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on Curves over Functional Fields
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Introduction

In this paper, we shall give a linear and effective height inequality for algebraic
points on curves over functional fields.

Let f:S — C be a fibration of a smooth complex projective surface S over a
curve C, and denote by ¢ the genus of a general fiber of f. We assume that g > 2
and § is relatively minimal with respect to f, i.e., § has no (—1)-curves contained
in a fiber of f. Let k be the functional field of C, and k its algebraic closure. For an
algebraic point P € S(k), we let Ep be the corresponding horizontal curve on S.
The geometric canonical height iy (P) and the geometric logarithmic discriminant

d(P} are defined as follows.

29(Ep) — 2
(k(P): k]

_ KgicEp

hi(P) = TPy AT d(P) =

where Ep is the normalization of Ep, and [k(P); k) = FEp is the degree of P. It
is a fundamental problem to give an effective bound of height by the geometric
discriminant. Up to now, many height inequalities have been obtained.

Szpiro, hic(P) <8-3%H (g — 1)2(d(P)/39 + s+ 1+ 1/3%),
Vojta, hi(P) < (8¢ —6)/3 d(P)+ O(1),

Parshin, hi(P) < (209 — 15)/6 d(P) + O(1),
Esnault-Viehweg, h(P) < 2(2g — 1)? (d(P) + s),

Vojta, hi(P) < (2+4¢€) d(P) + O(1),

Moriwaki, hi(P) <(2¢9—1) d(P)+ O(1),
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where s is the number of singular fibers of f. These inequalities can be found
respectively in [Sz], [Vol], [Pa], [EV], [Vo2] and [Mo]. It is a problem to get an
inequality linear in ¢ with explicit O(1). (cf. Lang’s comments on this problem,
[La], p-153). The purpose of this paper is to give such an inequality.

Theorem A. Let f : S — C be a non-trivial fibration of genus g > 2 with s

singular fibers, and P € S(k) an algebraic point. If f is semastable, then
hi(P) < (29 = D(A(P) + ) = K¢,

and the equality holds only of f is smooth, 1.e., s =0,
If f 15 non-semastable, then

hi(P) < (29 —1)(d(P) +3s) = K§ ¢

If we compare it with the canonical inequality, the term 3s in the second inequal-
ity seems to be natural. Vojta obtains a canonical class inequality for semistable
fibrations:

K& (20 -2)(29(C) — 2+ ).

Furthermore, we have shown that if the equality holds, then f is smooth (cf. [Ta2],
Remark 3.6). In [Tal], in a quite natural way, we generalized Vojta’s inequality
to the non-semistable case:

K% < (29— 2)(20(C) — 2+ 3s).

The first step of the proof is to obtain the first inequality in Theorem A for
rational points P, by using Miyaoka-Yau inequality. The ideal is motivated by
Xiao’s proof of Manin’s Theorem (i.e., Modell conjecture over functional fields),
(cf. [Xi], Corollary to Theorem 6.2.7). Then by using Kodaira-Parshin’s trick,
we can obtain the height inequality for the semistable case. The final step is the
detailed study of the invariants of semistable reductions. Because the first step
uses Miyaoka-Yau inequality, the proof is unlikely to translate into number fields
case.

Acknowledgement. I'd like to thank Prof. S. Lang for encouraging me to find
height inequalities, during our stay at Max-Planck-Institut fur Mathematik in
Bonn.

1 Preliminaries

Let f: S — C be a fibration of genus g > 2, let Fy,:-- , F, be the singular
fibers of f, and let B = Y_._, F;. First of all, we consider the embedded resolution

of the singularities of Bq. We denote by I{g/c, xg = deg fuws/c and ep =
Y r(Xtop(F) — (2 — 2g)) the standard relative invariants of f.

Definition 1.1. The embedded resolution of the singularities of B is a sequence

(S’B) = (S{),BQ) <°’_1 (SI?BI) ?_2 ?_r (S,-,Br) = (SI,B')
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satisfying the following conditions.

1) o; is the blowing-up of S;_; at a singular point p;~1 € Bi_ red, which is not
an ordinary double point.

2) By red has at worst ordinary double points as its singularities.

3) B; is the total transformation of B;_;.

It is well-known that embedded resolution exists and is unique. We denote

respectively by m; and m; the multiplicities of (B; red, pi) and (B; red, pi), where

Bi red is the strict transform of Bieq in S;. Then it is obvious that
m; > om; — 2. (1)

Now we let 7 : C — C be a base change of degree d. Let S) be the nor-

malization of § x¢ €. We can resolve the singularities of 57 by using embedded
resolution of B. It goes as follows.

