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8 - SPREAD OF SETS IN METRIC SPACES AND CRITICAL VALUES OF SMOOTH FUNCTIONS

Y. Yomdin

1. Introduction.

The aim of this paper is to define and to study a new invariant of
metric spaces, which we call the g -~ spread and which turns out to be
closely related to the structure of critical values of differentiable
mappings.

Roughly, the 8 -~ spread of a metric space X, for 8 > O , is the
supremum with respect to all finite subsets of X of the sum of 8-th
degrees of the lengths of edges in the shortest polygonal line, connecting
the points of a given finite subset of X . This invariant turns out to
be a clou“uizhbor"ot another one: an ¢ - entropy (see [5],[6],1[7],

[4]'.[1],[1 l]. [12]), wvhich is the logarithm of the minimal number of
balls of radius ¢ , covering the space X .

The main reason to study 8 -~ spread is that thia invariant is respon-
sible for the property of a given set to be the set of critical values
of some function of given smoothness on some compact manifold of given
dimension., To illustrate the importance of this property and its relati-
on to known restrictions, let us remind that the classical and widely
used condi::lon‘on critical values of differentiable mappings is given
by the Morse-Sard theorem ([9],[10]): if the mapping is c® - smooth,
with k sufficiently big, then the set of its critical values has the
Labesgue measure (or, mors precisely, the Hausdorff measure of an appro-
priate dimension) zaro.

However, in applications the Morse-Sard theorem mostly appears as the
theorem of existance of regular values, and not as the contensive restric-

tion on critical ones. The reason is that the property to be of measurs



zero is too weak: in most of concrete situations the apriori information
on critical values is much stronger. Thus, for differentiable mappings
under minimal genericity assumptions, or for analytic mappings, critical
values sets can be stratified by smooth submanifolds of "right" dimen-
sions. In many variational problems the countability or the finiteness
of the set of critical values can be shown. Of course, the Morse-Sard
theorem sais nothing in all these cases.
But the important point is that in fact the critical values of any
differentiable mapping satisfy geometric restrictions much stronger
than the property to be of measure zero. These restrictions have been
obtained in [12], and they are nontrivial in all the situations above.
The main result of [12]is the upper bound for the ¢ - entropy of the
set of "near—critical” values of amapping with the bounded domain
and with bounded partial derivatives of some order k .This result
implies, in a special case of critical values, a strengthening of the
Morse-Sard theorem, and gives therefors a necessary condition for a given
set to be the set of critical values, which is much stronger than the con~-
dition to be of measure zero. The following mu from [12] illustrate

the character of new restrictions, found there:

Corollary 5.5, {12]. The sec {1, 1/2%, 1/3*, ..., 1n*, ..., 0}
cannot be the set of critical values of a k times continuously diffe~-
rentiable function on an n -~ dimensional compact smooth manifold,

if k > n(‘+ l) .

Thus the results of [12] show that actual properties of critical
values of general differentiable mappings are strong enough to imply
non-trivial consequences,for instance, for geodesics on compact Riemamnian

manifold, for critical values of a complex amalytic function. etc.



The following important question then arises: to find a necessary
and sufficient condition for a given compact set to be the set of criti-
cal values of some Ck - anootﬁ function on an n - dimensional compact
smooth manifold.

One of main results of this paper is theorem 4.1 , which gives the
required condition in terms of B - spread for functions of one variable.

We state also a conjectured necessary and sufficient condition in
a general case (also in terms of 8 - spread), and prove i:s necessity.

Another central result of this paper is theorem 2.8 , relating the
8 - spread with the €& - entropy. It follows, in particular, that
the dimensions, defined by thess invariants, coincide.

Pinitely, we study detaily the 8 -~ spread of subsets of R® . Theorem
3.1 gives an upper bound for an n - spread of any bounded set in R® ’
and its proof surprisingly involves rather long elementary-geometrical
constructions. |

The 8 - spread of bounded subsets of the real line can be described
completely: since the set and its closure have the same 8 - spread, we
can assume our set to be closed, and then theorem 3.10 gives the answer
in terms of length of iatervals, forming the complement. Because of theo-
rem 2.8 this gives also the complete description of the entropy dimension
of subsets of the real line.

The notion of the B - spread is also useful in such questions, as the
possibility to cover a giv;n set by the curve with the given proper-
ties (generalized Peano curves; see e.g.[ﬂ]). Some results in this direc-
tion will appear saparately.

The author would like to thank Y.Kanai ., H.Furstenberg and Y.Katznelson

for useful discussions and SFB-40, Universitdt Bonn, for its kind hospita-

licy.



2. Definition and some properties of the @ - spread.

Let T p be the set of all connected nonoriented trees with p vertices.

We write (i,j) € v, for vy € Pp, if the vertices i and j are connected

by the edge in v.

Definition 2.1. Let X be a metric space, 8 > 0. For each xl,...,xpe X

8
and v erT let Po{YsX seeepX ) = X d(x,,x.) ,
4 BT ey 1Y

where d is a distance in X. Define pB(xl,...,xp) as

inf o, (v,X,,...,X).
'y€l‘p 8 1 P )
Now let A CX. We define the B - spread of A, Vg(A), by

V,(A) = sup Pa(Xyseeerx ) &
8 PyXy s oo X €A 871 P

Now we formulate some simple pi-operties of the B8 - spread:
Let X be a metric space, A, Al, Az, cX, 8>0.

Theorem 2.2.

1. _If AISAz then VB(Al) sVB(Az) .

2. If AjSASACS...,
and A = UA,, then VB(A) = lim VB(Ai) .

j-rew

3. VB(A) - vB(I\), where A is the closure of A .
8
4, vsm1 ”“z)“’s“‘ﬂ + Vs(Az) + [dA,A017 .

If d(Al ,Az) 2 max(diam A., diam Az) then Va(l\1 L Az) =

1)
. 8
‘-VB(A1) + VB(Ae) + d(A,,Az) .

