorem 4.3: Suppose the ambient space X has non-positive cur-

vature. Let G(p) be a framework in X with all members struts.

. — | —————————————  Ar— —

Then G(p) is rigid if and only if it is infinitessimally rigid.

Furthermore if p' 1is an infinitessimal flex of G(p) the

continuous flex will increase all (strut) distances 1,3 where

P, * p% unless 1 or j is at infinity. In the case when the

curvature of X is negative and (4.2) is equality, the strut

distances will still increase in distance as long as pj 4 0

or p. #* 0.

Proof: First consider the case when the curvature of X is 0.

We shall assume X = ]Rn

,» but the motions and flexes may have
certain periods which we wish to preserve. Let p' be an infi-

nitessimal flex of G(p), p' not trivial. Then define
p(t) = p + tp'
for 0 s t s 1. Clearly p(t) is a non-trivial flex of G(p)

and we compute for i,j a strut of G, neither i nor j at

infinity.

py(6) = py(&) [ = |py = py + tip - p§) |2

s |py - pyl2 |

- 2 - RYTOEE B TR
|Py = Py 2tlpy - py)- Ry Py +t Ipg P}

2
|



Note that the inequality is strict unless pi = pa and

(py = py)-(P} - Pj) = 0.
In case pj , 8ay, is at infinity, then if we let ej re-
present the unit vector in the direction determined at infinity

we calculate

pi(t)'ej = (pi+tp;.) . ej = pi-ej+tpi -ej

zpi'ejl

which is what is desired.
Next we consider the case when the curvature of X is -1.

We shall assume x=1f‘, and regard H" as a subset of Min-

n+1 n+1

kowski . space Mn+1, where M is the same as R as a
set, but has the Lorentz indefinite innexr product <, > defined

by

n
< > = . R .
Xry i£1x1yi ¥n+1 Yneo !

where X = (x1,...,xn+1), y = (yi,...,y Then

n+1)'

n

H = { X € Mn+1| < xX,¥ > = -1, Xne1 > 0} .

So for x,y € ", <x-y, x-¥>2 0, <x,y>s 1. Also if Xx',y' are
in the tangent space of some points in lf‘, then <x',y'>z20.

Let p,(t) be the point in #" at distance tlpi! on the
geodesic from Py in the direction pi . Then

a
<F Pyt o FEPt) > = <p) o p) >,
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a constant, and

2
<S5 p (), pylt) > =-<p] ,p}> .
dt
So
dz
—= P, (t) =<p!,p!> p,(t) .
at? 1 i'¥i i
Then
42
—5 < p,(t) - p.(t), p,;(t) - p,(t)>
at? 1 J 4 3
- a_ -4 a_ -4
= <3x P;®)- 3% pj(t), gt Py ()~ g pj(t)> +
2 2
d d
< —5 py(t) - — p,(t) , P, = P, >
at? 1 at? 3 173
- a_ - a a_ -4 .
= <3 pi(t) St pj(t), 3t pi(t) 3t pj(t)>~+
( < Pyrpj>+ <pispPy>) (=1-<p;,P4>)
z 0.

Note that we have equality if and only if pi = p3 = 0. Thus

if < Py{~Ps pi-p! >> 0 , then clearly Py and Py will in-

3 3

crease in distance. In the case of equality, the above compitation
implies Py and pj increase in distance near t=0. Note that

the Minkowski inner product is positive if and only if the inner

product after transport is positive.
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‘4.4 Global Uniqueness

From the results of 4.2 and from more general results of
Connelly [10], we can expect that a rigid framework G(p) will
have a proper stress w # 0. Here we present some results con-
cerning the global uniqueness of such sort of realizations.

Let G(p) be a framework in X. Here we allow 'G(p) posibly
to have some fixed points posibly at infinity.

Let G(g) be a realization of G with posible different
vertices. We say G(p) and G(q) are homotopic if they are
homotopic as continuous maps of one-dimensional graphs into X.

Of course fixed points are to remain fixed during the homotopy.
(See any text with an introduction to algebraic topology for a
definition of homotopy.)