Sy — 15 &5 T 5
I R

51"""_—51—}5'
Pl

where S7 is the normalization of §; xg S’ (hence it is also the normalization of
$' x¢ C), and S is the minimal resolution of the singularities of $]. All of the
morphisms are induced naturally. So 53 is also a resolution of §;. We shall call
such a pa the embedded resolution of the singularities of S;.

Let fa : S5 — C be the induced fibration, p : S; — S the contraction of
the (—1)-curves contained in the fibers of f;. Then we have an induced fibration
f: S—C , which is relatively minimal and is determined uniquely by f and .
We shall call f the pullback fibration of f under the base change .

5 2,5 2,5

Lf lfz lfl lf

C C — 5 C

LGtHg:pJOpQISQ—)S.
If f is semistable, then we say that 7 is a semaistable reduction of f. We shall
use Kodaira-Parshin’s construction to construct some semistable reductions .

Lemma 1.2. There ezist some semistable reductions m: C — C of f such that
1) © is ramified uniformly over the s critic points of f, and the ramification
indez of any ramafied point is ezactly e.
2) e is divided by all of the multiplicities of the components of o* B, and it can
be arbitrarily large.

In fact, a base change satisfying the above two conditions must he a semistable
reduction. If b = ¢{(C) > 0, then the existence follows from Kodaira-Parshin’s
construction. If b = 0 and f is non-trivial, then s > 3 (cf. [Be]). Hence we can
construct a base change totally ramified over the s points. Then the existence is
reduced to the case b > 0.

In Definition 1.1, we denote by &; the total inverse image of the exceptional
curve of o; in §'.
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Lemma 1.3. Let m be the semaistable reduction constructed in Lemnma 1.2. Then
we have

8

P g e =M g0 — 11 (Z(Ff = Ff.red)) + K,, — D", (2)
=1

where D' = Kg, 6 - ﬁ"‘Kgfé 1s an effective divisor supported on the ezceptional

set of p, and K,, 1s the canonical rational divisor of the resolution po, i.e.,

—K,, =n*n; (Z(n“‘l - 2)5,-) . (3)

=1

We refer to ([Tal], §2.1 and §5) for the proof of this lemma. We only need to
note that in this case, 7 is the resolution of rational double points of type A,, so
K,=0.

In [Tal], for each (singular) fiber F of f, we associate to it three nonnegative
rational numbers ¢?(F), c2(F) and xr.

Definition 1.4. Let 7 : ¢ —3 C be a base change of degree d ramified over f(F)
and some non-critic points. If the fibers of f over F' are semistable, then we define

. J 1 1
c%(F):I&%IC—EIx‘-S-/é-, Cz(F)ZeI—Ee:f"’ XF:Xf—EXJF'

These three invariants are independent of the choice of 7, and can be computed
by embedded resolution of F'. One of them is zero iff F' is semistable. Let

In(f) =K4c =Y 3(F), Lif)=xr—> xr L(f)=es=> cs(F).
F

F F

where F' runs over the singular fibers of f. Then Ix(f), I\ (f) and I.(f) are
nonnegative invariants of f, and one of the first two invariants vanishes if and
only if f is isotrivial, i.e., all of the nonsingular fibers are isomorphic. Note that if
f is semistable, then these three invariants are nothing but the standard relative
invariants of f.

Lemma 1.5. ([Tal], Theorem A) If f 12 the pullback fibration of f under a base
change of degree d, then we have

Ie(F) = dIx(f), Lo(f) =dI(f), L(f) = dI.(f).

For later use, in what follows, we consider the computation of ¢?(F). For this,
we have to introduce an invariant ¢_(F) of F. In fact, we only need to note that
if m is the semistable reduction as in Lemuma 1.2, then we have

1

e-1(F) = degm

#{ curves over F contracted by p}.
Then we have (cf. [Tal], Theorem 3.1)

C?(F) = 4(9 - pa(Fred)) + Fr?ed + Z Qp — C_1(F).
peEF
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where a, = Y, (m; — 2)%, m; come from the embedded resolution of the singular
point (F,p). In fact, we have proved that

Z Op < 2pa(Fred);
pEF

with equality if and only if p,(Freq) = 0, i.c., F' is a tree of nonsingular rational
curves. (cf. [Tal], Lemma 3.2). Hence we have

Lemma 1.6. If F 1s a singular fiber of f, then
¢i(F) +c-1(F) <49 -3,
and if po(Frea) > 0, then

H(F) +c-1(F) < 49— 4.