Here d(ALA,) = eAinny d(x,y), diam(A) = sugA d(x,y) .
- x ' x!Y
1'%

S. Let 51>32>o. Then

81-8;
Ve (A) s [diam A] Vo),
1 2



6. Let ACX, B<CY, If there exists an epimorphism ¢ : A + B

vith  a(w(x),¥(y)) 5 Kedlx,y)' , for any x,y €A, §> o,
g
then for each 8 > O, VB(B) < K viiB(A) .

Proof. Properties 1,2,3 follow immediately from definition. To prove 4,
take € >0 and let x € Al‘ y € Az be such that d(x,y) s d(Al,Az) +e.

We call the tree y € l‘p, for which the minimm of pg (Y X .,xp) is attained,

1’

..,xpeA1 U A,, and

the B-minimal tree of xl....,xp. Now let Xi5-

assumwe that, say, xl,...,xr € Al, and xr*l,...,xp € Az. Then
pB(xl""’xp) $ pB(xl,...,xp,x,y) $ ps(xl,...,xr,x) + pB(xrﬁ"”’xp’Y) +

+ d(x.y)s-

The last inequality we obtain, comsidering the tree, built from

minimal trees of (xl veoesX »X) ,(xr+1 oo

Hence, by definition of VB and by choice of x and vy,

VglA] UA) = sup py(x),eenux) € Va(Ay) + Vol + [dEALLA,) + €, and

.,xp »¥) and the edge (x,y).

the first inequality of 4 follows, since ¢ is arbitrary small. To

prove the second part of 4, we use the following lemma:

Lemma 2.3. Let d(Al,Az) 2 max(diam Al,dia- Az).

Then for each x <%y €A, U A, there is a minimal tree, containing

1 F R K]
exactly one edge, connecting A

1
1 and Az.
Proof. We prove, that if there is a minimal tree y with m edges,

connecting Al and Az, m > 1, then there is also a minimal tree with m-1



such edges. Indeed, delete one of these edges. We obtain not more than
two connected components, at least one of which contains points both

from A1 and Az (since m > 1).

Let the second component contain point in Al‘ We add the edge,
connecting these two components inside Al. WNe obtain a connected tree
v', which is also minimal, since the length of the added edge is not
greater, than the length of the removed one by condition
d(A),A)) > max(diam A , diam A,). Clearly, y' contains exactly m-1

edges, connecting Al and Az (see fig. 1). a

Here and below +| and |+ denote the inserted and the deleted

’ edge, respectively.
Fig. 1.

Now let XpseeesXy € Al, ‘r+1""’x‘p € Az. By lemma 2.3 there is a
minimal tree y for Xpae- .,xp, containing exactly one edge, connecting

A, and A,. Hence vy consists of a connected subtree on XpseeesXps

1 2

a connected subtree on XpgpseseoX p’ and an edge, connecting these two
subtrees. Therefore, VB(A1 U Az) 2 pB(xl,...,xp) 2 pB(xl,...,xr) +
+ ps(xrﬂ" ..,xp) + [d(Al,Az)]B, and taking supresum in a right hand side,

we obtain the required inequality.



To prove statement 5 of theorem 2.2, note, that for each x, ,x

1
8. -8 8 8,-8 3
172, d(x, ,x,) 2 ¢ (diam A} ! 2 dex, ,x 2

2€A,

8
d(x,,x,) 1, d (x,,%,) 2)

and the required inequality follows from definition of VB'

To prove 6, for each Yis oo ¥ € B choose some
Xys oo X, € A, ¥ = t(xi). Then we obtain, using the condition,
%Y. Fys ooe ,yp) < KBDM(Y, Xis eeo ,xp) for any v € l‘p, and
the requifed inequality follows. o
Note, that because of proper-ties 1 and 2, va is a capacity
in the sense of [2] .
To clarify the geometric meaning of 8 - spread, we compare it

with some other geometric characteristics of subsets in a metric space.

Definition 2.4. ([6]). Let M(c,A) be the minimal number of sets
of a diameter < 2¢, covering A. ILet H(e,A) be the maximal
number of points in A, for which any two distinct are at a distance,

greater than € from each other. The functions
Hc(A) = 1ogar4(e,A) and ce(A) = logaﬂ(e,A)

are called the € — entropy and the ¢ - capacity of A , respectively.

’

The functions M(e,A), N(e,A), He(A) and Ce(A) are related by

the following inequalities ([6], theorsmIV ):

H(2e,A) < M(e,A) < N(e,A),

Coeld) g H(A) 5 C(a) .

Comparing the definition of 8 - spread with that of i(c,A),

we obtain immediately:



Proposition 2.5. For each 8 > O,
Vg(a) 3 sup e, n) - 1) .
e>Q
Proof. By definition, for any given ¢ > O, there are s = N(c,A)

points  ITIRTRINY in A, vith d(xi.xj) >e¢ for i # j. Hence

VB(A) > 98(11, vos ,xs) 2 (d¥(e,A) - 1)e‘B . o

For some A we have in fact an equality, and for others the
expressions in the inequality of proposition 2.5.are far from one

another. Thus for A = [0, 1],

N(e,A) = [';'] for ¢ # zlx » and H(g,A) = é -1 foreg= !-:-, and hence

“sup eB(N(e,[0, 1]) ~ 1) -{ .
e>0 1,8 2 1

Easy computation shows that also VB([O, 1]) = for g <1,
and V,([0, 1]) =1 fors 3 1.