We say G(q) 1is dominated by CG(p) or G(p) dominates Gl(q),
and we write G(g) s G(p) if

strut

s
(4.4)  |py-pyl {: } lay-a5| for 4,3 a { red } of G ,

1f for all G(q) (homotopicto G(p)), G(q)SG(p) implies p 1s congruent

to 'q, then we say G(p) isuniquely positioned (up to homotopy) in X.
Of course the distances implied above are interpreted to

mean the geodesic lengths in X and is part of the information
of a realization of G. One should also be aware that vertices may

coincide and edges may cross in a general realization G(p).

By wrapping geodesics around handles we can obtain many
more realizations satisfying (4.4). So we narrow our attention
to the case when G(p) and G(q) are homotopic. Of course this

always happens when X is simply connected.



We now have an easy generalization of a result in Connelly
[10] where the following frameworks were called spiderwebs;

Theorem 4.4: Let G(p) be a framework with a proper stress

such that:

(i) All the members 9£ G are cables.

(ii) For each vertex i of G there is some mij#o.

(iii) The curvature of X is non-negative (and constant).

Then G(p) 1is uniquely positioned up to. homotopy in X.

Proof: In the case when the curvature of X is 0, we lift the

n

problem to IR and then this follows from Connelly [1g].

Similarly if the curvature of X is -1 we can lift the pro-

blem to H". But then we can replace the stress w by a stess
w in Mn+1 . In order to obtain the equilibrium equations in
Mn+1 we introduce a new vertex 0 = p in the framework and

O
A

join all the variable points of G to 0, to get a graph G,
by a "Minkowskii"strut or "Euclidien" cable. More precisely we

define w,., < 0 such that the equilibrium equations (4.3) hold

01
in Mn+1. Then we define an energy by
E (q) = YA Wij < Pi7Pyr PyTPy .,
ijeaG
Since < Py/Py > = -1 < 0 and w4 < 0/E(q) is a positive

quadratic function and global uniqueness follows easily as in
the flat case. -

Note that in both the 0 curvature case and -1 curvature
case, if G has no fixed points it is implicitly assumed that
the 1ift is periodic. To calculate the energy then it is only
necessary to take one,but only one, representative for the lift of

each member of G(p). All other lifts will have the same energy,



- 27 -

since they differ by an affine motion that preserves the
<, > form. This finishes the proof of the Theorenm.

The idea here is that with Theorem 4.2, when a graph with
all struts is infinitessimally rigid, then it has a proper stress
with all non-zero members. Then Theorem 4.3 says if we change
all the struts to cables, there is no other realization in its
homotopy class, unless some cable condition is violated. In
our application all the members of G(p) will have the same
length and the above says that there can be at most one such
infinitessimally rigid realization.

Theorem 4.3 and Theorem 4.4 should also be true in any
Riemannian space X of non-positive sectional curvarture, constant
or not. We do not need such a result here so we do not include

that computation.
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5. Applications to packings
5.1 Rigid and Stable Packings

There is a very simple situation when a stable packing is

not rigid in Rn

. Namely, we can take a K that has a conti-
nuous group of symmetries and then remove a ball or some por-
tion that is not left invariant by the symmetries. For instance
we can take a rigid packing in a torus or a cylindrical strip
and then remove a smaller ball that does not touch the packing

as in the figure below.

“_ ) © (.

Removed

from
K

Figure 5.1

Theorem 5.1: Let the ambient space X have non-positive (con-

stant) curvature, where the container K 1is concave. Let p
A
be a packing of K. Then K < K, another concave containers

such that the following are equivalent:

(i) p is stable in &
(11) G (p) is rigid in K

(111) G (p) is infinitessimally rigid in K,
where if p is stable in K, p is stable in K .



Proof: (iii) = (ii) = (i) is always true.

Suppose (i) and let p' be an infinitessimal flex of Gp(p).
We shail show that Gp(p) has only trivial infinitessimal flexes
and thus is infinitessimally rigid.

Choose a disk i and consider the subpacking Q deter-
mined by those j such that p!

J
In case the curvature of X is -1, if pi # 0, then the

=pj'-.

motion p(t) determined by Theorem 4.1 will have the disk i
disjoint from all the others for all t > 0. Thus pi=0 for all
i and we are done.