2 The proof of Theorem A for semistable curves

First of all, we give some notations. Let f: S — C be a semistable fibration.
We denote by f# : S# — C the corresponding stable model, and by ¢ a singular
point of S#. Then g is a rational double point. Let y, be the Milnor number of
(S#,¢), i.e., the number of (—2)-curves in the exceptional set E, of the minimal
resolution of ¢. Note that ;2 = 0 means that ¢ is a singular point of a fiber on the
smooth part of S#,

Theorem 2.1. If f: § — C is non-trivial and semistable, and P € S(k) is an
algebraic point, then

hi(P) < (29 - 1)(d(P) + s) — K3/¢,

and if the equality holds, then f is smooth.

Proof. Case l. P is a k rational point. Let E be the corresponding section of f.
If b =g¢(C) > 0, then we know

Kg ~ Iivs/c + (2b — 2)F

is nef. Now we want to use Miyaoka’s inequality ([Mi], Corollary 1.3). If ¢ € E,
Le.,, E;NE =z, and E; is the (—=2)-curve in E, passing through z, then

Eq - E;,_- - qu + Eq"-

In this case, we replace g by ¢' and ¢”. Note that m(E,) = 3(pq + 1) = 3/(uq + 1)
(cf. [Hi]), and gt = pg + prg + 1, hence

3 n 3 3
g +1 g +1 g+ 1
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Then by using Miyaoka’s inequality to E and
{E,|q¢ E}U{E;,Ey | q € E},

we have

> m(By) + 3xi0p(E) < 3¢2(S) — (Ks + E)? +¢ (4)

q

where € = 35 p ey Since 30 (pg + 1) = ¢y, and hx(P) = —E?, (4) implies that

3 .
hi(P) g§ p +1—|—(2g~— 1)(2b - 2) - K%/¢ +e. (5)
q

q

Now we consider the base change 7 : C —» C constructed in Lemma 1.2. Let
f S —s C be the pullback fibration of f, P the corresponding rational point of
f It 1s easy to see that the corresponding objects of f satisfy

K% 5 =dhgc, 3=

29(C) - 2 = (26—2)+d<1—

Applying (5) to £, we have

d 3 1 . d
dhy(P) < 6—2; et 1 + (29 — 1) ((Qb —2)d+d (1 - E) s) —dRg)c + =6

le.,

e e?

his(P) = (29 = 1) (d(P) +3) + K3 < M+L(quil+e)_

Let e be large enough we can see that the lefthand side < 0, or < 0if 5 > 0.
Now we consider the case b = 0. Since f is non-trivial, we have s > 5 [Ta2].
Then we consider also the base change as given in Lemima 1.2. Since g(é ) >0, s0
the height inequality for P holds, which implies the inequality for P.
Case 11. P is an algebraic point of degree dp Let Ep be the corresponding
Iedu(,ed and irreducible horizontal curve on S, C the normalization of Ep, and

7:C — C the morphism induced by f. Let f S — C be the pullback of f
under 7. Since f is semistable, we know that p is an isomorphism and

K56 =T3(Kspe), K3 5=dpkec.
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By the construction of f: S — 5’, there is a section E of fsuch that Hg*(E) =
Ep. Hence

1 .
h]\'(P) = d_EPI'LS/C

———E JIMNEY
dp 2(Ks/c)

= d—EIfgfé

If s > 0, then the strict inequality holds. Q.E.D.

3 The proof of Theorem A for non-semistable curves

Let f: S — C be a non-semistable fibration with s singular fibers. Let P he
an algebraic point of degree dp. We shall prove in this section that

hi(P) < (2¢ = 1)(d(P) + 3s) = K§/c- (6)

We let 7 : C —» C be the semistable reduction of f as constructed in Lemma. 1.2.
If Ep is the corresponding horizontal curve on S, then we denote respectively by
FE, and E the strict transforms of Epin S, and S Hence

-~

I2.(E2) =dEp, p.(E2)=E, (7)

where d = deg .

Let Cp be the normalization of Ep, mp : Cp — C the morphism induced by
f, and fp : Sp — Cp the pullback fibration of f under mp. By the construction
of fp, there is a section of fp whose image in S is Ep.

Now by considering the normalization of one component of the fiber product
of Cp and C over C, we can obtain a curve € such that the following diagram

comimutes.