On the other hand, for A = {1, %, cee o }‘, .-+} one has

2

_1.. < ¢ < n—
= - N(€,A) < 7 » 4nd hence
finite,8 > 1
sup eB(N(e.A) - 1) is { = 3
€0 - ¢ -, B < §

For Va(A) one has ( see theorem 3. 10 below): VB(A) is finite

for 8 > j,and VyA)== forf < 3.Thwsforf = 1 the

Nl

right hand side of the inequality is finite, while the left hand

side is - equal to infinity.



To obtain an upper estimate for the B - spread in terms of
€ - entropy is more difficult. First we consider the following

function, which is, in some sense, the invers function of H(E ,A) :

Definition-2.6. For Xqs eeo ,xpE X, let v(x1, eee 3X_) = min d(x

e 93Xs)
igg 9

For Ac X define nA(p) for any natural p > 2 by

nA(p) = sup v(x1, ,xp) .
Xqseee ,xp €A

Proposition 2.7. For any € > 0, p 22

i. nA(N(e,A)) > e 2 nA(H(e,A) +1) .

ii. N(n,(p),A) < p & N(n,(p) = §,4), for any & > O.

Proof. By definition of J(e,A), there are s = N(€,A) points
Xis eee oXg in A, with V(x1, ,xs) >€, and for any 8 + 1

) <

pOints x." Xy ’x8+ =

1 in A’ \’(XI, o e e ,X

c. . [
S+ 1 This proves 1

Since by definition of n, , for each p points Xys oo ,xp
in A, v(x1, ces ,xp) s n(p), H(nA(p),A) <p . On the other hand,
for any € > 0 there are points ,xp in A with

v(xI, cee ,xp) > nA(p) - £ , which proves the second inequality in ii.O

Theorem 2.8. For any B > 0

8 ® 8,,
(p=-1)n(p) ¢ Vv (A) zn, () .
e AT R TET R0
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Proof. Let x ..xp € A. By definition, d(xi,xj) 2 V(xl,....xp) and

1
]
hence pB(xl,...,xp) > (p l)v(xl....,xp) . Therefore

Vo) 2 (p-nv(xl,...,xp)“, and taking supremum in the right hand side,
we obtain

V) 2 @-1IR@1%, for any p.

This proves the lower egtimate for V .

Remark. This inequality is, in fact;, equivalent to the one

. of proposition 2.5.

To prove an uppear estimate - we need to study more in detail the

1

minimal tree of xl,...,xp. Let ey > a, 2 ... 2 °p-1

edges of y (i.e., the distances d(xi,xj).' (i,j) € Y) in decreasing

structure of minimal trees. Let x ,....xp € A, and let y € I‘p be a

be lengths of the

order.
Proposition 2.9. a; & nA(iﬂ) » i=l,...,p-1.

In fact, the following more precise statement implies this proposition:

Lema 2.10, Let 1 s q's p-1, let el,....eq be some q edges of v,
and let a be the minimal length of e;-
Then among the vertices of the edges °1""’°q there are at least

q+l different points Yyseees q+l’ for which

v(yl"”’yqu) za .
Remark. One has immediately for all the vertices Zys eee ,zzt1 of
€5 one ,eq , that v(zl, ,zaq) & « , but clearly one can have here the

strict -inequality. Propositim2.9 claims that the opposite inequality can
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be obtained for still sufficiently big number s 2 q + 1 of distinct
points among z..

Proof. Induction by q. For q = 1 the statement of the lemma is immediate .

Now let q.2'2 . - Assume, that a is the length of eq, and let

z, and z, be the vertices of eq. We obtain two subtrees y' and y"

of vy, consisting of all the vertices connected to =z respectively)

1 (32
in vy~ eq (see fig. 2).

Lemma 2.11. For each two vertices z' € y' and z" € y", d(z',2") 2 a.

Proof. If d(z',z") < a, we can add the edge (z',z") and delete the

edge eq in y. Clearly, we obtain a new connected tree 7 with

pg¥) >0 BG’), which contradicts to the minimality of y . o
! * ‘-.l
/I___——‘""" zn\~~
- - z' \'\
< //
~
N 7
A {
. Y
pid zZ, + 25\
4 \
4 \
Fig.2

Lemma 2,12, Each subtree of a minimal tree is also min.mal.

Proof. If the subtree 12 of y is not minimal, we can find Yy
connecting vertices of Yy with p('yz) < p(yl). Now, replace in y
subtree y, by vy,. We obtain a new connected tree Yy with

p(¥) < p(y), which contradicts to the minimality of vy . o—~. @



12.

We continue the proof of lemma 2.10. Let, as above, v' and Y" be
two subtrees, into vhich eq subdivides v .

Let among the edges LPIREE LT the edges €ys oo '°k belong to 7",

q

0<k<g-l, and e, -.. ,& _, belong to Y" . We consider separately

q—

twvo cases:

a. k > 0. Thus among e, ... L there are edges belonging to both yY' anad Y¥.
Consider subtrees of Y, Y' =Y' U e, nd Y'=y"U X We can

apply the induction assumption separately to Y' with the edges €5 cer 18,
bvd | <

eq and to Y" with the edges UWOTIREY ,eq_‘,eq. Thus we find among

the vertices of s oo 28y the points x;, .ee ,x; €Y' with s > k+2

md V(x;, so» ,x;) : o » md x';. se e ’x; E 7" vith \’(X‘;, LI ,X;) ; a

and r 2 q-k+1.
Denote by Ty ooe o¥py all the different points among x;, ,x; .

x'{, ,x; . Since twice among these points can appear only z, and Z,s

ve have m > s+r-2 > k+2+(q-k+1)-2 = q+1. We have also v(y1,...,ym) 2 a.