In case the curvature of X is 0, then Q =p since other-
wise P would be unstable again by Theorem 4.1. Also we can
assume equation (4.1) is equality for the walls (i.e.boundary)
of K, since if we have strict inequality we will remove that
wall from K. If no member of p intersects some wall of K
we will remove that wall as well to get 2.

If some wall that remains is not flat, then for t > 0, p(t)
will be such that no member of p will intersect that wall.
Then p will be 1-unstable for the disk that intersected that
wall (recall all the pi's are the same). This composite motion
shows that p itself was unstable.

If all the walls of ﬁ are flat, then p(t) leaves these
walls invariant and p(t) extends to a symmetry of ; , thus
p(t) is trivial and we are done.

Note that g may be infinite as for the second example
of Figure 5.1, but this only happens when p consists of a

single disk.
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Note that the example of 5 circles in S2 shows that some sort
of condition about the curvature being nonpositive is necessary.

Let G denote the graph obtained by reversing cables and

struts.

Corollary 5.1: With the hypothesis of Theorem 5. 1, if P 1is

stable, then G (p) is uniquely realized in X.

Proof: By Theorem 5.1, Gp(p) is infinitessimally rigid in X.
By Theorem 4.2 Gp(p) has é proper stress w such that

Wy <0 .for all 1 j € Gp (which are struts of G). Then -uw
is a proper stress for Ep(p).

Theorem 4.4 implies that Ep(p) is uniquely realized in X.

The idea here is that in order to find maximally dense
packings it is only necessary to consider stable packings in
view of Proposition 3.1. In view of Theorem 5.1 we need only
consider packings with infinitessimally rigid graphs. Corollary
5.1 says there is at most one such framework sihce one has to
be smaller than the other. In principle one could perhaps search
for such frameworks directly.

Suppose one has an algorithm such as discriped by Tarnai
and Gasp&r [25] where one starts with the graph of a packing
Gp that is not locally maximally dense. After the application
of the "heating" algorithm that increases edge lengths one may
obtain another locally maximal graph GQ which is obtained
from Gp by adding new edges only. The final locally stable
graph GQ cannot be (ﬁ, by the Corollary 5.1. However, ironi-
cally the Corollary 5.1 and Theorem 5.1 do not apply to 52



where Tarnai and Gasp&r did their work.

It is also posible to obtain a bit more information
from Corollary 5.1. Suppose X = K = Tz, the 2-torus, and each
face determined by Gb(p) has longest diagonal s L .
If Q is as above, locally maximal, and if L s 2 r(Q) we
have a contradiction to the Corollary, going from @ to p.

Thus we know

L>2r(d.,

a bound on the maximum density for that kind of graph.

5.2. Calculations.

We now apply Theorem 4.2 to present some sufficiént con-
dition for being stable. In particular when Theorem 4.2 applies
we will give conditions when Gp(p) is infinitessily rigid.

Consider the function (the rigidity map)

£: x5 — ®® ,
where f(p) = (...,(pi - pj)z,...), where k 1is the number
of variable vertices of G , i.e. the number of disks of P,
and e 1is the number of members of Gp. Let ty be the dimen-
sion of the space of trivial infinitessimal flexes of X. Then
following Asimow and Roth [1] , or Connelly [9 ], we see that
Ep(p) (the graph obtained by replacing all members by rods)
is infinitessimally rigid if and only if

(5.2) rank dfp = kn - tn ’

where n is the dimension of the ambient space X, and df is
P

the differential of £ at p. Thus kn - t, s e 1is a necessary

condition for (5.1) to be true.
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However, Theorem 4.2 implies that if kn-t, = e there is no

dependency among the columns  of dﬁp which is the same as a

stress for Gp(p). Thus we need

(5.2) kn-t, + 1 s e .

In our case the calculation of th is easy, which we

give in the following table:

X K t
Rr" compact 0
s" s” n(n+1) /2
" compact 0
" i n
wr mWr 0
Table 5.1

It is sometimes more convenient to calculate (5.2) instead

in terms of the average degree of a vertex of Gp.

(5.3) 4= g a,/k ,

( bhavin
where di is the degree cr the number of members of Gp g

i as a vertex, and 1 is a variable vertex. Also we have

(5.4) 2¢e=]d, +e ,
i
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where e, is the number of edges of G having a fixed vertex

at. one end. Putting (5.2),(5.3),(5.4) together we get
(5.5) 2n - (21:n -, - 2)/k$dv .