Cp(——llb—é

ﬂpl L.f,
C «———2¢C

w

Let f: 5 — C be the pullback fibration of funder ¢. By the uniqueness of the
relative minimal model (since g > 0) and the universal property of fiber product,
we know that f is nothing but the pullback of fp under ¢. Hence f has a section
E, which is induced by the above mentioned section of fp. Therefore, we l-.now
that the image of E in S coincides with E. Denote respectively by p and P the
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corresponding points of E and E. Since f is semistable, by abusing notations, we
have

——

I\,S'/C’ = qb*I\'g/é, ¢‘E = E,

then from Lemma 1.3, p* Nz /&= 3 Ks/c — Dx, hence we obtain

= dI\'S,/cEP - D,-.-Ez
= ddphy(P) — D E,,

thus we have

1 - 1
hlg‘(P) = Eh(P) + EE;D,,EQ. (8)
Note that g degd
deg eg
= <1.
d i, =1 9)

Lemma 3.1. )
—h(P) < (29 — 1)(d(P) + s) — Lic(f)
ddp

Proof. Since f is semistable, by Theorem 2.1, we have

1 . 2(C)-2 3 1 .,
—h(P)< (29 -1 - —~R?%. 10
dap ) = (2 )( ddp +ddp) ddp " S1€° (10)

where § is the number of singular fibers of f. 1t is obvious that

i< B ey (11)
e
By Lemma 1.5, we have
1 o,  deg¢ )
mﬁglé = _Tip_-h‘ (f)- (12)

By Hurwitz formula,

29(C) — 2 = deg $(29(Cp) — 2) + 4.

Then note that the ramification index of m at any ramified point is e, by the
construction of ¥ we can see that the index of ¢ at any ramified point is at most
e. Hence it is easy to know that the contribution of the ramified points of ¥ over
one branched point to ry/ degy is at most 1 — 1/e. Thus
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it Implies that

20(C) — 2 .
2g(C)—2 S(leg¢d(P)+cleg¢ 1_1 .
ddp d dp

; (13)
= cg ¢ (d(P) + (l - 1) s)
dp €

Combining (9)-(13), we have

By < CB (29 - 1)(d(P) + ) - Li(£)

ddp P

< (29 — D)(d(P) + s) — I (f).
Q.E.D.

Now we shall find the upper bound of ﬁDﬁEg. Note first that

3
Dr = H; (Z(Ft - Fi.red)) - I‘:p:_, + D".

=1

Since Iy, Ey = dEp, and Ep(F; — Fj ted) < dp, by project formula we have

1 3
E&;H; (Z(F, ot -Fi,rcd)) EQ < 8,

=1

Lemma 3.2.

Lemma 3.3.
~Kp B2 < s — #{Fi | pa(Fiyrea) = 0}.

Proof. Since pa(Firea) = 0 implies that F; is a tree of non-singular rational curves,
it has no effect on —K,, and —K,, FE,. For simplicity, we assume that p, (F} red) #

0 for all 7.
By considering the embedded resolution, we let

o*E=E+ Z ai—1E;.
i=1

where E is the strict transform of E and a; > 0 is the multiplicity of the strict

transform of E at p;. We have know that n.E; = m}(E), and

—K,, =n*r} (Z(rn.g_l - z)gi,)

i=1

hence

—K,, B2 =7, (Z(m;_j — 2)5,‘) N2

=1
»

= dZ(m,‘_] — 2)8,’5
i=1

=d Z(m;_l - 2)ai—y

=1
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On the other hand,

3 8 T
o* (Z F") = ZF.' + Z mi-1&i,
=1 =1 =1

where F; is the strict transform of F;, and m;_; 1s the multiplicity of the strict
transform of Y. F} at p;. From } i_, F;E > 0, we have

r

8
Z Gigmiy < Z F,E = sdp,

=1 =1

then from (1),
—Ii—pQEz < sddp.

This completes the proof. Q.E.D.

Lemma 3.4.

Proof. Since D" = K, &~ p*Ksyc, by induction on the number of the blowing-

downs, we can see that the contribution of a curve in D" to D" E, is at most dp.
On the other hand, the number of curves contracted by pis d 3 7_, c~1(Fi). Hence
we have the desired inequality. Q.E.D.

Proof of (6)
From the above lemmas, we have

hie(P) <(2g = 1)(d(P) +s) = K%, + Y ((F:) + c1(FY))

=1
— #{F; | pa(Firea) =0} + 2s.
By Lemma 1.6,

3

ST (EEF) + co1(F)) < (dg = 4)s + # {Fi | pa(Firea) = 0}

i=1

Hence we have
hi(P) < (29 — 1){(d(P) + 3s) — Kg,c.

Q.E.D.
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