Indeed, for any two points yi ) yj ,» 1 # ], if yi’ Yj € {x;....,x:} , then

d(yi.yj) 2 9x]s vee 5xl) 2 @ i ¥, Y;€{x],...,x7} , then

d(yi)Yj) ; “(xq: cee sx;)

v

@ . PFinitely, ify, € Y'~s Y <v', and

y; € YN ¥'<y", then  d(y;,y;) 3 @ by lemma 2.11. In the only reminding c
vhere, say, ;s yje Yy but yj¢ {x;....,x;} » we have yj -z, and this point ¢
b. k = 0. Then we apply the induction assumption to the tree <y" m

the edges e,, ... ,e__, € Y". We obtain among the vertices of €s oo s

q.
-1 the points Xis oo sXg wvith v(x,, coe 3X_) 2 ?in (length ei) 2
12i29-1

c , and s 3 q.
Now wve add to these points the vertex z, of eq. By lemma 2.11,

d(z1.xi) 2a, 121i2s, and hence v(x1. ces ,x.,z1) 2a . a

Proof of proposition 2.9. Let s--+,6;, be edges in y whose lengths
are a;,...,a;. Since a; 3,2 ...2 @;, we obtain, by lemma 2.10.,
that there are points Yys--es¥;,; among the vertices of e,.. LY

for which a; § “(yl""’yi+l) £ nA(iﬁl).
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To complete the proof of theorem 2.8, we consider, as above the points

xl,...,xp € A, the minimal tree y of x .,xp, and the lengths

1°°°

a, €a, £ ... ¢ “p—l of the edges of y. By definition and by

1% 72°
proposition 2.9,
p-1 p-1 ot
. 8 ‘118 :118
pB(xl,...,xp) iil a; ¢ T [n(i+1]" 5 I [nA(J)] .

i=1 J=
Taking supremum in the left hand side, we obtain

the required inequality. Theorem 2.8 is proved. o

For different A, VB(A) is better approximated by the one or the
other side of the inequality of theorem 2.8. E.g. for A = [0,1],

1
nfo,1)(P) = p=7 » wnd

'Y . 1, 32 1
vhile for B=1,;n (j)sg -.é-=~ .
j=2 {0,1] j=2 3~1

1 1 .q. 1 i
For A= {1, 50 oo oy .+.} One has easily 2o=T) § nA(p) ;;2 s

. : 1 8
vhile VB(A) = jfa[m)] { see theorem 3.10 below ). Hence for
each B8 > 0, VB(A) is of the same order as the right hand side of the
1
2
side are equal to the infinity, while the left hand term is at most k.

inequality; for B = both VB(A) and the sum in the right hand

1 1
For A= {a.o, 80 cer 285 .++} , where B, =1+t ..+ yi » one

1
has “A(p) = h—p:1 » P2 2, and hence
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= Brs o (148 38 |
Vg(a) = £ HA(J) = ¥ (,;) = 3~ forall 8> 0; for 8+ O
j=2 i=y L -1

this expression is of order 5711'.-;5 . The lovwer bound in this example is

. -

P

Ve can compare VB also with the 8 - Hausdorff measure, vhich is

defined as
Ag(a) = 1lim Ag(A),
a0 -
vhere AZ(A) is the lower bound of all sums of the form X rg .
i=1
o
r; e and Ac U Ai » vith the diam A, $r; . ( see e. g. [3] ).

i=t

Proposition 2.13. For all B8 > O, AB(A) < VB(A) .

Proof. A:(A) s nB-M(a,A) S aB°Ii(a,A) - aa(ll(a.A)-l) ﬁ%ﬁ%k% s
vB(A)'ﬁ%% » by theorem IV, [6] and propsition 2.5.

Taking limit as a - 0 , we obtain the required inequality. o

Examples above show that the lower bound of 8 for which the
expressions in the inequality of theorem 2.3 are finite, is the same.
To make this remark more precise, we remind the notions of the
entropy and the Hausdorff dimensions, and define in the same wvay the
v - dimension:
Definition 2.14. ( See [1], (3], [6] ). Let Ac X Dbe a bounded
subget .

1. aim A = inf(8[3K,ve> 0, N(e,A) g K(1)P} is called the entropy
dimension of A.

2. dim A = inf{g| Ag(A) < =} is called the Hausdorff dimension of A.
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3. dim A define as inf (aivB(A) < w}

The following result was conjectured by H.Furstenberg, who also
gave another proof of it:
Theorem 2.15. For any bounded A < X, diva = dimeA .
Proof. Introduce an auxiliary dimension

det )
dimA = inf(B|X, ¥p 3 2, n,(p) 5 K(2)B} |

’ : 1/8
If VB(A) < =», then, by theorem 2.8, "A(p) <K (p—il—) , and

hence dimn(A) € 8. On the other hand, if nA(p) 3 K(%)]'/ B, then for each

B' > 8, by theorem 2.8,

) @ g'/8
Vg (A) s ¥ : (1-) <e .
p=2 ‘P

Hence dinv (A) = diﬂn (A).

- - 178 |
Now, assume, that n,(p) K(%-) . By proposition 2.7, i,

1/8
a < nA(N(a,A» s K (ﬁ-‘;l—‘m) , OT
()’
N, A)¢ (:) , ie. dime(A) < dinn (A). On the other hand, if
8
N@,A) < K(-i-) » by propesition 2.2.,ii,
{1 \8 .
P ;N( nA(p)-g,A) £ K(n—;@-r_-;) ’ for any. § >0,

and we have

1/8
ps<sk 1 5 or n, @) s /8 . (l-) .
n, @) P

Hence dinn(A) < din‘(A) and therefore dimn(A) = dine(A). -
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Remark. One has also dim A 2 dinhA (see e.g. [1] , where a
slightly different notion of the entropy dimension is used; this
follows also from proposition 2.13.). This inequality can be strict.

Thus, dimhA = 0 for any countable A, vwhile, e.g.

. 1 1 1
dim, {1, Ja0 ter vTas Y (see corollary 3.11 below).