In the case of finite stability and 0 curxvature, we would
n-1

.expect that e, would.be at most of the order of - k. Thus

in the limit (if the limit exists) of larger and larger finite

nurbers of disks we find
(5.6) Znde .

In the case n = 2, we can also reformulate equation (5.2)
in terms of the average degree of a face (assuming all faces are

simply connected

(5.7 4. = (E £,0/€,

where f; 1is the number of edges of face i, and f¢ 1is the
total number of faces of X - G .

Suppose further that K = X and has no boundary. Then
we recall that the euler characteristic of K 1is

and similar to (5.3) we get

(5.9) 2e = }fi .



Combining (5.9),(5.8),(5,7) and (5.2) we get

th-1-2x
(5.10) des 4 + 2 ( -_Ff:—_) .
In the case X = K = T' we can be more precise. Let P
be a packing of ™. Then if we take an m-fold covering of Tn,
the lifted packing has mk members and me edges in its graph.

(5.2) becomes

mkn - tn <me , Or

kn - tn/m <e.

Since tn = n, when mz2n , then

(5.11) knse,

and a similar analysis to the above shows that (5.6) holds for

any packing of a torus that is an n-fold covering of another packing.
For n = 2 this also shows that

dfs 4.

Thus Gp will have a triangle (multiple edge, or loop) unless all

the degrees of all the vertices are 4. However, when P is a packing
of equal circles it is possible to show that Gp(p) is infinitessi-
mally flexible. Thus G_ must always have a triangle when it is

p
a double cover, assuming no loops or multiple edges in Gp .

For 82,x = 2, t2 =3 , but here the average degree

cannot even €qual 4, and so in order for G (p) to be infinitessimally
rigid on 82 there must be at least one triangle also. This was

observed in Tarnai and GAspé&r [25].
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5.3 Examples

Using the above information we can calculate many
examples when P is stable.The following is a list of "regular"
circle packings, all periodic of course, in the plane, given by
Niggli [19]) and Sinogowitz [24],from the bock of L. Fejes Toth
[(12]

The following table shows which packings are stable and

in which sense.

1-unstable ox finitly periodicly stable
not Fejeé-Toth unstable
stable
22,20,31 -16,18,19 1,4,5,24
20,21,22
23,25,26
27,28,29
30,31

Table 5.2
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Figure 5.2
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It seems that these packings are finitely stable if and
only if dv_24. However, most of these packing are periodicaly
unstable on a torus. These examples of (finitely) stable packings
can be computed using Theorem 4.2. To telltwhen a rod framework
Ep(p) is infinitessimally rigid, one can use the following.

See Roth and Whiteley[21] for instance.

Lemma: Let G(p) be a infinitessimally rigid rod framework

in X. Add one more vertex k+1 to G toget H with at

least two rods from k+ 1 to the old vertices of G. Let p,,,

be a realization such that the two new rods do not lie on the

same geodesic. Then H(p1"'~k+1) is infinitessimally rigid.

This can be used to "build up" the inside from the rigid

outside.

The following is a packing of a square with 15 circles by
circles due to M. Goldberg [18]

Figure 5.3

This has the property that it extends to a periodic

stable packing of a "square" torus. For the smallest possible
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torus, the packing is stable, but for any lift it is not,

since we can move along "shear" lines created by the square.

Also with these examples one should be aware that if a
packing is periodic and has no finitely stable subpacking,
then neither does a large enough 1ift for a torus packing. This
is easy to see by moving the disks in a large circle inside an
even larger fundamental domain. Then the rest of the disks all
can be moved from the others since the remaining packing
cannot even be 1-stable. Thus we can always improve the density

of a periodic packing that has no 1-stable subpacking.
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5.4 Physical Experiments:

L. Fejes Toth [12] page 306 describes an experiment of
Bernal where grains of shot are dropped into a vessel in a
*"loose packing" where on the average each sphere touches 6
others. He describes an explanation due to Heppés where each
sphere must touch at least 3 of the spheres below it and the

probability of touching more than 3 spheres is 0.