3. \IB for subsets of .

From now on we assume that our metric space X is the Bucledian space

Coincidence of dimensions di.nv and dixle » proved in theorem 2.1?‘,
shows that for any bounded A < Rn, dhv(A) ¢ n. Ne shall obtain the

following more precise result:

Theorem 3.1. There is a constant Kn’ depending only on dimension n,

such that for any A C Rn,

V. (A) s K [diam(A)]" .
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Proof. We obtain this inequality as a consequence of some result,

concerning the structure of minimal trees in Euclidean space.
Definition 3.2. For any ¢, 0 s ¢ < % and for X, .%, € R" denote by
W(tp,xl,xz) the union of two closed pyramids with vertices Xy and X,
respectively, with vertix angle 29, with common axis [x1 ,xZ] , and with
the common base, lying in a hyperplane, passing through the centre

of [xl,le and orthogonal to [xl,xZ] (see fig. 3).

Fig.3.

For our purpose it is sufficient to take ¢ = 1_1(;7)- , SO we denote

%
W(—l-é—o-, xl,xz) by N(xl,xz).

Theorem 3.3. Let x_l,...,xp € R" and let Yy € I‘p be a minimal tree of
XpseensXy Then for each (i,j), (i',j') €v, (i,3) # (i',i'),

l.l(xi,xj) n V.l(xi, xj,) = §. (Here and below minimal means B-minimal for some £>0.
»

Proof. . We consider two cases:

1. The edges [xi,xj] and [xi,,xj,] have a common vertex, say

[ 3 L ' ——
X, =X, 1f H(xi,xj) n W(xi‘xj) # f, then the angle between xixj and
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?

—_— v L .
xixj ¢ 1s less than 507 - Hence in the triangle x, ,xj,xj,

[x:j X ] cannot be the biggest edge. Let, say, lxj-xj,l < .|xi-xj,|.
Then we replace in y the edge (i,j') by (j,j'). We obtain a

connected tree y' with pB(y') < pB(y), which contradicts to the minimality

of v.
2. Now assume, that all the vertices i, j, i', j' ot y are distinct

In vy~ (i,j) U (i',j') at least two vertices among i, j, i', j!

can be still joined. Let these vertices be i and i'.
Lemna 3.4. The following inequalities are satisfied.

1. |xi-xj| $ lxi,-le
2. |xi-xj| $ Ixj-xj,l
3. |xi,-xj,| $ Ixi-x].'l
4. [xi'-xj,| $ lxj-xj'[

Proof. If one of these inequalities is not valid we can obtain from vy

a new tree y', as shown on fig. 4, with pB(Y') < DB(Y)- a

-
Y
- - \
‘J .
x X:p X, "
3 ] 3 Py -
1 ! t xJ t
X. R .
3. i 55 .- % o

Fig.h.
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"~ Corollary 3.5. Let L be a hyperplane, orthogonal to the segment
[xi,xi,] and passing through its center. Denote R? the closed
semispace,containing X and R‘.‘ the closed semispace, containing Xioe

Then x, €R", X.,
J + 3

€R" .

Proof. This follows immediately from inequalities 1 and 3 of

lemma 3.4. a

n

Lemma 3.6. Let L be a hyperplane in R, R, and R’_l - two

corresponding closed semispaces. Let X1:%, € Rf and

W(xl,xz) n Rx_l # 8. Then
t .
di < -2-6di , 1=1,2, 'where
di = d(xi,L), di = d(xi, Ln W(xl,xz)).

Proof . We can restrict consideration to the plane passing through X s X,

and orthogonal to L. (see fig. 4). Assume also that d1 2 dz.
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. ' 3 = H '
We have: dl = d $in *1’ dz dé sin *2' But *1 = ] @ +n, and

1
since, clearly, n s %, *1 & 2p, and sin 01 <€ sin 2 < -%-6- .
Similarly, *2 = @Yeng ¢, hence
’ L 4 l -
un*2<51n(v<ﬁ._(¥lenxed 0-1—3—0) o

Lemma 3.7. Let L be a hyperplane, passing through the middle of
[xl,xi] and orthogonal to it. Assume, that Xy (xi) belongs to the
same semispace as x, (xi » respectively).
1f W(xl,xz) n W(xl,xi) # P, then
1. xx| €3 min(|x,-x,|, lx; x30) .
—a——
X

2. The angle ¥, between XX, and xl'xz' is smaller than f%'

3. Assume, that, for instance, |x,-x,| s |xj-x5] and let

y € [x),x}] be such that |[x;-y| = Ix,-x, |
2 _.
Then |x,-y| s Fmin(|x;-x,], |x]-x}]) and |x,-x5] < |x3-x;].

Proof Take some th(xl,xz) n w(xi,xé), and let z belong to the same

semispace as X, (considerations in the case where 2z belongs to the same

semispace as Xx,, are completely similar).

The plane of the picture passes
through X;s x; and 12' . The points

X, and z generally do not belong to

this plane.

HS'SO
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Hence W(xi,xé) intersects the 'second" semispace, and, by lemma 3.6, d(x{.L) =
L'l « Ldx! '’y e 2o lzex'l < Lo Ixtox!

5 |%x; | = 55 4(x{s L 0 Wx),x35) < 35 lz-x;| ¢ 35 |x3-x|. On the

other hand, lxl-zl 2 %%-lxi-zl. Indeed, |x,-z| 2 proj (x,,z) = proj;(x},z) =

|x;_- :IcosQ 2 lxi-zlcos(q»n) 2 Ixi-zlcos 20 2 ]2'—8 |xi-z|.

Hence |x1-x1| $ %a-lxi—zl < %§-|x1-2| , and in each case we have

-

lxl-xil < %-nin(lxl,le, lx{—xil). To prove 2, denote ¥, the angle

sin wl

between zx, and zx{. Then = 30Y 3 1 and there-
]
|x,-x] | |x;-2] |x;-2]
lx-x31 %
fore sin wl § ———=<53 by part 1. Hence wl < =~ . Clearly, the
|x!-z| 20
1
angle ¢, between x.x, and x{x' is not greater than ©' + y + " <
. 2 172 2 1 S
) A { r
SIS T

To prove 3 we have ( taking Y' such that x, y' is parallel to x; Y

t
and |x, - y'| = |x; - ¥| = |x, - x| i see fig. 6 ):

Fig.6.
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Ix,-y] s lxp=y'| + |y'=y| = |x,-y'| + |x;-x]] ¢
[x.-x,]*2si -*-Z-+!'—| -x,| s 2|x,-x Isin!—+-1-|x-x|<
§ X TXlresin =t g XXl s dixmisin g e 1%

< 3"-’- le-le = %nin([xl-le, |xi-xé|) .

Finitely, to prove that Ixz-xél < |x]-x)|, we have:
I x5| < lxyyl + ly-xyl s 3 [x-x,| + [y=x}| =
% |y-xi| + Ixi-yl < |xi-x{|, since y belongs to [x;,x}], and
ly-xjl = |x;=x,| # 0. o

Now we turn back to proof of theorem 3.3. In situation of lemma 3.4
because of corallery 3.5, we can apply lemma 3.7, 3. We obtain, that if
W(xi.xj) n W(xi,xj,) # 9, then lxj-xj,l < Ixi,-xj,l (assuming that
Ixi-le $ Ixi,-x; |). But this contradicts to inequality 4 of lemma 3.4.

Theorem is proved. Q

n

Proof of theorem 3.1. For X, »%y € R we have: n(W(xl ,xz) =

= Dnlxl-len, where m is the usual Lebesque measure and Dn depends
only on n. Clearly, the ball Bof radius 2diam(A), centered at any
point of A, contains ﬂ(xl,xz) for each X, X, € A. Therefore for

each xl,...,xpeA and for each minimal y €T,

P

n(B) I m(W(x,,x,)) =D I |x,-x,|" =D_p (x
i,j)ey  * I noiLjey * I

(By theorem 3.3 all W(xi,xj) are disjoint). Hence Vn(A) =

= Sup o, (X 50000 ) € xn[dia-cA)]“,

vhere Kn = E‘-—%z-l depends only on n . =]
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Theorem 3.3 implies immediately also the follwoing corollary:

Proposition 3.8. Let xl,....xp €R" and let y be a minimal tree of
xl,...,xp. Then the multiplicity of each vertex of y (i.e. the number
of edges of vy, joining at the vertex) is not greater than some number

L, depending only on n. o

For open subsets in R® we have also the following inequality:

Theorem 3.9. Let A S R' be open.

Then \lu (A) 2 m(A).

Proof. Subdivide R" into equal cubes with the edge §, and let N

be the number of those with the center in A. Clearly for open A,

lim &" - N‘s = m(A). On the other hand the distance between any two
§+0

centers xi,xj is not less than 4§, and hence
: n
Vn(A) ; pn(xl,...,xn‘) 2 6 N: . n

For subsets of a real line VB can be easily computed. Since

VB(A) = VB(R) we can assume that A is closed.

Theorem 3.10. Let A< R be a closed bounded set, a = inf A,

b=supA,and A= [a,b] ~ U Vi, where V. are disjoint open intervals.
i=l

Denote the length of vi by a;. Then
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L V) = b-a)® for B321.

2. For B <1, Vg(A) == if I ag<b-a.
i=l
3. If L a. =Db-a, then VB(A) = I a
j=} * i=1

8

" for B8 < 1.

Proof. We have the following inequalities: for e, 3 o,

3.1 ( T a.) $ I a, , B <1
j=1 ! i=1 !

w

3 [ 3 g [ ] 3 .
(3.2) ( I a ) 2 L a, , 1 .
ju 1/ qap 1

Since, clearly, for any X, $X, 8 ... 8 xp € R the minimal tree of

xl,...,xp is a chain (4,2), (2,3),...,(p-1,p), we obtain from (3.2):
:  |B - lbealB

for g8 21, pB(xl""’xp) $ !xp xll » and hence V. (A) [b-a]® .

o
To prove 2 note, that if I o
i=l
A;(A) > 0. Hence by properties of a Hausdorff measure (see e.g. [3]),

< b-a, then m(A) > 0 and hence

Ag (A) == for B <1 and hence, by propositin2.13, VB(A) by AB(A) =

To prove 3 note, that it is sufficient to consider the set A' consisting

of all the ends of intervals Vi (since I a
i=1

4 =b-a, A= A'). Then

' B
VB(A )2 I ay » since we can take as xl,....xzp the ends of the
i=l
P .
first p intervals, and p_(X,,...,X, ) 2 L a.? . On the other hand,
B 1 2p j=] 1

for each x; § ... ¢ x5 € A' if we denote by Iq, qQ=1,...,p-1, the

set of indices i for which V.  [x ,x ..], we have:
i="4q"q+l

X =X s § . (since [ o, = b-a) .’
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p'l 8

By inequality (3.1), pB(xl,...,xp) a qil lxqﬂ-xpl <

p-1 8_ = 8 8
€ I I o= I a . Hence VB(A‘) < I @) and we obtain

q=l i€I, i=l il

S 8
V.A) = £ a, . o
8 | gs1 1
Corollary 3.11. Let A= [a, Bl ~ U V. » a; = the length of V.. Then
i=1
1. dimeA = 1, if ’ z [« <b-a.
i=1

. L «
2. dimA = inf(8] £ of <=}, if T o, = b-a.o
i=1 i=1

We need also the following results, concernings the mappings of
subsets in R with the bounded 8 - spread:

Proposition 3.12. Ilet A SR be a bounded subset, 0 <8 < 1,
and let VB(A) < » ., Then there exists a homeomorphism ¢ : R + R,

such that for any X X, €A

w(x,) = wlx)l 2 wlix, = x,1)elx, = xy1F
vhere u(g) +» a8 E - O.