Our above analysis can be applied here as well. Surely the
rest position of the spheres must be stable. If not then a small
perturbation would change this position. Thus (5.5) or essentially
(5.6) would imply that 6;de, and this would be true no matter
how the shot was placed into the vessel. An average degree much
greater than 6 would imply a redundaney or indetermancy in the way the

framework GP(p)"re301Ves"loads.

In another direction the instability of many of the torus
packings of section 5.3 suggest that possibly a change in the
container of a packing may break the symmetry of a préeviously
stable packing. Also a break in the symmetry may "add" to the
rigidity.
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5.5 Nested table packings and packings with sSmall densities

We can use the square packing of Figure 3.1 to create
larger packings with even bigger holes that could hold
circles that are free to move inside, the outside packing being
stable (and thus rigid).

Figure 5.4

It is interesting to compare the packing of Figure 5.4
above with the one obtaining .by-filling in .the "hexagonal holes”
of the packing 28 of Figure 5.2. Note the packing of Figure 5.4 is
not finitely stable when extended to a periodic packing Qince its

average degree is less that 4.



FPigure 5.5

The packing of Figure 5.5 is now finitely stable but still
not periodicly stable. This is the least dense that I have found
so far. It is possible to find finitely stable or even periodicly
stable packings of arbitrarily small densities? (Note that very
large densities might be obtained by then filling these holes
with a secondary packing.) Packing 24 of Fiqure 5.2 is the least
dense periodicly stable packing I have found so far. B8r8czky [5]
has examples of 1-stable packings in the plane with arbitrarily
small densities as in Figure 5.6 below (showing the graph of the
packing) , but the average degree is 3, and thus these packings are

not even finitely stable.

What is the least dense packing one can obtain by removing

disks from the standard triangular packing?

Figure 5.6
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6. CONJECTURES AND QUESTIONS
6.1 s"

From the point of view of guaranteeing that the worst case does
not happen,it would be good to know for Sn"and in particular for
52 , when a stable packing in s is rigid. Perhaps if the
packing has a small enough radius,it is infinitessimally rigid.

Does a stable packing for S2 have a non-zero stress w ?

Is # 0 for all members 1ij of G ?

wij
Is such a GPtp) uniquely positioned in some reasonable class of

realizations?
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6.2 Random Packings

There have been several experiments which have involved
various physical measurements of the densities of certain
“packings". See for example Westman and Hugill [26 ], and
Bernal [3]. On the other hand mathematical predictions descrip-
tion or simulations seem to be lacking. For instance Gilbert
{ 7] models such phenomena as random packings by succesively choosing
spheres of a smaller radius rarndomly and discarding any that
overlap the preceedings ones. The problem with this approach is
that there is no account made for stability. The packing density
could increase considerably if one took a finite sequence of such
points( randomly choosen ) and then applied the "heating algorithm "
of Tarnai and Gaspar for instance. It would be interesting to
confirm Bernal's calculation of 60 % for the packing density

of such a "random" packing. See Bernal [3] also.

It also would be interesting to compute such densities for
packing of a torus, where physical estimates are harder ' to obtain.
Does a random packing of a torus always yield the same packing

density regardless of the shape.. of the torus?

It should-.also be realized that most of what has been
done for packings with disks of the same radius will work for
packings with disks of different radii. The constant radii.case
is just simpler.
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6.3 Improving known Packings
One main purpose of Tarnai and GAsp&r was to take a

2

known candidate for a good packing of S by circles

and make it better by their algorithm. . Although in S2

if they start with a packing with an infinitessimally flexible
graph , that cannot be sure that they can improve the
packing density, in practice they always are able to improve

the density. This is not surprising.

One would apply this same idea ,for instance,to torus
packings in diemension 3, where the best packing density is not
known, even for the 1limiting case with a large number of disks.
Presumably , one could start with interesting starting
arrangements and see what happens after the algorithim is
finished.

Lastly as a wild hope ¢« it might be possible to
take aclue from the global uniqueness for the position of
a stable packing given the graph GP' Is it possible to find
a "formula " or "fast" algorithm that would compute the density
of the packing P given only Gp but not its unique realization?
It might be possible to calculate the overall maximal density by
eliminating many graphs and only considering those

that are left.
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