Proof. Without loss of generality we can assume that A is closed.

Since VB(A) <®» , we have by theorem 3.10:

«» - [ 3 8
A d [a‘ b] ~ u v- with Z [+ 1) = b - 8 3 z [+ 1Y < « ’
: 1 3 1 : 1
i=1 1= i=1

vhere Vi are disjoint open intervals and a; denotes the length of Vi.

There exists some decreasing function w : (0, «) + (0, »),such

that GXE)3L, w(E) + = , a8 & =@, but still
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}:m(ai)ag<- . How define ¢ : R+ R Dby
i=1
x s X5 8
a+ c% ]“‘(“i)"g' s, XEA
V.c(oo, x
i
pi(x) = '
xa.. g
*(&j) + Gja W(Gj)aj s XE€ Vj
$(b) + x -1 » x2b

where a; € A is the left end point of the closed interval ij .

One checks easily, that §$ is a homeomorphism. Also for any
Xpp X €A Xy <Xy,

blxy) - 9lx,) = T wleged zulxx) I o

Vi€[x1 ‘12] i ViE[x1,82]

ol =x) T o P

= elxy ~x)elxy -x)f . @
ViE[x1 ’12] :

Proposition 3.13. Iet A c R be a bounded set,
0<g <1, and let VB(A) <® . Then there exists a bounded set

A' ¢ R and a homeomovphism $ : R+R, ¢(A')-A, such that for any

X5 x2 € A

1
folx) = ol g v(ix, = x,0 )ix, = lea,
vhere Y(E)+ 0 as ¢+ O.

Proof. We apply proposition 3.12 and take A' = y(A), ¢ = *-l :R-+R

and vy(g) = [—1-,’—)-14',F . . a
w(E
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In a similar way one proves the following:

Proposition 3.1k. Let A c R be a bounded subset, such that

V8 (A) <= for all 8 > O. Then there exists a bounded subset

A'cR and a homeomorphism ¢ : R+ R, ¢(A') = A, such that for
N

eiuh N> o0, |¢(x1) - '(IZH < |x1 - le ’ for any x, :xz €A

with lx1 - le sufficiently small. o

4. 8 - spread of critical values.

let £:M >R bea Ck -~ smooth function on a smooth n-dimensional
manifold M, k 3 1. We denote by A(f) the set of critical values
of f, a(r) = £(z(f)) <= R, where I(f) ={xe M| daf(x) =0} .

The . Morse-Sard theorem (see . [9] , [i0] , also
H.Pederer [3], theorem 3.4.3 ), gives an upper bound for the Hausdorff

dimension of A(f):

(*) dmalr) g 2.

In [12] it is shown, that the entropy dimension is a more adequate
and stronger notion in study of critical values. In particular, the

following strengthening of (*) is true ([12], theorem 5.4):
(»e) dimeA(f) < ;-: , for M compact .

Moreover, the necessary condition (**) for a given set to be of
the form A(f), turns out to be '“almost sufficient " :

Let us say that a bounded set A < R has a property P(n,k) if there
is a compact n~dimensional manifold M and a ck - smooth function

£ : M+ R, such that A < A(f). Then we have ([12], theorem 5.6):

(s**) If a bounded set A < R has a property P(n,k), then

dimeA 3 . I dimeA « 3 , then A has a property P(n,k).

w1

a
k



28

However, to give a necessary and sufficient condition for a given
compact set to be the set of critical values of a function of a given
smoothness on a compact manifold of a given dimension, one must consider

more precisely the metric properties of this set.

Conjecture. A compact set A< R is of a form A = alf) for some (:k -

smoth £ : M + R, k >n, M compact, if and oaly if Vh(A) < e .
k

In this section we check the conjecture for functions of one variable
and also prove the necessety of the condition V,(A) < » for arbitrary

. k . .
n (and also - for mappings to Rp » under the restriction k £ 3

Theorem 4.1. A compact set A < R is the set of all the critical values
of a k times continuously differentiable functiom £ : [0, 1] 4 R,
k > 1, if and only if V&(A) <o .

A is the set of all the critical values of an infinitely differen-

tiable function f : [0, 1] + R if and only if d.i.neA =0,

Proof. 1. Necessity. We use the following lemma, vhich can be proved

easily by successive applications of tﬁe mean value theorem:
Lemma 4.2. Let £ : [a, bJ+R be a k times differentiable function .
If £ has in [a, b] more than k - 2 ecritical points, then

max f(x) - min f(x) g t® () -a)k ,
x€[a,b) x€[8,b]

for some ¢ € {a, b] .

Remark. Generalisation of this lemma to functions of several variables
is obtained in [12] ( theorem 3.11 [12]). For k g 3 this generalization

follows easily from lemma, and it is given below ( lemma L.k ).

How let £ : [0, 1]»Rbea Xk times continuously differentiable
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fuhction. Denote by M the max If(k)(c)l .
' c€la,b]

For any y., ... ,ypﬁb(f), P2k-1, let x., ... ,xpe (o, 1]

be the critical points of £ , such that f(xi) =¥ i=1, .. ,p -

Reordering this set, if necessary, wve can assume that x, < X, <,..%€ xp.-

Consider intervals e, = [a, xk_1], e, = [xk_1.x2k_3].--- s

e, = [xr, b] , vhere s = [E—E%] , r = (k=2)(s=1) + 1, for k > 3, and

s =pr =p-1 for k = 2. Each of these intervals contains exactly
k-1 points x; (2 = k points for k = 2), except the last one, which
contains not less than k-1 and not more than 2k~4 points X; .

Denote by 4 j the length of eJ

Vg = yal = 18(x) = £(x)1 & Ha§ , by lemma b.2.

NHow the chain v = {(1,2),(2,3), ... ,{p=1,p)} is a tree on

Vys oee ,yp ( possibly, non-minimal), and thus we have:

p-1 1

k

P(y.s eoe 3¥) S P (Y, ¥ys eee vy ) = I ly. . =v.l
g 1 p’ = | 1 P jmy it i

.3 3=1, .c. ,8. For any xm,xnee

39

J?

8 1 ls 1
T T 19541 -yilk < (2x-b)Me £ a; = ME(2x-4)(b-a).
j" [xi,xiﬂ]eej j-]

Taking supremum in the left hand side, we obtain

1
vi(a(r)) ¢ ME(2k-b)(b-a) < = .
k

For infinitely differentiable f we have Vl(A(f)) <= for all
k

%, and hence dim A(f) = 0.
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2. Sufficiency. Let us fix some infinitely differentiable function

u: [0, 1] >R with the following properties:

1. u{t) >0 for t€ (0,1).
1

2. [ulelat = 1.
0

3. uw0)=u'(0) = ... =u(1)=u'(1)=.,,.=20,

Denote by N the max '3 '(t)i.
a telb, 1

Now let AR be a compact set with V1(A) < = . By proposition
k

3.13 there exists a compact set A' € R and a homeomorphism ¢: R + R
with ¢(A') = A and |¢(x1) - ¢(12)| s Y Ix1 ~'112l)|x1 - xalk s

vhere vy(E) +0 as E +O.

Let a =inf A', b =gsupA', and let A' = [a, D] N U U; , vhere
i=m1

U, = (ai,bi) are disjoint intervals. Let 8, be the length of U..
Denote also by a; the length of v, = ¢(Ui) = (¢(ai),¢(bi)).

We have e 3 Y(Bi)ﬂki for all i.

Define h on [(a, bl by

h(x) = O, x €EA',
B(x) = %‘} u(x—f—-;i). x€u,

1
X
and let f(x) = #a) + [ n(t)at .
a
We shall prove that £ € C° on [a, b] and A(f) = A.
Clesrly, £ €C™ on {a, b] S~ A'. To prove that £ €C° on all

{a, b] it is sufficient to show that lim f(‘)(y) = 0
y-x,y€a, b \A!
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Now if x € A' is not a point of a condensation of intervals Ui »
this follows from the property 3 of u. If x€ A' is a condensation

point of Ui , we use the folloving estimate:
ela)e yznla?) 1y k ; k—q
it (y)i=In (y)ig (Bi) qu(Bi)Bi <NyY(8; )8, for yE€ U, .

Since for intervals, converging to x € A' , their lengths tend to zero
and since y(g)+ 0 as g + O, we obtain that 1lim f(q)(y) =0,
y+x
1gagsk.
Thus we proved that f € ck[a, bl and also that all the derivatives
of £ up to order k vanish on A'. Because of the property 1 of u
we have in fact Z(f) = A' .

To prove that A(f) = £(z(f)) = A, we show that f£(x) = ¢(x) for

each x € A' . Indeed, A=¢(a) = [e(a)p(®)] S U v,
: i=1
and b a; = ¢(b) - ¢(a) ( by corollary 3.11, since dimeA < % < 1),
i=1
Hence for each x € A' , ¢(x) = ¢(a) + I e . But
Uic[a,x]

X . - .
t(x) = o(a) # [ n(tlat = oa) + T [ uw(Bja -

a Uida.,x] 1 Uy
1
= ¢(a) + z a. [ u(t)it = ¢(a) + z a; = ¢(x) ,
Uic[a,x] o Uic:[ a,x]

by property 2 of u.
The proof of the sufficiency for the case of infinitely differen-
tiable funstions is the same, but inastead of proposition 3.13 we use

proposition 3.1h. a
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In the case of several variables we consider mappings f : M - P

def )
and the critical points of a rank zero : I(f) = (xe M| df(x) = 0}

and, as above, A(f) = £(z(f)) < RP .

Theorem 45.3. Let £ : M + R’ be a k times differentiable mapping,

k=1,2,3 M compact. Then V,(A(f)) <= . Also for p=l and any k, Vg(A(f)
k k

Proof. Without loss of generality we can assume that M = Bt; »the ball
of a radius 1 in B . Denote by Dk the max ||dkr(y)|l .

yess
Lemma L.4t. For k=1, 2, 3, and for any tvo critical points

xp %y € 2(2),  HE(x)) = )l 5 pDRlix, - xll° .

Proof. We apply lemma 4.2 to the restriction of f to the straight

line, passing through x. and X, in B®* . The two critical points

1
of this restriction, which are required im lemma k.2 ( fork g3 ),

are X, and X, thenselves. a

Now by lemma 4.4 the mapping £ : L(f) + A(f) satisfies the conditions
of p.6, theorem 2.2. Since I(f)c B‘: ’ vn(z(r)) <@ by theorem 3.1.

Hence, by therem 2.2, 6,
a v
Va(a(f)) 5 (R eV, (2(£)) < = .
k x°E

For p =1, in a special case n = ), the result vas proved in the~
orem 4.1. For several variables it follows from a deep

theorem 2 of chapter VI, §3, [4] , according to therem 3.10 abowe. o

Remark. If we define I, .(f) to be the set of all x € M, vhere all
the derivatives of f up to the order k-1 veanish, and

bq () = £(z,_,(£)), then, using instead of lemma .} the Taylor
formula, we obtain that for any k ( and not only for k g 2, as above)

v:_x(ék_1(f)) < = .
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